温度

《温度》

一、知识与技能

1、理解温度的概念

2、了解生活环境中常见的温度值;

3、会用温度计测量温度。

二、教学重点和难点重点:

温度的概念;正确使用温度计测量温度并能读出各种温度计的示数。难点:温度计的构造、原理;体温计与实验室温度计的对比

三、教学过程

1,导入

播放四季的图片,让学生说出在一年四季的感受。由我们四季不同感受引出温度的概念。2、让学生分辨两杯不同温度的水,引出我们的感觉是不可靠,不准确的,要准确确定液体的温度,就要有科学的测量工具。

2、温度计

提出问题:如果我们要确切的知道一杯水的温度,应该怎么办?共同探究:自制温度计(1)设计方案:在广口瓶内加入一些带颜色的水,配一个橡皮塞,在橡皮塞上插进一根一端封闭的吸管,使橡皮塞塞住瓶口。(2)将小瓶分别置于热水、冷水中,观察吸管内液柱高度的变化。(3)问:为什么会出现这样的现象?(4)问:你能否将此装置进行改进,使它能测出具体的温度值?(5)启发:

标上刻度的自制温度计虽然可以测出温度,为了提高测量的准确性,还有那些地方可以改进?(6)问:如何给改进后的温度计标上刻度?展示各种各样的温度计。

说出制作原理,(常用温度计是根据液体热胀冷缩的性质制成的)

构造并进行分类,(实验用温度计、寒暑表、体温计)

据液泡中的不同液体通常使用的有酒精温度计、煤油温度计和水银温度计。

3、摄氏温度

学生学习摄氏温度这一块的内容,了解摄氏温度的单位和规定。

在大屏幕上学习有关摄氏温度的单位、规定、读数。

练习:5 —15读法:

4、温度计的使用

怎么用温度计测量物体的温度呢?学生看书(和正确使用刻度尺进行比较)学生回答,教师总结:

观察什么?

测量方法?

体温计的使用方法和常用温度计的不同?

学生分组进行测量:

1、冷水和热水的温度

2、2、每个同学的体温

3、分别做好记录

4、学生展示记录成果。

五、课堂小结

六、课堂练习

七、课后作业:

1.出示100年来全球气温变化曲线图。让小组讨论对这种现象有什么好的建议。

2.如何改进本组自制的温度计,让它测量更灵敏,更准确。

温度控制

PT100温度控制实验 一、实验目的: 了解PID智能模糊+位式调节温度控制原理。 二、实验仪器: 智能调节仪、PT100、温度源。 三、实验原理: 位式调节 位式调节(ON/OFF)是一种简单的调节方式,常用于一些对控制精度不高的场合作温度控制,或用于报警。位式调节仪表用于温度控制时,通常利用仪表内部的继电器控制外部的中间继电器再控制一个交流接触器来控制电热丝的通断达到控制温度的目的。 PID智能模糊调节 PID智能温度调节器采用人工智能调节方式,是采用模糊规则进行PID调节的一种先进的新型人工智能算法,能实现高精度控制,先进的自整定(AT)功能使得无需设置控制参数。在误差大时,运用模糊算法进行调节,以消除PID饱和积分现象,当误差趋小时,采用PID算法进行调节,并能在调节中自动学习和记忆被控对象的部分特征以使效果最优化,具有无超调、高精度、参数确定简单等特点。 温度控制基本原理 由于温度具有滞后性,加热源为一滞后时间较长的系统。本实验仪采用PID智能模糊+位式双重调节控制温度。用报警方式控制风扇开启与关闭,使加热源在尽可能短的时间内控制在某一温度值上,并能在实验结束后通过参数设置将加热源温度快速冷却下来,可节约实验时间。 当温度源的温度发生变化时,温度源中的热电阻Pt100的阻值发生变化,将电阻变化量作为温度的反馈信号输给PID智能温度调节器,经调节器的电阻-电压转换后与温度设定值比较再进行数字PID运算输出可控硅触发信号(加热)和继电器触发信号(冷却),使温度源的温度趋近温度设定值。PID智能温度控制原理框图如图25-1所示。 图25-1 PID智能温度控制原理框图 三、实验内容与步骤 1.在控制台上的“智能调节仪”单元中“控制对象”选择“温度”,并按图25-2接线。 2.将2~24V输出调节调到最大位置,打开调节仪电源。 3.按住3秒以下,进入智能调节仪A菜单,仪表靠上的窗口显示“”,靠下窗口显示待设置的设定值。当LOCK等于0或1时使能,设置温度的设定值,按“”可改变小数点位置,按或键可修改靠下窗口的设定值。否则提示“”表示已加锁。再按3

温度控制方案

温度控制方案 一、系统简介 蒸煮池温控系统主要由温度传感器、调节控制柜和执行器组成。温度控制器可实现任意温度设置,具有运行、停止等可编程操作控制,并允许在运行中随时修改程序及进行二路事件的输出。可自动地控制蒸煮池温度 二、系统特点 为了提高整个自动蒸养系统的可靠性,在系统设计中,主要是从四个方面采取了相应的措施,第一,为了防止开关、触点和负载的频繁动作干扰仪表的正常工作,在每一个负载线圈上都并联了一个浪涌吸收器。第二,在系统设计中,采用现场手动、自动控制方式对进行控制,就把由于设备故障导致生产停顿的可能性减到了最小。第三,在系统设计中,大量选用高品质的零部件,采用先进的制作工艺、合理的控制柜布局和连线方式。 为了提高整个自动控温的精确性,在系统设计中,采用了运用人工智能调节技术的温度调节器来做控制中心,该智能温度调节器集合了PID调节和模糊控制技术优点,实现了自整定/自适应功能及无超调无欠调的精确调节。 为了使系统易于操作,在系统设计中,采用单键实现自动控制的操作方式,控制方式的切换也只要简单的旋转选择开关即可; 三、控制系统组成与结构 温控系统主要由温度传感器、温度调节控制柜、执行器三大部分组成。如图所示: 调节控制柜安装在工业现场,柜内装有智能温度调节器,它们能够直接显示水箱内控制点的温度,并能按预先设定的控温,对其精确控制,调节控制柜上还安装有手动和自动控制 方式切换开关 四、主要技术指标 1) 测量精度:0.2级;

2) 控制精度:±2℃ 3) 电源:AC220V 4) 使用环境:温度-10℃~+60℃ 5) 控制方式:手动和自动控制相结合; 6) 调节方式:电动调节阀; 7) 工艺参数的设定:现场通过仪表面板设定,设定完成后,工艺参数由密码保护,有效防止未经授权的更改。 五、系统主要配置表 1配电箱 300*400!50 2 智能温控仪 3 低压电器 4 温度传感器 六系统报价 蒸煮池温控系统一套元 2013年 4 月 24 日

温度计算

5.1 砼浇筑块体的温度5.1.1砼的最大绝热温升 T h =m c ·Q/c·ρ (1-e-mt) 式中: T h ——混凝土的最大绝热温升(℃); Q——水泥28d水化热,查表得42.5级矿渣水泥28天水化热Q=375kj/kg; m c ——每立方米混凝土胶凝材料用量(kg/m3),m c =335kg; c——混凝土比热,取0.97kj/(kg·K); ρ——混凝土密度,取2400(kg/m3); t——混凝土的龄期(d)取3、6、9、12、15; e——为常数,取2.718; m——系数,随浇筑温度改变,取:0.295(浇筑温度约5℃)。 则: ○1 T h3 ={375×335/0.97×2400}×(1-2.718-0.295×3) =31.7℃ ○2 T h6 ={375×335/0.97×2400}×(1-2.718-0.295×6)=44.8℃ ○3 T h9 ={375×335/0.97×2400}×(1-2.718-0.295×9)=50.2℃ ○4 T h12 ={375×335/0.97×2400}×(1-2.718-0.295×12)=52.4℃ ○5 T h15 ={375×335/0.97×2400}×(1-2.718-0.295×15)=53.4℃5.1.2 混凝土中心计算温度 T 1(t)= T j +T h ·ξ (t) T hmax = m c ·Q/c·ρ=375×335/0.97×2400=54℃ 式中:T 1(t) ——t龄期混凝土中心计算温度(℃); T j ——混凝土浇筑温度(℃),取5度; ξ(t)——t龄期降温系数,查表计算得: 对2.5m混凝土板:ξ (3)= 0.65;ξ (6) =0.62;ξ (9) =0.57;ξ (12) =0.48;ξ (15) =0.38; ○1 T 1(3) = 5+ 54×0.65=40.1℃ ○2 T 1(6) = 5+ 54×0.62=38.5℃ ○3 T 1(9) = 5+ 54×0.57=35.8℃

损耗与散热设计

第8章 损耗与散热设计 开关电源是功率设备,功率元器件损耗大,损耗引起发热,导致元器件温度升高,为了使元器件温度不超过最高允许温度,必须将元器件的热量传输出去,需要散热器和良好的散热措施,设备的体积重量受到损耗限制。同时,输出一定功率时损耗大,也意味着效率低。 8.1热传输 电子元器件功率损耗以热的形式表现出来,热能积累增加元器件内部结构温度,元器件内部温度受最高允许温度限制,必须将内部热量散发到环境中,热量通过传导、对流和辐射传输。当损耗功率与耗散到环境的功率相等时,内部温度达到稳态。 1. 传导 传导是热能从一个质点传到下一个质点,传热的质点保持它原来 的位置的传输过程,如图8-1固体内的热传输。热量从表面温度为T 1 的一端全部传递到温度为T 2的另一端,单位时间传递的能量,即功 率表示为 T R T l T T A P ?=-= )(21λ (8-1) 式中 A l R T λ= (8-2) 称为热阻(℃/ W );l -热导体传输路径长度(m);A -垂直于热传输路径的导体截面积(m 2);λ-棒材料的热导率(W/m ℃),含90%铝的热导率为220W/ m ℃,几种材料的热导率如表8-1所示;ΔT =T 1-T 2温度差(℃)。 例:氧化铝绝缘垫片厚度为0.5mm ,截面积2.5cm 2,求热阻。 解:由表8-1查得λ=20 W/m ℃,根据式(8-2)得到 3 4 0.5100.120 2.510t R --?==??℃/ W 式(8-1)类似电路中欧姆定律:功率P 相当于电路中电流,温度差;ΔT 相当于电路中电压。 半导体结的热量传输到周围空气必然经过几种不同材料传输,每种材料有自己的热导率,截面积和长度,多层材料的热传输可以建立热电模拟的热路图。图8-2是功率器件由硅芯片的热传到环境的热通路(a)和等效热路(b)。由结到环境的总热阻为 sa cs jc js R R R R ++= (8-3) 上式右边前两个热阻可以按式(8-2)计算,最后一项的热阻在以后介绍的方法计算。如果功率器件损耗功率为P ,则结温为 a sa cs jc j T R R R P T +++=)( (8-4) 式中R jc , R cs 及R sa 分别表示芯片结到管壳,管壳到散热器和散热 器到环境热阻。除了散热器到环境的热阻R sa 外,其余两个热阻可以按式(8-2)计算。 (a) (b) 图8-2功率器件热传输和等效热路图

温度应力计算

第四节 温度应力计算 一、温度对结构的影响 1 温度影响 (1)年温差影响 指气温随季节发生周期性变化时对结构物所引起的作用。 假定温度沿结构截面高度方向以均值变化。则 12t t t -=? 12t t t -=?该温差对结构的影响表现为: 对无水平约束的结构,只引起结构纵向均匀伸缩; 对有水平约束的结构,不仅引起结构纵向均匀伸缩,还将引起结构内温度次内力; (2)局部温差影响 指日照温差或混凝土水化热等影响。 A :混凝土水化热主要在施工过程中发生的。 混凝土水化热处理不好,易导致混凝土早期裂缝。 在大体积混凝土施工时,混凝土水化热的问题很突出,必须采取措施控制过高的温度。如埋入水管散热等。 B :日照温差是在结构运营期间发生的。 日照温差是通过各种不同的传热方式在结构内部形成瞬时的温度场。 桥梁结构为空间结构,所以温度场是三维方向和时间的函数,即: ),,,(t z y x f T i = 该类三维温度场问题较为复杂。在桥梁分析计算中常采用简化近似方法解决。 假定桥梁沿长度方向的温度变化为一致,则简化为二维温度场,即: ),,(t z x f T i = 进一步假定截面沿横向或竖向的温度变化也为一致,则可简化为一维温度场。如只考虑竖向温度变化的一维温度场为: ),(t z f T i = 我国桥梁设计规范对结构沿梁高方向的温度场规定了有如下几种型式:

2 温度梯度f(z,t) (1)线性温度变化 梁截面变形服从平截面假定。 对静定结构,只引起结构变形,不产生温度次内力; 对超静定结构,不但引起结构变形,而且产生温度次内力; (2)非线性温度变化 梁在挠曲变形时,截面上的纵向纤维因温差的伸缩受到约束,从而产 。 生约束温度应力,称为温度自应力σ0 s 对静定结构,只产生截面的温度自应力; 对超静定结构,不但产生截面的温度自应力,而且产生温度次应力; 二、基本结构上温度自应力计算 1 计算简图 2 3 ε 和χ的计算 三、连续梁温度次内力及温度次应力计算 采用结构力学中的力法求解。

电气设备发热量的估算及计算方法

电气设备发热量的估算及计算 方法 高压柜、低压柜、变压器的发热量计算方法 变压器损耗可以在生产厂家技术资料上查到(铜耗加铁耗);高压开关柜损耗按每台200W估算;高压电 容器柜损耗按3W/kvar估算;低压开关柜损耗按每台300W估算;低压电容器柜损耗按4W/kvar估算。 一条n芯电缆损耗功率为:Pr=(nl2r)/s,其中I为一条电缆的计算负荷电流(A),r为电缆运行时平均温度为摄氏50度时电缆芯电阻率(Q mm2/m,铜芯为0.0193,铝芯为0.0316 ) , S为电缆芯截面(mm2 );计算多根电缆损耗功率和时,电流I要考虑同期系数。 上面公式中的"2"均为上标,平方。 一、如果变压器无资料可查,可按变压器容量的1?1.5%左右估算; 二、高、低压屏的单台损耗取值200?300W,指标稍高(尤其是高压柜); 三、除设备散热外,还应考虑通过围护结构传入的太阳辐射热。 主要电气设备发热量 电气设备发热量 继电器小型继电器0.2?1W 中型继电器1?3W励磁线圈工作时8?16W 功率继电器8~16W 灯全电压式带变压器灯的W数 带电阻器灯的W数+约10W 控制盘电磁控制盘依据继电器的台数,约300W

程序盘 主回路盘低压控制中心100~500W 高压控制中心100~500W 高压配电盘100~500W 变压器变压器输出kW(1 /效率-1)(KW) 电力变换装置半导体盘输出kW(1 /效率-1)(KW) 照明灯白炽灯灯W数 放电灯1.1X灯W数 假设变压器为1000KVA,其有功输出为680KW,则其效率大致为680/850=0.8,根据上述计算损耗的公式,该变压器的损耗为680* (1/0.8-1)=170KW!!! 变压器的热损失计算公式: APb=Pbk+0.8Pbd APb-变压器的热损失(kW) Pbk-变压器的空载损耗(kW) Pbd-变压器的短路损耗(kW)

温度控制说明

艾豪思微电脑温度控制器使用说明 产品概述: 我司生产的风幕柜是一款通用的但传感器温度控制器,具备制冷、化霜、温度超限报警等功能。压缩机保护延时固化为3分钟,传播器故障后按照固话比例开停机。适用于冷库、冷藏车等制冷行业。 主要功能: 温度测量、显示、控制 化露周期和化露时间可调 温度超限报警功能 压缩机延时开机保护 传感器故障按比例开停机 规格尺寸可定制 操作说明: 查看参数设定值: 按下并立即松开▲键,显示设定的温度上线;按下并立即松开▼键,显示设定的温度下限,按下并立即松开Set键,显示设置的化霜周期;按下并立即松开Rst键,显示设定的化霜时间,2秒后返回正常温度显示状态。 修改参数设定值 1、按Det键3秒以上进入参数修改模式,显示通电后最后调整的菜单项,同事参数相爱模式指示灯亮。 2、按▲键或▼键可上翻或下翻菜单项;按Set键显示当前菜单的参数设定值。 3、按住Set键不放,再按▲键或▼键可以调整当前菜单的参数设定值;同时按Set键和▲键持续一秒以上可以快速上调当前菜单的参数设定值;同时按住Set键和▼键持续一秒以上可以快速下调当前菜单的参数设定值。同是按住Set键和▼键持续一秒以上可以快速下调当前菜单的参数设定值。 4、按Rst键或30内无任何按键操作则保存参数修改并返回正常温度显示状态 手动化霜: 1、化霜时间设定值不为0时允许手动化霜功能。 2、非化霜时按住▼键持续3秒以上可以手动开启化霜。 3、化霜时按住▼键持续3秒以上可以手动停止化霜 恢复参数设置: 机器通电时,首先检查参数设置是否正确,如果检查到错误,则显示E1,同时蜂鸣器鸣响。此时按Set键将恢复默认参数设置并正常工作,建议此时重新设定参数。

温度控制器的工作原理

温度控制器的工作原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID模糊控制技术*用先进的数码技术通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。 传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。 要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控时,很多人会放弃自动控制而采用调压器来代替温度控制器。当然,在电压稳定工作的速度不变、外界气温不变和空气流动速度不变的情况下,这样做是完全可以的,但要清楚地知道,以上的环境因素是不断改变的,同时,用调压器来代替温度控制器时,必须在很大程度上靠人力调节,随着工作环境的变化而用人手调好所需温度的度数,然后靠相对稳定的电压来通电加热,勉强运作,但这决不是自动控温。当需要控温的关键很多时,就会手忙脚乱。这样,调压器就派不上用场,因为靠人手不能同时调节那么多需要温控的关键,只有采用PID模糊控制技术,才能解决这个问题,使操作得心应手,运行畅顺。例如烫金机,其温度要求比较稳定,通常在正负2℃以内才能较好运作。高速烫金机烫制同一种产品图案时,随着速度加快,加热速度也要相应提高。这时,传统的温度控制器方式和采用调压器操作就不能胜任,产品的质量就不能保证,因为烫金之前必须要把烫金机的运转速度调节适当,用速度来迁就温度控制器和调压器的弱点。但是,如果采用PID模糊控制的温度控制器,就能解决以上的问题,因为PID中的P,即Pvar功率变量控制,能随着烫金机工作速度加快而加大功率输出的百分量。 有机械式的和电子式的, 机械式的采用两层热膨胀系数不同金属亚在一起,温度改变时,他的弯曲度会发生改变,当弯曲到某个程度是,接通(或断开)回路,使得制冷(或加热)设备工作。

MOSFET功率损耗的计算

MOSFET功率损耗的计算 摘要:本文介绍了电动自行车无刷电机控制器的热设计。其中包括控制器工作原理的介绍、MOSFET功率损耗的计算、热模型的分析、稳态温升的计算、导热材料的选择、热仿真等。关键词:电动自行车控制器MOSFET热设计 1. 引言 由于功率MOSFET具有驱动电流小、开关速度快等优点,已经被广泛地应用在电动车的控制器里。但是如果设计和使用不当,会经常损坏MOSFET,而且一旦损坏后MOSFET的漏源极短路,晶圆通常会被烧得很严重,大部分用户无法准确分析造成MOSFET损坏的原因。所以在设计阶段,有关MOSFET的可靠性设计是致关重要的。 MOSFET通常的损坏模式包括:过流、过压、雪崩击穿、超出安全工作区等。但这些原因导致的损坏最终都是因为晶圆温度过高而损坏,所以在设计控制器时,热设计是非常重要的。MOSFET的结点温度必须经过计算,确保在使用过程中MOSFET结点温度不会超过其最大允许值。 2. 无刷电机控制器简介 由于无刷电机具有高扭矩、长寿命、低噪声等优点,已在各领域中得到了广泛应用,其工作原理也已被大家广为熟知,这里不再详述。国内电动车电机控制器通常工作方式为三相六步,功率级原理图如图1所示,其中Q1, Q2为A相上管及下管;Q3, Q4为B相上管及下管;Q5, Q6为C相上管及下管。MOSFET全部使用AOT430。MOSFET工作在两两导通方式,导通顺序为Q1Q4→Q1Q6→Q3Q6→Q3Q2→Q5Q2→Q5Q4→Q1Q4,控制器的输出通过调整上桥PWM脉宽实现,PWM频率一般设置为18KHz以上。

当电机及控制器工作在某一相时(假设B相上管Q3和C相下管Q6),在每一个PWM周期内,有两种工作状态: 状态1: Q3和Q6导通, 电流I1经Q3、电机线圈L、Q6、电流检测电阻Rs流入地。 状态2: Q3关断, Q6导通, 电流I2流经电机线圈L、Q6、Q4, 此状态称为续流状态。在状态2中,如果Q4导通,则称控制器为同步整流方式。如果Q4关断,I2靠Q4体二极管流通,则称为非同步整流工作方式。 流经电机线圈L的电流I1和I2之和称为控制器相电流,流经电流检测电阻Rs的平均电流I1称为控制器的线电流,所以控制器的相电流要比控制器的线电流要大。 3. 功耗计算 控制器MOSFET的功率损耗随着电机负载的加大而增加,当电机堵转时,控制器的MOSF ET损耗达到最大(假设控制器为全输出时)。为了分析方便,我们假设电机堵转时B相上管工作在PWM模式下,C相下管一直导通,B相下管为同步整流工作方式(见图1)。电机堵转时的波形如图2-图5所示。

如何设定回流焊温度曲线

如何设定回流焊温度曲线 如何设定回流焊温度曲线 首先我们要了解回流焊的几个关键的地方及温度的分区情况及回流焊的种类. 影响炉温的关键地方是: 1:各温区的温度设定数值 2:各加热马达的温差 3:链条及网带的速度 4:锡膏的成份 5:PCB板的厚度及元件的大小和密度 6:加热区的数量及回流焊的长度 7:加热区的有效长度及泠却的特点等 回流焊的分区情况: 1:预热区(又名:升温区) 2:恒温区(保温区/活性区) 3:回流区 4 :泠却区 那么,如何正确的设定回流焊的温度曲线 下面我们以有铅锡膏来做一个简单的分析(Sn/pb) 一:预热区 预热区通常指由室温升至150度左右的区域,在这个区域,SMA平稳升温,在预热区锡膏的部分溶剂能够及时的发挥。元件特别是集成电路缓慢升温。以适应以后的高温,但是由于SMA表面元件大小不一。其温度有不均匀的现象。在些温区升温的速度应控制在1-3度/S 如果升温太快的话,由于热应力的影响会导致陶瓷电容破裂/PCB变形/IC芯片损坏同时锡膏中的溶剂挥发太快,导致锡珠的产生,回流焊的预热区一般占加热信道长度的1/4—1/3 时间一般为60—120S 二:恒温区 所谓恒温意思就是要相对保持平衡。在恒温区温度通常控制在150-170度的区域,此时锡膏处于融化前夕,锡膏中的挥发进一步被去除,活化剂开始激活,并有效的去除表面的氧化物,SMA表面温度受到热风对流的影响。不同大小/不同元件的温度能够保持平衡。板面的温差也接近最小数值,曲线状态接近水平,它也是评估回流焊工艺的一个窗口。选择能够维持平坦活性温度曲线的炉子将提高SMA的焊接效果。特别是防止立碑缺陷的产生。通常恒温区的在炉子的加热信道占60—120/S的时间,若时间太长也会导致锡膏氧化问题。导致锡珠增多,恒温渠温度过低时此时容易引起锡膏中溶剂得不到充分的挥发,当到回流区时锡膏中的溶剂受到高温容易引起激烈的挥发,其结果会导致飞珠的形成。恒温区的梯度过大。这意味

温度控制系统

目录 第一章设计背景及设计意义 (2) 第二章系统方案设计 (3) 第三章硬件 (5) 3.1 温度检测和变送器 (5) 3.2 温度控制电路 (6) 3.3 A/D转换电路 (7) 3.4 报警电路 (8) 3.5 看门狗电路 (8) 3.6 显示电路 (10) 3.7 电源电路 (12) 第四章软件设计 (14) 4.1软件实现方法 (14) 4.2总体程序流程图 (15) 4.3程序清单 (19) 第五章设计感想 (29) 第六章参考文献 (30) 第七章附录 (31) 7.1硬件清单 (31) 7.2硬件布线图 (31)

第一章设计背景及研究意义 机械制造行业中,用于金属热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶惯性环节。现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。 自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。 ,

温度曲线设定

如何正确设定回流炉温度曲线 正确设定回流炉温度曲线是获得优良焊接质关键 前言 红外回流焊是SMT大生产中重要的工艺环节,它是一种自动群焊过程,成千上万个焊点在短短几分钟内一次完成,其焊接质量的优劣直接影响到产品的质量和可靠性,对于数字化的电子产品,产品的质量几乎就是焊接的质量。做好回流焊,人们都知道关键是设定回流炉的炉温曲线,有关回流炉的炉温曲线,许多专业文章中均有报导,但面对一台新的红外回流炉,如何尽快设定回流炉温度曲线呢?这就需要我们首先对所使用的锡膏中金属成分与熔点、活性温度等特性有一个全面了解,对回流炉的结构,包括加热温区的数量、热风系统、加热器的尺寸及其控温精度、加热区的有效长度、冷却区特点、传送系统等应有一个全面认识,以及对焊接对象--表面贴装组件(SMA)尺寸、组件大小及其分布做到心中有数,不难看出,回流焊是SMT工艺中复杂而又关键的一环,它涉及到材料、设备、热传导、焊接等方面的知识。 本文将从分析典型的焊接温度曲线入手,较为详细地介绍如何正确设定回流炉温度曲线,并实际介绍BGA以及双面回流焊的温度曲线的设定。 理想的温度曲线 图1是中温锡膏(Sn63/Sn62)理想的红外回流温度曲线,它反映了SMA通过回流炉时,PCB上某一点的温度随时间变化的曲线,它能直观反映出该点在整个焊接过程中的温度变化,为获得最佳焊接效果提供了科学的依据,从事SMT焊接的工程技术人员,应对理想的温度曲线有一个基本的认识,该曲线由四个区间组成,即预热区、保温区/活性区、回流区、冷却区,前三个阶段为加热区,最后一阶段为冷却区,大部分焊锡膏都能用这四个温区成功实现回流焊。故红外回流炉均设有4-5个温度,以适应焊接的需要。 图1 理想的温度曲线

温度控制系统设计

温度控制系统设计 目录 第一章系统方案论证错误!未指定书签。 总体方案设计错误!未指定书签。 温度传感系统错误!未指定书签。 温度控制系统及系统电源错误!未指定书签。 单片机处理系统(包括数字部分)及温控箱设计错误!未指定书签。 算法原理错误!未指定书签。 第二章重要电路设计错误!未指定书签。 温度采集错误!未指定书签。 温度控制错误!未指定书签。 第三章软件流程错误!未指定书签。 基本控制错误!未指定书签。 控制错误!未指定书签。 时间最优的控制流程图错误!未指定书签。 第四章系统功能及使用方法错误!未指定书签。 温度控制系统的功能错误!未指定书签。 温度控制系统的使用方法错误!未指定书签。 第五章系统测试及结果分析错误!未指定书签。 硬件测试错误!未指定书签。 软件调试错误!未指定书签。 第六章进一步讨论错误!未指定书签。 参考文献错误!未指定书签。 致谢错误!未指定书签。 摘要:本文介绍了以单片机为核心的温度控制器的设计,文章结合课题《温度控制系统》,从硬件和软件设计两方面做了较为详尽的阐述。 关键词:温度控制系统控制单片机 : . : 引言: 温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。本文设计了以单片机为检测控制中心的温度控制系统。温度控制采用改进的数字控制算法,显示采用静态显示。该系统设计结构简单,按要求有以下功能: ()温度控制范围为°; ()有加热和制冷两种功能 ()指标要求: 超调量小于°;过渡时间小于;静差小于℃;温控精度℃ ()实时显示当前温度值,设定温度值,二者差值和控制量的值。 第一章系统方案论证 总体方案设计 薄膜铂电阻将温度转换成电压,经温度采集电路放大、滤波后,送转换器采样、量化,量化后的数据送单片机做进一步处理;

关于露点温度的计算方法(DOC)

关于露点温度的计算方法 例如:23℃,RH45%的湿度,对应的露点温度算法: 先在温度对应的饱和水汽压上查找23℃,对应的饱和水汽压——21.07毫米汞柱,再用21.07×45%(需要的湿度)=9.4815,在下表中查询此值9.4815对应的饱和水汽压,没有完全吻合的值,就在其上下临界点按比例取一个温度值即为露点温度,因此,23℃,45%的湿度,对应的露点温度为10.5℃。 知道为什么这么计算吗?道理很简单,就是假设我们需要设定23℃时的饱和蒸汽压,那么对应的气压值是21.07毫米汞柱,可是我们需要的不是饱和的,是RH45%,那么21.07的45%,是我们实际需要的水气压值即9.4815,我们假设这个水汽压值是另外一个温度对应的饱和水汽压,这个饱和水汽压恰恰是由湿度供给系统来确保提供的,那么这个水汽压对应的温度即是10.5℃即是我们要得到的水蒸汽(湿度)供给系统所需要设定的露点温度(汽压达到饱和时的温度)。通俗一点讲就是10.5℃的饱和蒸汽压放到23℃的环境里就只有45%的相对湿度啦! 这里大家一定要知道什么是“露点温度”,露点温度是指空气在水汽含量和气压都不改变的条件下,冷却到饱和时的温度。形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度。露点温度本是个温度值,可为什么用它来表示湿度呢?这是因为,当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于

露点温度。所以露点与气温的差值可以表示空气中的水汽距离饱和的程度。在100%的相对湿度时,周围环境的温度就是露点温度。露点温度越小于周围环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响。 不同温度时饱和水汽压(P)(单位:毫米高水银柱) 室内空气露点查询表

功率型二极管能力损耗估算

AN604 Application note Calculation of conduction losses in a power rectifier Introduction This application note explains how to calculate conduction losses in a power diode by taking into account the forward voltage dependence on temperature and the current waveform. The ideal current and voltage waveforms of an ultrafast diode in a power supply system during a switching cycle are shown in Figure 1. Figure 1.Ideal current and voltage waveforms of a diode in a switch mode power The conduction losses in a diode appear when the diode is in forward conduction mode due to the on-state voltage drop (V F). Most of the time the conduction losses are the main contributor to the total diode power losses and the junction temperature rising. This is the reason why it is important to accurately estimate them. August 2011Doc ID 3607 Rev 31/12 https://www.360docs.net/doc/9e14413808.html,

温度曲线的设定及其依据

回流返修焊接中温度曲线的设定依据 温度曲线是保证焊接质量的关键,实时温度曲线和焊膏温度曲线的升温斜率和峰值温度应基本一致。160℃前的升温速度控制在1—2℃/s。如果升温斜率速度太快,一方面使元器件及PCB受热太快,易损坏元器件和造成PCB变形。另一方面,焊膏中的熔剂挥发速度太快,容易溅出金属成份,产生锡珠。峰值温度一般设定在比焊膏金属熔点高30-40℃左右(例如63Sn/37Pb焊膏的熔点为183℃,峰值温度应设置在215℃左右),回流时间为30~60s。峰值温度低或回流时间短,会使焊接不充分,严重时会造成锡球不熔。峰值温度过高或回流时间过长,容易造成金属粉末氧化,影响焊接质量,甚至会损坏元器件和印刷电路板。 ●预热阶段:在这一段时间内使PCB均匀受热升温,并刺激助焊剂活跃。一般升温的速度不要过快,防止线路板受热过快而产生较大的变形。尽量将升温速度控制在3℃/秒以下,较理想的升温速度为2℃/秒。时间控制在60 ~ 90 秒之间。 ●浸润阶段:这一阶段助焊剂开始挥发。温度在150℃~ 180℃之间应保持60 ~ 120 秒,以便助焊剂能够充分发挥其作用。升温的速度一般在0.3 ~ 0.5℃/秒。 ●回流阶段:这一阶段的温度已经超过焊膏的熔点温度,焊膏熔化成液体,元器件引脚上锡。该阶段中温度在183℃以上的时间应控制在60 ~ 90 秒之间。 如果时间太少或过长都会造成焊接的质量问题。其中温度在220 +/- 10 ℃范围内的时间控制相当关键,一般控制在10~ 20 秒为最佳。 ●冷却阶段:这一阶段焊膏开始凝固,元器件被固定在线路板上。同样的是降温的速度也不能够过快,一般控制在4℃/秒以下,较理想的降温速度为3℃/秒。由于过快的降温速度会造成线路板产生冷变形,它会引起BGA焊接的质量问题,特别是BGA外圈引脚的虚焊。设 设置回流返修焊接温度曲线的依据: 1.根据使用焊膏的温度曲线进行设置。不同金属含量的锡球有不同的温度曲线,应按照焊膏供应商提供的温度曲线进行具体产品的回流焊温度曲线设置。 2.根据PCB板的材料、厚度、层数多少、尺寸大小等进行设置。 3.根据PCB板表面搭载元器件的密度、元器件的大小以及有无BGA、CSP等特殊元器件进行设置。 4.此外,根据设备的具体情况,例如加热区的长度、加热源的材料、回流焊炉的构造和热传导方式等因素进行设置。热风加热器和红外加热器有很大区别,红外加热器主要是辐射传导,其优点是热效率高,温度陡度大,易控制温度曲线;双面焊时,PCB上、下温度易控制;其缺点是温度不均匀。 5.根据温度传感器的实际位置确定各温区所设置的温度,若温度传感器位置在发热体内部,设置温度比实际温度高30℃左右。 6.根据排风量的大小进行设置。一般返修焊接系统对排风量都有具体要求,但实际排风量因各种原因有时会有所变化,确定一个产品的温度曲线时,因考虑排风量,并定时测量。

功率器件损耗计算(附件)

功率器件应用时所受到的热应力可能来源于两个方面:器件内部和器件外部。器件工作时所耗散的功率要通过发热形式耗散出去。若器件的散热能力有限,则功率的耗散就会造成器件内部芯片有源区温度上升及结温升高,使得器件可靠性降低,无法安全正常工作。在实际应用中,为了保证某些重要功率器件,在这些器件上使用散热器来控制其的工作温升。 功率器件常用的散热方式是使用散热器。散热器设计的选用主要依靠功率器件的损耗发热量。在计算出损耗量的前提下,对散热器的各个参数进行设计。在开关电源系统中功率器件有7个IGBT和2个整流桥,其损耗量计算如下: IGBT的散热器有两组: 其中U 1、U 2、U 3 为一组,U 4、U 5、U 6、U 7 为一组。U 1、U 2、U 3 损耗: 流过电流Io=228A 工作电压Vcc=620V

工作频率fc=3kHZ 其它计算参数由CM600DU-24NFH提供的参数表查得; 通过CM600DU-24NFH自带损耗计算软件可算得一个如下图: 由计算结果可知:P1=389.51W Po=3x P 1=3 X 389.5仁1168.53WU 4、U 5、U 6、U 7 损耗: 流过电流Io=114A 工作电压Vcc=620V 工作频率fc=20kHZ 其它计算参数由CM600DU-24NFH提供的参数表查得; 通过CM600DU-24NFH自带损耗计算软件可算得一个如下图: 由计算结果可知:P1=476.82W Po=4X P 1=4X 476.82=1907.28W 整流桥D IGBT模块的损耗量, IGBT模块的损耗量,

1、D 2 损耗计算 整流桥是由四个二极管构成,主要的损耗来自二极管PN 结。二极管的损耗包括正向导通损耗、反向恢复损耗和断态损耗。肖特级二极管的反向时间很短,反向损耗可以忽略不计。 一般来说,二极管的截止损耗在总功耗中所占的比例很小,可以忽略不计。在实际应用中,只考虑其的正向导通损耗。 二极管的正向导通损耗可由下式求出: Pdiode.F=V FI Fd 式中V F ――二极管正向导通压降;IF ――二极管的正向导通电流; d——二极管工作的占空比 根据查SKKE 310参数可知: VF = 2.1 VI F=400 Ad = 0.25 由此可得单个二极管的损耗P diode.F Pdiode.F=V FI Fd=2.1V X 400A X 0.25=210W 整流桥中的四个上二极管是交替工作的,每次工作是只有两个,所以整流桥的损耗为二极管的两倍,则:

标准炉温的设定与温度测量

生效日期:2010-03-01 1.目的 为了提供正确作业方法给炉温设定人员与炉温测试人员。 2.范围 适用于本公司炉温的设定与测试。 3.内容 3.1标准炉温的设定 3.1.1根据锡膏供应商提供的参考炉温曲线再结合实际产品的温度要求,设定和测试一组标 准的设定炉温与温度曲线。(以美国科利泰锡膏为列,有铅炉温设定,如下图) 3.1.2有铅的炉温温度要求为:以室温或50℃的温度为参考,升温到110℃的升温斜率要﹥ 2℃/S、﹤4℃/S。110℃~150℃的恒温时间要求在80~120S,150℃~183℃的真正 活化时间要求在30~45S,回流时间183℃以上的温度在60~90S,最高温度上限为

生效日期:2010-03-01 220℃。降温斜率控制在﹤4℃/S。 3.1.3市场与客户的要求有铅的锡膏无铅的物料生产制程即SMT混合工艺,其锡膏供应商(科 利泰)所提供的参考炉温曲线如下图 110-150℃ 3.1.4混合工艺的温度要求为:以室温为参考,升温到110℃的升温斜率要≤2.5℃/S。 110℃~150℃的恒温时间要求在60~120S,回流时间217℃以上的温度在30~60S,最高温度上限为235℃。降温斜率控制在﹤4℃/S。 3.1.5根据炉温曲线的要求,设定其炉温,测试核对,审、批后将设定的数值记录到《炉温 参数设定记录》表中。 3.2 Bestemp6000炉温测试仪的使用 3.2.1测试板的温度取样点需4点以上,其重要性排列:BGA QFN T/SIM卡座 CHIP 3.2.2开启Bestemp Temperature Analyes软件。 3.2.3将连接头插入计算机的COM1,另一连接头插入PORT。 3.2.4取样间隔时间,设定为0:00.5sec,依设定温度为触发点,设定为”30℃” 3.2.5将测温板上的sensor线依编号插入Bestemp-C6000,Bestemp-C6000编号方式为正面 的右下为第一接线头,依序往上。

空调温度控制系统

关于空调温度控制系统的研讨 摘要本文介绍了空调机温度控制系统。本温度控制系统采用的是AT80C51单片机采集数据,处理数据来实现对温度的控制。主要过程如下:利用温度传感器收集的信号,将电信号通过A/D转换器转换成数字信号,传送给单片机进行数据处理,并向压缩机输出控制信号,来决定空调是出于制冷或是制热功能。当安装有LED实时显示被控制温度及设定温度,使系统应用更加地方便,也更加的直观。 关键字 AT80C51单片机 A/D转换器温度传感器 随着人们生活水平的日益提高,空调已成为现代家庭不可或缺的家用电器设备,人们也对空调的舒适性和空气品质的要求提出了更高的要求。现代的只能空调,不仅利用了数字电路技术与模拟电路技术,而且采用了单片机技术,实现了软硬件的结合,既完善了空调的功能,又简化了空调的控制与操作;不仅满足了不同用户对环境温度的不同要求,而且能全智能调节室内的温度。为此,文中以单片机AT80C51为核心,利用LM35温度传感器、ADC0804转换器和数码管等,对温度控制系统进行了设计。 一、总体设计方案 空调温度控制系统,只要完成对温度的采集、显示以及设定等工作,从而实现对空调控制。传统的情况时采用滑动电阻器电阻充当测温器件的方案,虽然其中段测量线性度好,精度较高,但是测量电路的设计难度高,且测量电路系统庞大,难于调试,而且成本相对较高。鉴于上述原因,我们采用了ADC0804将输入的模拟信号充当测温器件。外部温度信号经ADC0804将输入的模拟信号转换成8位的数字信号,通过并口传送到单片机(AT80C51)。单片机系统将接收的数字信号译码处理,通过数码管将温度显示出来,同时单片机系统还将完成按键温度设定、一段温度内空调没法使用等程序的处理,将处理温度信号与设定温度值比较形成可控制空调制冷、制热、停止工作三种工作状态,从而实现空调的智能化。原理图如下图所示: 图 1 系统原理图 二、硬件电路设计 该空调温度控制系统的硬件电路,只要由单片机AT80C51最小系统、8段译码管、数码管、按键电路、驱动电路、A/D转换电路、温度采样电路等组成。图2为该实验的系统框图,我们下面主要就几个模块进行扼要介绍。 图2 系统框图 2.1 温度的采集——温度传感器 通过查找资料我们发现,温度传感器并不是什么复杂和神秘的电子器件,在对精度要求不高的一般应用中,可以使用一个型号为LM35【1】的温度传感器,它的外观与一般的三极管没有什么区别,温度传感器LM35只有3个管脚:+Vs、Vout、GND。其中,+Vs接+4V~+20V 的电源,为器件工作供电,GND接地。当加上工作电压后,LM35的外壳就开始感应温度,并在Vout管脚输出电压。Vout的输出与温度具有线性关系。 当温度为0时,Vout=0V,如果温度上升,则每上升1°C,Vout的输出增加10mV。如果温度为25°C时,Vout=25*10=250mV。这样,使用一个简单的温度传感器LM35就可以把温度转换成电压信号,这个电压信号直观地反映环境的温度。 2.2 模拟/数字转换器ADC0804

温度应力计算

6.1混凝土施工裂缝控制6.1.1混凝土温度的计算 ①混凝土浇筑温度:T j =T c +(T q -T c )×(A 1 +A 2 +A 3 +……+A n ) 式中:T c —混凝土拌合温度(℃),按多次测量资料,在没有冷却措施的条件下,有日照时混凝土拌合温度比当时温度高5-7 ℃,无日照时混凝土拌 合温度比当时温度高2-3 ℃,我们按3 ℃计;、 T q —混凝土浇筑时的室外温度(考虑最夏季最不利情况以30 ℃计); A 1、A 2 、A 3 ……A n —温度损失系数,A 1 —混凝土装、卸,每次A=0.032(装 车、出料二次);A 2 —混凝土运输时,A=θt查文献[5]P 33表3-4得6 m3滚动式搅拌车运输θ=0.0042,运输时 间t约30分钟,A=0.0042×30=0.126;A 3 —浇捣过程中A=0.003t, 浇捣时间t约240min, A=0.003× 240=0.72; T j =33+(T q -T c )×(A 1 +A 2 +A 3 )=33+(30-33)×(0.032×2+0.126+0.72) =33+(-3)×0.91=30.27 ℃ ②混凝土的绝热温升:T(t)=W×Q×(1-e-mt)/(C×r) 式中:T(t)—在t龄期时混凝土的绝热温升(℃); W—每m3混凝土的水泥用量(kg/m3),取350kg/m3; Q—每公斤水泥28天的累计水化热(KJ/kg), 采用425号矿渣水泥Q =335kJ/kg(文献[5] P 14 表2-1); C—混凝土比热0.97 KJ/(kg·K) ; r—混凝土容重2400 kg/m3; e—常数,2.71828; m—与水泥品种、浇筑时温度有关,可查文献[5]P 35 表3-5; t—混凝土龄期(d)。 混凝土最高绝热温升T h =W×Q/(C×r)=350×335/(0.97×2400)=50.37(℃) ③混凝土内部中心温度:T max (t)=T j + T 1 (t) 式中:T max (t)—t龄期混凝土内部中心温度; T j —混凝土浇筑温度(℃);

相关文档
最新文档