惯性导航技术

惯性导航技术
惯性导航技术

惯性导航技术

[定义]

导航是引导载体到达预定目的地的过程。根据所采取的技术途径,导航分为无线电导航、天文导航、卫星导航及惯性导航。惯性导航技术则是利用惯性测量元件测量载体相对于惯性空间的运动参数,然后在给定的初始条件下推算出导航参数,引导载体到达目的地的技术。

惯性导航技术的理论基础是牛顿力学基本定律。惯性导航系统的核心是惯性测量元件--陀螺和加速度计。惯性导航系统分成平台式惯性导航系统和捷联式惯性导航系统两大类。平台式惯性导航系统将惯性测量元件安装在惯性平台上,惯性平台稳定在预定的坐标系内,为加速度计提供一个测量基准,并使惯性测量元件不受载体角运动的影响。导航计算机根据加速度计的输出和初始条件进行导航解算,得出载体的位置、速度等导航参数。捷联式惯性导航系统将惯性测量元件直接固联在载体上,测量沿载体坐标系的角速度和角加速度,计算机则利用陀螺的输出,进行坐标变换,求解载体的即时速度、位置等导航参数。

惯性导航仅依靠惯性装置本身就能在载体内部独立地完成导航任务,不需要与外界发生任何信号联系,具有高度的自主性。这在战略和战术应用上具有重要的意义。但惯性导航的定位误差会随时间逐步增加,必须不断地进行误差修正,才能保证达到要求的精度。

[相关技术]惯性技术;导航技术

[技术难点]

1、高精度激光陀螺技术;

2、高精度集成光学光纤陀螺技术;

3、微型固态惯性器件技术;

4、捷联初始对准技术;

5、惯性器件误差模型建立与标定;

6、现代控制算法;

7、误差控制与补偿技术;

8、综合导航技术。

[国外概况]

武器系统的发展和需求,促进了惯性技术的发展。二次大战后,机电陀螺技术发展迅速,液浮陀螺、静电陀螺和动力调谐陀螺先后成熟,被广泛用于惯性导航系统。60年代以来,随着激光的出现,激光陀螺和光纤陀螺问世,并以其优良的性能受到关注,迅速进入惯性导航领域。光电技术和微机电技术的发展,促成了半球谐振陀螺、石英音叉陀螺等新型陀螺和微机械加速度计的出现和发展。惯性测量元件的发展,为惯性导航装置和技术的发展奠定了良好的基础。

惯性导航装置最先用于飞机。50年代初就已经演示了机载惯性导航系统。作为商业飞机和大多数军用航空器的惯性导航装置,要求固有位置误差的变化范围在~2 n mile/h(海里/小时),速度误差为2~4m/s(米/秒)。70年代初,以机电陀螺为基础的机载惯性导航装置,已经达到了这些性能指标,可以满足军用和民用飞机的基本导航要求,但由于可靠性不高,因此飞机导航仍主要以无线电导航为基础。此后,机载惯性导航装置的发展目标是,提高可靠性,减少体积、重量和成本,降低维修费,从而减少寿命周期成本。这些要求则反过来推动了惯性测量器件,特别是光电惯性器件的发展。80年代。可靠性高、尺寸小、机械结构简单的激光陀螺成熟,并迅速应用在机载惯性导航装置中,一大批以激光陀螺为基础的惯性导航装置问世,并装备在军用和民用飞机上。激光陀螺正逐步在机载惯性导航领域占据主导地位。90年代,光纤陀螺成熟,并进入机载惯性导航领域。而GPS导航技术的发展以及与惯性导航装置组成机载综合导航系统,进一步强化了惯性导航在机载导航中的地位。

惯性导航装置也成功地用于舰船。舰载惯性导航也是首先以机电陀螺为基础,然后转向

光电陀螺。80年代初,美国研制出捷联式激光陀螺导航仪,实验证明其性能参数优于海军的规范要求。随后陆续研制出水面舰船、潜艇、核潜艇等用的高精度激光陀螺导航仪。其他国家也研制和装备了舰载光电导航装置。

地面惯性导航装置的发展相对迟后一些。由于现代地面战争要求部队能在广阔的地域内快速机动,并迅速投入战斗。这种作战方式需要地面作战平台具有地面导航能力,以不断地准确确定当前位置和精确保持动态姿态基准。美国70 年代初期就开始考察地面导航的方法和技术。1980年有人提出无线电导航可能受到干扰,GPS卫星导航的卫星可能受到攻击,因而地面导航应以自主的惯性导航为基础。在军事部门的支持下,工业部门开始研究将激光陀螺用于地面导航,并将机载激光陀螺惯性导航系统安装在坦克上进行试验。结果,野外试验证明,获得的方位精度、位置精度、姿态误差等数据均优于陆军规范的要求,而且激光陀螺可靠性高、反应时间短、可提供数字输出,以其为基础的惯性导航系统可以满足地面战场的严酷使用要求。因此80年代中期以后,以激光陀螺和光纤陀螺为基础的地面导航系统逐步发展起来。如美国的M109A6“帕拉丁”自行榴弹炮、德国的“豹”2坦克、英国的“勇士”炮兵观察车、瑞典的TGR-11炮兵测地-观察车、FH-77B 155mm牵引榴弹炮等,已经能够完全满足现代地面作战的要求。地面导航装置正逐渐成为地面作战平台必备的装备。

[影响]

惯性技术是涉及多学科的综合技术,是现代武器系统必需的核心技术。而惯性导航技术则是各类作战平台必需的核心技术。惯性导航装置不仅使作战平台具有了自主定位能力,而且使指挥员可以随时了解所属部队的行踪和准确位置,从而提高了部队的机动作战能力、协同作战能力,以及自动化指挥能力。惯性导航装置使压制兵器可以迅速确定自己的准确位置,并按照指挥部门提供的目标位置数据确定射击诸元,从而提高了其快速反应能力和精确打击能力。

惯性导航技术的工作原理

惯性导航技术的工作原 理 Document number:PBGCG-0857-BTDO-0089-PTT1998

惯性导航系统基本工作原理 惯性导航系统是十分复杂的高精度机电综合系统,只有当科学技术发展到一定高度时工程上才能实现这种系统,但其基本工作原理却以经典的牛顿力学为基础。 设质量m受弹簧的约束,悬挂弹簧的壳体固定在载体上,载体以加速度a 作水平运动,则m处于平衡后,所受到的水平约束力F与a的关系满足牛顿第 二定律: F a m 。测量水平约束力F,求的a,对a积分一次,即得水平速 度,再积分一次即得水平位移。以上所述是简单化了的理性情况。由于运载体不可能只作水平运动,当有姿态变化时,必须测得沿固定坐标系的加速度,所以加速度计必须安装在惯性平台上,平台靠陀螺维持要求的空间角位置,导航计算和对平台的控制由计算机完成。 陀螺仪组件测取沿运载体坐标系3个轴的角速度信号,并被送入导航计算机,经误差补偿计算后进行姿态矩阵计算。加速度计组件测取沿运载体坐标系3个轴的加速度信号,并被送入导航计算机,经误差补偿计算后,进行由运载体坐标系至“平台坐标系”的坐标变换计算。他们沿机体坐标系三轴安装,并且与机体固连,它们所测得的都是机体坐标系下的物理量。 参与控制和测量的陀螺和加速度计称为惯性器件,这是因为陀螺和加速度计都是相对惯性空间测量的,也就是说加速度计输出的是运载体的绝对加速度,陀螺输出的是运载体相对惯性空间的角速度或角增量。而加速度和角速度或角增量包含了运载体全部的信息,所以惯导系统仅靠系统本身的惯性器件就能获得导航用的全部信息,它既不向外辐射任何信息,也不需要任何其他系统

惯性导航系统发展综述报告

惯性导航系统发展综述报告 学号:姓名: 摘要:本文介绍了惯性导航系统的主要组成、基本原理、分类以及优缺点。列举了惯性导航系统在当前的主要应用领域及发展趋势。 关键词:惯性导航系统、陀螺仪、加速度计、GPS、组合导航 一.引言 美国《防务新闻》网站报道称,美军正在研制新型导航定位设备,以替代现在广泛使用的GPS卫星定位导航系统。GPS之所以被美军诟病,主要是由于该系统过于依赖脆弱的天基卫星系统。卫星在战时极易被干扰、破坏,或受到网络攻击,自身安全性难以得到有效保证。为有效解决GPS安全性问题和美军对精确定位、导航、授时服务的需求之间难以调和的矛盾,美军开始积极寻求GPS 的替代品。据称,基于现代原子物理学最新成就的微型惯性导航技术是未来代替GPS的一个重要的技术解决方案。 惯性导航系统是人类最早研发明的导航系统之一。早在1942年德国在V-2火箭上就率先应用了惯性导航技术。从2009年,美国国防部先进研究项目局就深入进行新一代微型惯性导航技术的研发与测试工作。据悉,这种新一代导航系统主要通过集成在微型芯片上的三个原子陀螺仪、加速器和原子钟精确测量载体平台相对惯性空间的角速率和加速度信息,利用牛顿运动定律自动计算出载体平台的瞬时速度、位置信息并为载体提供精确的授时服务。 美军也对该系统的未来发展充满信心。安德瑞·席克尔认为,就像30年前人们没有预想到GPS会发展到目前如此程度一样,在未来20年新一代微型惯性导航系统的发展程度也是无可限量的。 从此报道中可以看出研究惯性导航技术的重要作用。 二.惯性导航系统的概念 惯性导航(inertial navigation)是依据牛顿惯性原理,利用惯性元件(加速度计)来测量运载体本身的加速度,经过积分和运算得到速度和位置,从而达到

捷联式惯性导航系统

1 绪论 随着计算机和微电子技术的迅猛发展,利用计算机的强大解算和控制功能代替机电稳定系统成为可能。于是,一种新型惯导系统--捷联惯导系统从20世纪60年代初开始发展起来,尤其在1969年,捷联惯导系统作为"阿波罗"-13号登月飞船的应急备份装置,在其服务舱发生爆炸时将飞船成功地引导到返回地球的轨道上时起到了决定性作用,成为捷联式惯导系统发展中的一个里程碑。 捷联式惯性导航(strap-down inertial navigation),捷联(strap-down)的英语原义是“捆绑”的意思。因此捷联式惯性导航也就是将惯性测量元件(陀螺仪和加速度计)直接装在飞行器、舰艇、导弹等需要诸如姿态、速度、航向等导航信息的主体上,用计算机把测量信号变换为导航参数的一种导航技术。现代电子计算机技术的迅速发展为捷联式惯性导航系统创造了条件。惯性导航系统是利用惯性敏感器、基准方向及最初的位置信息来确定运载体的方位、位置和速度的自主式航位推算导航系统。在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏。它完全是依靠载体自身设备独立自主地进行导航,它与外界不发生任何光、声、磁、电的联系,从而实现了与外界条件隔绝的假想的“封闭”空间内实现精确导航。所以它具有隐蔽性好,工作不受气象条件和人为的外界干扰等一系列的优点,这些优点使得惯性导航在航天、航空、航海和测量上都得到了广泛的运用[1] 1.1 捷联惯导系统工作原理及特点 惯导系统主要分为平台式惯导系统和捷联式惯导系统两大类。惯导系统(INS)是一种不依赖于任何外部信息、也不向外部辐射能量的自主式导航系统,具有隐蔽性好,可在空中、地面、水下等各种复杂环境下工作的特点。 捷联惯导系统(SINS)是在平台式惯导系统基础上发展而来的,它是一种无框架系统,由三个速率陀螺、三个线加速度计和微型计算机组成。平台式惯导系统和捷联式惯导系统的主要区别是:前者有实体的物理平台,陀螺和加速度计置于陀螺稳定的平台上,该平台跟踪导航坐标系,以实现速度和位置解算,姿态数据直接取自于平台的环架;后者的陀螺和加速度计直接固连在载体上作

民航导航技术的发展现状及发展趋势

民航导航技术的发展现状及发展趋势 引言 导航是一种为运载体航行时提供连续、安全和可靠服务的技术。航空和航海的需求是导航技术发展的主要推动力。尤其是航空技术,由于飞机在空中必须保持较快的运动速度,留空时间有限,事故后果严重,对导航提出了更高的要求;同时飞机所能容纳的载荷与体积较小,使导航设备的选择受到较大的限制。对于航空运输系统来讲,导航的基本作用就是引导飞机安全准确地沿选定路线、准时到达目的地。 自无线电导航技术的广泛应用以来,导航已从通过观测地形地物、天体的运动以及灯光电磁现象,改变为主要依赖电磁波的传播特性来实现,部分摆脱了天气、季节、能见度和环境的制约,以及精度十分低下的状况。飞机在云海茫茫的天上,能随时掌握自己的位置,大大降低了飞行安全风险。导航已成为民航完全可以依赖的技术手段,促进了世界民航事业的发展。 20年代70世纪发展起来的信息技术使导航技术呈现了新面貌。卫星导航(GPS和GLONASS)以及其增强系统和组合系统,已经能够方便、廉价地为全球任何地方、全天候提供较高精度和连续的位置、

速度、航姿和时间等导航信息,成为支持未来航空运输发展的又一股强大动力。 1民航导航技术的现状 1.1支持航路的导航技术 1.1.1惯性导航系统 从20世纪20年代末开始,虽然陆基无线电导航逐渐成为航空的主要导航手段,但由于需要地面系统或设施的支持,无法实现自主定位和导航,限制了航空的发展。首先,军事上对导航系统提出了生存能力、抗干扰、反利用和抗欺骗的需求,具有自主导航能力的惯性导航系统(INS)于60年代在航空领域投入使用。但民用飞机采用INS 的主要原因是由于INS提供的导航信息连续性好,导航参数短期精度高,更新速率高(可达50~1000Hz)。 20世纪70年代后,由于数字计算机的使用和宽体飞机的发展,INS也开始了大发展阶段。由于INS具有许多陆基导航系统不具备的优点,尤其是可以产生包括飞机三维位置、三维速度与航向姿态等大量有用信息,在民航中得到了应用,是民航飞机的基本导航系统。当然它自生的垂直定位功能不好误差是发散的,不能单独使用,在现代

辅助惯性导航系统的方法和算法发展

2008年8月 第36卷第4期 现代防御技术 M ODERN DEFENCE TECHNOLOGY Aug.2008 Vo.l36No.4 导航、制导与控制 辅助惯性导航系统的方法和算法发展* 武虎子,南英,付莹珍 (南昌航空大学航空与机械工程学院,江西南昌330063) 摘要:综述了辅助惯导的一些主要算法和方法,主要有:重力辅助的匹配方法、基于衰减记忆的匹配算法、基于贝叶斯算法、基于神经网络算法、基于迭代最近点算法、无线电高度与数字地图辅助方法、粒子滤波算法、声呐技术辅助方法、概率数据关联算法、成像激光雷达辅助方法。分别对各类辅助算法和方法的基本原理、主要优缺点进行了简要介绍,展望了辅助算法和方法的发展趋势。 关键词:惯性导航系统;辅助算法;辅助方法;发展趋势 中图分类号:V448122+4;U66611文献标识码:A文章编号:10092086X(2008)20420062206 The Developm en t of A i ded A l gor ithm and M ethods i n Iner ti a l N avi ga ti on Syste m WU H u2z,i NAN Y i n g,F U Y ing2z hen (Nanchang Un i versity of Aeronautics,School of Aero nauti c and M echanical Engi neeri ng,Ji angxi Nanchang330063,Ch i na) A bstra ct:So me main a l g orithms and methods i n a i d ed2inertial navi g ati o n are summ ar iz ed.They can be c lassified as f ollo ws:gravity a i d ed matchingm ethod,match i n g algorithm based on FadingMe mory,a l2 gorithm based on Bayes Rule,a l g orit h m based on A rtificial Neura lN et w ork,algorith m based on iterative closest poin,t a i d ed method of w ire less he i g ht and d i g italmap,partic le filter algorithm,aided m et h od of sonar technology,probab ilistic data association filter algorith m,a i d ed method of i m agi n g laser radar.The main pri n ciple and ma i n advantages and disadvan tages of a ll k i n ds of a l g orit h ms and methods are i n tro2 duced si m p l y and separately.The develop men t trend of the m is prospected. K ey words:i n ertial navi g ati o n syste m(I N S);a i d ed a l g orithm;a i d ed m et h ods;deve lopment trend 0引言 随着导航技术的逐渐成熟,飞行器对自主导航精度的要求也越来越高,因而辅助惯性导航方法与算法也快速兴起。所谓辅助惯性导航系统(i n erti a l navi g ation syste m,I N S)的方法与算法,就是一种能提高惯导导航精度的方式和途径(如导航精度参数CEP,S EP,R,R MS等达到规定的范围内)。采用这些方法与算法可以重调和校正单一的惯导系统(如位置和方位的重新调整、陀螺漂移的校正)。 在过去的几十年里,辅助惯性导航技术已经有了很大的发展。其辅助算法都可以通过建立数学模 *收稿日期:2007-12-01;修回日期:2008-02-12 作者简介:武虎子(1981-),男,陕西富平人。硕士生,研究方向为飞行控制与导航。 通信地址:330063南昌市丰和南大道696号南昌航空大学航空与机械工程学院

MEMS技术发展综述

MEMS技术发展综述 施奕帆04209720 (东南大学信息科学与工程学院) 摘要:对于MEMS技术进行简要的介绍,了解其诞生与发展,所涉及的学科领域,目前的研究成果以及在生活、军事、医学等方面的应用。目前MEMS在我国的发展已取得一定成果,在21世纪可以有更大的突破,其未来在材料、工艺、微器件、微系统方面也具有巨大的发展空间。 关键词:MEMS、传感器、微制造技术 一、MEMS简介 微机电系统(micro electro mechanical system,MEMS)是在微电子技术基础上发展起来的多学科交叉的前沿研究领域,其起源可以追溯到20世纪50~60年代,最初贝尔实验室发现了硅和锗的压阻效应,从而导致了硅基MEMS传感器的诞生和发展。在随后的几十年里,MEMS得到了飞速发展,1987年美国加州大学伯克利分校研制出转子直径为60~120/μm的硅微型静电电机;1987~1988年,一系列关于微机械和微动力学的学术会议召开,所以20世纪80年代后期微机电系统一词就渐渐成为一个世界性的学术用语,MEMS技术的研究开发也成为一个热点,引起了世界各国科学界、产业界和政府部门的高度重视,经过几十年的发展,它已

成为世界瞩目的重大科技领域之一。 二、MEMS涉及领域及作用 MEMS技术涉及电子工程、机械工程、材料工程、物理学、化学以及生物医学等学科。MEMS开辟了一个新的技术领域,它的研究不仅涉及元件和系统的设计、材料、制造、测试、控制、集成、能源以及与外界的联接等许多方面,还涉及微电子学、微机构学、微动力学、微流体学、微热力学、微摩擦学、微光学、材料学、物理学、化学、生物学等基础理论 三、MEMS器件的分类及功能 目前,MEMS技术几乎可以应用于所有的行业领域,而它与不同的技术结合,往往会产生一种新型的MEMS器件。根据目前的研究情况,除了进行信号处理的集成电路部件以外,MEMS内部包含的单元主要有以下几大类: (1)微传感器: 主要包括机械类、磁学类、热学类、化学类、生物学类等。其主要功能是检测应变、加速度、速度、角速度(陀螺)、压力、流量、气体成分、湿度、pH值和离子浓度等数值,可应用于汽车、航天和石油勘探等行业。

惯性导航系统

惯性导航系统 一、惯性导航系统(Inertial Navigation System,INS) 1、基本概念 惯性导航系统(INS)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。 惯性导航系统目前已经发展出挠性惯导、光纤惯导、激光惯导、微固 态惯性仪表等多种方式。陀螺仪由传统的绕线陀螺发展到静电陀螺、激光 陀螺、光纤陀螺、微机械陀螺等。激光陀螺测量动态范围宽,线性度好, 性能稳定,具有良好的温度稳定性和重复性,在高精度的应用领域中一直 占据着主导位置。由于科技进步,成本较低的光纤陀螺(FOG)和微机械陀螺(MEMS)精度越来越高,是未来陀螺技术发展的方向。我国的惯导技术 近年来已经取得了长足进步,液浮陀螺平台惯性导航系统、动力调谐陀螺 四轴平台系统已相继应用于长征系列运载火箭。其他各类小型化捷联惯导、光纤陀螺惯导、激光陀螺惯导以及匹配GPS修正的惯导装置等也已经大量应用于战术制导武器、飞机、舰艇、运载火箭、宇宙飞船等。如漂移率 0.01°-0.02°/h 的新型激光陀螺捷联系统在新型战机上试飞,漂移率 0.05°/h 以下的光纤陀螺、捷联惯导在舰艇、潜艇上的应用,以及小型化挠性捷联惯导在各类导弹制导武器上的应用,都极大的改善了我军装备的 性能。 惯性导航系统有如下主要优点:(1)由于它是不依赖于任何外部信息,也不向外部辐射能量的自主式系统,故隐蔽性好,也不受外界电磁干扰的 影响;(2)可全天流全球、全时间地工作于空中、地球表面乃至水下;(3)能提供位置、速度、航向和姿态角数据,所产生的导航信息连续性好而且 噪声低;(4)数据更新率高、短期精度和稳定性好。其缺点是:(1)由 于导航信息经过积分而产生,定位误差随时间而增大,长期精度差;(2)每次使用之前需要较长的初始对准时间;(3)设备的价格较昂贵;(4) 不能给出时间信息。但惯导有固定的漂移率,这样会造成物体运动的误差,因此射程远的武器通常会采用指令、GPS等对惯导进行定时修正,以获取持续准确的位置参数。 2、惯性导航原理 目前,惯性导航分为两大类:平台式惯导和捷联式惯导。它们的主要区别在于,前者有实体的物理平台,陀螺和加速度计置于由陀螺定的平台上,该平台跟踪导航坐标系,以实现速度和位置解算,姿态数据直接取自于平台的环架;在捷联式惯导中,陀螺和加速度计直接固连在载体上。惯性平台的功能由计算机完成,

惯性导航文献综述报告

一、引言 惯性技术是惯性制导、惯性导航与惯性测量等技术的统称。惯性技术已应用于军用与民用的众多技术领域中,应用于宇宙飞船、火箭、导弹、飞机、舰船等各种运载器上。在各类导航系统(例如无线电导航、天文导航等)中,惯性导航系统被认为是最有发展前途的一种导航系统。惯性导航系统依照惯性原理,利用惯性元件(加速度计和陀螺仪)来测量载体本身的加速度和角速度,经一系列运算后得到载体的导航参数,从而达到对载体导航定位的目的。惯性导航是一种自主式的导航方法,它既不需要向外界发送信号,也不需要从外界接收信号,所以, 它具有隐蔽性好,工作不受气象条件制约和外界干扰等优点,从而广泛地应用于军用和民用的众多领域中。 随着现代数学、现代控制理论与计算机技术的发展,在平台惯导系统的基础上又发展出了捷联惯导系统。捷联系统是将惯性元件(陀螺和加速度计)直接安装在载体上,直接承受载体角运动,不再需要稳定平台和常平架系统的惯性导航系统。捷联管道系统使用数学平台而非物理平台,简化了平台框架和相连的伺服装置,因而消除了平台稳定过程中的误差,简化了硬件,提高了可靠性和可维护性,降低了成本,体积小、重量轻。 在捷联惯导系统中,用加速度计代替陀螺仪测量运动载体的角速度,称为无陀螺捷联惯导系统(The Gyroscope Free Strapdown Inertial Navigation System,简称GFSINS)。GFSINS舍弃了陀螺,所以能够避开由于陀螺的抗震性差、恢复时间长、动态范围小等缺陷所引起的一系列难以解决的关键技术问题。目前无陀螺捷联惯导系统给的研究已经引起了国内外很多专家学者的重视。无陀螺捷联惯导系统成本低,可靠性高,功率低,寿命长,反应速度快,适用于角加速度大、角速度动态范围大、冲击大的载体的惯性导航,也适合一些较短程飞行器的惯性制导,还可以与其它导航装置组成组合导航系统。 无陀螺捷联惯导系统虽然具有多种突出的优点,但也有美中不足之处。与传统的惯导系统相比,无陀螺捷联惯导系统的载体角速度是从加速度计输出的比力信号中解算出的,且各轴角速度信号互相耦合,因此,目前广泛应用的六加速度计配置方案和九加速度计配置方案都采用了方便解耦的配置,一般选择角加速度作为解算对象,角速度为辅助或不用。而由角加速度到角速度需要一次积分,到姿态需要两次积分,造成角速度计算值和导航参数的误差随时间增长不断积累。此外,加速度计精度和加速度计的安装精度也对无陀螺惯导系统的精度有所制约。 随着加工技术及数字计算机的发展、高精度加速度计的不断问世、滤波技术、组合导航技术的发展,无陀螺捷联惯导系统的研究具有重要意义和广阔的应用前景。本文后续内容中就对无陀螺捷联惯导系统的研究动态和发展前景进行了介绍。 二、国内外研究动态 惯性测量通常利用加速度计敏感线加速度,用陀螺仪敏感角速度来确定载体的姿态。惯性测量系统应用于炮射制导弹药时,炮弹减旋后出炮口的转速仍然很高,比如155mm炮弹的减旋后转速仍达15r/s~20r/s。发射时,炮弹在火药压力下做高加速旋转运动,速度在数毫秒内达到数百m/s,炮弹所受轴向加速度可达几千到几十万个m/s2。这样恶劣的环境对陀螺和加速度计的性能有很高要求:动

《惯性导航简介》

惯性导航简介 ——《导航概论》课程论文 专业:测绘工程A组姓名:师嘉奇学号:2015301610091 一.摘要与关键字 1.本文摘要:本文主要对导航工程的基本内涵,方法与原理进行简单介绍,主要介绍有关惯性导航的相关内容,并且根据在本学期《导航概论》这门课程上所学习的内容谈一谈自己对导航应用的设想以及对本课程教学的建议。 2.关键字:惯性导航,定位技术,应用与服务,发展与前景 二.导航工程基本内涵 导航定位的历史与人类自身发展的历史一样久远。人类的导航定位活动源自于其生活和生产的需要。陆地上的导航定位最早发生在人类祖先外出寻找食物或狩猎的过程中,那时,他们通常在沿途设置一些特殊的“标记”来解决回家迷路的问题。随着探索遥远地域的愿望与行动的出现,他们则通过观察和利用自然地标(如山峰、河流、树木、岩石等)以及自然天体(恒星)来解决导航定位问题这也使得他们能够翻越高山、跨越河流。谈到导航,很多人会认为这是一个在近现代才提出的词汇,但是,导航的历史已经非常久远了。从古代黄帝作战使用的指南车,到战国时期的司南,从近代航海使用的指南针,再到当今社会人手一部的智能手机,导航已经有了很悠久的历史。那么,导航工程的基本内涵到底是什么呢?

首先,我们可以通过两个英文的句子来大概了解一下到底什么是导航“when am I?”和“How and when to get there?”,这两个问题问的是我现在在哪?我要怎么到那里去?它们也指出了导航的内涵,那就是在哪,怎样去,多久到达。因此,通过科学的定义,将航行载体从起始点引导到目的地的过程称为导航,导航系统给出的基本参数是载体在空间的即时位置、速度和姿态、航向等,导航参数的确定由导航仪或导航系统完成。通过这种技术引导载体方向的过程即为导航。导航是解决人,事件,目标相互位置动态关系随时间变化的科学,技术,工程问题。 在室外或者自然环境中的导航,按照载体运动的范围,可分为海陆空天(海洋、陆地、空中、空间)导航四类;按照所采用的技术,常用的导航方法有,天文导航、惯性导航、陆基无线电导航、卫星导航、特征匹配辅助导航(如地形匹配、地磁匹配、重力匹配)等,以及上述导航方法之间的不同组合(组合导航)。室内定位导航作为当今导航技术发展的个重要分支,它借鉴室外导航的相关技术,同时结合现代通信技术、网络技术传感器技术以及计算机技术的最新发展,已经成为一个重要的研究热点并在人们日常工作和生活中逐步得到应用。室内导航与自然环境中的导航既有联系又有其自身的特点,其主要差异是来自于应用环境及所采用的技术方法不同。 导航系统有两种工作状态:指示状态和自动导航状态。如导航设备提供的导航信息仅供驾驶员操纵和引导载体用,则导航系统工作为指示状态,在指示状态下,导航系统不直接对载体进行控制,如果导

惯性导航的工作原理及惯性导航系统分类

惯性导航的工作原理及惯性导航系统分类 惯性导航系统(INS)是一种自主式的导航设备,能连续、实时地提供载体位置、姿态、速度等信息;特点是不依赖外界信息,不受气候条件和外部各种干扰因素。 惯性导航及控制系统最初主要为航空航天、地面及海上军事用户所应用,是现代国防系统的核心技术产品,被广泛应用于飞机、导弹、舰船、潜艇、坦克等国防领域。随着成本的降低和需求的增长,惯性导航技术已扩展到大地测量、资源勘测、地球物理测量、海洋探测、铁路、隧道等商用领域,甚至在机器人、摄像机、儿童玩具中也被广泛应用。 不同领域使用惯性传感器的目的、方法大致相同,但对器件性能要求的侧重各不相同。从精度方面来看,航天与航海领域对精度要求高,其连续工作时间也长;从系统寿命来看,卫星、空间站等航天器要求最高,因其发射升空后不可更换或维修;制导武器对系统寿命要求最短,但可能须要满足长时间战备的要求。涉及到军事应用等领域,对可靠性要求较高。 惯性导航的工作原理 惯性导航系统是一种自主式的导航方法,它完全依靠载体上的设备自主地确定载体的航向、位置、姿态和速度等导航参数,而不需要借助外界任何的光、电、磁等信息。 惯性导航是一门涉及精密机械、计算机技术、微电子、光学、自动控制、材料等多种学科和领域的综合技术。其基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度、角加速度,将它对时间进行一次积分,求得运动载体的速度、角速度,之后进行二次积分求得运动载体的位置信息,然后将其变换到导航坐标系,得到在导航坐标系中的速度、偏航角和位置信息等。百度搜索“乐晴智库”,获得更多行业深度研究报告 惯性导航系统分类

惯性导航技术

惯性导航技术 [定义] 导航是引导载体到达预定目的地的过程。根据所采取的技术途径,导航分为无线电导航、天文导航、卫星导航及惯性导航。惯性导航技术则是利用惯性测量元件测量载体相对于惯性空间的运动参数,然后在给定的初始条件下推算出导航参数,引导载体到达目的地的技术。 惯性导航技术的理论基础是牛顿力学基本定律。惯性导航系统的核心是惯性测量元件--陀螺和加速度计。惯性导航系统分成平台式惯性导航系统和捷联式惯性导航系统两大类。平台式惯性导航系统将惯性测量元件安装在惯性平台上,惯性平台稳定在预定的坐标系内,为加速度计提供一个测量基准,并使惯性测量元件不受载体角运动的影响。导航计算机根据加速度计的输出和初始条件进行导航解算,得出载体的位置、速度等导航参数。捷联式惯性导航系统将惯性测量元件直接固联在载体上,测量沿载体坐标系的角速度和角加速度,计算机则利用陀螺的输出,进行坐标变换,求解载体的即时速度、位置等导航参数。 惯性导航仅依靠惯性装置本身就能在载体内部独立地完成导航任务,不需要与外界发生任何信号联系,具有高度的自主性。这在战略和战术应用上具有重要的意义。但惯性导航的定位误差会随时间逐步增加,必须不断地进行误差修正,才能保证达到要求的精度。 [相关技术]惯性技术;导航技术 [技术难点] 1、高精度激光陀螺技术; 2、高精度集成光学光纤陀螺技术; 3、微型固态惯性器件技术; 4、捷联初始对准技术; 5、惯性器件误差模型建立与标定; 6、现代控制算法; 7、误差控制与补偿技术; 8、综合导航技术。 [国外概况] 武器系统的发展和需求,促进了惯性技术的发展。二次大战后,机电陀螺技术发展迅速,液浮陀螺、静电陀螺和动力调谐陀螺先后成熟,被广泛用于惯性导航系统。60年代以来,随着激光的出现,激光陀螺和光纤陀螺问世,并以其优良的性能受到关注,迅速进入惯性导航领域。光电技术和微机电技术的发展,促成了半球谐振陀螺、石英音叉陀螺等新型陀螺和微机械加速度计的出现和发展。惯性测量元件的发展,为惯性导航装置和技术的发展奠定了良好的基础。 惯性导航装置最先用于飞机。50年代初就已经演示了机载惯性导航系统。作为商业飞机和大多数军用航空器的惯性导航装置,要求固有位置误差的变化范围在~2 n mile/h(海里/小时),速度误差为2~4m/s(米/秒)。70年代初,以机电陀螺为基础的机载惯性导航装置,已经达到了这些性能指标,可以满足军用和民用飞机的基本导航要求,但由于可靠性不高,因此飞机导航仍主要以无线电导航为基础。此后,机载惯性导航装置的发展目标是,提高可靠性,减少体积、重量和成本,降低维修费,从而减少寿命周期成本。这些要求则反过来推动了惯性测量器件,特别是光电惯性器件的发展。80年代。可靠性高、尺寸小、机械结构简单的激光陀螺成熟,并迅速应用在机载惯性导航装置中,一大批以激光陀螺为基础的惯性导航装置问世,并装备在军用和民用飞机上。激光陀螺正逐步在机载惯性导航领域占据主导地位。90年代,光纤陀螺成熟,并进入机载惯性导航领域。而GPS导航技术的发展以及与惯性导航装置组成机载综合导航系统,进一步强化了惯性导航在机载导航中的地位。 惯性导航装置也成功地用于舰船。舰载惯性导航也是首先以机电陀螺为基础,然后转向

惯性导航系统发展应用现状

惯性导航系统发展应用现状 测绘10-2班张智远07103094 摘要:阐述了惯性导航技术的核心技术构成(陀螺定向),总结了惯性导航的发展概况,并列举出陀螺仪的发展历程及发展方向。同时,概括了惯性技术的应用领域及当前应用情况。最后指出,随着新型惯性器件的涌现和完善,以惯性导航为基础的组合导航系统将成为未来导航系统的主要发展方向。 关键词:惯性导航陀螺仪惯性导航技术惯性导航系统 惯性导航(Inertial Navigation)是20 世纪中期发展起来的完自主式的导航技术。通过惯性测量组件(IMU)测量载体相对惯性空间的角速率和加速度信息,利用牛顿运动定律自动推算载体的瞬时速度和位置信息,具有不依赖外界信息、不向外界辐射能量、不受干扰、隐蔽性好的特点,且惯导系统能连续地提供载体的全部导航、制导参数(位置、线速度、角速度、姿态角)。惯性导航技术,包括平台式惯导系统和捷联惯导系统。平台式惯性导航系统将陀螺通过平台稳定回路控制平台跟踪导航坐标系在惯性空间的角速度。捷联惯性导航系统利用相对导航坐标系角速度计算姿态矩阵,把雷体坐标系轴向加速度信息转换到导航坐标系轴向并进行导航计算。惯性导航系统通常由惯性测量装置、计算机、控制显示器等组成。惯性测量装置包括加速度计和陀螺仪,又称惯性导航组合。3个自由度陀螺仪用来测量飞行器的三个转动运动;3个加速度计用来测量飞行器的3个平移运动的加速度。计算机根据测得的加速度信号计算出飞行器的速度和位置数据。控制显示器显示各种导航参数。 陀螺仪是惯性系统的主要元件。陀螺仪通常是指安装在万向支架中高速旋转的转子,转子同时可绕垂直于自转轴的一根轴或两根轴进动,前者称单自由度陀螺仪,后者称二自由度陀螺仪。陀螺仪具有定轴性和进动性,利用这些特性制成了敏感角速度的速率陀螺和敏感角偏差的位置陀螺。由于光学、MEMS 等技术被引入于陀螺仪的研制,现在习惯上把能够完成陀螺功能的装置统称为陀螺。陀螺仪种类多种多样,按陀螺转子主轴所具有的进动自由度数目可分为二自由度陀螺仪和单自由度陀螺仪;按支承系统可分为滚珠轴承支承陀螺,液浮、气浮与磁浮陀螺,挠性陀螺(动力调谐式挠性陀螺仪),静电陀螺;按物理原理分为利用高速旋转体物理特性工作的转子式陀螺,和利用其他物理原理工作的半球谐振陀螺、微机械陀螺、环形激光陀螺和光纤陀螺等。 由于陀螺仪是惯性导航的核心部件,因此,可以按各种类型陀螺出现的先后、理论的建立和新型传感器制造技术的出现,将惯性技术的发展划分为四代,但是惯性技术发展的各阶段之间并无明显界线。 第一代惯性技术指1930年以前的惯性技术。自1687年牛顿三大定律的建立,并成为惯性导航的理论基础;到l852年,傅科(Leon Foucault)提出陀螺的定义、原理及应用设想;再到1908年由安修茨(Hermann Anschütz—Kaempfe)研制出世界上第一台摆式陀螺罗经,以及1910年的舒勒(Max Schuler)调谐原理;第一代惯性技术奠定了整个惯性导航发展的基础。 第二代惯性技术开始于上世纪40年代火箭发展的初期,其研究内容从惯性仪表技术发展扩大到惯性导航系统的应用。首先是惯性技术在德国V-II火箭上的第一次成功应用。到50年代中后期,0.5n mile/h的单自由度液浮陀螺平台惯导系统研制并应用成功。1968年,漂移约为0.005°/h的G6B4型动压陀螺研制成功。这一时期,还出现了另一种惯性传感

惯性导航系统

惯性导航系统 以下是为大家整理的惯性导航系统的相关范文,本文关键词为惯性,导航,系统,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在教育文库中查看更多范文。 目录 1.惯性导航系统的概念.........................22.惯导系统的发展历史及发展趋势 (3)

惯性导航系统的发展.......................3我国的惯性导航系统.......................5捷联惯导系统现状及发展趋势...............63.惯性导航系统的组成........................104、惯性导航系统的工作原理....................145、惯性导航系统的功能.......................186、惯性导航系统的服务模式与应用模式..........207、惯性导航系统当前的应用情况................218、惯性导航系统的特点 (23) 系统的主要优点......................23系统的主要缺点.....................249、惯性导航系统给我们的启示. (24) 1 惯性导航系统 一、惯性导航系统的概念 什么是惯性导航或惯性制导呢?惯性导航系统(Ins)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。在给定的运动初始条件(初始地理坐标和初始速度)下,利用惯性敏感元件测量飞机相对惯性空间的线运动和角运动参数,用计算机推算出飞机的速度、位置和姿态等参数,从而引导飞机航行。 推算的方法是在运载体上安装加速度计,经过计算(一次积分和二次积分),从而求得运动轨道(载体的运动速度和距离),进而进行导航。在运载体上安装加速度计,用它来敏感、测量运载体运动的加速

导航系统的现状、发展与未来

导航系统的现状、发展与未来 [摘要] 简单地讨论了导航技术的发展及其现状,重点介绍了惯性导航系统中的传感器和卫星导航系统的发展及其未来。本文论述了组合导航系统,特别是 INS-GPS 组合导航系统是未来的一个主要发展方向。 关键词:惯性导航;卫星导航;组合导航;多星座导航;GPS;GLONASS;伽利略导航系统 1. 引言 传统导航技术发展至今,已经走过约一个世纪的漫长道路。随着信息技术的发展,从上个世纪 70 年代开始,导航技术得到了迅速的发展,取得了令人瞩目的成就,其应用已由交通运输扩展到工业、农业、林业、渔业、建筑、旅游、公安、救助、电信、物探、测绘、气象等等,涉及到科学研究的众多领域,渗透到国民经济的各个方面。在此情况下,一方面,以 70 年代的信息技术发展为基础而发展的几种新型导航系统,如卫星导航系统、陀螺捷联式惯性导航系统、组合导航系统等得到了极大的发展。而同时,原有的导航系统面临着或将面临着被淘汰的命运,如欧米伽导航系统、罗兰 C 导航系统(我国保留);还有的被保留,不断改进、发展,如陀螺罗经、测深仪、计程仪、雷达等。还有的随着技术的发展,有获得了新生,如天文导航系统的命运与上述导航系统不一样。上个世纪,随着高精度陀螺仪和 GPS 的应用,普遍的看法是天文导航已经过时,将被淘汰,比如,美国 60 年代末在北极星潜艇中拆除了天文导航系统。但现在,随着新型光电器件如 CCD 的发展、计算机、新的数学模型的发展,天文导航的精度得到了很大的提高(可达 30 米左右)、对使用环境的要求大大降低,天文导航作为一种独立的、自主式的、成本低的系统又重新为人们所认识。 纵观 30 年来,导航系统的发展具有三个特点,第一,由于新材料、微电子、集成广学、计算机等的发展,促进了新型惯性器件的发展,从而惯性导航系统的体积越来越小,精度越来越高、成本越来越低;第二,卫星导航技术这 30 年来得到了极大的发展,可以认为,卫星导航给导航技术带来了一次极大的革命;第三、卫星导航、惯性导航以及其他技术之间相互组合,促进了导航技术的进一步发展。 2. 惯性导航技术 惯性导航系统是随着惯性传感器的发展而发展起来的一门导航技术,它完全自主、不受干扰、输出信息量大、输出信息实时性强等优点使其在军用航行载体和民用相关领域获得了广泛应用。惯导系统的精度、成本主要取决于惯性传感器———陀螺仪和加速度计的精度和成本。因此,讨论惯性导航技术首先要研究惯性传感器。 惯性传感器包括陀螺仪和加速度计,加速度计INS的误差影响较小,目前依然是以挠性支承摆式加速度计为主。陀螺仪由于其结构复杂、制造困难且其漂移误差对INS精度影响大,从而成了惯性传感器重点研究对象。 从广义上讲凡是能测量载体相对惯性空间旋转的装置就可以称为陀螺仪,随着技术的发展,相继发现了多种物理效应可以实现这一要求,因而出现了许多不同型号和不同结构的陀螺仪. 从20世纪50年代的液浮陀螺仪到70年代的动力调谐陀螺仪;从80年代的环形激光陀螺仪、光纤陀螺仪到90年代的振动陀螺仪以及目前研究报道较多的微机械电子系统陀螺仪相继出现,从而推动了惯性传感器不断向前发展。

惯导(惯性导航系统)

惯导(惯性导航系统) 概述 惯性导航系统(INS,以下简称惯导)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。其工作环境不仅包括空中、地面,还可以在水下。惯导的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。 惯性导航系统(英语:INS)惯性导航系统是以陀螺和加速度计为敏感器件的导航参数解算系统,该系统根据陀螺的输出建立导航坐标系,根据加速度计输出解算出运载体在导航坐标系中的速度和位置。 运用领域 现代惯性技术在各国政府雄厚资金的支持下,己经从最初的军事应用渗透到民用领域。惯性技术在国防装备技术中占有非常重要的地位。对于惯性制导的中远程导弹,一般说来命中精度70%取决于制导系统的精度。对于导弹核潜艇,由于潜航时间长,其位置和速度是变化的,而这些数据是发射导弹的初始参数,直接影响导弹的命中精度,因而需要提供高精度位置、速度和垂直对准信号。目前适用于潜艇的唯一导航设备就是惯性导航系统。惯性导航完全是依靠运载体自身设备独立自主地进行导航,不依赖外部信息,具有隐蔽性好、工作不受气象条件和人为干扰影响的优点,而且精度高。对于远程巡航导弹,惯性制导系统加上地图匹配技术或其它制导技术,可保证它飞越几千公里之后仍能以很高的精度击中目标。惯性技术己经逐步推广到航天、航空、航海、石油开发、大地测量、海洋调查、地质钻控、机器人技术和铁路等领域,随着新型惯性敏感器件的出现,惯性技术在汽车工业、医疗电子设备中都得到了应用。因此惯性技术不仅在国防现代化中占有十分重要的地位,在国民经济各个领域中也日益显示出它的巨大作用。

高精度捷联式惯性导航系统算法研究大学论文

高精度捷联式惯性导航系统算法研究 1. 引言 随着计算机技术的发展,捷联式惯性导航系统(strapdown Inertial Navigation System, SINS)的概念被提出,它取消了平台式惯性导航系统中复杂的机械平台装置,而将惯性传感器直接固联在载体上。SINS具有制造和维护成本低、体积小、重量轻以及可靠性高等优点,目前在高、中、低精度领域都得到了广泛使用。 捷联算法的基本框图如图1所示。 图1 捷联算法的基本框图 在捷联惯性导航系统中,惯性传感器直接固联在载体上,因此对惯性传感器的性能提出了更高的要求。SINS中使用的陀螺所承受的动态范围较大,一般能够达到100 /s,与此同时,SINS中的陀螺和加速度计与载体一起进行角运动和线运动,这增加了导航计算机输出数据的难度和复杂性。姿态实时计算是捷联惯导的关键技术,也是影响捷联惯导系统导航精度的重要因素。 载体的姿态和航向是载体坐标系和地理坐标系之间的方位关系,两坐标系之间的方位关系等效于力学中的刚体定点转动问题。在刚体定点转动理论中,描述动坐标系相对参考坐标系方位关系的方法有欧拉角法、四元数法、方向余弦法以及等效旋转矢量法。本报告对这四种姿态算法进行简单介绍,并结合研究对象对等效旋转矢量算法进行重点研究。针对角速率输入陀螺构成的捷联式惯性导航系统,本报告给出了一种改进的姿态算法,并在圆锥运动环境下对该算法进行数学仿真,验证了该方法的可能性。 2. 姿态算法介绍 2.1 欧拉角法

一个动坐标系相对参考坐标系的方位可以完全由动坐标系依次绕三个不同轴转动三个角度进行确定。把载体坐标系ox b y b z b 作为动坐标系,导航坐标系ox n y n z n (即地理坐标系)作为参考坐标系,导航系依次转过航向角H 、俯仰角P 、横摇角R 可得到载体坐标系,通过求解欧拉角微分方程得到三个欧拉角,从而进一步可以得到捷联姿态矩阵。欧拉角微分方程如下所示: cos cos 0sin cos 1sin sin cos cos sin cos sin 0cos b nbx b nby b nbz P P P R P R P R P P P P H R R ωωω????????????=-???? ????????-?????? (1) 式(1)即为欧拉角微分方程,求解方程可以得到三个欧拉角,也就是航向角、俯仰角以及横摇角,根据三个姿态角和姿态矩阵元素之间的关系即可以得到姿态矩阵n b C 。 2.2 方向余弦法 常用方向余弦姿态矩阵微分方程的形式为 b bk b n nb n =C C ω (1) 式中bk nb ω为载体坐标系相对地理坐标系的转动角速度在载体坐标轴向的分量的反对称矩 阵形式,具体表达式如式(2)。 00 0b b nbz nby bk b b nb nbz nbx b b nby nbx ωωωωωω??-??=-????-? ? ω (2) 用毕卡逼近法求解矩阵微分方程,其解为 2002 00sin 1cos ()()()b bk bk n nb nb t t t θθθθ???-?+?=+?+??????? C C I θθ (3) 式中 10 0n n b b nbz nby t bk bk b b nb nb nbz nbx t b b nby nbx dt θθθθθθ+??-?????==?-?????-??? ? ?θω 0θ?=2.3 四元数法 四元数微分方程的形式为

21世纪美国战略潜艇导航技术发展综述

21世纪美国战略潜艇导航技术发展综述 收稿日期:2002-01-14 熊正南 蔡开仕 武凤德 高宏伟 (第七○七研究所 天津 300131) 摘 要: 本文叙述了美国战略潜艇导航技术的发展趋势,包括惯性技术、重力技术、无线电技术、声呐技术等,重点叙述了光学陀螺和重力导航技术的最新发展情况。 关键词: 舰船惯性导航 重力导航 无线电导航 声呐导航 Survey of the T echnologic Development for American Strategic Submarine N avigation in 21Century X iong Zhengnan Cai K aishi Wu Fengde G ao H ong wei (T ianji Navigation Instrument Research Institute ,T ianjin ,300131) Abstract : The development trends for American strategic submarine navigation in 21century are dis 2cussed ,including inertial technology ,gravity technology ,radio navigation technology ,and s onar technology ,with the em phases on the recent development of fiber optic gyro technology and gravity navigation technology. K ey w ords : ship ’s inertial navigation ,gravity navigation ,radio navigation ,s onar navigation 1 舰船导航发展的历史回顾 回顾舰船导航的发展史,我们可以清楚地看到舰船导航是适应舰船作战系统的需求、随着科学技术的发展 而发展的。1.1 适应军事需求而发展 以惯性导航为例,几十年来,舰船惯性技术是在不断满足潜基导弹的射程和命中精度的要求及核潜艇的隐蔽性要求而不断发展的。 由于核潜艇具有灵活性、隐蔽性,是发射弹道导弹的活动基地,所以美国于1954年就开始实施了北极星核潜艇的研制计划。舰船惯性导航系统就是这个计划的直接产物。 20世纪70年代弹道导弹核潜艇携带的弹道导弹从A1型相继发展到A2、A3和C3型,其射程从1200n mile 提高到1500n mile 和2500n mile ,命中精度相应地从3km 、2km 、800m 到450m 。MK 2SI NS 也与之相应地从MK 2MOD0型发展到MK 2MOD3、MK 2MOD4和MK 2MOD6型,其定位精度从1.6n mile/30h 提高到0.7n mile/30h 。 80年代,美国建造了三叉戟核潜艇,携带C4型和D5型弹道导弹,射程分别为4000n mile 和6500n mile 。MK 2SI NS 也相应地发展到MK 2MOD7型,并采用静电陀螺监控器来改善其精度。 90年代为了配合D5型弹道导弹,采用了静电陀螺仪导航仪,同时还组合了重力仪技术。1.2 随着科学技术的发展而发展 舰船惯性技术不仅是适应军事需求而发展,而且是随着相关科学技术的发展而发展的。惯性技术涉及许 第24卷 第3期2002年6月 舰 船 科 学 技 术SHIP SCIE NCE AND TECH NO LOGY V ol.24 N o.3 Jun.2002

相关文档
最新文档