关于注浆水泥用量计算

关于注浆水泥用量计算

关于注浆水泥用量计算

一、计算依据

1、水灰比(重量比)

单位体积内水的重量与水泥的重量之比为水灰比。这个数据由设计单位给出。一般取值为0.45~1.0。

对于本工程设计院给定水灰比K=0.5即水:灰=0.5。水的容重为1T/m 3,由此求得每m 3水泥浆中水泥用量为1T/0.5=2T 。

2、水泥浆在地层中扩散范围

本次注浆是在松散的回填土层中置入一根 5.5m 长的注浆花管(L=5.5)。注浆花管侧壁有注浆孔,水泥浆在压力的作用下注入土体中赶走土中的空气和水估据其位置。注浆的结果水泥浆在每根花管中形成一个园柱体,本次注浆这个园柱体的直径D=0.5m ,长度L=5.5m 。由此求得每根注浆花管注浆体积为:

V 花管=0.5m ×0.5m ×3.14×5.5m/4=1.08m 3/根

二、水泥量计算

1、根据孔隙比求每根注浆花管注浆体内水泥浆用量

孔隙比e= 对于本工程松散的新近回填土e=1.2。由此求得每根花管注浆体内水泥浆的体积为: V 水泥浆=)

2.11(08.13 m ×1.2=0.59m 3/根 2、求每根花管水泥用量

W 花管=2T/m 3×0.59m 3/根=1.18T/根

3、求注浆水泥总量

设计院给出本次花管总数2788根,由此求得

W 总量=1.18T/根×2788根=3290T

通过水灰比确定水泥浆中水泥用量

小导管注浆: 根据围岩条件、施工条件、机械设备,需要对围岩进行加固处理的,往往很多情况下会考虑到小导管注浆。 小导管外径一般根据钻孔直径选择,一般选用φ42~50mm的热轧钢管,长度3~5m,外插角10°~30°,管壁每隔10~20cm交错钻眼,眼孔直径为6~8mm。采用水泥浆或水泥-水玻璃浆液注浆时,浆液配合比一般由实验室提供,注浆压力一般在~,必要时在孔口处设置止浆塞。纵向小导管不小于1m的水平搭接长度,环向间距20~50cm。 一般情况下,水泥浆水灰比一般是选择1:1,或者是1:种水灰比在水泥浆中较为常见,在设计中也是经常采用这两种水灰比。 已知水的密度是1g/1cm3,水泥的密度一般是~3.3g/cm3; 水灰比为1:的水泥浆密度计算过程为: 理论计算:(*1+1*)/=2.4g/cm3 实际可以按照试验规程GB/T50080-2002普通混凝土拌合物性能试验方法标准测试。 水灰比为1:1水泥浆密度计算过程为: 理论计算:(*1+1*1)/2=2.05g/cm3 其实有时候,现场施工的水泥浆只要知道水灰比,基本上就能计算1方水泥浆需要多少水泥;m/+m/1=1(m为质量,考虑到水灰比为1:1) 则1方水泥浆需要750kg水泥 如果水灰比为1: 说明: 1、水泥是不溶于水的,水泥浆实际是一种悬浮物,在计算过程中不能按照溶液、溶剂,饱和或不饱和进行计算,容易走入误区; 则:m/+0.5m/1=1 则1方水泥浆需要1。2t水泥。 基本上实际情况与此相符 通过已知水泥的用量,可以反推水泥浆的方量 而这正是实际施工中最需要的数据,所以在现场收方时一般通过数水泥袋的包数就可以知道水泥浆的方量,再通过已知水泥浆每方的单价,确定注浆的成本。 比如说现场实际使用1t水泥,则知道水灰比,就完全可以确定水泥浆体积v。 1/+1/1=v 则v=1.32m3 业主基本上给的水泥浆单价一般在800~850元/m3 则:*825=1091元 其实很多时候设计院在设计过程中通过公式来计算水泥浆方量,但在实际计量工作中未必会采纳,因为实际情况与设计未必相符,如考虑到围岩裂隙发育,破碎,往往注浆量远远大于设计值,因此强烈建议在现场收方中必须通过所用水泥确定水泥浆方量是可行的、科学的、符合实际的。 还有一种情况是: 例如:纯水泥浆的用水量按水泥的35%计算,水泥密度为3100kg/m3、表观密度为1200kg/m3,试计算每立方米纯水泥浆的用量。 解: 1、计算虚体积系数 水灰比=*水泥表观密度/水表观密度=*1200/1000=

小导管注浆量计算

小导管注浆量计算 Hessen was revised in January 2021

竖井小导管注浆量计算 一、注浆量计算 方法一: Q=Ahnα(1+β) Q—注浆量; A—注浆范围岩层表面积; h—注浆有效长度; n—地层孔隙率(根据地层而定); α—注浆孔隙充填率,一般在~或通过试验; β—浆液损失率,一般取10~30%; 其中A=(+)*2*(**2),(+)*2为注浆周长,(**2)为注浆扩散高度; h为注浆有效长度,由于导管水平夹角为30°故h=cos30° *3.0m=2.6m; n为,设计给出天然孔隙比(e0=V孔/(V总- V孔)=,推出天然孔隙率n=V孔/V总=;(注:n的取值现场实际情况较其它类似情况大得多); α注浆孔隙充填率,估取; β浆液损失率,估取20%;(注:未考虑现场涌水量过大,20%为保守估计值); 据上,当小导管每环间距时: Q=(+)*2*(**2)****(1+)

=38.76m3 则每延米注浆量Q==25.84m3 故总的注浆量Qm=*=为图纸注浆范围) 方法二(参照横通道小导管注浆计算原理,即按总量计算注浆 量): 每环注浆总量:Q=S*G*L = * ** =38.656m3 S——注浆扩散范围面积(扩散范围暂为0.7m); G——岩体孔隙率(根据孔隙比换算成孔隙率),本围岩孔隙率较大,暂取较小值39%。 L——导管有效长度,m,为 3.0m; 则每延米注浆量Q= =25.77m3 故总的注浆量Qm=*=为图纸注浆范围) 二、水泥-水玻璃双液计算 竖井注浆为水泥-水玻璃双液,体积配合比根据实际需要现场调配,其依据是根据文献《山东交通科技》(见附件)一书总第一百 六十九期(2004年12月)对隧道注浆(水泥-水玻璃双浆液)的探讨,现场体积配合比根据实际调配为1:(水泥浆:水玻璃),水 泥浆重量比为1:1(水泥:水)。水泥浆密度为m3,水玻璃密度为m3,计算如下:

注浆量计算书

注浆量的确定 为了减小和防止地面沉降,在盾构掘进中,要尽快在脱出盾构后的衬砌背面环形建筑空隙中充填足量的浆液材料。根据地质条件,确定浆液配比、注浆压力、注浆量及注浆起讫时间对同步注浆能否达到预期效果起关键作用。 二次(或多次)压浆是弥补同步注浆的不足,减少地表沉降的有效辅助手段,可使盾构在穿越建筑物、地下管线时,大大降低地面沉降。 1.注浆目的 (1) 使管片尽早支承地层,减少地基沉陷量,保证环境安全; (2) 确保管片衬砌早期稳定性; (3) 作为隧道衬砌防水的第一道防线,提供长期、匀质、稳定防水功能; 2.注浆方式 盾构机掘进过程中形成的管片与土体之间的空隙将采用注浆回填,浆液是通过运浆车送到洞内,注浆与掘进保持同步,采用同步注浆。 盾构推进中的同步注浆和衬砌壁后补压浆是充填盾构壳体与管片圆环间的建筑间隙和减少后期土体变形的有效手段,同时也可加强隧道的稳定性,也是盾构推进施工中的一道重要工序。为了防止盾构机注浆孔堵塞,同步注浆选择具有和易性好、泌水性小的浆液进行及时、均匀、定量压注,确保其建筑空隙得以及时和足量的充填,浆液配比如表9-9。压浆量和压浆点视压浆时的压力值和地层变形监测数据而定。压浆属一道重要工序,须指派专人负责,对压入位置、压入量、压力值均作详细记录,并根据地层变形监测信息及时调整,确保压浆工序的施工质量。 所配出的浆液应具备以下性能: (1) 不堵塞盾构机注浆孔; (2) 和易性好,能更好地充填盾构推进造成的间隙; (3) 可以防止因浆液固结体积减小而引起的地面沉降;

(4) 提供一个围绕隧道衬砌的长期、匀质、稳定的防水层; 注浆量可根据监测信息分析视情况而定,浆液配比也可视情况适当进行调整。 在盾构掘进的过程中,每环注浆量控制在建筑空隙150%~200%,为减少地下的后期变形,必要时进行衬砌壁后注浆,注浆参数及注浆点的选择根据实际情况而定(待100m试验段施工得出的数据而定)。二次注浆采用水泥浆,但在隧道开挖对地表建筑物或管线有较大影响的地段,为减少地面沉降,选择速凝型浆液,在水泥浆中添加适当比例的水玻璃。 各项控制压力的选择考虑以下因素: (1) 注浆位置的水压力和土压力; (2) 不能使管片因受压而错位变形; (3) 不会对盾尾密封刷造成损害; (4) 既能防止地面下沉超限,又不导致地面隆起超限; (5) 浆液不会进入土仓 上述压力在初步确定以后,还要根据地质情况和地面监测结果等进行调整。 注浆操作既可人工又可自动,控制开关设在盾构机操作盘上。 每环掘进之前,都要确认注浆系统的工作状态处于正常,并且浆液储量足够,掘进中一旦注浆系统出现故障,立即停止掘进进行检查和修理。 3.注浆主要参数 (1) 注浆压力 根据注浆目的要求调整注浆压力,充分充填盾构施工产生的地层空隙,避免由此引起的地表沉陷,影响地表建筑物与地下管线的安全。同时,防止过大的注浆压力引起地表有害隆起或破坏管片衬砌。同步注浆注浆压力应大于开挖面的土压力,一般可控制在1.1~1.2倍的静止土压力范围内。 (2) 注浆量 Q=V·λ λ—指注浆率(一般取150%~200%) V—盾构施工引起的空隙(m3) V=π(D2-d2)L/4 D—指盾构切削外径(m)(削切外径11.93m)

m0注浆砂浆配合比计算

M30膨胀砂浆配合比设计 一、设计依据: 1、《砌筑砂浆配合比设计规程》JGJ/T 98-2010 2、《公路桥涵施工技术规范》JTG/T F50-2011 3、《公路隧道施工技术规范》JTG F60-2009 二、使用原材料: 1、水泥:宁国海螺P.O 42.5R 2、砂:旌德三溪河砂(Ⅱ区中砂) 3、水:饮用水 4、外加剂:减水剂(江苏博特,掺量1%) 三、使用部位: 隧道锚杆框格防护,设计稠度按100-150mm 四、设计步骤: 1、计算砂浆试配强度(f m,0); 试配强度:f m , =k*f 2 =1.2*30.0=36.0 MPa;( k取1.20见下表1-1) f m , 0—————— 砂浆的试配强度(MPa),精确至0.1 MPa; f 2—————— 砂浆强度等级值(MPa),精确至0.1 MPa; k —————— 系数见表1-1 2、计算每立方米砂浆中的水泥用量(Q c); 每方水泥用量:Q c =1000(f m , -β)/(α*fce) =1000[36.0-(-15.09)]/(3.03*42.5) =396 kg Q c ———每立方米砂浆中的水泥用量(kg)

fce ———水泥的实际强度(MPa ) α、β———砂浆的特征系数,α=3.03,β=-15.09 为保证试件强度及满足锚杆砂浆的施工要求(JTG/T F60-2009),根据经验将水泥用量 调整为1100kg/m 3 表 1-1 砂浆强度标准差σ及k 值 3、 计算每立方米砂浆中的砂用量(Q s ); 每立方米砂浆中的砂用量,按砂干燥状态(含水率小于0.5%)时的堆积密度1520kg/m 3 作为计算值带入,则: 每方砂用量:Q s =1520kg 4、 按外加剂厂商的建议掺量计算减水剂每立方米用量(Q e ); 每方减水剂用量:Q e =1100×1%=11.00kg 5、 按砂浆稠度及外加剂性能选取每立方米砂浆用水量(Q w ); 每方用水量: Q w =473kg 6、 确定初步配合比; 水泥:砂:水:减水剂=1100:1520:473:11.00(w/c=0.43) 7、 确定基准配合比; 保持用水量和砂用量不变,水灰比分别采用0.45和0.41,则配合比分别为: 水泥:砂:水:减水剂=1051:1520:473:10.51(w/c=0.45) 水泥:砂:水:减水剂=1154:1520:473:11.54(w/c=0.41) 8、 检验强度,确定试验室配合比;

注浆量计算

通过水灰比确定水泥浆中水泥用量 小导管注浆: 根据围岩条件、施工条件、机械设备,需要对围岩进行加固处理的,往往很多情况下会考虑到小导管注浆。 小导管外径一般根据钻孔直径选择,一般选用φ42~50mm的热轧钢管,长度3~5m,外插角10°~30°,管壁每隔10~20cm交错钻眼,眼孔直径为6~8mm。采用水泥浆或水泥-水玻璃浆液注浆时,浆液配合比一般由实验室提供,注浆压力一般在 0.5~ 1.0mpa,必要时在孔口处设置止浆塞。纵向小导管不小于1m的水平搭接长度,环向间距20~50cm。 一般情况下,水泥浆水灰比一般是选择1:1,或者是1: 0.5种水灰比在水泥浆中较为常见,在设计中也是经常采用这两种水灰比。 已知水的密度是1g/1cm3,水泥的密度一般是 3.0~ 3.3g/cm3;水灰比为1: 0.5的水泥浆密度计算过程为: 理论计算:(3.1*1+1* 0.5)/ 1.5= 2.4g/cm3 实际可以按照试验规程GB/T50080-2002普通混凝土拌合物性能试验方法标准测试。水灰比为1:1水泥浆密度计算过程为:

理论计算:(3.1*1+1*1)/2= 2.05g/cm3其实有时候,现场施工的水泥浆只要知道水灰比,基本上就能计算1方水泥浆需要多少水泥;m/ 3.1+m/1=1(m为质量,考虑到水灰比为1:1)则1方水泥浆需要750kg水泥如果水灰比为1: 0.5说明: 1、水泥是不溶于水的,水泥浆实际是一种悬浮物,在计算过程中不能按照溶液、溶剂,饱和或不饱和进行计算,容易走入误区; 则: m/ 3.1+ 0.5m/1=1 则1方水泥浆需要1。2t水泥。基本上实际情况与此相符 通过已知水泥的用量,可以反推水泥浆的方量而这正是实际施工中最需要的数据,所以在现场收方时一般通过数水泥袋的包数就可以知道水泥浆的方量,再通过已知水泥浆每方的单价,确定注浆的成本。 比如说现场实际使用1t水泥,则知道水灰比,就完全可以确定水泥浆体积v。则v= 1.32m3 业主基本上给的水泥浆单价一般在800~850元/m3则: 1.32*825=1091元 其实很多时候设计院在设计过程中通过公式来计算水泥浆方量,但在实际计量工作中未必会采纳,因为实际情况与设计未必相符,如考虑到围岩裂隙发

浅析三轴水泥搅拌桩水泥用量及注浆量控制和工程量的计算

浅析三轴水泥搅拌桩水泥用量及注浆量控制和 工程量的计算 The manuscript was revised on the evening of 2021

浅析三轴水泥搅拌桩水泥用量及注浆量控制和工程量的计算 本文摘自中国论文网,原文地址:摘要:根据型钢水泥土搅拌墙技术规程 JGJ199-2010,结合工程实例阐述三轴水泥搅拌桩施工过程中水泥用量及注浆量的计算和现场控制措施,以及根据浙江省市政工程预算定额(2010)及其定额解释阐述三轴水泥搅拌桩工程量的计算方法,为省内类似工程施工提供参考。中国论文网关键词:三轴水泥搅拌桩水泥用量及水泥浆量计算与控制工程量计算 中图分类号:文献标识码:A 文章编号: 三轴水泥搅拌桩就是利用新型的三轴搅拌桩机就地利用三轴螺旋式或螺旋叶片式两种搅拌机头钻进旋转切削土体,同时在其中两轴钻头端部将水泥浆液喷入土体,并在中轴钻头端部喷入高压空气,对水泥土进行充分搅拌,并置换出部分水泥土浆。在完成的三轴水泥搅拌桩内插入H型钢,就是型钢水泥土搅拌墙(一般在搅拌桩施工结束后30分钟内,再将H型钢插入搅拌桩体内,固化后形成水泥土“地下连续墙”墙体)。其主要特点是构造简单,止水性能好,工期短,造价低,环境污染小,特别适合城市建设中的深基坑工程。 型钢水泥土搅拌墙在市政工程的应用比较普遍,如管道沟槽的开挖、地铁车站的出入口基坑、过江隧道及城市地下通道的明挖段的围护结构等;三轴水泥土搅拌桩单独作为截水帷幕,具有土层适应性强、截水性能好、施工速度快、造价低等特点,在杭州粉土地区应用广泛,已基本取代高压旋喷桩;在软土地基上,采用三轴水泥土搅拌桩加固土体的效果明显优于普通水泥土搅拌桩,在开挖深度较深、环境保护要求严格的工程中应用较为普遍。

小导管注浆量计算

竖井小导管注浆量计算 一、注浆量计算 方法一: Q=Ahnα(1+β) Q—注浆量; A—注浆范围岩层表面积; h—注浆有效长度; n—地层孔隙率(根据地层而定); α—注浆孔隙充填率,一般在0.7~0.9或通过试验; β—浆液损失率,一般取10~30%; 其中A=(6.6+5.2)*2*(0.5*1.5*2),(6.6+5.2)*2为注浆周长,(0.5*1.5*2)为注浆扩散高度; h为注浆有效长度,由于导管水平夹角为30°故h=cos30°*3.0m=2.6m; n为0.39,设计给出天然孔隙比0.65(e0=V孔/(V总- V孔)=0.65),推出天然孔隙率n=V孔/V总=0.39;(注:n的取值现场实际情况较其它类似情况大得多); α注浆孔隙充填率,估取0.9; β浆液损失率,估取20%;(注:未考虑现场涌水量过大,20%为保守估计值); 据上,当小导管每环间距1.5m时: Q=(6.6+5.2)*2*(0.5*1.5*2)*2.6*0.39*0.9*(1+0.2)

=38.76m3 则每延米注浆量Q=38.76/1.5=25.84m3 故总的注浆量Qm=13.635*25.84=352.33m3(13.635m为图纸注浆范围)方法二(参照横通道小导管注浆计算原理,即按总量计算注浆量):每环注浆总量:Q = S*G*L = (8.0*6.6-5.2*3.8) *0.39*3.0 =38.656m3 S——注浆扩散范围面积(扩散范围暂为0.7m); G ——岩体孔隙率(根据孔隙比换算成孔隙率),本围岩孔隙率较大, 暂取较小值39%。 L ——导管有效长度,m,为3.0m; 则每延米注浆量Q=38.656/1.5 =25.77m3 故总的注浆量Qm=13.635*25.77=351.37m3(13.635m为图纸注浆范围)二、水泥-水玻璃双液计算 竖井注浆为水泥-水玻璃双液,体积配合比根据实际需要现场调配,其依据是根据文献《山东交通科技》(见附件)一书总第一百六十九期(2004年12月)对隧道注浆(水泥-水玻璃双浆液)的探讨,现场体积配合比根据实际调配为1:0.5(水泥浆:水玻璃),水泥浆重量比为1:1(水泥:水)

岩溶注浆工程量计算

前言 岩溶地质现象一直是人们研究的对象,对其的发育过程及形态特征已经有深刻的认识,路基中的岩溶一直是路基长期稳定的重大隐患,文章对路基岩溶病害的常见类型和注浆加固治理方法进行了分析。 1 路基岩溶病害常见类型主要包括以下几种情况[1] 1.1 由于地下洞穴顶板的坍塌,或因溶洞内充填物被地下水的运动所带走,使位于其上的路基发生塌陷、下沉或开裂。 1.2 较大的石芽石形成的地基局部不均匀,易使路基产生差异变形,且石芽周围充填软塑红粘土,影响路基的设计与施工。 1.3 雨季落水洞难以及时下排水石,易在洼地、槽谷等形成积水区,从而影响路基的稳定性。由于地下岩溶水的活动或因地面水的排泄不畅,而导致路基基底冒水、水淹路基、水冲路基等病害。 1.4 漏斗使地面呈凹陷状,其内土质疏松,填筑路基后,易引起进一步塌陷。 2 注浆方法的分类 目前土体注浆方法按常规可分为两大类,即静压注浆法和高压喷射注浆法[2-3] 2.1 静压注浆法 静压注浆法是利用液压、气压和电化学的原理,通过注浆管将能强力固化的浆液注入地层中,浆液以充填、渗透、挤密和劈裂等方式,挤走土颗粒或岩石裂隙中的水分和空气后占据其位置,浆液固结后将原来松散的土粒或裂隙胶结成一个整体,从而改变岩土体的物理力学性质。静压注浆法适用土质范围:中粗砂及砂砾石,破碎岩石与卵砾石,软粘土和湿陷性黄土。 2.2 高压喷射注浆法 高压喷射注浆法是利用高压射流切割原理,通过带有喷嘴的注浆管在土层的预定深度以高压设备使浆液或水成为20Mpa左右或更高的高压射流从喷嘴中喷射出来,冲击切割土体,当喷射流的动压超过土体结构强度时,土粒便从土体中剥离。一部分细小的颗粒随浆液冒出地面,其余土粒在喷射流的冲击力、离心力和重力的作用下,与浆液搅拌混合,并按一定的浆土比例和质量大小有规律的重新排列,浆液凝固后,便在土中形成一个固结体。固结体是浆液与土以半置换或全置换的方式凝固而成的。高压喷射注浆法适用土质范围为砂类土、粘性土、湿陷性黄土和淤泥。

灌浆基础知识和计算公式

灌浆基础知识和计算公式 一、灌浆的含义: 简单的说,灌浆就是将具有胶凝性的浆液或化学溶液,按照规定的配比或浓度,借用机械(或灌浆自重)对之施加压力,通过钻孔或其他设施,压送到需要灌浆的部位中的一种施工技术。 二、灌浆的实质: 充填这些节理裂隙、孔隙、空隙、孔洞和裂缝之处,形成结石,从而起到固结、粘合、防渗,提高承载强度和抗变形能力以及传递应力等作用。 三、灌浆分类: 按照大坝坝基岩类构成,可分为岩石灌浆和砂砾石层灌浆。 按照灌浆的作用,可分为固结灌浆、帷幕灌浆、回填灌浆和接触灌浆。 按照灌注材料,可分为水泥灌浆、水泥砂浆灌浆、水泥粘土灌浆以及化学灌浆等。 按照灌浆压力,可分为高压灌浆(3MPa以上)、中压灌浆(0.5~3MPa)、低压灌浆(0.5MPa以下),后两类也可称为常规压力灌浆。 按照灌浆机理,可分为渗入性灌浆和张裂式灌浆。 四、灌浆材料: 水泥(磨细水泥、超细水泥)、砂、粉煤灰、粘土和膨润土、水外加剂(速凝剂、减水剂、稳定剂) 五、水泥浆液: 配置水泥浆时,多依照质量比例配制,也有按照体积比例配制的。我国各灌浆工程都采用质量比,帷幕灌浆使用范围一般多为水:水泥=5:1~0.5:1,固结灌浆多为2:1~0.5:1。 1、水泥浆的配制:

将水泥和水依照规定的比例直接拌和,这种情况最为简单。先将计量好的水放入搅拌筒内,再将水泥按所规定的质量秤好后,放入筒中直接搅拌即可。例如欲配制各种浓度的水泥浆100L,其所用的水泥和水量可见下【表1】。 配制水泥浆100L 【表1】 注:水泥的密度以3kg/L或3g/cm3计 在灌浆过程中,常需要将搅拌桶内的水泥浆变浓。如原水泥浆100L,加水泥质量可见下【表2】。 在原100L水泥浆中加水泥使水泥浆变浓【表2】注:加水泥单位为 kg 注:水泥的密度以3kg/L或3g/cm3计 在灌浆过程中,常需要将搅拌桶内的水泥浆变稀。如原水泥浆100L,加水体积可见下【表3】。 在原100L水泥浆中加水使水泥浆变稀【表3】注:加水单位为L

注浆量计算

????通过水灰比确定水泥浆中水泥用量? 小导管注浆:? 根据围岩条件、施工条件、机械设备,需要对围岩进行加固处理的,往往很多情况 下会考虑到小导管注浆。? 小导管外径一般根据钻孔直径选择,一般选用φ42~50mm的热轧钢管,长度3~5m,外插角10°~30°,管壁每隔10~20cm交错钻眼,眼孔直径为6~8mm。采用水泥浆或水泥-水玻璃浆液注浆时,浆液配合比一般由实验室提供,注浆压力一般在 0.5~1.0mpa,必要时在孔口处设置止浆塞。纵向小导管不小于1m的水平搭接长度, 环向间距20~50cm。? 一般情况下,水泥浆水灰比一般是选择1:1,或者是1:0.5种水灰比在水泥浆中较为常见,在设计中也是经常采用这两种水灰比。?? 已知水的密度是1g/1cm3,水泥的密度一般是3.0~3.3g/cm3;??水灰比为1:0.5的水泥浆密度计算过程为:??理论计算:(3.1*1+1*0.5)/1.5=2.4g/cm3?? 实际可以按照试验规程GB/T50080-2002普通混凝土拌合物性能试验方法标准测 (3.1*1+1*1)/2=2.05g/cm3??试。??水灰比为1:1水泥浆密度计算过程为:??理论计算: 其实有时候,现场施工的水泥浆只要知道水灰比,基本上就能计算1方水泥浆需要多少水泥;??m/3.1+m/1=1(m为质量,考虑到水灰比为1:1)??则1方水泥浆需要750kg水泥??如果水灰比为1:0.5??说明:?? 1、水泥是不溶于水的,水泥浆实际是一种悬浮物,在计算过程中不能按照溶液、溶 剂,饱和或不饱和进行计算,容易走入误区;??? 则:m/3.1+0.5m/1=1?? 则1方水泥浆需要1。2t水泥。??基本上实际情况与此相符??

浅析三轴水泥搅拌桩水泥用量及注浆量控制和工程量的计算

浅析三轴水泥搅拌桩水泥用量及注浆量控制和工程量的计算 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

浅析三轴水泥搅拌桩水泥用量及注浆量控制和工程量的计算 本文摘自中国论文网,原文地址:https://www.360docs.net/doc/9d8808325.html,/2/view-4721822.htm 摘要:根据型钢水泥土搅拌墙技术规程JGJ199-2010,结合工程实例阐述三轴水泥搅拌桩施工过程中水泥用量及注浆量的计算和现场控制措施,以及根据浙江省市政工程预算定额(2010)及其定额解释阐述三轴水泥搅拌桩工程量的计算方法,为省内类似工程施工提供参考。 中国论文网 https://www.360docs.net/doc/9d8808325.html,/2/view-4721822.htm 关键词:三轴水泥搅拌桩水泥用量及水泥浆量计算与控制工程量计算 中图分类号:K826.16 文献标识码:A 文章编号: 三轴水泥搅拌桩就是利用新型的三轴搅拌桩机就地利用三轴螺旋式或螺旋叶片式两种搅拌机头钻进旋转切削土体,同时在其中两轴钻头端部将水泥浆液喷入土体,并在中轴钻头端部喷入高压空气,对水泥土进行充分搅拌,并置换出部分水泥土浆。在完成的三轴水泥搅拌桩内插入H型钢,就是型钢水泥土搅拌墙(一般在搅拌桩施工结束后30分钟内,再将H型钢插入搅拌桩体内,固化后形成水泥土“地下连续墙”墙体)。其主要特点是构造简单,止水性能好,工期短,造价低,环境污染小,特别适合城市建设中的深基坑工程。 型钢水泥土搅拌墙在市政工程的应用比较普遍,如管道沟槽的开挖、地铁车站的出入口基坑、过江隧道及城市地下通道的明挖段的围护结构等;三轴水泥土搅拌桩单独作为截水帷幕,具有土层适应性强、截水性能好、施工速度快、造价低等特点,在杭州粉土地区应用广泛,已基本取代高压旋喷桩;在软

注浆量计算

注浆量计算 小导管注浆单管浆液扩散半径一般为0. 5 m~ 1. 0 m。这与深孔超前围幕注浆的扩散半径2 m~ 4 m ( 管径7 5 mm ~ 110 mm、注浆压力为 1. 5M Pa~ 4M Pa ) 有明显区别, 故《隧道施工规范》中的注浆量计算公式(如下) 不能作为小导管注浆量的估算公式。 Q 1= PR 2×H ×G×A×B, 式中:Q 1 ——注浆量,m 3; R ——扩散半径,m; H ——注浆管有效长度,m; G ——岩体空隙率, %; A ——注浆系数, 0. 7~ 0. 9; B ——浆液损耗系数, 1. 1~ 1. 4。 据实际验证, 以下计算公式相对符合实际单孔 注浆量。 Q 2= PR 2×L ×G= P×[ (0. 6~ 0. 7) ×S ]2×L ×G 式中:Q 2 ——注浆量,m 3; S ——小导管中心距离,m; L ——小导管有效长度,m; R ——考虑到注浆范围相互重叠的原则, 扩 散半径取(0. 6~ 0. 7) ×S ,m;

G ——岩体空隙率, %; 类3 %~ 5 % , à 类硬岩3 %~ 5 % , ? 类硬岩2 %~ 3 % , 软岩1 %~ 2 %。 实际施工中因钻孔偏差或钻眼内的地质原因, 注浆液窜浆或跑浆经常出现, 每个注浆管内的注浆量很不均匀, 因此理论单眼注浆量尚不能作为单孔注浆的一个控制指标, 应以整排小导管的理论推算总量作为控制指标。故按整排小导管上下各0. 5 m ~ 1 m 范围的岩土体内均已注浆填充考虑, 应以下列公式估算注浆总量。 Q 3= (P×H?360) ×[ (R + t) 2- (R - t) 2 ]×G×L , 式中:Q 3 ——注浆量,m 3; H ——拱部小导管布设范围相对于圆心的角 度; R ——小导管位置相对于圆心的半径; t ——浆液扩散半径, 0. 5 m~ 1 m; L ——小导管有效长度,m; G ——岩体孔隙率, %; 类3 %~ 5 % , à 类 硬岩3 %~ 5 %、软岩2 %~ 3 % , ? 类硬岩2 %~ 3 % , 软岩1 %~ 2 %。 按此理可推算同一断面上单排或多排小导管的 注浆总量。

小导管注浆量计算

竖井小导管注浆量计算 、注浆量计算 方法一: Q=Ahn a (1+ B) Q—注浆量; A —注浆范围岩层表面积; h—注浆有效长度; n—地层孔隙率(根据地层而定); a—注浆孔隙充填率,一般在0.7?0.9或通过试验; B—浆液损失率,一般取10?30%; 其中A= (6.6+5.2) *2* (0.5*1.5*2),(6.6+5.2) *2 为注浆周长,( 0.5*1 .5*2 )为注浆扩散高度; h 为注浆有效长度,由于导管水平夹角为30°故h =cos30 ° *3.0m=2.6m; n为0.39,设计给出天然孔隙比0.65 (e0=V孔/(V总-V 孔) =0.65),推出天然孔隙率n=V孔/V总=0.39;(注:n的取值现场实际情况较其它类 似情况大得多); a注浆孔隙充填率,估取0.9; B浆液损失率,估取20%;(注:未考虑现场涌水量过大,20%为保守估计值); 据上,当小导管每环间距1.5m时: Q=(6.6+5.2) *2* (0.5*1.5*2) *2.6*0.39*0.9* (1+0.2)

=38.76m3 则每延米注浆量Q=38.76/1.5=25.84m3 故总的注浆量Qm=13.635*25.84=352.33m3(13.635m为图纸注浆范围)方法二(参照横通道小导管注浆计算原理,即按总量计算注浆量):每环注浆总量:Q = S*G*L = (8.0*6.6-5.2*3.8) *0.39*3.0 =38.656m3 S――注浆扩散范围面积(扩散范围暂为0.7m); G ——岩体孔隙率(根据孔隙比换算成孔隙率), 本围岩孔隙率较大, 暂取较小值39%。 L ------ 导管有效长度,m,为3.0m; 则每延米注浆量Q=38.656/1.5 =25.77m3 故总的注浆量Qm=13.635*25.77=351.37m3(13.635m为图纸注浆范围) 二、水泥-水玻璃双液计算 竖井注浆为水泥-水玻璃双液,体积配合比根据实际需要现场调配,其依据是根据文献《山东交通科技》(见附件)一书总第一百六十九期(2004年12月)对隧道注浆(水泥-水玻璃双浆液)的探讨, 现场体积配合比根据实际调配为1:0.5 (水泥浆:水玻璃),水泥浆

相关文档
最新文档