变压器试验

变压器试验
变压器试验

变压器试验

1 实验类型 (2)

1.1 例行试验 (2)

1.2 型式试验 (2)

1.3 特殊试验 (2)

2 电压比试验 (2)

2.1 电压比测量 (2)

2.2 绕组并联之路间的等匝试验 (3)

2.3 绕组电阻测量 (3)

3 绕组绝缘的特性试验 (3)

4 外施耐压试验、感应耐压试验和局部放电测量 (3)

4.1外施耐压试验又称短时间工频耐压试验 (3)

4.2 感应耐压试验 (4)

4.3 局部放电测量 (4)

5 空载试验与负载试验 (4)

5.1 空载试验的目的和意义 (4)

5.2 负载试验 (5)

6 温升试验 (5)

7 试验程序 (6)

8 术语 (7)

8.1 端子和中性点 (7)

8.2 绕组 (7)

8.3 分接 (8)

8.4 试验分类 (9)

1 实验类型

1.1 例行试验

1)绕组电阻测量

2)电压比测量和联结组标号检定

3)短路阻抗和负载损耗测量

4)空载电流和空载损耗测量

5)绕组对地绝缘电阻和(或)绝缘系统电容的介质损耗因数(tgδ)的测量

6)绝缘例行试验

7)有载开关分解试验

8)绝缘油试验

1.2 型式试验

1)温升试验

2)绝缘型式试验

1.3 特殊试验

1)绝缘特殊试验

2)绕组对地和绕组间的电容测定

3)暂态电压零序阻抗测量

4)三相变压器零序阻抗测量

5)短路承受能力试验

6)声级测定

7)空载电流谐波测量

8)风扇和油泵电机所吸取功率测量

2 电压比试验

2.1 电压比测量

是为了检查变压器的每个绕组的匝数是否符合图样要求,因此也叫做匝数比试验。

2.2 绕组并联之路间的等匝试验

2.3 绕组电阻测量

变压器绕组在制造过程中,由于每根导线长度有限,加上工艺上的要求(例如纠结式绕组),常常需要进行焊接,容量越大焊点就越多。纠结式绕组一相可达几十处甚至更多。引线装配过程中,分接引线、相间的引线和各相引线的焊点,分接引线与开关之间的紧固连接,开关动、定触头之间的接触环节的质量都必须进行有效的监督。而测量绕组电阻则是一种简单而有效的手段。

在变压器的整个试验过程中,要用绕组电阻来计算电阻上的损耗(I2R)。用此数据来计算校正到参考温度下的阻抗电压、短路阻抗和负载损耗。还要用温升试验测得的冷态电阻和试验终了时的热态电阻来计算绕组的平均温升。在现场定期维修和检查故障时用以判断缺陷的基本数据,因此必须保证测量的精度。

3 绕组绝缘的特性试验

变压器绝缘试验分为绝缘特性试验和绝缘强度试验两部分。

绝缘特性试验时对产品生产过程中的工艺质量进行监督和间接鉴别绝缘在高压作用下的可靠性的手段。绝缘强度试验则是直接鉴别其是否能承受规定的试验电压(在规定的施加电压的时间内)

4 外施耐压试验、感应耐压试验和局部放电测量

4.1外施耐压试验又称短时间工频耐压试验

外施耐压试验是考验产品主要绝缘电气强度的最基本的绝缘试验,是发现主绝缘是否合理,绝缘材料有无缺陷和制造工艺是否符合要求的重要手段之一。因此,把它列入出厂试验项目之一,同时也是现场验收试验、修理后试验和定期的绝缘预防性试验的重要项目之一。他对于产品在运行之中绝缘能否承受主大气过电压和操作过电压,是一项重要考核指标。

试验电压的标准

外施耐压试验使用外部的工频交流高压,施加在被试变压器的绕组上,绕组各部位处于同电位下承受工频电压1min,用以考核绕组的绝缘对地绝缘的电气强度。

4.2 感应耐压试验

感应耐压试验是出厂试验的重要项目之一。对于全绝缘的变压器,通常用该项试验产品的从绝缘——绕组的匝间、层间和段间以及相间的绝缘强度,对于分级绝缘的电力变压器和试验变压器,对其绕组的主绝缘和本身的纵绝缘,往往用感应耐压试验同时考核。

4.3 局部放电测量

1 测量变压器局部放电的意义和目的

为了考核变压器绝缘的可靠性,在产品出厂时要进行一些列的绝缘试验。冲击试验、操作波试验、外施高压试验和感应高压试验等,其目的都是为了考核变压器绝缘,对大气电压和操作过电压的短时耐受能力。但是实践表明,许多变压器的损坏,不仅是由于上述两种过电压的短时作用,而是由于多次过电压的积累效应和长期在工频工作电压下局部放电造成的。绝缘介质中局部放电,虽然短时放电能量很小,但由于它存在很长时间,会对绝缘材料产生破坏作用,最终导致绝缘击穿。为了保证变压器在规定寿命时间内,不致因局部放电而损坏,必须确定一个合理的允许放电量。

2 局部放电是指高压电器中的绝缘介质在高电压的作用下,发生在电极之间,但并未贯通的放电。这种放电可在导体附近发生,也可能不在导体附近发生,它可以产生在固体绝缘的空气中、液体绝缘气泡中或不同介质特性绝缘的分界面。

5 空载试验与负载试验

5.1 空载试验的目的和意义

空载试验是出厂试验的重要项目之一,制造过程中需要重复多次,同时它也是经大修投运前的直接实验项目之一。

空载试验是在试品的一个绕组供给额定电压下进行,使在铁心中产生额定磁通,通过测量空载损耗和空载电流可发现磁路中的局部或整体缺陷,同时也能发现线圈匝间短路等问题。另外,空载损耗使变压器在投运后时时刻刻都在产生能源损失,因此把它控制在一定范围,对变压器的经济运行和节约能源都有重要意义。空载损耗主要包括,铁心在交变磁通作用下所产生的磁滞损耗。同时也包括空载电流流过绕组所产生的电阻损耗和附加损耗,由于这部分损耗占的比例也很小,因此通常可以忽略不计。

空载电流的成份中,绝大部分是激磁电流(无功部分),铁损电流(有功部分)所占的比例很小。激磁电流主要与铁心的磁阻有关,磁阻的大小决定于铁心材质

的好坏和磁感应强度的大小。铁心中的接缝也是磁阻的一个部分,其对于小变压器空载电流的影响较大,但对大型变压器影响较小。空载电流通常以占定额定电流的百分数表示。三相变压器的空载电流取其三相的算术平均值;三绕组变压器绕组容量不等时,空载电流的基数无论由哪个绕组供电,均应换算到最大的容量。

2 在空载试验的数据中,空载损耗是重要的,引起空载损耗增大一般有以下几个原因:

1)铁心硅钢片的材质不良

2)铁心硅钢片的毛刺较大

3)铁心硅钢片的片间绝缘不好

4)铁心中某一部分短路

5)穿心螺杆或压板的绝缘损坏,造成局部短路

6)绕组匝间短路

7)线圈并联之路的匝数不等

5.2 负载试验

1负载试验的目的和意义

变压器的空载试验是在变压器的一种极限状态,即铁心中只有励磁磁通,而没有漏磁通,所测得损耗都是在铁心中产生的。而变压器的负载试验,是在变压器一侧将一侧绕组的线路短路,在另一侧供给额定频率的额定电流,这时两侧的线圈中都流过额定电流,因而产生了漏磁通。绕组除由额定电流而产生的电阻损耗外,漏磁通在绕组中和构件中所产生的损耗,叫做负加损耗。合在一起称为负载损耗,即负载试验时测得的损耗(因负载实验时电压很低,铁心中磁通密度很低,而铁心内部损耗很小)。

负载试验时使短路绕组中产生额定电流所施加的电压,称为阻抗电压,一般以额定电压的百分数表示。

负载实验时测得的负载损耗和阻抗电压,是变压器很重要的两个参数。负载损耗所产生的热直接影响绕组、油和其它部位的温升。无论大小变压器,负载损耗都占总损耗(负载损耗与空载损耗之和)的大部分。另外,通过负载损耗增大的分析,还可以检查出变压器在结构上的缺陷。

6 温升试验

冷却方式的标志

对于油浸式变压器,用四个字母顺序代号标志其冷却方式

第一个字母表示与绕组接触的内部冷却介质

O 矿物油或燃点不大于300的合成绝缘液体

K 燃点大于300的绝缘液体

L 燃点不可测出的绝缘液体

注:燃点用“克利夫兰开口杯法”试验

第二字母表示内部冷却介质的循环方式

N 流经冷却设备和绕组内部的油流是自然的热对流循环

F 冷却设备中的油流是强迫循环,流经绕组内部的油流是热对流循环

D 冷却设备中的油流是强迫循环,(至少)在主要绕组内的油流是强迫循环

第三个字母表示外部冷却介质

A 空气W 水

第四个字母表示外部冷却介质的循环方式

N 自然对流 F 强迫循环(风扇、泵等)

绝缘配合

电气产品在输电系统中可能受到各种电压的作用,为了保证产品正常运行,系统中又设置了各种保护装置。综合考虑,系统中可能出现的各种过电压、保护装置的特性及设备的绝缘特性,确定输电系统中各种电气设备的绝缘水平,从而使设备绝缘故障率或停电事故降到经济上和运行上都可以接受的水平。这就是绝缘配合问题。

JB/T 501-2000X

7 试验程序

本试验程序并未标准化,未注明试验类型的试验项目属例行试验。

具体试验项目包括以下内容:

1)油箱机械强度试验(型式试验)

2)油箱密封试验

3)绝缘特性测量(1)绝缘电阻、吸收比及极化指数测定(35kV、4000kV A 及以上和66kV及以上提供绝缘电阻和吸收比,330kV及以上应提供绝缘电阻值、吸收比及极化指数;其它中小型变压器只提供绝缘电阻)(2)介质损耗因数测量(35kV、8000kVA及以上和66kV及以上)。

4)变压器油试验(1)介质损耗因数测量(2)含气量测定(3)含水量测定(4)击穿电压测定(5)溶解气体气相色谱分析

5)电压比测量

6)电压矢量关系校定

7)绕组电阻测量

8)空载损耗及空载电流测量(需做LI的产品)

9)操作冲击试验(220kV及以上)

10)线端雷电全波冲击试验(型式试验)注:电压为110kV及以上为例行试验

11)线端雷电截波冲击试验(型式试验)

12)中性点端子雷电全波冲击试验(型式试验)

13)不引出的中性点端子雷电全波冲击试验(特殊试验)

14)外施耐压试验

15)空载损耗及空载电流测量(35kV、8000kVA及以上和66kV及以上)

16)感应耐压试验注:不同电压等级产品按GB1094.3的规定

17)局部放电测量注:适用于干式变压器和额定容量10000kV A、电压等级66kV级及以上油浸式变压器

18)空载损耗及空载电流测量

19)空载电流谐波测量(特殊测量)

20)短路阻抗及负载损耗测量

21)三相变压器的零序阻抗测量(特殊试验)

22)有载分接开关操作试验注:有载分接开关操作试验可在试验中穿插进行23)温升试验(型式试验)

24)声级测定(特殊试验)

25)风扇电机和油泵所吸收功率测量(特殊测量)

26)短路承受能力试验(特殊试验)

注:需做此试验的产品,试验项目11)~13)应在其后进行

8 术语

8.1 端子和中性点

端子用于将绕组与外部导线相连接的导电部件

线路端子用连接电网络导线的一种端子

中性点对称电压系统中,通常处于零电位的一点

中性点端子

A 对以三相变压器或有单相变压器组成的三相组

指连接星型联结或有曲折形联结公共点(中性点)的端子

B 对单相变压器

指连接网络中性点的端子

对应端子

变压器不同绕组标有相同字母或对应符号的端子

8.2 绕组

绕组构成与变压器标注的某一电压值相对应的电气线路的一组线匝

注:对于三相变压器,指三个相绕组的组合

带分接绕组有效匝数可以逐级改变的绕组

相绕组构成三相绕组的一个相的线匝组合

注:“相绕组”一词不应与某一心柱上所有线圈的组装体混同

高压绕组具有最高额定电压的绕组

低压绕组具有最低额定电压的绕组

注:对于增压变压器,较低额定电压的绕组可能具有较高的绝缘水平

增压变压器具有一个与线路串联以改变线路电压值和(或)相位的串联绕组及一个励磁电阻的变压器

中压绕组多绕组变压器中的一个绕组,其额定电压在最高额定电压和最低额定电压之间

辅助绕组只承担比变压器额定容量小得多的负载绕组

稳定绕组在星形——星型联结或星型——曲折形联结的变压器中,为减小星形联结绕组的零序阻抗而专门设计的一种辅助的三角形联结的绕组。

注:此绕组只有在三相不连接到外部电路时,才称为稳定绕组

公共绕组自耦变压器有关绕组的公共部分

串联绕组对以自耦变压器,是指于线路串联部分的绕组,对于增压变压器,则指串联于线路中绕组

励磁绕组增压变压器中,向串联绕组供给电能的绕组

8.3 分接

分接在带分接绕组的变压器中,该绕组的每一个分接连接均表示该分接的绕组有一确定的有效匝数,也表示该分接绕组与任何其他匝数不变的绕组间有一确定值的匝数比。

注:在所有分接中,有一个是主分接,其他分接用各自相对主分接的分接因数来表示其与主分接的关系。

主分接与额定参数相对应的分接

分接因数(与指定的分接相对应的)

指Ud/Ur(分接因数)或100Ud/Ur(用百分数表示分接因数)

其中:Ur——该绕组的额定电压

Ud在不带分接绕组施加额定电压时,处于指定分接位置的绕组端子间在空载下所感应出的电压

正分接分接因数大于1的分接

负分接分接因数小于1的分接

分接级两相邻分接间以百分数表示的分接因数之差

分接范围用百分数表示的分接因数与100相比的变化范围

注:如果分接范围用从100+a变到100-b,则此分接范围为:+a%、-b%;若a=b,则为:+a

分接电压比(一对绕组的)

当带分接绕组是高压线组时,其分接电压比等于额定电压比乘上该绕组的分接因数

当带分接绕组是低压线组时,其分接电压比等于额定电压比除以该绕组的分接因数

注:按定义,虽然额定电压比至少等于1,但当额定电压比接近1时,某些分接的分接电压比有可能小于1.

分接工作能力除主分接以外其他分接某些参数的指定值,与额定参数相类似。分接参数表示某一分接(除主分接以外)的分接工作能力的参数

注:变压器内任何一个绕组(不足是带分接的绕组)都有分接参数

其分接参数是:

A 分接电压(与额定电压类似)

B 分接容量(与额定容量类似)

C 分接电流(与额定电流类似)

满容量分接分接容量等于额定容量的分接

降低容量分接分接容量低于额定容量的分接

有载分接开关适合在变压器励磁或负载下,改变绕组分接连接位置的一种位置总损耗空载损耗与负载损耗之和

注:辅助装置损耗,不包括在总损耗之中,并应单独说明

8.4 试验分类

例行试验每台变压器都要承受的试验

型式试验在一台有代表性的变压器上所进行的试验,以证明被代表的变压器也符合规定要求(但例行试验除外)

注:如果变压器在额定值和结构方面完全相同,则认为其中一台可

以代表。若一台变压器在额定值或其他特性与其余变压器的差异不

大时,对其所做的型式试验也可以认为有效,其差异应由制造厂和

用户协议进行规定。

特殊试验除型式试验和例行试验外,按制造厂和用户协议所进行的试验。

大型变压器交接试验作业指导书

大型变压器交接试验作业指导书 编制:严忠 审核:李玉国宋述贵 批准:季明怀 2004年12月12日

目录 一、编制说明 (1) 二、编制依据 (1) 三、主要试验仪器 (1) 四、试验前的准备 (2) 五、试验作业 (3) 六、安全生产及注意事项 (6)

1、编制说明 本专业指导书主要适用于额定容量8000KV A及以上, 额定电压35—220KV级的油浸式电力变压器,作为调试方面的技术指导性文件。也可作为小型变压器或干式变压器的指导参考。 在使用本指导书时,应结合变压器的具体结构和变压器的订货合同要求,参照有关使用说明书的技术要求进行施工。如有疑问请与制造商联系以便妥善处理。 2、编制依据 2.1设计院提供的本专业图纸; 2.2中华人民共和国能源部颁发的《电力建设施工及验收技术规范》 2.3水利电力部颁发的《火力施工质量检验及评定标准》 2.4相关的设备使用说明书; 2.5国家颁发的有关的规范、标准。 2.6 《电气装置安装工程电气设备交接试验标准》 3、主要试验仪器

4、试验前的准备 4.1变压器主体及附件均无缺陷,变压器上无遗留杂物,导气联管畅通,倾斜度正确。底座与基础固定牢固,滚轮制动可靠。电缆与管路入地沟及交叉处有保护,事故储油池符合要求。 4.2一、二次母线与变压器套管连接可靠、牢固。套管型电流互感器组的接线端子应短接,不允许开路。 4.3。储油柜和电容式套管的油位正常,无假油位。 4.4所有投入运行的组件阀门应处于完全开启状态(但注、放油阀门应关闭)。对所有组件上部的放气塞,包括40KV级及以下套管、气体继电器等,进行再次排气。 4.5无励磁开关,三相位置应一致;有载开关电动机构灵活可靠,操纵箱及远程显示器,动作数据应一致,指示位置应正确。 4.6各接地点接地良好,如:油箱顶上的铁心接地套管和电容式套管上接地套管均应可靠接地,变压器接地的中性点、自耦变压器公共中性点、有载开关中性点,均应可靠接地;油箱的上、下箱沿和下节油箱两侧的接地螺栓,均用专用接地线接地。 4.7冷却装置的控制系统应正常。对风冷却器应运转1—2h后,打开放气塞排气,然后拧紧实。 4.8继电保护装置动作准确;测温装置指示无误;吸湿器呼吸通畅;压力释放阀完好。在变压器顶部定位处;已打开过盖板,处密封可靠。

干式变压器试验步骤

干式变压器试验步骤 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

1.绕组直流电阻测量 1.1确保变压器高、低压侧连接排线拆除。 1.2采用QJ44双臂电桥进行测量。 1.3分别测量高压侧各绕组的直流电阻, 1600kVA及以下变压器,其线间电阻值差别一般 不大于三相平均值的2%,与以前相同部位测得值比较,其变化不大于2%。 1.4分别测量低压侧各绕组的直流电阻,1600kVA及以下变压器,其相间电阻值差别一般不 大于三相平均值的4%,与以前相同部位测得值比较,其变化不大于2%。 1.5若直流电阻出现不合格情况,应查明原因: 1、检查电桥接线(线头间是否有铜丝短接……) 2、检查夹的位置(夹线钳的电压端要在电流端内侧、电压引线尽量夹在绕组引出铜排 的根部……) 3、磨一磨(接触面是否有漆、氧化层) 2.绕组绝缘电阻、吸收比测量 2.1确保变压器高、低压侧绕组及中性点成拆开状态,并将低压绕组及中性点短路接地,将 高压侧线圈短路。 2.2 采用2500V兆欧表测量高压绕组的绝缘电阻和吸收比。 2.3 测量完毕,先将兆欧表的L端引线脱开,再停止兆欧表,并对变压器的高压绕组对地进 行充分放电。 2.4 将高压绕组短路接地,低压绕组短路,采用1000V兆欧表测量低压绕组的绝缘电阻和吸 收比。 2.5 测试结果与前次测试结果相比应无明显的变化。其吸收比(10℃-30℃范围)不低于1.3。 2.6 大修后还要测量穿心螺栓、铁芯等的绝缘电阻。与前次测试结果相比应无明显的变化。 3.交流耐压试验 3.1确保变压器高、低压侧线圈出线成拆开状态,并将高压侧电缆接线头与变压器本体移开 50cm以上的距离,避免耐压过程中对电缆的闪络放电。 3.2 将变压器高压侧线圈短路接地,低压侧线圈三相短路,采用2500V兆欧表对低压侧线圈 进行耐压试验。在加压的1分钟时间内,变压器内应无放电声,其绝缘电阻值不应明显 波动,应稳中有升,则耐压合格。

变压器实验报告汇总

大学电气信息学院 实验报告书 课程名称:电机学 实验项目:三相变压器的空载及短路实验专业班组:电气工程及其自动化105,109班实验时间:2014年11月21日 成绩评定: 评阅教师: 电机学老师:曾成碧 报告撰写:

一、实验目的: 1 用实验方法求取变压器的空载特性和短路特性。 2 通过空载及短路实验求取变压器的参数和损耗。 3 计算变压器的电压变化百分率和效率。 4掌握三相调压器的正确联接和操作。 5 复习用两瓦特法测三相功率的方法。 二.思考题的回答 1.求取变压器空载特性外施电压为何只能单方向调节?不单方向调节会出现什么问题? 答:因为当铁磁材料处于交变的磁场中时进行周期性磁化时存在磁滞现象。如果不单方向调节变压器外施电压,磁通密度并不会沿原来的磁化曲线下降,所以会影响实验结果的准确性。 2.如何用实验方法测定三相变压器的铜、铁损耗和参数?实验过程中作了哪些假定? 答:变压器的空载实验中认为空载电流很小,故忽略了铜耗,空载损耗近似等于变压器铁耗Fe P P ≈0,同时忽略了绕组的电阻和漏抗。空载时的铁耗可以直接用两瓦特法测得,根据公式2 003/I P r m ≈可以求得励磁电阻,由003/I U Z m ≈可

以求得励磁阻抗,由2 2 k m m r Z X -=可以求得励磁电抗值。 在变压器的短路实验中,由于漏磁场分布十分复杂,故在T 形等效电路计算时,可取k x x x 5.0'21==σσ,且k r r r 5.0'21==。同时由于外加电压低,忽略了铁耗,故假设短路损耗等于变压器铜耗。短路损耗k P 可直接由两瓦特法测得,有公式 k k k I P r 2/=可得k r ,k k k I U Z 3/=,故k k k r Z x 22-=。 3.空载和短路实验中,为减小测量误差,应该怎样联接电压接线?用两瓦特表法测量三相功率的原理。 答:变压器空载实验中应当采用电流表接法。因为空载实验测量的是励磁阻抗,阻抗值较大,若采用电流表外接法,电压表会有明显的分流作用,从而产生较大的误差。 变压器短路实验应当采用电流表外接法。因为短路实验中测量的是漏阻抗,阻抗值较小,若采用电流表接法,会产生明显的分压作用,导致测量不准确。 4.变压器空载和短路实验时,应注意哪些问题?一般电源应接在哪边比较合适?为什么? 答:在做变压器空载实验时,为了便于测量同时安全起见,应当在变压器低压侧加电源电压,让高压侧开路。在实验过程中应当将激磁电流由小到大递升到1.15N U 左右时,只能一个方向调节,中途不得有反方向来回升降。否则,由于铁芯的磁滞现象,会影响测量的准确性。 在做变压器短路实验时,电流较大,外加电压很小,为了便于测量,通常在

电力变压器交接试验标准

第六章电力变压器 第6.0.1条电力变压器的试验项目,应包括下列内容:一、测量绕组连同套管的直流电阻;二、检查所有分接头的变压比;三、检查变压器的三相接线组别和单相变压器引出线的极性;四、测量绕组连同套管的绝缘电阻、吸收比或极化指数;五、测量绕组连同套管的介质损耗角正切值tgδ;六、测量绕组连同套管的直流泄漏电流;七、绕组连同套管的交流耐压试验;八、绕组连同套管的局部放电试验;九、测量与铁芯绝缘的各紧固件及铁芯接地线引出套管对外壳的绝缘电阻;十、非纯瓷套管的试验;十一、绝缘油试验;十二、有载调压切换装置的检查和试验;十三、额定电压下的冲击合闸试验;十四、检查相位;十五、测量噪音。注:①1600kVA以上油浸式电力变压器的试验,应按本条全部项目的规定进行。②1600kVA及以下油浸式电力变压器的试验,可按本条的第一、二、三、四、七、九、十、十一、十二、十四款的规定进行。③干式变压器的试验,可按本条的第一、二、三、四、七、九、十二、十三、十四款的规定进行。④变流、整流变压器的试验,可按本条的第一、二、三、四、七、九、十一、十二、十三、十四款的规定进行。⑤电炉变压器的试验,可按本条的第一、二、三、四、七、九、十、十一、十二、十三、十四款的规定进行。 ⑥电压等级在35kV及以上的变压器,在交接时,应提交变压器及非纯瓷套管的出厂试验记录。 第6.0.2条测量绕组连同套管的直流电阻,应符合下列规定:一、测量应在各分接头的所有位置上进行;二、1600kVA及以下三相变压器,各相测得值的相互差值应小于平均值的4%,线间测得值的相互差值应小于平均值的2%;1600kV A以上三相变压器,各相测得值的相互差值应小于平均值的2%;线间测得值的相互差值应小于平均值的 1%;三、变压器的直流电阻,与同温下产品出厂实测数值比较,相应变化不应大于2%;四、由于变压器结构等原因,差值超过本条第二款时,可只按本条第三款进行比较。

变压器实验报告

课程名称:电机与拖动指导老师:卢琴芬成绩: 实验名称:单相变压器同组学生:雪成文鑫 一、实验目的和要求(必填)二、实验容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的 1.通过空载和短路实验测定变压器的变比和参数。 2.通过负载实验测取变压器的运行特性。 二、预习要点 1.变压器的空载和短路实验有什么特点?实验中电源电压一般加在哪一方较合适? 2.在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小? 3.如何用实验方法测定变压器的铁耗及铜耗。 三、实验项目 1.空载实验 测取空载特性U0=f(I0), P0=f(U0)。 2.短路实验 测取空载特性U K=f(I K), P K=f(U K)。 3.负载实验 (1)纯电阻负载 保持U1=U1N, cos φ2=1的条件下,测取U2=f(I2)。 四、实验线路及操作步骤 1.空载试验 实验线路如图3-1所示,被试变压器选用DT40三相组式变压器,实验用其中的一相,其额定容量P N=76W,U1N/ U2N=220/55V,I1N/I2N=0.345/1.38A。变压器的低压线圈接电源,高压线圈开路。接通电源前,选好所有电表量程,将电源控制屏DT01的交流电源调压旋钮调到输出电压为零的位置,然后打开钥匙开头,按下DT01面板上“开”的按钮,此时变压器接

入交流电源,调节交流电源调压旋钮,使变压器空载电压U0=1.2 U N,然后,逐次降低电源电压,在1.2~0.5U N的围,测取变压器的U0、I0、 P0共取6-7组数据,记录于表2-1中,其中U=U N的点必测,并在该点附近测的点应密些。为了计算变压器的变化,在U N以下测取原方电压的同时,测出副方电压,取三组数据记录于表3-1中。 图3-1 空载实验接线图 COSφ2=1 U1= U N= 220 伏 2.短路实验:

试论电力变压器高压试验技术

试论电力变压器高压试验技术 发表时间:2018-07-23T09:35:43.463Z 来源:《基层建设》2018年第15期作者:杜云飞 [导读] 摘要:现阶段,电力变压器是当前的供电系统中最为重要的供电设备,对发电、供电以及用电等方面都会产生重要的影响,为此,针对这种情况,我们就必须深入了解电力变压器高压试验技术的探讨,以便能够确保电力变压器的正常行。 东莞供电局试验研究所 523000 摘要:现阶段,电力变压器是当前的供电系统中最为重要的供电设备,对发电、供电以及用电等方面都会产生重要的影响,为此,针对这种情况,我们就必须深入了解电力变压器高压试验技术的探讨,以便能够确保电力变压器的正常行。 关键词:电力变压器;高压试验技术;探讨 电力变压器一旦出现故障,就会导致整个电力系统的发电、变电、输电、配电等受到不同程度的影响,从而给人们的生活和工作带来不便。因此,在变电站投运前,电力部门应对电力变压器展开高压试验,从而了解设备运行的稳定性,判断其是否满足投入运行的条件。基于此,有必要对电力变压器高压试验技术的应用问题展开研究,利用该技术更好地进行变压器性能的测试,从而为电力系统的稳定运行提供更多的保障。 1.电力变压器高压实验的分类 在当前的电力系统的构建过程中,为了能够更好地加强对电力变压器的研究,我们就必须要对电力变压器进行电气高气实验,其中,主要是表现在以下几个方面:通常情况下,由于电力变压器具备一定的特殊功能性,只有在使用过程中,加强对各个操作流程进行操作。为此,我们在对电力变压器进行制造时,一定要遵循相应的操作要求选取制造材料,而在变压器出厂之前,必须要不断加强对产品的检验,进行统一合格的出厂试验,这样就能够使得变压器符合相应的规定标准。进而确保自身的安全性和稳定性。电力变压器在经过长期的运输和大修之后,为了确保设备的性能,这就必须要采用交接试验的方法,才能确定变压器是否有其他的缺陷,之后才能投入到电力运行过程中去。与此同时,当电力变压器设备投入到电力运行过程中,都必须要通过预防性的实验,以此来进一步检验变压器的运行状况,只有这样,才能确定其中是否有不同的问题,这样做得好处就是能够准确地判断并做出相应的处理。 2.电力变压器高压试验的试验条件 在对电力变压器进行高压试验的过程中,为了尽可能提高高压试验流程的规范度以及高压试验结果的精确度,需要对高压试验中所用到的不同的额定条件进行一定程度的参考,并对额定条件中所包含的工行条件进行最大化的合理的有效提取,否则,难以保证电力变压器高压试验的规范化、合理化。 2.1有效控制高压试验的温度和湿度 在户内进行试验时,应该根据电力变压器高压试验的相关数据要求对其环境进行严格有效的控制,电力变压器进行高压试验的温度不可过高,最高不能超过40℃,同样也不能很低,不得低于-20℃。由此可见,其温度大致徘徊在-20℃~40℃之间,这是进行电力变压器高压试验的最佳温度范围。如果对电力变压器进行高压试验时温度徘徊在25℃~30℃之间就应该对周围空气的相对湿度进行有效控制,使相对湿度保持在85%以下最为适宜。只有高压试验的温度范围和相对湿度符合电力变压器高压试验的指标才能提高试验效率,得出最精确的结论。对于户外的试验来说,对其温度、湿度进行控制则较为困难,一般来说应该等其气候条件能够满足试验要求时再进行试验。 2.2变压器的绝缘性要求 在实验过程中,为了能够确保实验的安全性,我们就必须要在实验过程中,对电力变压器的绝缘性进行充分研究,这就需要,我们在确保实验环境的控制外,还需要对影响电力变压器的污垢进行有效地处理,进而能够确保电力变压器高压试验的绝缘性不受到影响,确保电力变压器试验效果的准确性。 2.3严格控制额定容量与电压,保持其充分散热 在对电力变压器进行高压试验时,除了要考虑试验环境、电力变压器的绝缘性之外,最重要的是应该对变压器的额定容量与电压进行严格控制,并保持其充分散热,避免因额定容量与电压超标,给电力变压器造成伤害。 3.高压试验技术的分析 3.1电力变压器高压试验技术中的常规手段 为了能够更好地确保电力变压器高压试验的正常进行,第一,就是要根据科学合理的接线原理进和相应的试验仪器进行接线处理,在接线之后,一定要组织相应的责任人进行全面的检查,从而可以确保相关的责任人进行全面的检查,才能确保电力变压器接线的安全性和稳定性,之后可以接通相应的电源,科学地按照相关试验一起的操作方法进行操作,详细记录相应的数据,在试验完成之后关掉实验仪器,切断试验设备的电源。 3.2高压试验中对交流耐压实验的运用 从本质上看,交流耐压实验作为高压试验技术的重要组成部分,在促进电力变压器的运行发展方面具有重要的作用。为了能够确保交流耐压试验的有效进行,我们就必须在操作过程中注重按照相关的接线原理进行操作,接线完成之后,我们就必须要注重对相关责任人进行全面的处理,才能最大程度低减少误差的产生。当然,我们为了能够更好地确保设备接线的稳定性,我们就必须要注重对控制箱中的调压器进行调试和检查,进而避免发生安全事故,在调试和检查过程中,还应该要确保设备指标调到零位,及时检查电力变压器和控制箱的接线是否安全。另外,在电力变压器电源接通之后,亮起绿色指示灯,实验人员必须要启动控制箱中的调节器,以此来确保升压工作的进行。在另外一方面,在升压过程中,一定要注重电力变压器仪器设备指标的变化情况,以及调压器的云状情况,当实验完成之后,实验人员必须要将电压逐渐调为零,最后才能将电力变压器和控制箱之间的引线解开,清楚一切不稳定的因素。 3.3试验过程中的数据分析 通常情况下,电力变压器普通试验数值为了能够更好地符合规程和厂家的需求,若不是初次试验,其数值变化量还要尽量满足规程的要求,同时对变压器的破坏性试验等方面进行严格操作,同时还要结合试验过程中的声响进行分析,只有当电压逐渐上升到规定的试验电压之后,若油箱内部有局部的放电声,而且指示表没有任何的变化,这就意味着可以将电压下降之后再次升压复试,如果复试过程中放电声逐渐下降并消失,这就认为是该试验属于正常现象。 3.4技术应用要点研究

变压器耐压试验(试验变压器)中应注意的几个问题

https://www.360docs.net/doc/9d880039.html, 变压器耐压试验(试验变压器)中应注意的几个问题变压器耐压试验中应注意的几个问题变压器能否可靠工作,最重要的指标就是绝缘结 构。据有关部门调查统计,变压器发生的故障有60%左右是在绝缘系统中,可见对变压器 绝缘性能进行质量检测,是何等的重要。国家标准GB 19212.1-2003《电力变压器、电源 装置和类似产品的安全第1部分:通用要求和试验》对低压变压器工频耐压试验的电压值、 受试部位等都有较详细的规定。本人长期从事低压变压器设计工作,总结了一些耐压试验 中应该注意的问题,在此作简要分析。 一、变压器工频耐压试验耐压试验步骤 在试验中应严格按照下列步骤进行操作,这样才能保证试验结果的正确判断和测试过程 的安全保障。

https://www.360docs.net/doc/9d880039.html, 1.检查试验环境有无不安全因素存在。若没有,则将耐压设备开机预热5min。 2.检查试验设备是否置于试验所需的电压挡位,其整定泄漏电流值是否符合要求。 将试验设备的高压输出端短路,通电检查过电流继电器是否动作,或是否发出击穿信号。 将试验设备的测试夹分别接在规定测试的部分(变压器绕组、屏蔽、铁心、框架等互相隔离的两个或更多的零件上)。 5.操作试验设备升压。升压初始,慢慢升至规定值的一半(应避免跳跃),然后迅速增加至规定电压值(整个升压过程大约在10 s),历时1min ,在此期间不允许有连续飞弧和击穿现象发生,然后将电压慢慢退到零位,切断电源,试验完毕。 切记,不可采用突然断电方法,以免瞬时失压引起的振荡过电压而将变压器击穿。 二、变压器工频耐压试验耐压试验结果的判断方法

https://www.360docs.net/doc/9d880039.html, 如果在试验过程中发生电压下降或发生击穿信号,这时不要轻易判断变压器击穿。应继续进一步测试,做进一步的证实: 1.用兆欧表测其绝缘电阻,若绝缘电阻为零或接近于零,则判为击穿;或进行二次升压试验,电压逐步施加,若是击穿,在电压加到一定值时,可观察到击穿点附近出现连续的火花放电或发热冒烟,则判为击穿。若第二次施压,电压上升了又下降,电流表的指针摆动剧烈,则判为飞弧不合格。 2.若绝缘电阻没有太大变化,或二次升压后可持续1min无击穿动作,则认为第一次击穿是空气间隙击穿(尘埃等物质引起),我们通常称为飞弧。外加电压消失后,击穿间隙立即自行复原,变压器的绝缘电阻不会发生变化,变压器的绝缘性能没有发生变化,不能判定为不合格。 三、试验所用高压设备的容量的计算与分析

试析电力变压器高压试验技术及故障处理

试析电力变压器高压试验技术及故障处理 摘要:随着经济社会的高速发展,人们的日常生活和工业生产对电力系统的需求量也在增加,同时对于供电的效率和质量要求也越来越高,保障电力系统的安全、有效和正常运行非常重要。为了保证工业生产和日常生活的正常用电,需要大力研究变压器在高压输电中发挥的作用,并根据实际情况制定一套科学有效的故障处理方案,这是目前电力系统中相关人员的工作重点。 关键词:电力变压器;高压试验技术;故障处理 1电力变压器概述 变压器在电力系统的高压输电过程中用的非常多,它是一种将交流电压转换为频率一致的一种或多种不同数值电压的电气设备,通过变压器来调整输电线路的电流电压,以满足各种不同的电力需求。在选择变压器的时候,应当综合考虑变压器使用设备的额定容量等参数,选择一个最为合适的变压器,才能更好的发挥变压器的作用。目前以非晶态合金作为铁芯的变压器使用为主,由于其节能性能和环保性能比较强,所以使用的领域比较广泛。在很多变压器使用过程中都存在着电能损耗高的问题,变压器的作用就是降低线路中的电流,进而降低电力输送过程中的电力损耗,提升电力系统的经济性。当电力输送到目的地的时候,再使用变压器对电压进行降低,来满足人们日常生活或工业生产需要。电力变压器是电力系统中非常重要的一个部件,为保证电力输送的稳定性提供一个可靠的保障。 2电力变压器高压试验技术 2.1变压器高压试验技术要求 在进行电力变压器高压试验之前,要求相关工作人员遵守以下三点要求:第一,将试验环境中的温度及湿度系数控制在一定范围之内,以确保试验结果的精准性;第二,在进行电力变压器高压试验过程中,工作人员应保持试验环境的洁净性,定期清除试验场地中残余的杂物及灰尘;第三,在电力变压器高压试验期间,应准备大量且规格适合的电阻,保障电力变压器高压试验的正常运行,有效避免试验过程中短路情况的出现。 2.2变压器高压试验技术方法 2.2.1常规高压试验 在电力变压器高压试验过程中,试验人员要按照相关的要求进行接线工作,在接线完毕以后,应严格地检查电力变压器高压试验的接线情况,以确保接线的准确性和安全性。在高压试验当中,试验人员应做好电源线连接,确保各项试验操作的顺利进行,与此同时,还需做好变压器高压试验数据记录。在各项试验完毕以后,再关闭试验仪器,切断电源。 2.2.2交流耐压试验 在电力变压器高压试验工作当中,试验人员要对调压器控制箱中的规范度进行检查,确保调压器控制箱处于“零位”状态;在升压过程中,试验人员应按照顺时针的顺序对调节器进行旋转,确保缓慢地进行升压;工作人员要密切观察调压器和仪表的运转情况。在试验工作完成以后,试验人员应及时调整电压,并将电源关闭,再将控制箱与变压器的引线解开,避免试验工作中出现安全隐患。 2.3变压器高压试验技术安全措施 在电力变压器高压试验技术应用前,试验操作人员首先需要进行准备工作,对试验现场进行安全防护,设置防护网,在防护网上设置醒目的警示标语,严禁

试验变压器耐压试验步骤

一、试验变压器耐压试验步骤绝缘等级,并不是绝缘强度的概念,而是允许的温升的标准,即绝缘等级是指其所用绝缘材料的耐热等级,分A、E、B、F、H级。绝缘的温度等级分为 A级 E级 B级 F级 H级。各绝缘等级具体允许温升标准如下: 最高允许温度(℃) 105 120 130 155 180 绕组温升限值(K) 60 75 80 100 125 性能参考温度(℃) 80 95 100 120 145 试验变压器在试验中应严格按照下列步骤进行操作,这样才能保证试验结果的正确判断和测试过程的安全保障。 1.检查试验环境有无不安全因素存在。若没有,则将耐压设备开机预热 5min。 2.检查试验设备是否置于试验所需的电压挡位,其整定泄漏电流值是否符合要求。 将试验设备的高压输出端短路,通电检查过电流继电器是否动作,或是否发出击穿信号。 将试验设备的测试夹分别接在规定测试的部分(变压器绕组、屏蔽、铁心、框架等互相隔离的两个或更多的零件上)。 5.操作试验设备升压。升压初始,慢慢升至规定值的一半(应避免跳跃),然后迅速增加至规定电压值(整个升压过程大约在10 s),历时1min ,在此期间不允许有连续飞弧和击穿现象发生,然后将电压慢慢退到零位,切断电源,试验完毕。 切记,不可采用突然断电方法,以免瞬时失压引起的振荡过电压而将变压器击穿。 二、试验变压器耐压试验结果的判断方法 如果在试验过程中发生电压下降或发生击穿信号,这时不要轻易判断变压器击穿。应继续进一步测试,做进一步的证实: 1.用兆欧表测其绝缘电阻,若绝缘电阻为零或接近于零,则判为击穿;或进行二次升压试验,电压逐步施加,若是击穿,在电压加到一定值时,可观察到击穿点附近出现连续的火花放电或发热冒烟,则判为击穿。若第二次施压,电压上升了又下降,电流表的指针摆动剧烈,则判为飞弧不合格。 2.若绝缘电阻没有太大变化,或二次升压后可持续1min无击穿动作,则认为第一次击穿是空气间隙击穿(尘埃等物质引起),我们通常称为飞弧。外加电压消失后,击穿间隙立即自行复原,变压器的绝缘电阻不会发生变化,变压器的绝缘性能没有发生变化,不能判定为不合格。 三、试验变压器耐压试验设备动作电流 低压变压器耐压试验中,在试验电压作用下,变压器绝缘介质中的电场强度达到某一临界值时,其绝缘性能开始丧失,泄漏电流剧增,当达到耐压设备高压侧过电流继电器预先规定的电流值时,继电器动作,切断高压输出。耐压试验一般均以继电器动作与否来判定是否击穿,因此过电流继电器的电流整定直接关系到对试品能否正确评判,一般低压电器相关标准明确规定 100mA为高压侧过电流继电器的整定值。 试验变压器耐压试验,又称电气强度试验或介电强度试验,是证明设计、选材和制造工艺的合理性。也是考核变压器安全性能的非常重要的试验项目之一。

变压器实验报告汇总

变压器实验报告汇总

四川大学电气信息学院 实验报告书 课程名称:电机学 实验项目:三相变压器的空载及短路实验专业班组:电气工程及其自动化105,109班实验时间:2014年11月21日 成绩评定: 评阅教师: 电机学老师:曾成碧 报告撰写:

一、实验目的: 1 用实验方法求取变压器的空载特性和短路特性。 2 通过空载及短路实验求取变压器的参数和损耗。 3 计算变压器的电压变化百分率和效率。 4掌握三相调压器的正确联接和操作。 5 复习用两瓦特法测三相功率的方法。 二.思考题的回答 1.求取变压器空载特性外施电压为何只能单方向调节?不单方向调节会出现什么问题? 答:因为当铁磁材料处于交变的磁场中时进行周期性磁化时存在磁滞现象。如果不单方向调节变压器外施电压,磁通密度并不会沿原来的磁化曲线下降,所以会影响实验结果的准确性。 2.如何用实验方法测定三相变压器的铜、铁损耗和参数?实验过程中作了哪些假定? 答:变压器的空载实验中认为空载电流很小,故忽略了铜耗,空载损耗近似等于变压器铁耗Fe P P ≈0,同时忽略了绕组的电阻和漏抗。空载时的铁耗可以直接用两瓦特法测得,根据公式2 003/I P r m ≈可以求得励磁电阻,由003/I U Z m ≈可以求得励磁阻抗,由2 2 k m m r Z X -=可以求得励磁电抗值。 在变压器的短路实验中,由于漏磁场分布十分复杂,故在T 形等效电路计算时,可取k x x x 5.0'21==σσ,且k r r r 5.0'21==。同时由于外加电压低,忽略了铁耗,故假设短路损耗等于变压器铜耗。短路损耗k P 可直接由两瓦特法测得,有公式k k k I P r 2/=可得k r ,k k k I U Z 3/=,故k k k r Z x 22-=。 3.空载和短路实验中,为减小测量误差,应该怎样联接电压接线?用两瓦特

变压器交流耐压试验作业指导

变压器交流耐压试验作业指导书 试验目的 交流耐压试验是鉴定电力设备绝缘强度最有效和最直 接的方法。电力设备在运行中,绝缘长期受着电场、温度和 机械振动的作用会逐渐发生劣化,其中包括整体劣化和部分 劣化,形成缺陷,例如由于局部地方电场比较集中或者局部 绝缘比较脆弱就存在局部的缺陷。 各种预防性试验方法,各有所长,均能分别发现一些缺陷,反映出绝缘的状况,但其他试验方法的试验电压往往都 低于电力设备的工作电压,但交流耐压试验电压一般比运行 电压高,因此通过试验后,设备有较大的安全裕度,所以这 种试验已成为保证安全运行的一个重要手段。 但是由于交流耐压试验所采用的试验电压比运行电压 高得多,过高的电压会使绝缘介质损耗增大、发热、放电, 会加速绝缘缺陷的发展,因此,从某种意义上讲,交流耐压 试验是一种破坏性试验,在进行交流耐压试验前,必须预先 进行各项非破坏性试验。 如测量绝缘电阻、吸收比、介质损耗因数tanδ、直流泄漏电流等,对各项试验结果进行综合分析,以决定该设备是否受潮或含有缺陷。若发现已存在问题,需预先进行处理,待缺陷消除

后,方可进行交流耐压试验,以免在交流耐压试验过程中,发生绝缘击穿,扩大绝缘缺陷,延长检修时间,

增加检修工作量。 本试验用来验证线端和中性点端子及它们所连接绕组对地及其他绕组的外施耐受强度(见GB1094.3)。交流耐压试验是检验变压器绝缘强度最直接、最有效的方法,对发现变压器主绝缘的局部缺陷,如绕组主绝缘受潮、开裂或者在运输过程中引起的绕组松动,引线距离不够,油中有杂质、气泡以及绕组绝缘上附着有脏污等缺陷十分有效。变压器交流耐压试验必须在变压器充满合格的绝缘油,并静止一定时间且其他绝缘试验均合格后才能进行。 试验仪器 1、高压试验控制箱 试验控制箱式高压试验变压器的配套设备,是用于试验 变压器的配套设备,主要用于试验变压器的调压控制,其工 作原理是通过调整自耦调压器的输出电压,实现试验变压器 额定范围内的工作电压调节。 2、YDQW充气式无局放试验变压器 试验变压器是电力设备检测及预防性试验所必须的试 验设备,用于输出交流高压,对各类高压试验提供较高电压, 使用于高电压电力设备的交流耐压设备。 选用试验变压器时要考虑以下两点: (1)电压

试析电力变压器高压试验技术及故障处理 姚树石

试析电力变压器高压试验技术及故障处理姚树石 摘要:随着经济社会的高速发展,人们的日常生活和工业生产对电力系统的需求量也在增加,同时对于供电的效率和质量要求也越来越高,保障电力系统的安全、有效和正常运行非常重要。为了保证工业生产和日常生活的正常用电,需要大力研究变压器在高压输电中发挥的作用,并根据实际情况制定一套科学有效的故障处理方案,这是目前电力系统中相关人员的工作重点。 关键词:电力变压器;高压试验技术;故障处理 1电力变压器概述 变压器在电力系统的高压输电过程中用的非常多,它是一种将交流电压转换为频率一致的一种或多种不同数值电压的电气设备,通过变压器来调整输电线路的电流电压,以满足各种不同的电力需求。在选择变压器的时候,应当综合考虑变压器使用设备的额定容量等参数,选择一个最为合适的变压器,才能更好的发挥变压器的作用。目前以非晶态合金作为铁芯的变压器使用为主,由于其节能性能和环保性能比较强,所以使用的领域比较广泛。在很多变压器使用过程中都存在着电能损耗高的问题,变压器的作用就是降低线路中的电流,进而降低电力输送过程中的电力损耗,提升电力系统的经济性。当电力输送到目的地的时候,再使用变压器对电压进行降低,来满足人们日常生活或工业生产需要。电力变压器是电力系统中非常重要的一个部件,为保证电力输送的稳定性提供一个可靠的保障。 2电力变压器高压试验技术 2.1变压器高压试验技术要求 在进行电力变压器高压试验之前,要求相关工作人员遵守以下三点要求:第一,将试验环境中的温度及湿度系数控制在一定范围之内,以确保试验结果的精准性;第二,在进行电力变压器高压试验过程中,工作人员应保持试验环境的洁净性,定期清除试验场地中残余的杂物及灰尘;第三,在电力变压器高压试验期间,应准备大量且规格适合的电阻,保障电力变压器高压试验的正常运行,有效避免试验过程中短路情况的出现。 2.2变压器高压试验技术方法 2.2.1常规高压试验 在电力变压器高压试验过程中,试验人员要按照相关的要求进行接线工作,在接线完毕以后,应严格地检查电力变压器高压试验的接线情况,以确保接线的准确性和安全性。在高压试验当中,试验人员应做好电源线连接,确保各项试验操作的顺利进行,与此同时,还需做好变压器高压试验数据记录。在各项试验完毕以后,再关闭试验仪器,切断电源。 2.2.2交流耐压试验 在电力变压器高压试验工作当中,试验人员要对调压器控制箱中的规范度进行检查,确保调压器控制箱处于“零位”状态;在升压过程中,试验人员应按照顺时针的顺序对调节器进行旋转,确保缓慢地进行升压;工作人员要密切观察调压器和仪表的运转情况。在试验工作完成以后,试验人员应及时调整电压,并将电源关闭,再将控制箱与变压器的引线解开,避免试验工作中出现安全隐患。 2.3变压器高压试验技术安全措施 在电力变压器高压试验技术应用前,试验操作人员首先需要进行准备工作,对试验现场进行安全防护,设置防护网,在防护网上设置醒目的警示标语,严禁

单相变压器实验报告

单相变压器实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

单相变压器实验报告学院:电气工程学院 班级:电气1204班 姓名:卞景季 学号: 组号: 22 一、实验目的 通过空载和短路实验测定变压器的变比和参数。 通过负载实验测取变压器的运行特性。 二、实验预习 1、变压器的空载和短路实验有什么特点实验中电源电压一般加在哪一方较合适 答:空载试验的电压一般加在低压侧,因为低压侧电压低,电流大,方便测量。短路试验就是负载实验,高压加,低压短路,得到试验数据。 2、在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小 答:在量程范围内,按实验要求电流表串联、电压表并联、功率表串联(同相端短接)。 3、如何用实验方法测定变压器的铁耗及铜耗。 答:空载实验所测得的功率为铁耗,短路实验所测得的功率为铜耗。 三、实验项目 1、空载实验 测取空载特性U 0=f(I ),P =f(U ) , cosφ =f(U )。 2、短路实验 测取短路特性U K =f(I K ),P K =f(I K ), cosφ K =f(I K )。 四、实验方法1

2、屏上排列顺序 D33、DJ11、 3、空载实验 (1相组式变压器DJ11U 1N /U 2N =220/55V ,I 路。 (2 (3范围内,测取变压器的U 0、I 0、P 0。 (4)测取数据时,U=U N 点必须测,并在该点附近测的点较密,共测取数据7-8组。记录于表3-1中。 (5)为了计算变压器的变比,在U N 以下测取原方电压的同时测出副方电压数据也记录于表3-1中。 表4、短路实验 (1)按下控制屏上的“停止”按钮,切断三相调压交流电源,按图3-2接线(以后每次改接线路,都要关断电源)。将变压器的高压线圈接电源,低压线圈直接短路。 图3-2 短路实验接线图 (2)选好所有测量仪表量程,将交流调压器旋钮调到输出电压为零的位置。 (3)接通交流电源,逐次缓慢增加输入电压,直到短路电流等于 为止,在~I N 范围内测取变压器的U K 、I K 、P K 。 (4)测取数据时,I K =I N 点必须测,共测取数据6-7组记录于表3-2中。实验时记下周围环境温度(℃)。 X

电力变压器交接试验项目

https://www.360docs.net/doc/9d880039.html,/products_list.html 电力变压器交接试验项目 电力变压器: 电力变压器是一种静止的电气设备,是用来将某一数值的交流电压(电流)通过铁芯导磁作用变成频率相同的另一种或几种数值不同的电压(电流)的电气设备,电力变压器通常用kVA或MVA来表示容量的大小,根据结构可以分为干式电力变压器、油浸式电力变压器、三相变压器等,变压器交接试验是在投运前按照国家相关技术标准进行预防性检验,其中,交接试验包括以下项目: 变压器交接试验项目: 1、绝缘油试验或SF6气体试验; 2、测量绕组连同套管的直流电阻; 3、检查所有分接的电压比; 4、检查变压器的二相接线组别和单相变压器引出线的极性; 5、测量铁心及夹件的绝缘电阻; 6、非纯瓷套管的试验; 7、有载调压切换装置的检查和试验; 8、测量绕组连同套管的绝缘电阻、吸收比或极化指数; 9、测量绕组连同套管的介质损耗因数(tanO')与电容量; 10、变压器绕组变形试验; 11、绕组连同套管的交流耐压试验; 12、绕组连同套管的长时感应耐压试验带局部放电测量; 13、额定电压下的冲击合闸试验; 14、检查相位; 15、测量噪音。 变压器试验项目应符合下列规定: 1 容量为1600kVA及以下油浸式电力变压器,可按第1、2、3、4、5、6,7,8、11、13和14条进行交接试验;

https://www.360docs.net/doc/9d880039.html,/products_list.html 2 干式变压器可按本标准第2、3、4、5、7、8、11、13和14条进行试验; 3 变流、整流变压器可按本标准2、3、4、5、6、7、8、11、13和14条进行试验; 4 电炉变压器可按本标准第1、2、3、4、5、6、7、8、11、13和14条进行试验; 5 接地变压器、曲折变压器可按本标准第2、3、4、5、8、11和13条进行试验,对于油浸式变压器还应按本标准第1条和第9条进行交接试验; 6 穿心式电流互感器、电容型套管应分别按互感器和套管的试验项目进行试验; 7 分体运输、现场组装的变压器应由订货方见证所有出广试验项目,现场试验应按本标准执行; 8应对气体继电器、油流继电器、压力释放阀和气体密度继电器等附件进行检查。油浸式变压器中绝缘油及SF6气体绝缘变压器中SF6气体的试验,应符合下列规定: 1、绝缘油的试验类别应符合规定,试验项目及标准应符合本标准规定。 2、油中溶解气体的色谱分析,应符合下列规定: (a)电压等级在66kV及以上的变压器,应在注油静置后、耐压和局部放电试验24h后、冲击合闸及额定电压下运行24h后,各进行一次变压器器身内绝缘油的油中溶解气体的色谱分析; (b)试验应符合现行国家标准《变压器油中洛解气体分析和判断导则》GB/T7252的有关规定。各次测得的氢、乙:快、总经含量,应无明显差别; 3)新装变压器油中总怪含量不应超过20μL/L,比含量不应超过10μL/L,C2H2含量不应超过O.1μL/L。 3、变压器油中水含量的测量,应符合下列规定: (a)电压等级为1l0(66)kV时,油中水含量不应大于20mg/L; (b)电压等级为220kV时,油中水含量不应大于15mg/L; (c)电压等级为330kV~ 750kV时,油中水含量不应大于10mg/L。 4、油中含气量的测量,应按规定时间静置后取样测量油中的含气量,电压等级为330kV~750kV的变压器,其值不应大于1%(体积分数)。

变压器的耐压试验

变压器的绝缘试验(以前称耐压试验),包括外施耐压、感应耐压、冲击耐压等试验。 1 外施耐压试验 外施耐压试验是对被试变压器加一分钟的工频高压的试验,也曾称工频耐压试验。它是考核不同侧绕组间和绕组对地间的绝缘性能,也就是考核变压器主绝缘的水平,所以只适用于全绝缘变压器。因此,试验时被试变压器的不同侧绕组各自连在一起,一侧绕组施加电压,另一侧绕组接地。 外施耐压试验时,在电源电压较低时合闸;试验电源电压达到试验电压的40%以下时,升压速度是任意的;在40%以上时,应以每秒3%速度均匀上升;达到规定电压和持续时间后,应在5s内将电压迅速而均匀地降到试验电压的25%以下,才能切断电源。 2 感应耐压试验 全绝缘变压器的感应耐压试验是高压绕组开路,向低压上施加100~250Hz的两倍额定电压的耐压试验。由于频率增高,铁心在不饱和时能保证两倍感应电压,从而试验了绕组匝间、层间和相间的绝缘性能,即考核了变压器的纵绝缘水平。 对于分级绝缘的变压器,把中性点电压抬高(支撑起来),就可以考核主绝缘水平了。这样,感应耐压试验既进行了纵绝缘的试

验,又补救了该种变压器不能做外施耐压试验的不足,也同时等效地做了外施耐压试验。 分级绝缘的感想变压器听感应耐压试验,常采用分相感应试验方法。将非试的两相线端并联接地,把中性点抬高到电压的1/3左右,从而使试验相线端达到外施耐压试验的要求,而该相绕组的感应电压又达到了感应试验的要求。 如果这样做不能符合试验要求,可以调节位置,甚至可以用另一台变压器作支撑变压器来支撑中性点。 新标准中要求感应试验时要测局部放电量、起始与熄灭局部放电电压。

3 冲击电压试验 冲击电压试验分雷电冲击试验(包括全波冲击试验和截波冲击试验)和操作波冲击试验。在新编制的IEC76-3标准中,对小于Um≤40.5kV变压器,全波冲击试验和截波和操作波冲击试验均是例行试验。对Um≥72.5kV变压器,全波冲击试验是例行试验,截波冲击试验是型式试验,对Um≥252kV变压器,全波、截波和操作波冲击试验均是例行试验。 全波与截波冲击试验是交替进行,一般是负极性,先做一次全波冲击、做两次截波冲击、再做两次全波冲击。因此,需要一个截断装置。 变压器容量较大时,因电容量大而波形不能满足时,应将冲击电压发生器几个级并联运行。 对变压器中点进行冲击试验时,因属三相入波,电容量大,但试验电压一般不高,应将冲击电压发生器几个级并联后加压。 (素材和资料部分来自网络,供参考。可复制、编制,期待您的好评与关注)

变压器实验报告

实验报告 课程名称: 电机与拖动指导老师: 实验名称:单相变压器同组学生姓名:刘雪成李文鑫 一、实验目得与要求(必填)????二、实验内容与原理(必填) 三、主要仪器设备(必填)??????四、操作方法与实验步骤 五、实验数据记录与处理??六、实验结果与分析(必填) 七、讨论、心得 一、实验目得 1.通过空载与短路实验测定变压器得变比与参数。 2.通过负载实验测取变压器得运行特性。 二、预习要点 1.变压器得空载与短路实验有什么特点?实验中电源电压一般加在哪一方较合适? 2。在空载与短路实验中,各种仪表应怎样联接才能使测量误差最小? 3.如何用实验方法测定变压器得铁耗及铜耗。 三、实验项目 1.空载实验 测取空载特性U0=f(I0),P0=f(U0)。 2.短路实验 测取空载特性UK=f(I K),P K=f(UK)。 3.负载实验 (1)纯电阻负载 保持U1=U1N, cosφ2=1得条件下,测取U2=f(I2)。 四、实验线路及操作步骤 1、空载试验 实验线路如图3-1所示,被试变压器选用DT40三相组式变压器,实验用其中得一相,其额定容量PN=76W,U1N/ U2N=220/55V,I1N/I2N=0。345/1。38A.变压器得低压线圈接电源,高压线圈开路。接通电源前,选好所有电表量程,将电源控制屏DT01得交流电源调压旋钮调到输出电压为零得位置,然后打开钥匙开头,按下DT01面板上“开”得按钮,此时变压器接入交流电源,调节交流电源调压旋钮,使变压器空载电压U0=1.2 UN,然后,逐次降低电源

电压,在1。2~0.5U N得范围内,测取变压器得U0、I0、P0共取6-7组数据,记录于表2-1中,其中U=U N得点必测,并在该点附近测得点应密些。为了计算变压器得变化,在U N以下测取原方电压得同时,测出副方电压,取三组数据记录于表3-1中.

电力变压器高压试验技术探析

电力变压器高压试验技术探析 发表时间:2016-11-08T10:10:00.733Z 来源:《电力设备》2016年第17期作者:宋颖[导读] 在电力系统中,变压器作为传输的中心,是电网运行的重要设备。 (国网成都供电公司四川省成都市 610000) 摘要:在我国经济快速发展的同时,国家也逐渐注重对电力系统的建设,特别是对电力变压器高压试验技术的研究。电力变压器高压试验技术的可靠性直接关系着整个电力系统的安全性、稳定性。但是由于我国国土面积较大且地形错综复杂,在设计电力变压器时存在种种困难。因此,在进行电力变压器高压试验技术研究之前,应该充分考虑各种环境因素,分析所有可能遇到的突发情况。本文分析了电力变压器高压试验技术要点。 关键词:电力变压器;高压试验技术;处理方法; 在电力系统中,变压器作为传输的中心,是电网运行的重要设备,是电能进行控制调节和传输变换的有效保障,是确保电力系统安全生产的关键。所以为了能够及时发现电力变压器中存在的问题,则需要进行高压试验,并采取安全有效的措施进行处理。 一、电力变压器高压试验技术 1.电力变压器高压试验的方法 (1)常规试验。要严格遵循相关接线原则进行仪器接线,接线结束后,相关人员要进行接线情况的审核和线路检查,争取做到安全、高效,并为后续工作打好基础;接通电源,按照正确的操作方法对仪器进行操作试验,并对试验数据进行记录;在试验结束后,关闭实验仪器,切断电源。 (2)交流耐压试验。交流耐压试验方法的第一步与常规试验相同,必须按照既定的原理图接线,并交由专门的负责人查验;落实控制箱的检查工作,通过控制箱有效检查调压器,从而保证调压器正确归零,实现电力变压器和控制箱两端线路的良好接触;完成上述步骤后接通电源,如果绿色指示灯亮起,则表明可按动启动按钮,如果红色指示灯亮起,则表明要等待升压完成,升压过程中调节器的旋转应以顺时针方向操作;试验人员在结束电力变压器试验工作后,应及时实现调压器的有效归零,并及时按下结束按钮、切断电源。 2.电力变压器高压试验的测量内容 (1)绝缘电阻的测量。电力变压器绝缘的过热老化、受潮和污秽是电力系统中常见的问题。为了检测并及时处理上述问题,可采用测量绝缘电阻的方法,其是变压器高压试验的重点测量内容。如果试验环境温度过高,其受潮绝缘吸收情况会异常,还会导致很多其他变化出现。而干燥绝缘的吸收性达到最高极限后会严重下降,这不仅会影响试验结果的真实性和准确性,还会影响试验的有效性。因此,在进行电阻测量的过程中,要保证测量环境的湿度和温度合理。 (2)测量泄漏电流。要想了解电力变压器自身是否存在质量问题,就应对泄漏电流进行测量。在测量泄漏电流时,应采取加直流高压的试验方法,从而得到正确的试验结果。如果泄漏电流在高压状态下比在低压状态下要小,则表明变压器高压绝缘电阻比低压绝缘电阻低,变压器的低压绝缘电阻已高于高压绝缘电阻,变压器的防漏电功能可能存在一定的缺陷,且防漏电功能不符合相关要求。此外,这个结果也表明电力变压器本身也存在质量不达标的问题,将会阻碍高压试验的顺利进行。(3)介质损耗因数测试。在变压器高压试验中,介质损耗因数测试是比较重要的。通过因数测试,可掌握变压器的受潮情况,还可以了解附着油、泥的状况等,并及时采取解决措施,以保证电力系统的正常、稳定运行。此外,可通过对介质损耗因数进行测试,还可以对31.5 MVA以下变压器的绝缘情况进行有效判断和分析。在变压器的介质损耗数值测验中,通常要用到套管,但必要时也可采取分解试验的方法,以提高准确度和灵敏度,明确判断电气设备问题的产生原因。 3.电力高压试验变压器过载运行的控制。电力高压试验变压器运行的过程中时常会出现过载运行。造成此种情况发生的因素有多种,如运行电压过高或过低、工作人员操作错误等。就以工作人员操作错误来说,电力高压试验变压器在工作人员错误操作的情况下过载运行,就会造成变压器线圈过热,进而使线圈的绝缘性降低,引发变压器短路情况发生,促使电力系统正常运行受到影响。为了避此种情况的发生,就需要对电力高压试验变压器过载运行的情况予以严格的控制。也就是电力公司加强工作人员能力培训、加强对电力高压试验变压器的运行检测、加强对电力高压试验变压器的维修等,以使电力高压试验变压器可以符合电力系统高效运行需求,切实有效的运用。 二、常见故障及处理方法 1.自动跳闸。电力变压器在高压试验中如果出现自动跳闸的现象,则需要操作人员通过外部检查来确定故障原因,如果是由于操作人员在高压试验中的操作原因导致其跳闸,则不需要对电力变压器进行外部检查,但是如果不是认为原因导致电力变压器跳闸,则要求操作人员必须彻底、全面的对电力变压器进行内部检查,避免电力变压器在后期使用中发生火灾。如果电力变压器周围出现火灾则其会自动保护动作,通过自动切断断路器来避免电气设备受到损毁,如果电力变压器在火灾时没有自动断开,则要通过手动操作来将断路器断开才能进行火情扑救,这也是火灾情况下针对电力变压器操作的主要前提条件。 2.瓦斯保护。电力变压器高压试验中出现瓦斯保护故障的原因有很多,电力变压器内部故障、保护装置二次回路故障以及油位下降过快等,所以当电力变压器发生瓦斯保护故障时,操作人员可以通过对电力变压器的全面检查来确定故障原因,并要及时对故障进行排除,在检验合格后才能将电力变压器再次投入使用。 3.绕组故障。电力变压器在高压试验中发生绕组故障的原因有很多,所以在电力变压器出现绕组故障后,要求操作人员要对电力变压器进行细致检查,将发生故障的相间短路、绕组接地以及匝间短路等故障一一排除,这样才能确保电力变压器运行中的安全性、稳定性,可以在最大程度上满足我国社会各领域对电力供应质量的要求。 电力变压器高压试验,试验条件、方法和内容一定要科学、合理,同时还要做好试验报过程中的安全设计,确保试验中能够顺利进行操作,确保能够通过试验获得准确的数据支持,从而对变压器的各项性能进行有效的判断,确保变压器能够安全、稳定的运行。参考文献: [1]何海川.变压器高压试验方法及故障处理[J].科技创新与应用.2013(21).

相关文档
最新文档