楼宇恒压供水系统设计

楼宇恒压供水系统设计
楼宇恒压供水系统设计

1 绪论

随着我国社会经济的发展,住房制度改革的不断深入,人们生活水平的不断提高,城市中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。小区供水系统的建设是其中的一个重要方面,供水的可靠性、稳定性、经济性直接影响到小区住户的正常工作和生活,也直接体现了小区物业管理水平的高低。传统的恒速泵加压供水、水塔高位水箱供水、气压罐供水等供水方式普遍不同程度的存在效率低、可靠性差、自动化程度不高等缺点,难以满足当前经济生活的需要。本论文针对住宅区的供水要求,设计了一套由PLC、变频器、多台水泵机等主要设备构成的变频恒压供水系统,具有全自动变频恒压运行、自动工频运行、远程手动控制和现场手动控制等功能。系统有效地解决了传统供水方式中存在的问题,并具有多种辅助功能,增强了系统的可靠性。并和计算机实现了有机的结合,提升了系统的总体性能。通过对变频器内置PID模块参数的预置,利用模拟水压反馈量,构成闭环系统,根据用水量的变化,采取PID调节方式,实现恒压供水且有效节能。

1.1 背景和意义

一般规定城市管网的水压只保证6层以下楼房的用水,其余上部各层均须“提升”水压才能满足用水要求。以前大多采用传统的水塔、高位水箱,或气压罐式增压设备,但它们都必须由水泵以高出实际用水高度的压力来“提升”水量,其结果增大了水泵的轴功率和能量损耗。自从通用变频器问世以来,变频调速技术在各个领域得到了广泛的应用。变频调速技术在各个领域得到了广泛的应用。变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点,使我国供水行业的技术装备水平从90年代初开始经历了一次飞跃。恒压供水调速系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统。在实际应用中得到了很大的发展。随着电力电子技术的飞速发展,变频器的功能也越来越强。充分利用变频器内置的各种功能,对合理设计变频调速恒压供水设备,降低成本,保证产品质量等方面有着非常重要的意义。

新型供水方式与过去的水塔或高位水箱以及气压供水方式相比,不论是设备的投资,运行的经济性,还是系统的稳定性、可靠性、自动化程度等方面都具有无法比拟的优势,而且具有显著的节能效果。恒压供水调速系统的这些优越性,引起国内几乎所有供水设备厂家的高度重视,并不断投入开发、生产这一高新技术产品。

目前该产品正向着高可靠性、全数字化微机控制,多品种系列化的方向发展。追求高度智能化,系列标准化是未来供水设备适应城镇建设成片开发`智能楼宇、网络供水调度和整体规划要求的必然趋势。

在短短的几年内,调速恒压供水系统经历了一个逐步完善的发展过程,早期的单泵调速恒压系统逐渐为多泵系统所代替。虽然单泵产品系统设计简易可靠,但由于单泵电机深度调速造成水泵、电机运行效率低,而多泵型产品投资更为节省,运行效率高,被实际证明是最优的系统设计,很快发展成为主导产品。

1.2 国内研究现状

目前国内各厂家生产的供水设备电控柜,除采用落后继电接触器控制方式外,大致有以下四类:

逻辑电子电路控制方式:

这类控制电路难以实现水泵机组全部软启动、全流量变频调节。往往采用一台泵固定于变频状态,其余泵均为工频状态的方式。因此控制精度较低、水泵切换时水压波动大、调试较麻烦、工频泵起动有冲击、抗干扰能力较弱。但成本较低。

单片微机电路控制方式:

这类控制电路优于逻辑电路,但在应付不同管网、不同供水情况时调试较麻烦,追加功能时往往要对电路进行修改,不灵活也不方便。电路的可靠性和抗干扰能力都不是很高。

带PID回路调节器和/或可编程序控制器(PLC)的控制方式:

该方式变频器的作有是为电机提供可变频率的电源,实现电机的无级调速,从而使管网水压连续变化。传感器的任务是检测管网水压。压力设定单元为系统提供满足用户需要的水压期望值。压力设定信号和压力反馈信号在输入可编程控制器后,经可编程控制器内部PID控制程序的计算,输出给变频器一个转速控制

信号。还有一种办法是将压力设定信号和压力反馈信号送入PID回路调节器,由PID回路调节器在调节器内部进行运算后,输入给变频器一个转速调节信号。

由于变频器的转速控制信号是由可编程控制器或PID回路调节器给出的,所以对可编程控制器来计时,既要有模拟量输入接口,又要有模拟量输出接口。由于带模拟量输入/输出接口的可编程控制器价格很高,这无形中就增加了供水设备的成本。若采用带有模拟量输入/数字量输出的可编程控制器,则要在可编程控制器的数字量输出口另接一块PWM调制板,将可编程控制器输出的数字量信号转变为控制器的成本没有降低,还增加了连线和附加设备,降低了整套设备的可靠性。如果采用一个开关量输入/输出的可编程控制器和一个PID回路调节器,其成本也和带模拟量输入/输出的可编程控制器差不多。所以,在变频调速恒压给水控制设备中,PID控制信号的产生和输出就成为降低给水设备成本的一个关键环节。针对传统的变频调供水设备的不足之处,国内外不少生产厂家近年来纷纷推出了一系列新型产品,如华为的TD2100;施耐德公司的Altivar58泵切换卡;SANKEN的SAMCO-I系列;ABB公司的ACS600、ACS400系列产品;富士公司的G11S/P11S系列产品;等等。这些产品将PID调节器以及简易可编程控制器的功能都综合进变频器内,形成了带有各种应用宏的新型变频器。由于PID运算在变频器内部,这就省去了对可编程控制器存贮容内部,这就省去了对可编程控制器存贮容量的要求和对PID算法的编程,而且PID参数的在线调试非常容易,这不仅降低了生产成本,而且大大提高了生产效率。由于变频器内部自带的PID调节器采用了优化算法,所以使水压的调节十分平滑,稳定。同时,为了保证水压反馈信号值的准确、不失值,可对该信号设置滤波时间常数,同时还可对反馈信号进行换算,使系统的调试非常简单、方便。这类变频器的价格仅比通用变频器略微高一点,但功能却强很多,所以采用带有内置PID功能的变频器生产出的恒压供水设备,降低了设备成本,提高了生产效率,节省了安装调试时间。在满足工艺要求的情况下应优先采用。

2 变频器和压力传感器

2.1 变频器的分类及工作原理

变频器的工作原理就是把市电(380V或220V、50Hz)通过整流器变成平滑直流,然后利用半导体器件(GTO、GTR或IGBT)组成的三相逆变器,将直流电变成可变电压和可变频率的交流电,并采用输出波形调制技术,使得输出波形更完善,例如采用正弦脉宽调制(SPWM)方法,使输出波形近似正弦波,用于驱动异步电机,实现无级调速。即把恒压频(constant voltage constant frequency CVCF)的交流电转换为变压变频(variable voltage variable frequency VVVF)的交流电,以满足交流电机变频调速的需要[1]。

从结构上看,变频器可分为直接变频和间接变频两类。间接变频器先将工频交流电源通过整流器变成直流,然后再经过逆变器将直流变换为可控频率的交流,因此又称它为有中间直流环节的变频装置或交-直-交变频器。直接变频器将工频交流一次变换为可控频率交流,没有中间直流环节,即所谓的交-交变频器。目前应用较多的中小型交流调速应用场合,采用的是交-直-交变频器,它的基本构成如图所示。

图2.1 变频器原理图

2.2 变频器的操作方式及使用

MM440变频器的调试方法:

对于大多数用户来说,利用制造厂的默认设定值(缺省的参数设置值),就可以使变频器成功地投入运行。如果默认值不适合用户的设备情况,可以利用基本操作面板(BOP)或高级操作面板(AOP)修改参数,使变频器与设备相匹配。

在供货时,MM440变频器其默认设定值对用户有以下要求:

(1) 将电动机的额定功率、电压、电流和频率键入变频器,确认它们与变频器的额定数据相匹配。

(2) 电动机的速度按线性V/f方式,由模拟电位计进行控制。

(3) 当频率为50Hz时,最大速度为3000转/分钟(60Hz时为3600转/分钟),可通过变频器的模拟输入端用电位计进行控制。

(4) 斜坡上升时间/斜坡下降时间=10S。

复位到出厂时变频器的缺省设置值:

为了把变频器的所有参数复位为出厂时的缺省设置值;应按下

面的数值设置参数(需使用BOP、AOP或通讯选件):

(1) 设置P0010=30。

(2) 设置P0970=1。

提示:复位过程约需10秒钟才能完成。

表2.2 基本操作面板BOP上的按钮说明

2.3 压力传感器

压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应;当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器[2]。压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经

得到了广泛的应用。在现在压电效应也应用在多晶体上,比如现在的压电陶瓷,

包括钛酸钡压电陶瓷、PZT、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广。除了压电传感器之外,还有利用压阻效应制造出来的压阻传感器,利用应变效应的应变式传感器等,这些不同的压力传感器利用不同的效应和不同的材料,在不同的场合能够发挥它们独特的用途。

2.4 PLC原理

当PLC投入运行后,其工作过程一般分为三个阶段,即输入采样、用户程序执行和输出刷新三个阶段。完成上述三个阶段称作一个扫描周期。在整个运行期间,PLC的CPU以一定的扫描速度重复执行上述三个阶段[3]。

输入采样阶段

在输入采样阶段,PLC以扫描方式依次地读入所有输入状态和数据,并将它们存入I/O映象区中的相应得单元内。输入采样结束后,转入用户程序执行和输出刷新阶段。在这两个阶段中,即使输入状态和数据发生变化,I/O映象区中的相应单元的状态和数据也不会改变。因此,如果输入是脉冲信号,则该脉冲信号的宽度必须大于一个扫描周期,才能保证在任何情况下,该输入均能被读入。

程序执行阶段

在程序执行阶段,PLC总是按由上而下的顺序依次地扫描用户程序(梯形图)。在扫描每一条梯形图时,又总是先扫描梯形图左边的由各触点构成的控制

线路,并按先左后右、先上后下的顺序对由触点构成的控制线路进行逻辑运算,然后根据逻辑运算的结果,刷新该逻辑线圈在系统RAM存储区中对应位的状态;或者刷新该输出线圈在I/O映象区中对应位的状态;或者确定是否要执行该梯形图所规定的特殊功能指令。

即,在用户程序执行过程中,只有输入点在I/O映象区内的状态和数据不会发生变化,而其他输出点和软设备在I/O映象区或系统RAM存储区内的状态和数据都有可能发生变化,而且排在上面的梯形图,其程序执行结果会对排在下面的凡是用到这些线圈或数据的梯形图起作用;相反,排在下面的梯形图,其被刷新的逻辑线圈的状态或数据只能到下一个扫描周期才能对排在其上面的程序起作用。

输出刷新阶段

当扫描用户程序结束后,PLC就进入输出刷新阶段。在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。这时,才是PLC的真正输出。

同样的若干条梯形图,其排列次序不同,执行的结果也不同。另外,采用扫描用户程序的运行结果与继电器控制装置的硬逻辑并行运行的结果有所区别。当然,如果扫描周期所占用的时间对整个运行来说可以忽略,那么二者之间就没有什么区别了。

一般来说,PLC的扫描周期包括自诊断、通讯等,即一个扫描周期等于自诊断、通讯、输入采样、用户程序执行、输出刷新等所有时间的总和。

3 PID控制器的设计

目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。不同的控制系统,其传感器、变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现[4]。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的P C系统等等。可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现PID控制功能的控制器,如Rockwell的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

(1) 开环控制系统

开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

(2) 闭环控制系统

闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(Negative Feedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。闭环控制系统的例子很多。比如人就是一个具有负反馈的闭环控制系统,眼睛便是传感器,充当反馈,人体系统能通过不断的修正最后作出

各种正确的动作。如果没有眼睛,就没有了反馈回路,也就成了一个开环控制系统。另例,当一台真正的全自动洗衣机具有能连续检查衣物是否洗净,并在洗净之后能自动切断电源,它就是一个闭环控制系统。

(3) 阶跃响应

阶跃响应是指将一个阶跃输入(step function)加到系统上时,系统的输出。稳态误差是指系统的响应进入稳态后,系统的期望输出与实际输出之差。控制系统的性能可以用稳、准、快三个字来描述。稳是指系统的稳定性(stability),一个系统要能正常工作,首先必须是稳定的,从阶跃响应上看应该是收敛的;准是指控制系统的准确性、控制精度,通常用稳态误差来(Steady-state error)描述,它表示系统输出稳态值与期望值之差;快是指控制系统响应的快速性,通常用上升时间来定量描述。

3.1 PID控制的原理和特点

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PI D控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的[5]。

比例(P)控制

比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-stateerror)。

积分(I)控制

在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,

积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

微分(D)控制

在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。

3.2 PID控制器的参数整定

确定控制器参数

数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。在选择数字PID参数之前,首先应该确定控制器结构。对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。一般来说,PI、PID和P控制器应用较多。对于有滞后的对象,往往都加入微分控制[6]。

选择参数

控制器结构确定后。即可开始选择参数。参数的选择。要根据受控对象的具体特性和对控制系统的性能要求进行。工程上,一般要求整个闭环系统是稳定的。对给定量的变化能迅速响应并平滑跟踪。超调量小,在不同干扰作用下。能保证被控量在给定值,当环境参数发生变化时。整个系统能保持稳定.等等.这些要求.对控制系统自身性能来说。有些是矛盾的。我们必须满足主要的方面的要求。兼顾其他方面.适当地折衷处理。

PID控制器的参数整定。可以不依赖于受控对象的数学模型。工程上,PID 控制器的参数常常是通过实验来确定。通过试凑,或者通过实验经验公式来确定。

常用的方法。采样周期选择。

实验凑试法

实验凑试法是通过闭环运行或模拟。观察系统的响应曲线。然后根据各参数对系统的影响。反复凑试参数。直至出现满意的响应。从而确定PID控制参数。

整定步骤

实验凑试法的整定步骤为"先比例、再积分、后微分".

(1) 整定比例控制

将比例控制作用由小变到大。观察各次响应。直至得到反应快。超调小的响应曲线。

(2) 整定积分环节

若在比例控制下稳态误差不能满足要求。需加入积分控制。

先将步骤(1)中选择的比例系数减小为原来的50-80%。再将积分时间置一个较大值。观测响应曲线。然后减小积分时间。加大积分作用。并相应调整比例系数。反复试凑至得到较满意的响应。确定比例和积分的参数。

(3) 整定微分环节

若经过步骤(2)。PI控制只能消除稳态误差。而动态过程不能令人满意。则应加入微分控制。构成PID控制。

先置微分时间TD=0.逐渐加大TD。时相应地改变比例系数和积分时间。复试凑至获得满意的控制效果和PID控制参数。

实验经验法

扩充临界比例度法

实验经验法调整PID参数的方法中较常用的是扩充临界比例度法。最大的优点是。数的整定不依赖受控对象的数学模型。接在现场整定。单易行。

扩充比例度法适用于有自平衡特性的受控对象。对连续-时间PID控制器参数整定的临界比例度法的扩充。

整定步骤

扩充比例度法整定数字PID控制器参数的步骤是:

(1) 预选择一个足够短的采样周期TS。般说TS应小于受控对象纯延迟时间的十分之一。

(2) 用选定的TS使系统工作。时去掉积分作用和微分作用。控制选择为纯比例控制器。成闭环运行。渐减小比例度.即加大比例放大系数KP。至系统对输入的阶跃信号的响应出现临界振荡(稳定边缘)。这时的比例放大系数记为Kr。界振荡周期记为Tr。

(3) 选择控制度.

控制度,是以连续-时间PID控制器为基准。数字PID控制效果与之相比较。

通常采用误差平方积分

作为控制效果的评价函数。

定义控制度

采样周期TS的长短会影响采样-数据控制系统的品质。同样是最佳整定。采样-数据控制系统的控制品质要低于连续-时间控制系统。因而,控制度总是大于1的。而且控制度越大。相应的采样-数据控制系统的品质越差。控制度的选择要从所设计的系统的控制品质要求出发。

(4) 查表确定参数。根据所选择的控制度。查表得出数字PID中相应的参数TS.KP.TI和TD。

(5) 运行与修正。将求得的各参数值加入PID控制器。闭环运行。观察控制效果。并作适当的调整以获得比较满意的效果。

3.3 PID控制算法

模拟PID控制系统组成:

图3.3 模拟PID控制系统原理框图

模拟PID调节器的微分方程和传输函数:

PID调节器是一种线性调节器,它将给定值r(t)与实际输出值c(t)的偏差的比

例(P )、积分(I )、微分(D )通过线性组合构成控制量,对控制对象进行控制[7]。 (1) PID 调节器的微分方程 ??

????++=?t D I P dt t de T dt t e T t e K t u 0)()(1)()( 式中 )()()(t c t r t e -=

(2) PID 调节器的传输函数 ??????++==

S T S T K S E S U S D D I P 11)()()(

PID 调节器各校正环节的作用:

(1) 比例环节:即时成比例地反应控制系统的偏差信号e(t),偏差一旦产生,调节器立即产生控制作用以减小偏差。

(2) 积分环节:主要用于消除静差,提高系统的无差度。积分作用的强弱取决于积分时间常数TI ,TI 越大,积分作用越弱,反之则越强。

(3) 微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。

4 系统的设计

4.1 系统要求 设计由PLC 、变频器、断路器、交流接触器、压力传感器和水泵(电机)等组成的恒压供水系统硬件的基础上完成: 变频

切换线路

水泵

1

水泵

2PLC 控制单元三相交流电源A/D

模块压力传感器

其它输

入输出

图4.1 系统图

手动运行

在手动运行模式下,通过开关分别完成水泵起动、停止,工频运行、变频运行。

自动运行

在自动运行模式下,可通过远程控制系统处于运行或非运行状态;程序实现水泵的变频运行。

压力调节采用PID 控制,调整时间小于10秒。

编制组态程序,实现远程控制、压力设置、系统工作状态显示。

在组态软件中,使用动画显示系统工作状态。

在组态软件中,记录水泵运行时间。

PLC 在恒压供水泵站中的主要任务:

恒压供水泵站一般需要设多台水泵及电机,这比设单台水泵电机节能而可靠。配单台电机及水泵时,它们的功率必须足够大,在用水量少时来开一台大电机肯定是浪费的,电机选小了用水量大时供水量则相应的会不足。而且水泵与电机维修的时候,备用泵是必要的。而恒压供水的主要目标是保持管网水压的恒定,水泵电机的转速要跟随用水量的变化而变化的,那么这就是要用变频器为水泵电机供电。在此这里有两种配置方案,一种是为每一台水泵电机配一台相应的变频

器,从解决问题方案这个比较简单和方便,电机与变频器间不须切换,但是从经费的角度来看的话这样比较昂贵。另一种方案则是数台电机配一台变频器,变频器与电机间可以切换的,供水运行时,一台水泵变频运行,其余的水泵工频运行,以满足不同的水量需求。

压力传感器用于检测管网中的水压,常装设在泵站的出水口。当用水量大时,水压降低;用水量小时,水压升高。水压传感器将水压的变化转变为电流或电压的变化送给调节器。

调节器是一种电子装置,它具有设定水管水压的给定值、接受传感器送来得管网水压的实测值、根据给定值与实测值的综合依一定的调接规律发出的系统调接信号等功能。调节器的输出信号一般是模拟信号,4-20mA变化的电流信号或0-10V间变化的电压信号。信号的量值与前边的提到的差值成正比例,用于驱动执行器设备工作。在变频器恒压供水系统中,执行设备就是变频器。

用PLC代替调节器,其控制性能和精度大大提高了,因此,PLC作为恒压供水系统的主要控制器,其主要任务就是代替调节器实现水压给定值与反馈值的综合与调节工作,实现数字PID调节;它还控制水泵的运行与切换,在多泵组恒压供水泵站中,为了使设备均匀的磨损,水泵及电机是轮换的工作。如规定和变频器相连接的泵为主泵(主泵也是轮流担任的),主泵在运行时达到最高频时,须增加一台工频泵投入运行。PLC则是泵组管理的执行设备。PLC同时还是变频器的驱动控制。恒压供水泵站中变频器常常采用模拟量控制方式,这需采用PLC 的模拟量控制模块,该模块的模拟量输入端子接受到传感器送来的模拟信号,输出端送出经给定值与反馈值比较并经PID处理后得出的模拟量信号,并依此信号的变化改变变频器的输出频率。另外,泵站的其他控制逻辑也由PLC承担,如:手动、自动操作转换泵。

4.2 恒压供水系统的基本构成

变频恒压供水系统通常是由水池、离心泵( 主泵+ 休眠泵) 、压力传感器、PID调节器、变频器( 主泵+休眠感器、PID 调节器、变频器( 主泵+ 休眠泵) 、管网组成。

工作流程是利用设置在管网上的压力传感器将管网系统内因用水量的变化引起的水压变化信号( 4mA~20mA或0~10V) 传送给PID 调节器, 由PID调

节器对比设定控制压力进行运算后给出相应的变频指令, 改变水泵的运行或转速, 使得管网的水压与控制压力一致。

4.3 电气控制系统原理图

图4.5 原理图

4.4 控制系统的I/O及地址分配

I0.0变频电机启动开关Q0.1工频电机I0.1急停开关Q0.7变频电机I0.3 工频电机起动开关

I0.6 自动手动切换开关

4.5 系统程序

主程序:

子程序:

高层建筑PLC控制恒压供水系统的设计

高层建筑PLC控制的恒压供水系统的设计 1 概论 随着社会经济的迅速发展,水对人民生活与工业生产的影响日益加强,人民对供水的质量和 供水系统可靠性的要求不断提高。把先进的自动化技术、控制技术、通讯及网络技术等应用到供水领域,成为对供水系统的新要求。 变频恒压供水系统集变频技术、电气技术、现代控制技术于一体。采用该系统进行供水可以 提高供水系统的稳定性和可靠性,方便地实现供水系统的集中管理与监控,同时系统具有良好的 节能性,这在能量日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。 1.1 变频恒压供水产生的背景和意义 众所周知,水是生产生活中不可缺少的重要组成部分,在节水节能已成为时代特征的现实条

件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环 供水等方面技术一直比较落后,自动化程度低。主要表现在用水 高峰期,水的供给量常常低于需 求量,出现水压降低供不应求的现象,而在用水低峰期,水的供 给量常常高于需求量,出现水压 升高供过于求的情况,此时将会造成能量的浪费,同时有可能使 水管爆破和用水设备的损坏。在恒压供水技术出现以前,出现 过许多供水方式,以下就逐一分析。 1.一台恒速泵直接供水系统 这种供水方式,水泵从蓄水池中抽水加压直接送往用户,有的甚至连蓄水池也没有,直接从 城市公用水网中抽水,严重影响城市公用管网压力的稳定。这种 供水方式,水泵整日不停运转, 有的可能在夜间用水低谷时段停止运行。这种系统形式简单、造 价最低,但耗电、耗水严重,水压不稳,供水质量极差。 2.恒速泵加水塔的供水方式 这种方式是水泵先向水塔供水,再由水塔向用户供水。水塔的合理高度是要求水塔最低水位 略高于供水系统所需要压力。水塔注满后水泵停止,水塔水位低

小区高楼变频恒压供水系统论文

国家职业资格全省统一鉴定 维修电工技师论文 (国家职业资格二级) 论文题目:小区自动恒压生活供水控制系统设计 姓名: 身份证号: 准考证号: 所在省市: 所在单位:

摘要 随着我国社会经济的发展,城市建设发展十分迅速,人们对供水质量和供水系统可靠性要求的不断提高,利用先进的自动化技术、控制技术以及通讯技术,设计出高性能、高节能、能适应供水厂复杂环境的恒压供水系统成为必然趋势。 首先:阐明了供水系统的变频调速节能原理;具体分析了变频恒水压供水的原理及系统的组成结构,通过研究和比较,得出结论:变频调速是当今国际上一项效益最高、性能最好、应用最广、最有发展前途的电机调速技术。 其次:对控制系统的主电路设计,控制电路设计。在控制过程中,电控系统由S7-200完成,PID控制由变频器的内置PID控制方式完成,根据控制系统软硬件设计和控制要求,结合变频器的功能参数表预置了相关的参数。 最后:根据恒压供水系统控制流程图设计,利用软件进行梯形图编程设计。 关键词:恒压供水,变频调速,PLC,设计。

目录 1 绪论 (1) 1.1引言 (1) 1.2本课题产生的背景和意义 (2) 1.3变频恒压供水的现况 (2) 1.3.1 国内外变频供水系统现状 (2) 1.3.2 变频供水系统应用范围 (3) 1.4本文的主要工作 (3) 2 变频恒压供水的理论分析 (4) 2.1水泵的工作原理 (4) 2.2水泵的调节方式 (5) 3 变频恒压供水控制系统硬件的设计 (5) 3.1变频恒压供水控制系统的构成方案 (6) 3.2变频恒压供水系统的控制方案 (7) 3.3参数的计算与供水设备选型 (8) 3.3.1 水泵的参数计算与型号的选择 (8) 3.3.2 变频器的选择 (8) 3.3.3 压力传感器的选择 (10) 3.4.4 水位传感器的选择 (10) 3.4.5 其他低压电器的选择 (11) 3.5PLC的选型 (12) 3.5.1 I/O点的统计 (12) 3.5.2 PLC选型的基本原则 (12) 3.5.3 I/O的分配 (13) 3.6系统硬件线路设计 (13) 3.7PID参数的预置 (14)

城市供水调度系统设计方案概述

城市供水调度系统设计方案 1给水系统控制和优化调度软硬件模式 1.1概述 为了满足城市快速发展的需要,城市供水企业近年来不断采用新的技术、新的工艺,用以提高城市的供水能力和服务质量。其中自来水厂监控系统在全国大多数城市得到广泛应用,还有一些城市的供水企业正在逐步采用GIS技术管理供水管网信息、用计算机实现收费营业电算化。这些先进的信息、计算机、通讯和自动控制等先进技术的应用,的确为供水企业的现代化运营解决了很多的实际问题。但是,我们也应该看到还有很多深层次的问题尚未得到卓有成效的解决,究其原因主要是因为:①供水企业的运营包括从产水、输配水、管理和收费多个环节,仅在某一环节采用新技术并不能解决所有问题;②企业运营的各个环节是密切关联的,分离的系统无法实现整个运营的系统性;③系统运营的很多因素是有统计规律和相关性的,目前的系统无法从这些规律和相关性得到可以辅助决策的信息。因此,要达到自来水企业的最优化运营,就需要系统分析企业的运营模型,找到每个环节的相关性,获取综合的有效信息,综合历史信息,优化企业的运营,提供辅助决策。以产水到用水的整个过程为主线,以企业的管理现代化为辅线,把信息技术在企业集成应用,实现从产水到用水的最大效益,是我们对以上问题的一个有益探索。 随着工业自动化控制技术和现代科技的高速发展,通讯技术、电子技术和计算机技术的有机结合,出现了高性能的PLC系统和SCADA系统,使工业过程控制程序化、模块化、智能化、集成化、网络化,控制过程更加可视化和远程化。给水系统优化控制是工业过程自动化控制的一个部分,下面我们从供水企业的运营模型着手,分析企业的信息模型,提出的大规模给水系统分级控制和优化调度软硬件模式,和基于GIS平台的供水企业信息化应用方案。构筑了给水系统优化控制基本框架。 1.2运营模型 供水企业的运营主要围绕水从水源、水厂经过输配网最终到水用户的生产/消费链而进行的,其模型如图1。生产调度通过实时采集水源和水厂的变电设备、电器开关、加压泵等设备运行参数和流量、出水口压力、余氯等控制参数,以及输配网上压力监测点和水库水位或水源井监测点的控制参数,动态自动控制水源、水厂设备的启停和运行,使整个输配网上的水压保持最佳的分布和平稳状态,从而为用户提供高质量的供水服务,减少输配过程中水的损失,最大限度延长管网的使用寿命,最终提高水厂的运营效益。管网管理主要实现输配水管网信息管理,管网的新建、维护和改造以及水用户的管理。它必须能够保证管网信息的准确、全面和现势,满足管网规划、设计、施工和维护的要求。营业收费完成水用户用水量的验抄、统计,根据水用户性质和收费项目的规定进行计费收费。公司将综合生产调度、管网管理、营业收费的各种信息,结合公司的营业策略,对整个企业的运营进行科学合理的决策,从整体上实现对公司营业的宏观管理。 营业收费的各种信息和财务不属于本次论述的范围。

建筑给排水系统设计方法和步骤

建筑给排水系统设计方法和步骤 1.根据建筑物的性质及给定的设计依据。确定室内与室外的给排水方案。 2.在建筑图上布置给排水立管位置。(原则:沿柱、墙角、墙面布置)布置给水干管位置。 3.在建筑图中从给水立管引水到各用水点。从各用水点将排水引入排水立管。 4.在建筑图上布置消火栓箱、消防立管、水平干管及连接消防栓管道和连接消防水泵接合器;消防水箱;消防水泵出水管。 5.绘制给水、消防管网的总系统图和排水、雨水系统图;绘制给排水详图。 6.确定最不利点的配水点及最不利点消火栓。 7.绘制计算简图——总系统图,删去部分连接管。(使得环状管网变成枝状管网计算) 8.确定计算管路,进行管段编号和确定管段流量。 9.列表进行水力计算: 10.确定系统的总水压:H=△Z+∑h+hч 11.排水(雨水)管径按最小管径法和负荷流量法(负荷面积法)查表确定。最后将计算结果标注于图纸上。並按规定布置灭火器。 12.选择生活及消防水泵,满足:Qp>Qx;Hp>H 并使工作点落在高效区内。 13.确定生活及消防水箱容积Vx=10min的室内消防水量(住宅≥6立方米;一般高层≥12立方米;大于50米的高层≥18立方米)並绘制水箱配管图。 14.确定消防水箱的高度(可提供给土建参考)若水箱出口到最不利点消火栓出口高差(高层<7m;超高层<15m)需要增设加压稳压设备(泵)。 消火栓系统Q≤5L/S,H——满足最不利点消火栓的灭火要求; 自喷系统Q≤1L/S, H——满足最不利点喷头出水要求。

15.确定生活水池容积;消防水池容积V=(Q内+Q外) X T 並绘制水池配管图 注:Q内—室内消防水量 Q外—室外消防水量 T—火灾持续时间 16.作水泵房工艺设计:①作平面布置②绘制管路系统图③统计材料表④写设计说明 17.整理设计图纸,统计总材料表,编写给排水工程设计说明及图纸目录。 18.整理设计计算说明书。 相关规范:《建筑给排水设计规范》;《建筑设计防火规范》

基于 PLC 和变频器控制的恒压供水系统设计

基于 PLC 和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC 和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1 引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID 功能的恒压供水 系统,采用了PLC 控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2 工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID 控制功能;供水系统方案如图1 所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID 功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID 运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC 控制的交流接触器组负责水泵的切换工作; PLC 是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

变频恒压供水系统设计

变频恒压供水系统设计 昆明电器科学研究所谢国政 [摘要] 变频调速恒压供水设备是采用变频调速器、可编程控制器(PLC)和PID调节器等构成的新型供水设备,本设备具有给水压力设定方便、显示直观、成本低,调试容易的特点。 [关键词] 变频调速恒压供水设备PID 1概述 生活给水设备,一般可分为匹配式和非匹配式两种形式。非匹配式给水需要配置高位水箱或水塔等蓄水设备,其特点是水泵的给水量总是大于用水量,且存在造价高、二次给水水质易污染、能源消耗大、水锤效应等问题。匹配式给水则是通过调速装置随用水量的大小及时调节水泵的转速,以达到调整给水量的目的。匹配式给水能维持给水系统给水压力恒定,需要多少水就供多少水。此外,由于水泵的轴功率与转速的三次方成正比,而水泵转速又与水的输送量成正比,如果用水量减少,水泵的轴功率就可以大幅度下降,可以达到节能的目的。在目前的条件下,采用交流变频调速器控制水泵电机的转速,以维持给水的恒定压力的方法是一种较完善的节能给水方式。据测算,变频恒压供水设备与传统给水方式相比,可节约初始投资10%,节能30%以上。所以,自90年代末以来,给水行业贯彻《城市给水行业2000年技术进步发展规划》中提出的"二提高三降低"(即提高给水水质,提高给水安全可靠性,降低能耗、降低漏耗和降低药耗)的要求,住宅小区的给水系统已逐渐取消了高位水箱,而采用变频恒压

供水设备给水,既满足给水安全,又避免水质的二次污染,对保证人们生活用水质量有着非常重要的意义。此外,由于采用了PLC控制给水系统,消防给水的可靠性也大大提高,且很容易与生活给水系统统一控制。 2变频调速恒压供水系统设计方案 2.1 住宅小区给水系统的要求 多层住宅小区已取消屋顶水箱,逐渐采用变频恒压供水设备给水系统,而对于十二层及十二层以下的"小高层",《民用建筑水灭火系统设计规程》中规定"当采用小区集中给水泵房的生活消防共用给水系统时,可不设高位水箱。但应符合下列规定:①泵房的给水服务半径不宜大于150m;②消防泵和生活泵的电源应不低于按二级负荷的要求供电或自备柴油发电机;③消防泵的流量应满足生活和消防同时给水的流量;④泵房的出水压力平时不应大于0.45MPa,且应保证室内消火栓给水系统充满水;在灭火时应满足室内消防给水系统的压力;⑤室内消火栓给水系统竖管的顶部应设自动排气阀"。 2.2 用水量计算及水泵的选型 (1)用水量计算 设计流量的大小直接关系到水泵的选型、管网的口径及给水的安全保证性。目前,一般住宅小区的设计流量主要包括以下几方面; ①居民生活用水;②公共建筑用水;③消防用水;④绿化用水; ⑤浇洒道路用水;⑥未预见水量及管网漏失水量。其中,公共建筑用

给水系统设计

给水系统的功能 发电厂给水系统的任务是(包括脱过氧的凝结水和经过化学处理的补充水)从除氧器贮水箱送到锅炉的省煤器进口。给水在输送的过程中,要进行加热并升压,以满足锅炉对给水的温度和压力的要求,整个汽水循环的热效率的到提高。 加热给水的热源,来自汽轮机的各级抽气,提高给水的抽气,就要借助给水泵。给水泵是发电厂简历汽水热力循环必不可少的设备 给水系统除向锅炉供水之外,还得向锅炉过热器的减温装置提供减温水,以调节主蒸汽的温度;在给水泵中间级抽头,向加热器的减温装置供给减温水和事故喷水的用水。 在装有汽轮机旁路系统的发电厂,给水系统要向高压旁路系统供水,以降低主蒸汽排入再热器冷段蒸汽的温度,是锅炉出口和再热器出口的蒸汽压力和温度得到调整。 本次设计主要针对主给水管道的温度和压力的设计。 一、机组简介 锅炉 形式:超临界、单炉膛、一次中间再热、平衡通风、固态排渣、全钢架悬吊结构、露天布置燃煤直流锅炉 锅炉最大连续出力:1950t/h 过热器出口压力:25.5MPa 过热器出口温度:569℃ 再热器出口压力:4.54MPa 再热器出口温度:569℃

给水温度:280.4℃ 锅炉效率(LHV):93.84 汽轮机 形式:超临界参数、一次中间再热、单轴、三缸四排汽、8级回热抽汽凝汽式汽轮机 额定功率:660MW 额定进汽量:1900t/h 主汽阀额定进汽压力:24.2MPa(a) 主汽阀进汽温度:566℃ 再热蒸汽额定进汽压力:4.525MPa(a) 再热蒸汽进汽温度:566℃ 再热蒸汽额定流量:1525.5t/h 循环冷却水温度:143.1℃ 排汽压力:0.00747MPa(a) 排汽量:1038.82t/h 机组净热耗:7942kJ/kW.h 发电机 型式:水-氢-氢冷却、静态励磁发电机 额定功率:600MW 额定容量:667MVA 电压:20kV 频率:50Hz

高楼恒压供水系统

高楼恒压供水系统 高楼恒压供水系统的PID控制原理: 根据反馈原理:要想维持一个物理量不变或基本不变,就应该引这个物理量与恒值比较,形成闭环系统。我们要想保持水压的恒定,因此就必须引入水压反馈值与给定值比较,从而形成闭环系统。但被控制的系统特点是非线性、大惯性的系统,现在控制和PID相结合的方法,在压力波动较大时使用模糊控制,以加快响应速度;在压力范围较小时采用PID来保持静态精度。这通过PLC加智能仪表可时现该算法,同时对PLC的编程来时现泵的工频与变频之间的切换。实践证明,使用这种方法是可行的,而且造价也不高。 无负压变频供水设备要想维持供水网的压力不变,根据反馈定理在管网系统的管理上安装了压力变送器作为反馈元件,由于供水系统管道长、管径大,管网的充压都较慢,故系统是一个大滞后系统,不易直接采用PID调节器进行控制,而采用PLC参与控制的方式来实现对控制系统调节作用。 高楼恒压供水系统指导: 1、无负压供水设备由专业人员提供或指导,普通状况可采用建筑设计图中的给排水设计图所标定的流量及扬程停止供水设备。 2、无负压供水设备主要根据用户的供水参数(流量、扬程等),满足最不利点请求,应思索系统沿程和部分压力损失。(普通沿程损失的计算可参考每10米沿程增加1米扬程的办法计算。即大楼从泵房至楼顶最不利配水点管路总长100米,那么沿程损失可大约以为是10米,在肯定扬程时,应增加10米计算)。 3、无负压供水设备的工作点应充沛思索水泵效率区域。 4、用户提供供水量与供水压力外,还应提供自来水管网管径和自来水管网在用水顶峰时的供水压力值(因无负压供水设备为叠压该数据便于计算扬程)。 高楼恒压供水系统安装的过程: 1、将设备控制柜水平安放在水泥基础上,并用膨胀螺丝固定好; 2、找好进水口、出水口; 3、将自来水管引入到设备进水口,设备进水口法兰前端请顺序阀门,过滤器; 4、将用户出水管引入到设备出水口,设备出水口法兰前端请阀门,扰性街头; 5、将三相四线电引入到控制柜电源接线端,电源线大小根据设备总功率来定;

恒压供水技术方案

恒压供水技术方案文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

恒压供水技术方案 一、综述 1、概述:以变频器为核心的自动给水设备已经成为当下现代高楼自动供水设备的核心 设备。可以取代传统的高位水箱、气压罐供水,避免水质的二次污染,具有节能、操作方便、自动化程度高的特点。变频调速恒压供水设备可在生产生活用水、锅炉恒压补水、供暖系统、空调系统、定压差循环水、消防用水等方面直接应用。 2、特点: (1)高效节能; (2)可取代高位水箱或者水池,减少土建投资,避免水质二次污染; (3)采用恒压供水,大大提高供水品质; (4)延迟设备使用寿命,采用变频恒压供水,启动方式是软启动,对机械、电气设备冲击小,可大大延迟设备使用寿命,特别是机械设备。 (5)控制系统可根据客户需求配置人机管理系统、中文提示、中文监控操作,极大方便了客户的操作使用和设备维修; (6)全自动控制,无需人工干预; (7)具有完善的保护功能,变频器保护、欠电压保护、过电压保护、短路保护、过载保护、过热保护、缺相保护。 3、适用范围 (1)适用于自来水厂及加压泵站; (2)适用于住宅小区、宾馆、饭店及其它大型公共建筑的生活供水; (3)适用于大中型工矿企业的生产生活用水; (4)适用于居民住宅小区、宾馆、饭店、大型公共建筑和各种工矿企业的消防供水、生产供水; (5)适用于工矿企业恒压、冷却水工会和循环供水系统; (6)适用于热水供水、采暖、空调、通风系统的供水; (7)适用于污水泵站、污水处理中的污水提升系统; (8)适用于农田排灌、园林喷洒、水景和音乐喷泉系统; 二、工作原理

恒压供水系统设计

目录 1 摘要 (1) 1.1 引言 (1) 1.1变频恒压供水系统理论分析 (2) 1.1.1变频恒压供水系统的原理 (2) 1.1.2 变频恒压控制理论模型....................... 错误!未指定书签。 1.2恒压供水控制系统构成............................. 错误!未指定书签。 2 变频恒压供水系统设计................................. 错误!未指定书签。 2.1 设计任务及要求................................... 错误!未指定书签。 2.2 系统主电路设计.................................. 错误!未指定书签。 2.3 系统工作过程.................................... 错误!未指定书签。 3 器件的选型及介绍..................................... 错误!未指定书签。 3.1 变频器简介...................................... 错误!未指定书签。 3.1.1 变频器的基本结构与分类.................... 错误!未指定书签。 3.1.2 变频器的控制方式.......................... 错误!未指定书签。 3.2 变频器选型...................................... 错误!未指定书签。 3.2.1 变频器的控制方式.......................... 错误!未指定书签。 3.2.2 变频器容量的选择.......................... 错误!未指定书签。 3.2.3 变频器主电路外围设备选择.................. 错误!未指定书签。 3.3 可编程控制器() .................................. 错误!未指定书签。 3.3.1 的定义及特点.............................. 错误!未指定书签。 3.3.2 的工作原理................................ 错误!未指定书签。 3.3.3 及压力传感器的选择........................ 错误!未指定书签。 4 编程及变频器参数设置................................. 错误!未指定书签。 4.1 的接线图......................................... 错误!未指定书签。 4.2 程序............................................ 错误!未指定书签。 4.3 变频器参数的设置................................ 错误!未指定书签。 4.3.1 参数复位.................................. 错误!未指定书签。 4.3.2 电机参数设置.............................. 错误!未指定书签。总结.................................................... 错误!未指定书签。参考文献................................................ 错误!未指定书签。

自动给水系统设计

自动给水系统设计 摘要 单片机系统的开发应用给现代工业测控领域带来了一次新的技术革命,自动化、智能化均离不开单片机的应用。近年来模糊控制在许多控制应用中都取得了成功,模糊控制应用于控制系统设计不需要知道被控对象精确的数学模型,对于许多无法建立精确数学模型的复杂系统能获得较好的控制效果,同时又能简化系统的设计,因此,在水箱水位自动控制系统中,模糊控制就成为较好的选择。 本文主要论述了应用模糊控制理论控制水箱水位系统,首先详尽的介绍了模糊控制理论的相关知识,在此基础上提出了用模糊理论实现对水箱水位进行控制的方案,建立了简单的基于水箱水位的模糊控制器数学模型。介绍了基于单片机的水位控制系统的设计及其相关内容。系统属于典型的基于单片机的大惯性环节的PID闭环控制装置,通用性很强,在工业过程控制中有着广泛的应用。控制系统中引入单片机,可以充分利用单片机在对采集数据加以分析并根据所得结果做出逻辑判断等方面的能力,编制出符合某种技术要求的控制程序、管理程序,实现对被控参数的控制与管理。采用单片机对水位进行控制不仅具有控制方便、简单和灵活性大等优点,而且可以大幅度提高被控系统的技术指标,从而能够大大的提高产品的质量。 关键词:水位控制MCS-8051EPROM744874LS164

Abstract The development and application of MCU (Micro Control Unit) have made a great change in many fields of modern industrial detect and control. Because of the small scale, low price and high efficiency of MCU, it is widely used in home appliances and industrial control. in the process of producing. Current, voltage, temperature and pressure are usually the parameter to be monitored. The design of “The water level control system based on MCU of is introduced in this paper. As a typical design inlarge inertia control system, the design needs the knowledge of automation theories, analog and digital electronics. A digital PID controller is used in the system, which iscalled DDC(direct digital control)system. The DDC system can not only replace the analog system, but also can realize the more plicated rules of control through changing the program of software, not even changing a ponent in the electro circuit. It can improve reliability of the whole system.The water level which is controlledby the MCU is not only convenient, advantage but also raise technologyParameter of the system controlled,thus the quality of the product could raisegreatly. Keywords: MCS-8051,EPROM7448,74LS164,water level control 目录 摘要I Abstract ...................................................................................................... I I 目录II

高楼恒压供水的PLC 控制系统设计

第一章绪论 1.1 关于高楼恒压供水 恒压供水是指用户段不管用水量的大小, 总保持管网水压基本恒定, 这样既可满足各部位的用户对水的需求, 又不使电动机空转造成电能的浪费。高楼恒压供水通常是采用固定在建筑物上的给水塔或楼顶高位水箱,以自来水局部加压的形式供水,这种气压供水可以取代任何高度的水塔或楼顶高位水箱,水质亦不易污染,占地面积亦小。 建筑给排水是与人民生活、生产活动、卫生安全有密切关系的学科。在日常常生活中,如果供水系统的水压不稳定,会导致不良后果。例如对居民用水而言,水压过高,会导致管路泄露和水源流失严重;水压过低,用户用水会导致供水不足。对于消防用水而言,水压不稳定,会影响灭火质量。因此,保持供水压力的稳定是很有必要的。恒压供水系统是指用户端不管用水量大小,总保持管网中水压基本恒定。随着微机技术及变频技术的发展,设备简单、投资少、可靠性高、抗干扰能力强的控制系统将是高楼恒压供水系统研究的方向。 1.2 PLC的概述 1.2.1 PLC的简介 国际电工委员会(IEC)于1987年对PLC定义如下: PLC是专为在工业环境下应用而设计的一种数字运算操作的电子装置,是带有存储器,可以编制程序的控制器。它能够存储和执行指令,进行逻辑运算,顺序控制,定时,计数和算术等操作,并通过数字式和模拟式的输入输出,控制各种类型的机械和生产过程。PLC及其有关的外围设备,都应按易于与工业控制系统形式一体,易于拓展其功能的原则设计。 事实上, PL C就是以嵌入式CPU为核心,配以输入,输出等模块,可以方便的用于工业控制领域的装置。PLC与机器人,计算机帮助设计与制造一起作为现代工业的三大支柱。 1.2.2 PLC的基本结构 PLC实质上是一种工业控制用的专用计算机,PLC系统与微型计算机结构基本相同,也是由硬件系统和软件系统两大部分组成。 (1)通用型PLC的硬件结构 通用型PLC的硬件基本结构如图1.1所示,它是一种通用的可编程控制器,主要由中央处理单元CPU、存储器、输入/输出(I/O)模块及电源组成。

城市管网的供水系统的毕业设计

城市管网的供水系统的毕业设计 目录 1 前言 (1) 1.1 供水系统发展过程及现状 (1) 1.2 供水系统的概述 (2) 1.2.1 .变频恒压供水系统主要特点: (2) 1.2. 3.恒压供水设备的主要应用场合: (2) 1.2. 4.恒压供水技术实现: (3) 2 系统总体设计方案 (4) 2.1 系统设计方案 (4) 2.1.1 系统控制要求 (4) 2.1.2 控制方案 (4) 2.1.3 运行特征 (5) 2.1.4 系统方案 (5) 2.2 可编程控制器(PLC)的特点及选型 (7) 2.2.1 PLC 特点及应用 (7) 2.2.2 可编程控制器的选型 (8) 2.2.3.PLC CPM2A 模拟量输入/输出单元 (12) 2.3 变频器选型及特点 (15) 2.3.1 ABB 产品信息: (15) 2.3.2 变频节能理论: (15) 2.3.3 .变频恒压供水系统及控制参数选择: (16) 2.3.4 .变频恒压供水系统的优点及体现 (17) 2.4 远传压力表 (18) 2.4.1 主要技术指标 (19) 2.4.2 结构原理 (19) 2.5 系统控制流程设计 (20) 2.5.1 系统组成及作用 (20) 2.5.2 系统运行过程 (20) 3 软件设计 (23) 3.1 系统中检测及控制开关I/O 分配 (23) 3.2 I/O 地址及标志位分配表 (25) 3.3 流程图 (27) 3.4 程序设计: (28)

4.结论 (43) 致谢 (44) 参考文献 (45)

第一章前言 1.1 供水系统发展过程及现状 一般规定城市管网的水压只保证6 层以下楼房的用水,其余上部各层均须“提升”水压才能满足用水要求。以前大多采用传统的水塔、高位水箱,或气压罐式增压设备,但它们都必须由水泵以高出实际用水高度的压力来“提升”水量,其结果增大了水泵的轴功率和能量损耗。 自从变频器问世以来,变频调速技术在各个领域得到了广泛的应用。变频调速技术在各个领域得到了广泛的应用。变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点,使我国供水行业的技术装备水平从 90 年代初开始经历了一次飞跃。恒压供水调速系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,是当今最先进、合理的节能型供水系统。在实际应用中得到了很大的发展。随着电力电子技术的飞速发展,变频器的功能也越来越强。充分利用变频器置的各种功能,对合理设计变频调速恒压供水设备,降低成本,保证产品质量等方面有着非常重要的意义。新型供水方式与过去的水塔或高位水箱以及气压供水方式相比,不论是设备的投资,运行的经济性,还是系统的稳定性、可靠性、自动化程度等方面都具有无法比拟的优势,而且具有显著的节能效果。恒压供水调速系统的这些优越性,引起国几乎所有供水设备厂家的高度重视,并不断投入开发、生产这一高新技术产品。目前该产品正向着高可靠性、全数字化微机控制,多品种系列化的方 向发展。追求高度智能化,系列标准化是未来供水设备适应城镇建设成片开发智能楼宇、网络供水调度和整体规划要求的必然趋势。 在短短的几年,调速恒压供水系统经历了一个逐步完善的发展过程,早期的单泵调速恒压系统逐渐为多泵系统所代替。虽然单泵产品系统设计简易可靠,但由于单泵电机深度调速造成水泵、电机运行效率低,而多泵型产品投资更为节省,运行效率高,被实际证明是最优的系统设计,很快发展成为主导产品。

恒压供水系统自动控制设计要点

变频调速恒压供水系统,该系统能够根据运行负荷的变化自动调节供水系统水泵的数量和转速,使整个系统始终保持高效节能的最佳状态。 本文主要针对当前供水系统中存在的自动化程度不高、能耗严重、可靠性低的缺点加以研究,开发出一种新型的并在这三个方面都有所提高的变频式恒压供水自动控制系统。全文共分为四章。第一章阐明了供水系统的应用背景、选题意义及主要研究内容。第二章阐明了供水系统的变频调速节能原理。第三章详细介绍了系统硬件的工作原理以及硬件的选择。第四章详细阐述了系统软件开发并对程序进行解释。 关键词:变频器;恒压供水系统; PLC

Frequency conversion constant pressure water supply system, the system is capable of automatically adjusting water supply system based on load changes of quantity and speed of the pump, always maintain the high efficiency and energy saving the best state of the This article primarily for current there is a high degree of automation in the water supply system, serious disadvantages, reliability, low energy consumption study developed a new and increased in these three areas of automatic control system of frequency conversion constant pressure water supply. The text is divided into four chapters. Chapter I sets out the water supply system of main research topics on background, meaning and content. Chapter II sets out the principle of variable frequency speed adjusting energy saving of water supply systems. Chapter III details the working principle of system hardware and hardware choices. The fourth chapter elaborates system software development and to explain the procedures Key words:Cam、high deputy、automation

城市给水工程系统规划的用水量预测

城市给水工程系统规划的用水量预测 摘要: 城市建设首先是各类工程的建设,而规划在城建中占有举足轻重的地位。一个城市的基础设施的位置、分类、功能、本套程度、能力大小等直接关系到城市的生活水平的提高,因此,城市规划对城市的作用是不言而喻的。城市工程系统指的就是城市基础设施的综合体系,它由交通、通信、供热〔气〕、给排水、环卫、全等工程体系构成,它们的规划就是城市工程系统规划,而给水工程系统规划则中的重要组成部分。 关键词:给水工程; 一、概述 城市给水工程系统由取水工程、净水工程、输配水工程、水资源保护工程等组成,其规划的主要任务和内容是:进行城市水源规划和水资源利用平衡工作;确定城市给水设施的规模和容量;科学布局给水设施和各级给水管网系统,满足用户要求;制定水资源保护措施和设施分布及规模。给水工作系统与排水工程系统被称为城市生命保障体系,因此,做好它的规划有着极其重要的现实意义和社会意义。 二、预测方法 预测方法主要分定额指标法和函数法二大类。它们的侧重点是不相同的,定额法侧重于定性,函数法侧重于数学分析,要做好预测要用二者互相验算、互相修正和互相补充,才能使预测所得结果最大限度地符合要求,满足规划的需要。 1.定额指标法 所谓定额指的是单位用水量,是国家相关部门根据不同条件下用水量调查统计结果,考虑各种因素发布的规范指标,具有一定的科学性、规范性、权威性,这是规划工作者必须严格执行和认真实施的,对规划工作具有很好的指导作用和约束作用。用水量预测主要定额指标有:单位人口综合

用水量指标(万m3/万人·d)、单位建设用地综合用水量指标(万m3/km2·d)、居住用地用水量指标(m3/ha·d)、综合生活用水量定额(L/人·d)、其他用地用水量指标(m3/ha·d)、工业用水重复利用率(%)。一般在预测时根据城市规模大小、工业规模取不同值乘上相应的规划人口预测数或工业产值即可得到预测用水量。此类方法简单明了、通俗易懂、计算快捷方便、数值有一定的准确性,但如果城市发展变化大则易失准。比如海南海口市在20世纪90年代中期曾发生过供水严重不足的情况,居民生活用水连五楼都短缺,这即是规划跟不上变化的结果,用水量预测占了很大的因素。 2.函数法 函数法就是将与用水量有关的各种要素作为自变量,以对应关系建立与用水量Q有关的关系式,在一定的条件下通过数学计算求得Q值。主要有:线性回归法、产函数法、年递增率法、生长曲线法等。 ( (3)年递增率法 根据历年供水能力的增加(增值是非均匀的),考虑经济发展速度和人口增加因素,确定一个合理的年平均增长率用复利公式预测城市规划期用水量, 根据有关资料,我国城市用水年增长速率在4%~6%之间,规划人员应根据城市发展规模和经济、人口的变化趋势确定年增长率的取舍,保证预测的准确性,另外此预测方法时限不宜过长。(4)生长曲线法 城市用水量的变化根据我国各典型城市的数字来看,呈S型曲线,则据此曲线的变化规律可构建生长曲线模型,函数式有二种,一种是龚泊兹公式: Q= LexP(- be- kt) (2—4) 式中Q:预测年限的用水量; L:预测用水量的上限值;

变频恒压供水控制系统设计完整

课程设计 课题名称变频恒压供水控制系统设计学院(部) 专业 班级 学生姓名 学号 指导教师(签字)

一、设计概述 变频器是一种新型技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。本课程设计为实现恒压供水功能而按照设计任务书要求完成设计任务。最终实现控制系统的自动稳定运行。 根据设计要求本系统采用西门子PLC300控制系统对变频器进行调速控制和系统输入输出信号的采集以及系统报警功能的实现。本系统内的电机调速由变频器来实现,通过PLC控制变频器和现场压力仪表检测的反馈信号来实现对电机的自动恒压控制功能。 二、设计任务 例如一楼宇供水系统,正常供水20m3/小时,最大供水量35m3/小时,扬程45m。采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。本恒压供水系统,要求以1.0Mpa的恒定压力对用户进行供水。水泵有2台,由一台变频器驱动。PLC按照压力变送器(PIT)的信号,调节变频器的输出,使水泵的转速变化,从而保证供水压力的恒定。两台水泵互为备份,可任意选择一台水泵处于变频模式或工频模式。控制系统原理如图1所示:

PLC 图1 恒压供水变频控制系统原理图 三、系统设备选型 1主要电气元件参数指标 水泵:35KW,三相异步电动机 恒压设定点:1.0Mpa 压力变送器:0-1.6Mpa,两线制,4-20mA电流输出 变频器:VVVF变频器 (1)水泵 根据设计要求水泵正常供水20m3/小时,最大供水量35m3/小时,扬程45m。参考相关资料选择型号为IS50-32-125(扬程50m,流量50 m3/小时)的水泵即可满足要求。 (2)远传压力表 由于远传压力表具有价格低、有数据读取表盘等优点,结合具体

给水全程控制系统设计

《给水全程控制系统》设计 专业:自动化 班级:B120410 学号:B12041014 姓名:陈修鹤

本文在讨论给水调节系统的被控对象动态特性、热工测量信号、调节机构特性的基础上,分析了三冲量给水控制系统的结构及工作原理,提出了实现单元制给水全程控制系统应考虑的问题及控制方案。随着锅炉朝大容量、高参数发展,给水系统采用自动控制系统是必不可少的,它可以减轻运行人员的劳动强度,保证锅炉的安全运行。对于大容量高参数锅炉,其给水系统是非常复杂和完善的。针对目前发电厂给水系统的现状及其存在的问题,结合发电厂300MW 机组配置,发电厂300MW 机组给水全程调节系统的构成原理和控制功能,分析了系统的总体结构、工作原理、控制过程、系统切换方式、控制逻辑、调试及参数整定原则。 关键词:给水全程,给水控制,控制系统,汽包水位,自动调节

摘要............................................................................................................................. I 第一章汽包水位全程控制的介绍 (1) 第二章给水控制对象的动态特性 (2) 2.1 给水流量扰动下水位的动态特性 (2) 2.1.1 给水流量扰动下水位的动态特性 (2) 2.1.2 蒸汽流量扰动下水位的动态特性 (2) 2.1.3 炉膛热负荷扰动下水位的动态特性 (3) 第三章热工测量信号 (5) 3.1 水位信号 (5) 3.2 蒸汽流量信号 (6) 3.3 给水流量信号 (6) 第四章调节阀和调速泵的特性 (7) 4.1调节阀门的静特性 (7) 4.2调速泵的安全特性 (7) 第五章控制过程分析 (9) 5.1水位调节主回路及电动给水泵跟随系统 (9) 5.2汽动给水泵副回路控制系统 (9) 5.3锅炉单冲量三冲量无扰切换和汽泵转速控制系统 (10) 5.4流量测量信号 (11) 5.5旁路辅助及保护回路 (12) 5.6汽包水位自动失灵切手动保护 (13) 结论 (15) 参考文献 (16)

相关文档
最新文档