人脑的高级功能

脑的基本结构

脑的基本结构、组成——脑包括端脑、间脑、中脑、脑桥和延髓,可分为大脑、小脑和脑干三部分。(小延站在桥的中间端) 大脑皮层的结构是什么? 皮层神经元都是呈层状排列的,而且绝大部分神经元胞体与脑的表面平行。 分子层: 最靠近表面的神经细胞层, 由一层无神经元的组织将皮层与软脑膜分隔开。 它们至少都有一层细胞,伸出大量的称为顶树突的树突,这些顶树突会伸入到第一层,在那里形成众多的分叉。细胞骨架:微管;微丝;神经丝 1.微管:组成→微管蛋白和微管相关蛋白,tau(与老年痴呆症相关)异二聚体为单位,有极性。功能:细胞器的定位和物质运输 2.微丝:成分→Actin肌动蛋白,组装需要ATP修饰蛋白,微丝是由球形-肌动蛋白形成的聚合体,生长锥运动 3.神经丝:星形胶质细胞标记物;调节细胞和轴突的大小和直径 什么是轴浆运输,它的分子马达? 轴浆运输指化学物质和某些细胞器在神经元胞体和神经突起之间的运输,是双向性的。 1)快速轴浆运输 顺向运输: 囊泡、线粒体等膜结构细胞器;逆向运输:神经营养因子病毒如狂犬病毒、单纯疱疹病毒 2)慢速轴浆运输 顺向运输:胞浆中可溶性成分和细胞骨架成分 分子马达:驱动蛋白动力蛋白 应用:追踪脑内突触连接 什么是离子通道,它的类型? 是各种无机离子跨膜被动运输的通路。生物膜对无机离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式。被动运输的通路称离子通道。 离子通道的开放和关闭,称为门控(gating)。根据门控机制的不同,将离子通道分为受体门控离子通道和电压门控离子通道。 动作电位的兴奋性周期性变化 绝对不应期:兴奋性为零,阈刺激无限大,钠通道失活。相对不应期:兴奋性从无到有,阈上刺激可再次兴奋,钠通道部分复活。 超常期:兴奋性高于正常,阈下刺激即可引起兴奋,膜电位接近阈电位水平,钠通道基本复活。 低常期:兴奋性低于正常,钠泵活动增强,膜电位低于静息电位水平。 生理意义:由于绝对不应期的存在,动作电位不会融合。。神经元信息传导与动作电位:作电位双向传导,通过极化与去极化。神经元之间是单向传导。 神经细胞在静息状态下,是外正内负的静息电位(外钠内钾)。当受到刺激,细胞膜上少量钠通道激活,钠离子少量内流,膜内外电位差减小,产生局部电位。 当膜内电位到达阈电位时,钠离子通道大量开放,膜电位去极化,动作电位产生。随着钠离子的进入,外正内负逐渐变成外负内正。 从变成正电位开始,钠离子通道逐渐关闭至内流停止,同时钾离子通道开放,钾离子外流,膜内负值减小,膜电位逐渐恢复到静息电位,由于在正常情况下细胞膜是外钠内钾,此时却是外钾内钠,所以这时钠-钾泵活动,将钠离子泵出,钾离子泵回,恢复静息状态。此时完成一个动作电位的产生。传递是依靠局部电流传递的。 神经系统的发育过程:源于外胚层;神经板→神经沟→神经管(整个神经系统的由来);神经褶→神经嵴(所有外周神经元的细胞体和神经元由来) 胚胎发育第13天外胚层的细胞增生形成原条;原条前末端细胞形成原结; 原结和脊索诱导神经板形成,神经板中线凹陷发育为神经沟; 神经沟进一步凹陷加深,沟两侧边缘融合成神经管;(此过程称神经胚形成,在第四周末完成神经系统的早期发育); 神经管的背部细胞向外迁移形成神经嵴,神经嵴最后发育为外周神经系统;神经管则发育为CNS; 神经管的头端膨大发育为脑;脊髓与胚胎的体节发生相适应成为节段性结构(31); 三胚层的构造和最终的发育 内胚层:发育成呼吸系统和消化管; 中胚层:最终发育成结缔组织、血细胞、心脏、泌尿系统以及大部分内脏器官; 外胚层最终发育成神经系统和皮肤。 神经胚的形成?神经板发育成神经管的过程称为神经胚形成 神经管是什么?为脊椎动物及原索动物的神经胚期所见到的一种最明显的变化,神经板闭合作为中枢神经系统最初原基的神经管形成过程的总称。 神经细胞增殖的舞蹈表演 室层中一个细胞的突起向上延伸至软脑膜; 该细胞的细胞核从脑室侧迁移至软膜侧;同时细胞DNA 被复制; 含复制所得的双倍遗传物质的细胞核,重新回到脑室侧;细胞突起从软膜侧缩回; 细胞分裂成两个子细胞。 神经细胞的分化过程 较早分化的较大神经元先迁移并形成最内层,依次顺序向外; 而较晚分化的较小神经元则通过已形成的层次迁移并形成其外侧新的层次; 不论皮质的什么区域,其最内层总是最早分化,而最外层则最后分化。 备注:放射胶质细胞是一切神经干细胞的来源 神经元迁移方式是怎样的?分为以下两种方式: 放射性迁移(细胞引导端先移动,再带动其他部分) 切线性迁移(整个细胞一起移动) 备注:神经细胞迁移有缺陷(起始过程缺陷,迁移过程缺陷,分成缺陷,终止信号缺陷) 生长锥的概念:位于轴突的尖端,呈扁平掌形结构,是神经轴突生长的执行单元。向外部突出丝状伪足,在内部的微管、微丝构成的动力骨架支撑下进行生长。膜表面富含不同的感觉器和黏接分子,感受环境中适宜的生长方向,从而决定轴突生长导向。 成年脑神经元再生(热点问题) 概念:指成年脑内持续产生有功能的新生神经元的现象。神经发生区(即脑内能够产生神经元的区域)所要满足的条件: 1)神经前体细胞 2)域的微环境能够适应神经元再生什么是马赫带 定义:马赫发现的一种明度对比现象。它是一种主观的 边缘对比效应。当观察两块亮度不同的区域时,边界处 亮度对比加强,使轮廓表现得特别明显。 原理:通过水平细胞实现的; 作用:提高边缘对比度,增强分辨能力。 1.通路(What通路) –形状和面容识别:V1→V2 →TE(颞下回前部) –颜色:V1 →V2 →V4 →V8 → TEO (颞下回后部) 2.通路(Where或How通路)运动和深度:V1 →V2 → V5(MT) →顶叶后部 脑干的灰质结构主要有:与脑神经(Ⅲ-ⅩⅡ)相关的神经核; 脑干的白质纤维束:有上行传导束和下行传导束;另外, 脑干网状结构是界与灰质与白质的神经组织) 脑神经12对: 对称性分布于头,颈,躯干,四肢;脊神经31 对:颈神经C1-8对,胸神经T1-12对,腰神经L1-5对,骶神经 S1-5对,尾神经1对; 脊神经由与脊髓相连的前根、后根合并而成,从椎间孔 穿出椎管;前根为前角运动神经元发出的传出性突起组 成;后根为传入性神经,与脊髓的后角相关连; 自主神经系统:为内脏神经的感觉和运动神经部分,主要 分布于内脏,心血管,腺体;内脏运动神经系统的活动因较 不受随意控制而得名; 神经系统活动的基本过程是反射;不受意识控制的神经 系统活动就是反射;实现反射活动的神经通路称反射弧; 进行信号转换处理的中枢部位称神经中枢; 反射弧的基本组成:感受器、传入神经、神经中枢、传 出神经、效应器;反射弧最简单的结构是由2个神经元 组成的单突触反射(如膝跳反射), 胞体内的嗜染色质在碱性染料着色后呈现颗粒状或块状 或虎斑纹样----尼氏体----本质为粗面内质网,核糖核蛋白 体为其主要成分,轴丘部位无尼氏体分布,是组织学确 定轴突的依据之一; 树突和轴突;轴突:从胞体或树突主干的基部发出,只一条; 起始段细;表面光滑,粗细均匀;有髓或无髓;不含核糖体及 粗面内质网(尼氏体); 树突:从胞体发出一至多条;起始 段的树突主干最粗,其胞质成分与核周质者相同;分支逐 渐变细,一般不均匀或表面有小棘;一般无髓; 传导信号和处理信息的结构都是以神经元为单位相互连 接成的神经网络;神经元在结构上只是相互接触而不相 通; 神经元膜相互接触并可以传递信号的特化部位称突触, 有化学性突触和电突触两类; 有髓神经纤维是周围神经系统中雪旺细胞(神经胶质细 胞的一种)以伪足样结构包绕轴突呈螺旋包绕8-12层, 相 邻雪旺细胞间的轴突裸露区称为郎飞结;传导动作电位 的方式是”跳跃式”传导 细胞的兴奋特性:几乎所有的细胞的膜两侧存在一定的 电位差(静息电位);有部分细胞在受到刺激时,能产生短 暂的,快速的跨膜电位变化,这种变化还可以沿细胞表面 主动向远端扩布; 在受到刺激后能产生可扩布电位的细 胞是可兴奋细胞; 可兴奋细胞未受到刺激时存在的跨膜 电位称静息电位; 对细胞膜内外两侧溶液中带电离子化学成份分析表明,外 液的主要成分是氯离子,钠离子;内液中主要为钾离子以 及与钾离子维持电中性的阴离子. 细胞膜在静息状态下 (未受到刺激),只对钾离子有中等的通透性,而对其他离子 的通透性很小;浓度差产生的扩散力驱动钾离子向胞外 扩散; 随着钾离子向胞外扩散,膜两侧逐渐形成外正内负 的电位差,电位差产生的库仑力(静电力)阻止钾离子的向 外扩散; 当驱动钾离子向外扩散的扩散力和阻止钾离子 向外扩散的静电力达到平衡时,钾离子的净移动为零,这 一离子扩散平衡时的跨膜电位称为—平衡电位(此时的 状态称极化状态);由于此平衡电位是钾离子扩散达到平 衡造成的,故称为钾平衡电位; 动作电位的特性:在生理条件下,动作电位触发于轴丘并 沿轴突向末梢传导;动作电位有阈值现象; 动作电位遵循”全或无”原则,其大小与刺激强度无关, 与传导的距离无关;刺激后产生兴奋有一个潜伏期,潜伏 期与刺激强度有关; 动作电位产生后,产生动作电位的部位的兴奋性经历规律 性的变化:绝对不应期,相对不应期,超常期;低常期; 动作电位所具有的特性的意义:限制传导频率;不会发生 重叠总和;不会在细胞表面来回往复振荡; 动作电位时相与兴奋性的关系(1)绝对不应期---钠离子通 道处于失活状态;(2)相对不应期---钠离子通道部分复活, 部分失活状态;(3)超常期---钠离子通道全部复活,膜电位 未恢复静息水平;(4)低常期---钠-钾离子泵活跃作用,导致 膜出现后超极化; 神经元的信号活动取决于跨膜电位的迅速变化;只有离 子通道才能实现;因此,它是信号转导的基本元件; 神经信息从一个细胞传到另一个细胞的过程---传递;神经 元间信息传递的方式有两类:化学传递与电传递; 神经元间实现信息传递的相互联系的特化结构:突触; 化学性传递又分为经典突触传递和非突触性传递; 经典突触的结构:由突触前成分(轴突末梢),突触间隙(细 胞的间隙),突触后成分(胞体,树突或肌细胞膜)组成; 递质的量子释放: 递质的释放以囊泡为单位,以胞裂外排 形式将一个囊泡的递质(为最基本单位量)全部释放出去, 递质释放的总量取决于参与释放的囊泡总数;递质释放 的总量总是囊泡包含的递质量的整数(量子)倍; 释放的 囊泡总数与动作电位的大小相关;动作电位的大小与静 息电位相关; 经典化学突触传递的效应:(1)兴奋性化学突触:突触 前成分释放兴奋性递质,使突触后膜去极化(兴奋性突触 后电位EPSP,可总和);达到阈值则产生动作电位;从而使 神经信号跨过突触;(2)抑制性化学突触:突触前成分 释放抑制性递质,使突触后膜超极化(抑制性突触后电位 IPSP);膜电位要到达阈电位水平更难, 突触传递的抑制作用(1)突触后抑制: 突触前成分释放 抑制性递质,使突触后膜超极化,由于突触后膜阈值升高, 兴奋性下降;这种抑制作用发生在突触后膜,故名----突触 后抑制; (2)突触前抑制: 突触后膜的兴奋或抑制程度 与递质和受体结合的量相关;递质的释放量与突触前成 分的动作电位的大小有关,动作电位的大小与静息电位的 大小有关;降低突触前膜的静息电位(局部兴奋,去极化), 最终导致突触后神经元受到抑制,这种抑制作用发生在突 触前成分,故名---突触前抑制; 电突触在组织学中为细胞的缝隙连接;通道中的微孔道 直径为2纳米,离子及小分子可通过,使两侧胞质连通起来 (机能合胞体结构);通道构象变化使通道的通透性发 生改变; 缝隙连接是细胞间电活动由一个细胞直接传导 到另一个细胞的低电阻通道,因此,它实现传导速度快,高 保真性及双向性;其意义是使两邻的可兴奋细胞活动的 同步化 电突触传递的特点:无时间延搁;不易受环境因素的影响; 传递定型化的兴奋性信号;双向传递; 经典化学突触传递机制是电信号转化为化学信号,再转 化为电信号或其它化学信号;有时间延搁;易受环境因素 的调制(短时间或长时间地改变传递效率,对学习,记忆非 常重要);可传递兴奋性信号,也可传递抑制性信号;单向传 递; 轴丘是发放动作电位的关键部位,因为轴丘有最高密度 的电压依赖性钠通道,且阈值很低; 神经元依两个特性编码信息:(1)放电频率---编码强度以 及时间-强度变化的内容;(2)投射部位---编码信息的空 间位置,性质特征等内容; 神经整合作用:(1)电紧张电位:突触电位的跨膜被动 扩布随着与突出电位产生部位的距离和时间而衰减---电 紧张电位;在神经细胞膜上产生的绝大多数突触电位均 低于阈电位,只能以电紧张的形式被动扩布;(2)空间和 时间总和:一个神经元上可以形成成千上万个突触,有兴 奋性的,也有抑制性的;任一时间内,一部分突触激活,或产 生EPSP,或产生IPSP,这种分级突触电位的特殊性是能够 总和和叠加.如果产生足够数目的EPSP,总和后轴丘膜电 位达到阈电位便可触发动作电位; 时间总和:发生在不同时间内的突触后电位的总和现象 称为时间总和; 如果一个传入神经元连续而快速发放一 系列动作电位,在突触后细胞上最早产生的突触电位在后 续电位到达前还没有消失,因此,后续的突触电位在时间 上总和; 空间总和:发生在神经元表面不同位点的突触后电位的 总和称为空间总和; 人体通过感觉了解内部和外部的世界;所有的感觉源于 感觉系统的活动;各类刺激兴奋不同的感受器,产生感觉 信号;在感觉通路中经过复杂的加工处理传到中枢,形成 感知; 感受器是一种换能装置,把接受到的各种形式的刺激能量 转换为电信号,再以神经冲动的形式经神经纤维传入到中 枢神经系统------转导; 感受器就是一级传入神经元的末 梢终端,接受刺激直接产生去极化(感受器电位);刺激加大, 可以产生动作电位; 皮肤感受器的分布特点:在皮肤表面呈点状分布; 不同的 感受器在身体的不同部位分布的密度不同; 感受器有适应现象:超时连续刺激时感受器的反应性减 弱; 根据感受器产生适应的时间长短,可分为:慢适应性感 受器(SA)和快适应性感受器(RA); 躯体感觉传导通路的规律:(1)从感受器到形成感觉一 般经过三级神经元接替(突触联系),第一级胞体位于 外周(脑神经节和脊神经节),第二级位于脊髓灰质或 脑干神经核团),第三级位于丘脑外侧核;(2)第二级 神经元发出的突起在上行的过程中向对侧投射;(3)投 射到大脑皮层的中央后回及旁中央小叶; 人体的体表感觉区位于中央后回和旁中央小叶,感觉投 射有以下规律: (1)投射区域具有精细的定位,下肢代表 区在中央后回顶部(膝以下代表区在旁中央小叶后半),上 肢代表区在中间部,头面代表区在底部,总的安排是倒立 的,但头面部内部的安排是正立的;(2)躯体感觉传入向 皮质投射具有交叉的特点,即一侧的体表感觉传入是向对 侧皮质的相应区域投射,但头面部感觉的投射是双侧性的; (3)投射区域的大小与躯体各部分的面积不成比例,而 与不同体表部位的感觉敏感程度,感受器数量,以及传导 这些感受器冲动的传入纤维的数量有关; 平衡感觉是指头在空间的位置和运动的感觉;它的感受 器位于内耳的迷路部分(前庭和半规管); 晕车病:由直线运动感觉的错觉(平衡感受器敏感性过 高)而引起,常伴有一系列的植物性神经系统症状; 对光敏感的感受器有两种:视杆细胞(晚光觉系统),视锥 细胞(昼光觉系统).它们含有感光物质,光刺激可以引起 化学变化和电位变化,从而产生神经冲动; (1)视杆细胞 数量为视锥细胞的20倍,除视乳头和视凹外,分布整个视 网膜;对光的敏感性为视锥细胞的1000倍,主要适应暗视 觉;(2)视锥细胞在视网膜的视凹处最密集,但在视凹5 度外密度明显减少;它对光的敏感性很低,一般不会达到 饱和;因此,视锥细胞适合于明视觉; 视敏度:指分辨物体细微结构的能力;在视网膜的正后方 为黄斑,黄斑中央有一个很小的窝为中央凹(宽约1度),为 视力最清晰区(对应视野的中心,视敏度最高);其感光细胞 为视锥细胞(分布密度大,感光阈值高,向中枢传导时汇聚 作用小); 视觉反射(1)瞳孔对光反射:瞳孔的大小随光的强度变 化而发生变化;(2)光的会聚反射:眼对不同距离的调节 使光线聚焦在视凹; 色觉与视锥细胞有关;有3种类型的视锥细胞,它们分别 含有光谱敏感性不同的视锥色素(视觉的三元色学说); 色盲几乎所有的色盲都是遗传的,其主要原因是视锥细胞 的丧失和异常造成的; 明适应与暗适应(视觉二元理论)在暗视下,由于视锥细胞 的光敏度低,微弱的光不能使之兴奋,此时,光由视杆细胞 感受(最大峰值为500nM),强光导致视杆细胞的感光色 素大量分解(漂白),视杆细胞产生快速放电,人眼感到一片 耀眼的光亮;稍等片刻后,才能恢复视觉;在明视下,光波长 敏感性由视锥细胞决定(最大峰值约为550nM); 人眼从 明亮进入暗处,明处下被漂白的视杆细胞色素还没有恢复, 而视锥细胞的感光色素不能对弱光产生敏感效应,故开始 一段时间看不清楚任何物体;首先由红敏视锥细胞工作, 再经过一段时间后,视杆细胞感光色素逐步恢复,视觉敏 感度逐渐提高,恢复暗处的视力,敏感性提高100万倍; 反射是神经系统最简单的运动形式; 反射是机体对特殊 的内外刺激产生的特定反应.,介导反射的特殊神经环路 称为反射弧; 单突触反射----反射弧中没有中间神经元;多突触反射---- 反射弧中有一个及以上的中间神经元的接替; 反射的可塑性:即可根据体验来修改:习惯化---反复应用 恒定的无害性刺激可以使反射变弱;突触的抑制引起;去 习惯化---刺激的任何改变使反射回到基点;敏感化----反复 应用伤害性刺激,使反射增强; 屈肌反射与对侧伸肌反射:皮肤受到伤害性刺激,受到刺 激一侧的肢体出现屈曲的反应,关节的屈肌收缩而伸肌弛 缓;屈肌反射具有保护性意义,屈肌反射的强度与刺激强 度有关; 刺激强度更大,同侧肢体发生屈曲反射时,出现对 侧肢体伸直的反射活动; 节间反射:刺激某一部位(某一脊髓节段支配)的皮肤,引 起其他脊髓节段支配的肢体的协调活动;如脊蛙的搔爬 反射; 姿态反射:姿态反射的目的是防止身体受外力的影响,使 身体向重心转移,还有助于肢体运动时维持身体重心.肌 肉收缩时涉及到抗重力肌(腿部和背部深层伸肌,上肢屈 肌)和协助重力肌.姿态反射的中枢在脑干, 前庭(迷路)反射:前庭(迷路)反射主要稳定头在空间的运 动方向; 颈反射:转动头部可兴奋颈部肌肉内的肌梭和颈椎关节 的传入神经,使颈部肌肉反射收缩(颈丘反射)和肢体的肌 肉收缩(颈脊反射) 矫正反射:动物被置于异常位置时,它能迅速地矫正自己 的姿位以保持正常的体位;它包括前庭矫正反射和颈矫 正反射;此外还有视矫正反射; 随意运动:是意识上为了达到某种目的而指向一定目标 的运动; 大脑皮质运动区(随意运动)对运动调节的特点: (1)对躯 体的运动调节呈现交叉支配的特点(但头面部及部分颈 部肌肉的运动是双侧性的) (2)具有精细的定位特点,功能 代表区的排列大致呈现倒立的人体投影(但头面部内部 代表区的安排是正立的) (3)大脑皮层运动功能代表区的 大小与运动的复杂和精细程度呈正相关关系; 小脑的功能:小脑协调由大脑皮质驱动的运动,也可自身 驱动运动和学习新的运动技巧;小脑的调控是以反馈或 者前馈的方式进行的; 基底神经节运动的调节:基底神经节---大脑皮层下神经核 团的总称;包括纹状体(尾核,壳核),苍白球,黑质,丘脑下核 等;基底神经节中与运动功能有关的主要是纹状体,而纹 状体的主要传入来自大脑皮质; 睡眠的功能理论:恢复理论----恢复体能;适应理论----逃 避敌害 觉醒与睡眠不是受环境昼夜交替调节的一种被动反应, 而是各自受机体内部不同振荡机制(生物钟)调控的结 果; 非REM睡眠的特征:从此状态被唤醒后,不能回忆有过 的思维活动;在REM睡眠期间,被唤醒者可能会报告清 晰、详细、生动的梦境,并常有离奇的情节; 整个睡眠过程中,非REM睡眠和REM睡眠周期性地交替, 平均大约没90分钟重复一个周期;健康成年人睡眠时间 的75%为非REM睡眠; 胆碱能神经元的活动诱发REM睡 眠; 人类是否需要做梦,我们不知道;但机体需要REM睡眠;选 择干扰REM睡眠处理后,受试者试图进入REM睡眠的次 数大大增加; 现在认为睡眠是一个主动的神经过程,而且要求许多脑 区参与: REM睡眠的控制来自于脑干深部,特别是脑桥的弥散调 制神经递质系统:蓝斑去甲肾上腺素递质系统和中缝核 群5-羟色胺递质系统的放电频率随REM的启始几乎下降 为零;而胆碱能神经元的放电频率急剧上升;有证据显 示,胆碱能神经元的活动诱发REM睡眠; REM睡眠行为疾病:经常在做梦期间有行为活动(梦游); 其神经基础是正常情况下介导REM无张力的脑干系统发 生故障; 将电极放在头皮上可以导出电位变化—脑电,它被认为是 大脑皮层神经细胞动作电位的总和;通常以脑电的特征 划分睡眠的时相; 学习是获得新信息和新知识的神经过程;记忆是对所获 取的信息的保存和读出的神经过程; 非联合型学习:习惯化;敏感化 联合型学习:经典条件反射;操作式条件反射 陈述性记忆:事实,事件以及它们之间关系的记忆,能够用 语言来描述;非陈述性记忆--许多类型的记忆是在无意识 参与的情况下建立的,内容无法用语言来描述; 陈述性记忆和非陈述性记忆的明显差异:(1)通常通过 有意识的回忆获取陈述性记忆;可以用语言描述被记忆 的内容;非陈述性记忆不能。但它可以很熟练地运用技 巧;(2)陈述性记忆容易形成也容易遗忘;非陈述性记 忆需要多次的重复练习,一旦形成则不容易遗忘; 遗忘症:脑震荡、慢性酒精中毒、大脑炎、脑肿瘤以及中 风可以损坏记忆;逆行性遗忘:对症状发生前一段时间的 经历不能回忆,忘掉了已知的事物,即不能从长期储存的 记忆中回忆; 记忆障碍“慢性酒精中毒-----顺行性遗忘症,不能将短时性 记忆转化为长时性记忆;脑震荡,脑溢血,电击,麻醉-----逆 行性遗忘症,不能从长时性记忆中提取信息或丧失记忆内 容; 大脑皮层由感觉皮层、运动皮层和联合皮层组成:感觉 皮层(视皮层、听皮层、躯体感觉区、味觉皮层、嗅觉 皮层);运动皮层(初级运动区、运动前区、运动辅助 区);联合皮层(顶叶联合皮层、颞叶联合皮层、前额 叶); 联合皮层不参与纯感觉和运动功能,而是接受来自感觉 皮层的信息并进行整合,再传到运动皮质,从而控制行 为;起感觉输入和运动输出的“联合作用”;随着动物 的进化,联合皮层由不发达到发达,最后进化到人类高 度发达的联合皮层; 研究大脑两半球功能对称性与不对称性的常用方法 *在单侧半球部分受损或全部受损(如中风或为缓解癫痫 而进行手术切除)的情况下观察病人的行为变化; *单侧颈动脉注射异戊巴比妥钠,选择性地使同侧半球短 暂失活,观察受试者的行为变化; *裂脑实验(手术切断胼胝体),应用严格设计的心理生 理学方法检测两半球的功能; *应用现代脑功能成像技术,观察正常人在进行某种认知 操作时的大脑两半球的活动; 大脑两半球功能一侧化的生物学意义:婴儿在出生前,与 语言相关的大脑皮层区就已经存在左右不对称,即婴儿在 学习语言之前,左半球的结构优势就已经存在;在婴儿或 儿童时期,左半球受到伤害后,经过一定时间,语言功能会

大脑结构与功能

大脑结构与功能 大脑结构详解

大脑(Brain)包括左、右两个半球及连接两个半球的中间部分,即第三脑室前端的终板。大脑半球被覆灰质,称大脑皮质,其深方为白质,称为髓质。髓质内的灰质核团为基底神经节。在大脑两半球间由巨束纤维—相连。 具体内容有大脑半球各脑叶、大脑皮质功能定位、大脑半球深部结构、大脑半球内白质、嗅脑和边缘系统五大部分。 各叶的位臵、结构和主要功能如下: 1、额叶:也叫前额叶。位于中央沟以前。在中央沟和中央前沟之间为中央前回。在其前方有额上沟和饿下沟,被两沟相间的是额上回、额中回和额下回。额下回的后部有外侧裂的升支和水平分支分为眶部、三角部和盖部。额叶前端为额极。额叶底面有眶沟界出的直回和眶回,其最内方的深沟为嗅束沟,容纳嗅束和嗅球。嗅束向后分为内侧和外侧嗅纹,其分叉界出的三角区称为嗅三角,也称为前穿质,前部脑底动脉环的许多穿支血管由此入脑。在额叶的内侧面,中央前、后回延续的部分,称为旁中央小叶。负责思维、计划,与个体的需求和情感相关。 2、顶叶:位于中央沟之后,顶枕裂于枕前切迹连线之前。在中央沟和中央后沟之间为中央后回。横行的顶间沟将顶叶余部分为顶上小叶和顶下小叶。顶下小叶又包括缘上回和角回。响应疼痛、触摸、品尝、温度、压力的感觉,该区域也与数学和逻辑相关。 3、颞叶:位于外侧裂下方,由颞上、中、下三条沟分为颞上回、颞中回、颞下回。隐在外侧裂内的是颞横回。在颞叶的侧面和底面,在颞下沟和侧副裂间为梭状回,,侧副裂与海马裂之间为海马回,围绕海马裂前端的钩状部分称为海马钩回。负责处理听觉信息,也与记忆和情感有关。 4、枕叶位于枕顶裂和枕前切迹连线之后。在内侧面,,距状裂和顶枕裂之间为楔叶,与侧副裂候补之间为舌回。负责处理视觉信息。 5、岛叶:位于外侧裂的深方,其表面的斜行中央钩分为长回和短回。 6、边缘系统:与记忆有关,在行为方面与情感有关。 大脑的总结构 大脑皮质为中枢神经系统的最高级中枢,各皮质的功能复杂,不仅与躯体的各种感觉和运动有关,也与语言、文字等密切相关。根据大脑皮质的细胞成分、排列、构筑等特点,将皮质分为若干区。 现在按Brodmann提出的机能区定位简述如下: ·皮质运动区:位于中央前回(4区),是支配对侧躯体随意运动的中枢。它主要接受来自对侧骨骼肌、肌腱和关节的本体感觉冲动,以感受身体的位臵、姿势和运动感觉,并发出纤维,即锥体束控制对侧骨骼肌的随意运动。返回皮质运动前区:位于中央前回之前(6区),为锥体外系皮质区。它发出纤维至丘脑、基底神经节、红核、黑质等。与联合运动和姿势动作协调有关,也具有植物神经皮质中枢的部分功能。 ·皮质眼球运动区:位于额叶的8枢和枕叶19区,为眼球运动同向凝视中枢,管理两眼球同时向对侧注视。皮质一般感觉区:位于中央后回(1、2、3区),接受身体对侧的痛、温、触和本体感觉冲动,并形成相应的感觉。顶上小叶(5、

人脑的组成

人脑由大脑、小脑、间脑、脑干组成。 人脑的构造,主要包括脑干、小脑与前脑三部分。 脑干(brainstem)上承大脑半球,下连脊髓,呈不规则的柱状形。经由脊髓传至脑的神经冲动,呈交叉方式进入:来自脊髓右边的冲动,先传至脑干的左边,然后再送入大脑;来自脊髓左边者,先送入脑干的右边,再传到大脑。脑干的功能主要是维持个体生命,包括心跳、呼吸、消化、体温、睡眠等重要生理功能,均与脑干的功能有关。 脑干部位又包括以下四个重要构 造: 1.延髓(medulla)延髓居于脑的 最下部,与脊髓相连;其主要功能为控 制呼吸、心跳、消化等。 2.脑桥(pons)脑桥位于中脑与 延脑之间。脑桥的白质神经纤维,通到 小脑皮质,可将神经冲动自小脑一半球 传至另一半球,使之发挥协调身体两侧 肌肉活动的功能。 3.中脑(midbrain)中脑位于脑桥 之上,恰好是整个脑的中点。中脑是视觉与听觉的反射中枢,凡是瞳孔、眼球、肌肉等活动,均受中脑的控制。 4.网状系统(reticular system)网状系统居于脑干的中央,是由许多错综复杂的神经元集合而成的网状结构。网状系统的主要功能是控制觉醒、注意、睡眠等不同层次的意识状态。 小脑(cerebellum)位于大脑及枕叶的下方,恰在脑干的后面,是脑的第二大部分。小脑由左右两个半球所构成,且灰质在外部,白质在内部。在功能方面,小脑和大脑皮层运动去共同控制肌肉的运动,籍以调节姿势与身体的平衡。 前脑(forebrain)属于脑的最高层部分,是人脑中最复杂、最重要的神经中枢。前脑又分为视丘、下视丘、边缘系统、大脑皮质四部分。 1.视丘(thalamus)视丘呈卵圆形,由白质神经纤维构成,左右各一,位于骈胝体的下方。从脊髓、脑干、小脑传导来的神经冲动,都先终止于视丘,经视丘在传送至大脑皮质的相关区域。所以说视丘是感觉神经的重要传递站。此外,视丘还具有控制情绪的功能。 2.下视丘(hypothalamus)下视丘位于视丘之下,是自主神经系统的主要管制中枢,它直接与大脑中各区相连接,又与脑垂体及延髓相连。下视丘的主要功能是管制内分泌系统、维持新陈代谢正常、调节体温,并与生理活动中饥饿、渴、性等生理性动机有密切的关系。 3.边缘系统(limbic system)边缘系统一般认为包括视丘、下视丘以及中脑等在内的部分。边缘系统的主要功能为嗅觉、内脏、自主神经、内分泌、性、摄食、学习、记忆等。边缘系统有两个神经组织,即杏仁核与海马,前者关系情绪的表现,后者与记忆有关。 4.大脑皮质(cerebral cortex)是大脑的表层,由灰质构成,其厚度约为1到4mm,其下方大部分则由白质构成。大脑中间有一裂沟(大脑纵裂,longitudinal fissure),由前至后将大脑分为左右两个半球,称为大脑半球(cerebral hemisphere)。两个半球之间,由胼胝体(corpus collosum)连接在一起,使两半球的神经传导得以互通。

中图版生物必修3第三节《人脑的高级功能》word教案一

中图版生物必修3第三节《人脑的高级功能》word 教案一 第3节人脑的高级功能 上课时刻年月日第课时总课时 课题人脑的高级功能 教学 目标1.说出人脑高级功能的研究方法。 2.概述人脑的高级功能,区别大脑皮层功能区。 3.搜集有关PET技术、脑科学知识和神经调剂的仿生学资料。 4.认同大脑皮层功能上的和谐统一性,养成合理用脑的良好适应。教方学法讲述与学生练习、讨论相结合 教[ 材 分 析[] 重点用PET技术对大脑皮层的高级功能进行定位”的机理 难点语言中枢的皮层定位及各部位间的关系 教具实物投影、多媒体课件 教 学 过 程 初中生物课中我们差不多学习过人的大脑皮层中有神经中枢,如:躯体运动中枢、躯体感受中枢、视觉中枢、听觉中枢等。 请同学们依照初中已学过的知识回答下面的几个问题: 提问:中枢神经系统由哪些部分组成? (回答:脑、脊髓。) 提问;中枢神经与神经中枢相同吗? (回答:不相同。) 提问:人和高等动物的高级神经中枢指什么?。 (回答:大脑皮层。) 讲述:同学们回答的专门好。大脑皮层在整个中枢神经系统中起着主导作用。它不管在操纵躯体运动、人类的语言活动和内脏活动方面差不多上如此。下面我们第一看看大脑对躯体运动的调剂。 (出示脑模型,并找到中央前回。) 躯体各部分的运动机能在大脑皮层第一运动区都有它的代表区,第一运动区的机能有哪

些特点呢? 当刺激中央前回顶部时,可引起下肢运动;刺激中央前回底部时,倒显现头部器官运动;刺激中央前回其他部位时,能够显现相应器官运动。这不仅说明躯体各部分运动机能在大脑皮层第一运动区都有其代表区,而且二者位置关系倒置。即:中央前回从顶部→底部,正好与躯体代表区从下肢→头部相对应。 讲述:从图能够发觉,大脑皮层第一运动区的代表区范畴的大小只与躯体运动的精细复杂程度有关,而与躯体的大小无关。如人类最灵活的手尽管在整个人体中所占比例不大,但在大脑皮层代表区中所占的区域却专门大;又如:我们的一张小巧的嘴,却在大脑皮层代表区张开大口占据“地盘”; 教 学 过 程 人体的躯干尽管占了人体的专门大体积,但在大脑皮层代表区的范畴却只有专门小一部分。因此,运动区的机理要紧有上述两点特点。 讲述:语言活动是人类特有的高级神经活动。语言功能在大脑皮层也有其特定代表区域,我们称之为言语区。 (看课本中图4—15。) 临床资料说明:当中央前回底部之前(S区)受到损害时,会导致运动性失语症,即病人能看明白文字,听明白别人谈话,但不能讲话,不能用语词表达自己的思想;当皮层额上回后部(H区)受到损害时,则会显现病人会讲话、会书写,能看明白文字,却听不明白别人讲话,这种情形叫做听觉性失语症。 注意两类“失语症”的核心分别为: 不能讲话——运动性失语症 听不明白——听觉性失语症 另外,临床资料说明,当大脑皮层某些区域受损,还会造成失写症、失读症等。 下面请大伙儿阅读大脑皮层与内脏活动相关的两段内容(包括小字部分,了了解大脑皮层与内脏活动的联系以及下丘脑的重要调剂作用。 小结:总之,神经系统是人和高等动物的要紧的功能调剂系统,各项生命活动一样差不

大脑的工作原理与结构

大脑的工作原理与结构 ,这也需要归功于右脑的记忆机能和自动处理机能。成人难以学好外语就是因为右脑没有处于优势地位,而左脑长期居于主导地位。耳朵和体内振动音是能力开发最重要的工具我们的大脑的构造是:声音通过听觉区到达大脑的深层部分,神经回路打开。耳朵的能力和振动音一直为们所忽视,但事实是它们是能力开发最重要的工具。人们相信声音疗法能够恢复听力、治愈自闭症和癫痫。这种疗法其实正是强调了听的适重要性。最近有很多研究都在进行,比如听声音治疗疾病和弱听,用声音疗法提高记忆力等等。朗读时声音的振动能够转化为大脑的运动。生物发出的声音一般都是向外发送的,但是朗读和背诵时,它所产生的振动音能够与大脑深层部分发生共鸣,从而在大脑深处引起变化。间脑(丘脑和下丘脑)处于大脑的深层部分,这里集中了所有的神经,它还控制着所有内分泌腺。当我们朗读时,间脑就集中能量变得很宽大,产生新的突触并打开新的回路。这时也就打开了最深层的间脑记忆回路。引发“无意识的力量”音乐、朗读和背诵无意识存在于大脑的深处。一般的时候只有大脑的表层意识来工作,处于深层大脑的无意识受到了压抑,所以无意识的力量不能够自由地发挥出来。但是,无意识中隐藏着巨大的力量,过目不忘或是能够创造出充满感性的优秀作品都是无意识的功劳。引发无意识的力量有很多方法,听觉刺激是其中比较

容易的一种。古典音乐刺激又是听觉刺激里的一种方法。虽然音乐分为很多种,但是古典音乐更适合进行听觉刺激。不光是音乐,朗读和背诵也都能够引发无意识。大量反复的朗读能够让你在不知不觉中进入无我状态,注意力完全集中,意识达到统一,无意识的回路打开。这就是大脑的秘密。下面来介绍一些跟大脑的使用方法有关的大脑生理学知识抑制理论:当大脑的回路集中于某一事物上时,其他刺激便不能传达到大脑皮层里。因为感觉神经回路中的突触(神经之间的连接点)阻止了信息的传递。从大脑皮层到脑干的毛状体之间的神经回路负责完成这种传递抑制。大脑里有一种神经回路,具有传达意识的辨别性感觉。当我们一直朗读或默读时,剩下的只是一些只传递声音的回路,其他的视觉、触觉、嗅觉、时间或空间等所有的感觉都被掩盖了,这就是抑制的工作。打开无意识深处的神经回路是大脑的一个秘密工作,这时通过大脑的浅层测头叶,传达到海马(大脑旧皮层)中与记忆有关的部分中去,听觉刺激就是这样打开大脑回路的。当你背诵文章时,你的大脑中会发生什么事情呢?让我来告诉你吧。不考虑意思、单纯大量背诵是重要的一件事。当你思考所背诵内容的意义时你就开始使用你的左脑了。如果你只是背,这时你的精神非常集中,听觉区开始兴奋,而语言区等其他区域的兴奋被抑制住了。当精神集中于一点时,以前到闹中各自兴奋的不同区域现在就都集中到了这个点上,这时听觉区出现最大的脑电波,在它的周围又有类型相似的波出

脑的结构与功能

脑的结构与功能 一、大脑 又称端脑,脊椎动物脑的高级神经系统的主要部分,由左右两半球组成,是人类脑的最大部分,是控制运动、产生感觉及实现高级脑功能的高级神经中枢。脊椎动物的端脑在胚胎时是神经管头端薄壁的膨起部分,以后发展成大脑两半球,主要包括大脑皮层和基底核两部。大脑皮层是被覆在端脑表面的灰质、主要由神经元的胞体构成。皮层的深部由神经纤维形成的髓质或白质构成。髓质中又有灰质团块即基底核,纹状体是其中的主要部分。广义的大脑指小脑以上的全部脑结构,即端脑、间脑和部分中脑。 二、大脑的结构 大脑皮质为中枢神经系统的最高级中枢,各皮质的功能复杂,不仅与躯体的各种感觉和运动有关,也与语言、文字等密切相关。根据大脑皮质的细胞成分、排列、构筑等特点,将皮质分为若干区。 1、皮质运动区:位于中央前回(4区),是支配对侧躯体随意运动的中枢。它主要接受来自对侧骨骼肌、肌腱和关节的本体感觉冲动,以感受身体的位置、姿势和运动感觉,并发出纤维,即锥体束控制对侧骨骼肌的随意运动。返回皮质运动前区:位于中央前回之前(6区),为锥体外系皮质区。它发出纤维至丘脑、基底神经节、红核、黑质等。与联合运动和姿势动

作协调有关,也具有植物神经皮质中枢的部分功能。 2、皮质眼球运动区:位于额叶的8枢和枕叶19区,为眼球运动同向凝视中枢,管理两眼球同时向对侧注视。皮质一般感觉区:位于中央后回(1、2、3区),接受身体对侧的痛、温、触和本体感觉冲动,并形成相应的感觉。顶上小叶(5、7)为精细触觉和实体觉的皮质区。 3、额叶联合区:为额叶前部的9、10、11区,与智力和精神活动有密切关系。 4、视觉皮质区:在枕叶的距状裂上、下唇与楔叶、舌回的相邻区(17区)。每一侧的上述区域皮质都接受来自两眼对侧视野的视觉冲动,并形成视觉。 5、听觉皮区:位于颞横回中部(41、42区),又称Heschl氏回。每侧皮质均按来自双耳的听觉冲动产生听觉。 6、嗅觉皮质区:位于嗅区、钩回和海马回的前部(25、28、34)和35区的大部分)。每侧皮质均接受双侧嗅神经传入的冲动。 7、脏皮质区:该区定位不太集中,主要分布在扣带回前部、颞叶前部、眶回后部、岛叶、海马及海马钩回等区域。 8、语言运用中枢:人类的语言及使用工具等特殊活动在一侧皮层上也有较集中的代表区(优势半球),也称为语言运用中枢。它们分别是: ①运动语言中枢:位于额下回后部(44、45区,又称Broca区)。 ②听觉语言中枢:位于颞上回42、22区皮质,该区具有能够听到声音并将声音理解成语言的一系列过程的功能。 ③视觉语言中枢:位于顶下小叶的角回,即39区。该区具有理解看到的符号和文字意义的功能。 ④运用中枢:位于顶下小叶的缘上回,即40区。此区主管精细的协调功能。 ⑤书写中枢:位于额中回后部8、6区,即中央前回手区的前方。

反射活动的基本原理人脑的高级功能教案-中图版高中生物必修3检测练习

第二、三节反射活动的基本原理人脑的高级功能 1.理解反射弧的构成。(重难点) 2.掌握突触和实触传递。(重点) 3.说明反射中枢的类型。 4.概述人脑的高级功能,区别大脑皮层功能区。(重点) 反射弧的构成与反射中枢 1.反射弧的构成 (1)神经调节的基本方式:反射。 (2)结构基础——反射弧 (3)反射的一般过程 感受器接受刺激并产生神经冲动,神经冲动沿着传入神经纤维传到神经中枢,然后经传出神经纤维传到效应器,从而引起机体产生某一运动。 2.反射中枢 (1)反射中枢的作用 分析、归纳和整理神经冲动,是反射弧的核心。 (2)反射中枢的组成 ①二元反射弧:最简单,由传入与传出神经元的突触联系和传出神经元的胞体构成,如膝跳反射的反射弧。 ②三元反射弧:在传入神经元和传出神经元之间增加了一个中间神经元,如缩手反射的反射弧。 ③具多个中间神经元的反射弧:绝大多数反射弧属于此类,中间神经元越精细复杂,反射中枢分析综合能力就越强。

[合作探讨] 探讨1:观察膝跳反射和缩手反射示意图,并探讨以下问题: 膝跳反射 缩手反射 (1)膝跳反射、缩手反射分别是由几个神经元完成的,由此你将得出什么结论? 提示:2、3。不同的反射需要的神经元数目不同,一般来说,反射活动越复杂,需要的神经元越多。 (2)上述两种反射弧中的传入神经分别是哪个数字序号? 提示:①、①。 探讨2:给狗喂食会引起唾液分泌,但铃声刺激不会。若每次在铃声后即给狗喂食,这样多次结合后,狗一听到铃声就会分泌唾液。 (1)食物引起味觉属于反射吗? 提示:不属于。 (2)铃声引起唾液分泌的反射弧与食物引起唾液分泌的反射弧相同吗?为什么? 提示:不相同。铃声引起唾液分泌的神经中枢在大脑皮层,食物引起唾液分泌是非条件反射,是先天就有的,神经中枢在大脑皮层以下,这两种反射的感受器和传入神经也不相同。 [归纳总结] 1.反射弧中传入神经和传出神经的判断

人脑的高级功能教案

一、目标导航 1、学习目标 概述神经系统的分级调节和人脑的高级功能。 2、重难点 重点:人脑的高级功能。 难点:人脑的高级功能。 知识网络 神经系统的分级调节 人脑的高级功能 三、导学过程 人类的高级神经中枢是在大脑皮层:大脑皮层有许多功能区,管理着人体某一方面的活动,但各功能区之间是相互协调的比较重要的功能区有:躯体运动中央、躯体感觉中枢、视觉中枢、听觉中枢和嗅觉中枢等,管理这些功能的功能区在大脑皮层中都有它们的典型代表区在躯体运动中枢中,皮层代表区的位置与躯体各部分的关系:躯体各部位在皮层的代表区所占的比例是不均等的,一般运动越是复杂的躯体部分在皮层中的代表区所占的比例比较大,运动简单的躯体部分在皮层中的代表区所占的比例较小 语言中枢是人类特有的高级神经活动:语言中枢在大脑皮层的代表区较为分散人类的语言有多种形式,如书写、口语、阅读、听语等,与这些人类的高级神经中枢是在大脑皮层:大脑皮层有许多功能区,管理着人体某一方面的活动,但各功能区之间是相互协调的比较重要的功能区有:躯体运动中央、躯体感觉中枢、视觉中枢、听觉中枢和嗅觉中枢等,管理这些功能的功能区在大脑皮层中都有它们的典型代表区在躯体运动中枢中,皮层代表区的位置与躯体各部分的关系:躯体各部位在皮层的代表区所占的比例是不均等的,一般运动越是复杂的躯体部分在皮层中的代表区所占的比例比较大,运动简单的躯体部分在皮层中的代表区所占的比例较小 语言中枢是人类特有的高级神经活动:语言中枢在大脑皮层的代表区较为分散人类的语言有多种形式,如书写、口语、阅读、听语等,与这些功能相关的代表区一般靠在相应的功能区附近如运动性语言中枢和书写中枢靠在躯体运动中枢附近,听性语言中枢则靠在听觉中枢附近,视性语言中枢则靠在视觉中枢附近不同的语言中枢受损后的临床表现:运动性语言中枢受损后,患者表现为能听、能写、能看懂文字,但不能说话;书写中枢受损患者表现为能说、能听、能读,但不能写;听性语言中枢受损患者表现为能说、能读、能写,但听不懂别人的说话;视性语言中枢受损患者表现为能说、能听、能写,但读不懂文字

人脑的结构及其功能

脑的功能与结构 1?总体分为三个层次: 最深层称为脑干,主要与自主过程,例如心率、呼吸、吞咽和消化功能有 关。外包在这个中央结构的是边缘系统,他与动机、情感和记忆有关。包括在这两层之外的是大脑,是人类全部心理活动产生的地方。大脑及其表层即大脑皮层整合感觉信息,协调你的运动,促成抽象思维和推理。 2?脑干、丘脑和小脑 ⑴脑干(brain stem)是含有综合调节体制内部状态的脑结构。延髓(medulla)位 于脊髓的最上端。是呼吸、血压和心搏调节中枢。从身体所发出的自上神经和自脑发出的下行神经在延脑发生交叉,这就意味着身体的左侧和右脑相连,右侧和左脑相连。 ⑵.紧贴在延脑之上的是桥脑(pons),它提供传入纤维到其他脑干结构和小脑之 中。 ⑶.延脑和桥脑之中有一种网状结构(reticular formation),它唤醒大脑皮层去注意新 的刺激,甚至在睡眠中也保持脑的警觉性。这个区域受损会导致昏迷。 ⑷.网状结构有经丘脑(thaiamus)的长纤维束,传入的感觉信息可通过丘脑到达大脑 的适当区 (5).小脑(cerebellum)在头骨的基底在脑干之上,协调着身体的运动,控制姿势并维持 平衡,在平滑性运动的协调方面和运动技能学习方面小脑有着重要作用。 3.边缘系统 边缘系统(limbic system)与动机、情绪状态和记忆有关。有三个结构组成:海马

体、杏仁核和下丘脑 ⑴.海马体(hippocampus)在外显记忆中具有重要作用。外显记忆是一类提取自己感觉 到的已知晓记忆的过程。但是海马体受损不妨碍意识觉知外的内隐记忆。如果你的海马体受损你能学到一些新的任务,但却不能记住它,也不记得发生了什么事。 ⑵.杏仁核(amygdale),杏仁核受损可能对特别活跃的的个体产生镇定作用(情 绪控制),但一些地区受损也会伤害到面孔表情的识别能力(情绪记忆能力) (3).下丘脑(hypothalamus),它调节动机行为包括摄食、饮水、体温调节和性唤醒。维 持身体内部平衡(内稳态)。当身体能力储存低,下丘脑维持兴奋激发机体寻找食物和进食。当温度降低,下丘脑引起血管收缩并引起非随意的微微颤抖。这就是通常所说的发抖产生热量以平衡温度下降。下丘脑也调节内分泌活动。 4.大脑 大脑(cerebrum)表层有一层10%英寸厚的薄层组织,称为大脑皮层 (cerebral hemi-spheres)。大脑由左右两个半球组成,并由一种称为胼胝体(corpus callos nm) 得神经纤维联系起来。 ⑴.在脑解剖上脑分为四个部分:额叶、顶叶、枕叶、颞叶 ①额叶(frontai lobe)具有运动控制和进行认知活动的功能。如筹划,目标设定。 位于外侧裂和中央沟之前。因意外而损伤额叶就会毁坏一个人的行为能力,并引起人格的改变。 ②.顶叶(parietal lobe)负责触觉、痛觉和温度觉,位于中央沟之后。 ③.枕叶(occipital lobe)是视觉信息到达的部位,位于后头部 ④.颞叶(temporal lobe)负责听觉过程,位于外侧裂下部。

相关文档
最新文档