《数值分析》第六章答案

《数值分析》第六章答案
《数值分析》第六章答案

习题6

1.求解初值问题

y x y +=' )10(≤≤x 1)0(=y

取步长2.0=h ,分别用Euler 公式与改进Euler 公式计算,并与准确解

x

e x y 21+-=相比较。

解: 1) 应用Euler 具体形式为 )(1i i i i y x h x y ++=+,其中i x i 2.0= 10=y 计算结果列于下表

i i x i y )(i x y i i y x y -)( 1 0.2 1.200000 1.242806 0.042806 2 0.4 1.480000 1.583649 0.103649 3 0.6 1.856000 2.044238 0.188238 4 0.8 2.347200 2.651082 0.303882 5 1.0 2.976640 3.436564 0.459924

2) 用改进的Euler 公式进行计算,具体形式如下: 10=y

)()

(1i i i D i y x h y y ++=+ )()

(11)

(1D i i i C i y x h y y +++++= )(2

1)

(1)(11c i D i i y y y ++++= 4,3,2,1,0=i

计算结果列表如下

i i x i y )

(1D i y + )

(1c i y + i i y x y -)( 0 0.0 1.000000 1.200000 1.280000 0.000000 1 0.2 1.240000 1.528000 1.625600 0.002860 2 0.4 1.576800 1.972160 2.091232 0.006849 3 0.6 2.031696 2.558635 2.703303 0.012542 4 0.8 2.630669 3.316803 3.494030 0.020413 5 1.0 3.405417 0.031147

3. 对初值问题

1

)0(=-='y y y

)

0(>x ,证明用梯形公式所求得的近似值为

i

i h

h y ih y )22(

)(+-=≈ ),2,1,0( =i

并证明当0→h 时,它收敛于准确解i

x e y -=,其中ih x i =为固定点。

解:1) 对以上初值问题用梯形公式得 )]()[(2

11++-+-+=i i i i y y h y y , ,2,1,0=i

10=y

其中ih x i = 由上式递推得 i

i h

h y )22(

+-= , ,2,1,0=i

2) 22)2(2

)2

1()21(2121i i x h x

h i

i h h h h y ?--+-=????

?? ??

+-= i

i

i i

i x x x x h h x h n i h e

e

e

h h y --→-

-∞→→==

???

??

?+??

?

???-=

2

2

2

20)

2

(2

)21(lim )21(lim lim

5.证明

)4(6

3211k k k h y y i i +++

=+

),(1i i y x f k = 2

(2h x f k i +

=,)2

11hk y i +

h x f k i +=(3,)221hk hk y i +- 是1个3阶公式。

证明 )4(6

3211k k k h y y i i +++

=+

),(1i i y x f k = 2

(2h x f k i +

= ,)2

1k h y i +

h x f k i +=(3 ,)221hk hk y i +- 是一个3阶公式

解局部截断误差为

)4(6

)()(32111K K K h x y x y R i i i ++--=++

))(,(1i i x y x f K = 2

(2h x f K i +

= ,)2

)(1K h x y i +

h x f K i +=(3 ,)2)(21hK hK x y i +- 由微分方程有

))(,()(x y x f x y =' y

x y x f x y x

x y x f x y ??'+??=''))

(,()

())

(,()(

?

?

????'+'???+

??=

'''y x x y x f x y x y y

x x y x f x

x y x f x y ))

(,()()())

(,())

(,()(22

2

2

y x y x f x y x y y

x y x f ??''+??

?'??+

))

(,()()())

(,(2

2

y

x x y x f x y x

x y x f ???'+??=

))

(,()

(2))

(,(2

2

2

y

x y x f x y y

x y x f x y ??''+??'+))

(,()

())

(,()

(2

2

2

)(1i x y K '=

2

(2h x f K i +

= ,)(2

)(i i x y h x y '+

y

x y x f x y h x

x y x f h x y x f i i i i i i i ??'+

??+

=))

(,()

(2

))(,(2

))(,(

y x x y x f x y h

h x

x y x f h i i i i i ???'??+?????+))(,()(222))(,()2(212

2

2

2 )())(,()(23

2

2

2

h O y x y x f x y h

i i i +??

???'+ )())(,()()(8)(2)(3

2

h O y x y x f x y x y h x y h

x y i i i i i i +?

?

??????''-'''+''+'= (h x f K i +=3,)

)()()()(3

h O x y h x y h x y i i i +''?+'+

?

?

??????''+'+??+=y x y x f x y h x y h x x y x f h x y x f i i i i i i i i )(,())()(())(,())(,(2

y x x y x f x y h h x

x y x f h i i i i i ???'??+?????+))(,()(2))

(,(212

2

2 )())(,()(3

2

2

2

2

h O y x y x f x y h i i i +??

???'+ )())(,()()(21

)()(32h O y x y x f x y x y h x y h x y i i i i i i +??

??????''+'''+

''+'= )()(6

)(2

)(4

3

2

1h O x y h

x y h

x y h R i i i i +'''+

''+

'=+

????

??? ??

??''-'''+''+'+'-y x y x f x y x y h x y h x y x y h i i i i i i i ))(,()()(2)(2)(4)(62

??

?+???? ????''-'''+''+'+)())(,()()(2)()(3

2

h O y x y x f x y x y h x y h x y i i i i i i

)(4

h O =

∴所给公式是一个3阶公式

6.导出中点公式(或称Euler 两步公式) ),(211i i i i y x hf y y +=-+

并给出局部截断误差。

解: o 1 法1 将后退Eluer 公式 ),(1i i i i y x hf y y +=- 和Eluer 公式

),(1i i i i y x hf y y +=+ 相加得到

),(211i i i i y x hf y y +=-+

o

2 法2得

)(6

12)

()()(2

11i i i i y h h

x y x y x y ξ'''-

-=

'-+,

),(11+-∈i i i x x ξ 代入等式 ))(,()(i i i x y x f x y =' 得到

)(6

1))(,(2)

()(2

11i i i i i y h x y x f h

x y x y ξ'''+

=--+

变形得到 )(3

1))(,(2)()(3

11i i i i i y h x y x hf x y x y ξ'''+

+=-+

忽略小量项

)(3

13

i y h ξ''',并用i y 代替)(i x y ,得到中点公式

),(211i i i i y x hf y y +=-+ o

3 局部截断误差

))(,(2)()(111i i i i i x y x hf x y x y R --=-++ θ+'''+

'=i i x f h x y h (6

1)(23

)(2)i x y h h '-

θ+'''=i x f h (6

13

)h

7.证明解),(y x f y ='的公式: )],(3),(),(4[4

)(2

1111111--++-++-+

+=

i i i i i i i i i y x f y x f y x f h y y y

是二阶的,并求出其局部截断误差。

解:))(,(4[4

)]()([2

1)(11111++-++-

+-

=i i i i i i x y x f h x y x y x y R

))](,(3))(,(11--+-i i i i x y x f x y x f )(43)(4

)()(2

1)(21)(1111-+-+'-

'+

'--

-

=i i i i i i x y h x y h x y h x y x y x y

)(2

1)()(6

)(2

)()(4

3

2

i i i i i x y h O x y h

x y h

x y h x y -

+'''+

''+

'+=

)]()(6

)(2

)()([2

14

3

2

h O x y h

x y h

x y h x y i i i i +'''-

''+

'--

)(4

)]()(2

1)()([3

2

i i i i x y h h O x y h x y h x y h '++'''+

''+'-

)]()(2

)()([4

33

2

h O x y h

x y h x y h i i i +'''+

''-'-

)()(6

54

3

h O x y h i +'''-

=

9.直接推导出2步Adams 显式公式 )],(),(3[2

111--+-+=i i i i i i y x f y x f h y y

和局部截断误差 )(125)

3(3

1i i y

h R ξ=

+, ),(11+-∈i i i x x ξ

解: dx x y x f x y x y i i

x x

i i ?++

=+1

))(,()()(1

以i x 和1-i x 为节点作))(,(x y x f 的一次插值多项式 1

111

11))

(,())

(,()(-------+--=i i i i i i i i i i x x x x x y x f x x x x x y x f x L

则有

dx x L x y x y i i

x x i i ?++

≈+1

)()()(11

dx x x h

x y x f x y i i

x x i i i i ?+--?

+=1

2

1)(1))(,()(

dx x x h x y x f i i

x x i i i ?+-?

+--1

)(1

)(,(11

))(,(2

1))(,(2

3)(11---

+=i i i i i x y x hf x y x hf x y

于是我们得到如下二步Adams 显式格式 ),(2

1),(2

3111--+-

+

=i i i i i i y x hf y x hf y y

)],(),(3[2

11---+

=i i i i i y x f y x f h y

局部截断误差

))](,())(,(3[2

)()(1111--++--

-=i i i i i i i x y x f x y x f h x y x y R

)]()(3[2)()(11-+'-'--=i i i i x y x y h x y x y

)()(6

)(2

)()(4

3

2

h O x y h

x y h

x y h x y i i i i +'''+

''+

'+=

[]

)

()(2

)()(2

)(2

3)(3

2

h O x y h

x y h x y h x y h x y i i i i i +'''+

''-'+

'-- )()(12

54

3

h O x y h i +'''=

10.导出具有下列形式的3阶方法:

+++=--+221101i i i i y a y a y a y

)],(),(),([2221110----++i i i i i i y x f b y x f b y x f b h

的系数所满足的方程组。

解:

),([0221101i i i i i i y x f b h y a y a y a y +++=--+

)],(),(222111----++i i i i y x f b y x f b )()()()(2211011--++---=i i i i i x y a x y a x y a x y R )]()()([22110--'+'+'-i i i x y b x y b x y b h

)()(6

)(2

)()(4

3

2

h O x y h

x y h

x y h x y i i i i +'''+

''+'+=

)(0i x y a -

)]()(6

)(2

)()([4

3

2

1h O x y h

x y h

x y h x y a i i i i +'''-

''+

'-- )]()(3

4)(2)(2)([4

3

22h O x y h x y h x y h x y a i i i i +'''-''+'--

)(0i x y h b '-

)]()(2

)()([3

2

1h O x y h

x y h x y h b i i i +'''+

''-'-

)]()(2)(2)([3

2

2h O x y h x y h x y h b i i i +'''+''-'-

)()21()()1(21021210i i x y h b b b a a x y a a a '---+++---= )()222121(

2

2121i x y h b b a a ''++--

+

)()()22

3

46

16

1(4

3

2121h O x y h b b a a i +'''--++

+

所给方程为3阶方法充要条件为 01210=---a a a

02121021=---++b b b a a

022********=++--

b b a a

022

3

46

16

12121=--++

b b a a

1

210=++a a a

1221021-=---+b b b a a 14242121=--+b b a a 112382121-=--+b b a a 1221=++a a a

1221021=+++--b b b a a 14242121=--+b b a a 112382121=++--b b a a

数值分析课后题答案

数值分析 第二章 2.当1,1,2x =-时,()0,3,4f x =-,求()f x 的二次插值多项式。 解: 0120121200102021101201220211,1,2, ()0,()3,()4;()()1 ()(1)(2)()()2()()1 ()(1)(2) ()()6 ()()1 ()(1)(1) ()()3 x x x f x f x f x x x x x l x x x x x x x x x x x l x x x x x x x x x x x l x x x x x x x ==-===-=--==-+-----==------= =-+-- 则二次拉格朗日插值多项式为 2 20 ()()k k k L x y l x ==∑ 0223()4() 14 (1)(2)(1)(1)23 537623 l x l x x x x x x x =-+=---+ -+= +- 6.设,0,1,,j x j n =L 为互异节点,求证: (1) 0()n k k j j j x l x x =≡∑ (0,1,,);k n =L (2)0 ()()0n k j j j x x l x =-≡∑ (0,1,,);k n =L 证明 (1) 令()k f x x = 若插值节点为,0,1,,j x j n =L ,则函数()f x 的n 次插值多项式为0 ()()n k n j j j L x x l x == ∑。 插值余项为(1)1() ()()()()(1)! n n n n f R x f x L x x n ξω++=-= + 又,k n ≤Q

(1)()0 ()0 n n f R x ξ+∴=∴= 0()n k k j j j x l x x =∴=∑ (0,1,,);k n =L 0 000 (2)()() (())()()(()) n k j j j n n j i k i k j j j i n n i k i i k j j i j x x l x C x x l x C x x l x =-==-==-=-=-∑∑∑∑∑ 0i n ≤≤Q 又 由上题结论可知 ()n k i j j j x l x x ==∑ ()()0 n i k i i k i k C x x x x -=∴=-=-=∑原式 ∴得证。 7设[]2 (),f x C a b ∈且()()0,f a f b ==求证: 21 max ()()max ().8 a x b a x b f x b a f x ≤≤≤≤''≤- 解:令01,x a x b ==,以此为插值节点,则线性插值多项式为 10 101010 ()() ()x x x x L x f x f x x x x x --=+-- =() () x b x a f a f b a b x a --=+-- 1()()0()0 f a f b L x ==∴=Q 又 插值余项为1011 ()()()()()()2 R x f x L x f x x x x x ''=-= -- 011 ()()()()2 f x f x x x x x ''∴= --

大学物理下答案习题14

习题14 14.1 选择题 (1)在夫琅禾费单缝衍射实验中,对于给定的入射单色光,当缝宽度变小时,除中央亮纹的中心位置不变外,各级衍射条纹[ ] (A) 对应的衍射角变小. (B) 对应的衍射角变大. (C) 对应的衍射角也不变. (D) 光强也不变. [答案:B] (2)波长nm (1nm=10-9m)的单色光垂直照射到宽度a=0.25mm的单缝上,单缝后面放一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观测衍射条纹。今测得屏幕上中央明条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d=12mm,则凸透镜的焦距是[ ] (A)2m. (B)1m. (C)0.5m. (D)0.2m. (E)0.1m [答案:B] (3)波长为的单色光垂直入射于光栅常数为d、缝宽为a、总缝数为N的光栅上.取k=0,±1,±2....,则决定出现主极大的衍射角的公式可写成[ ] (A) N a sin=k. (B) a sin=k. (C) N d sin=k. (D) d sin=k. [答案:D] (4)设光栅平面、透镜均与屏幕平行。则当入射的平行单色光从垂直于光栅平面入射变为斜入射时,能观察到的光谱线的最高级次k [ ] (A)变小。 (B)变大。 (C)不变。 (D)的改变无法确定。 [答案:B] (5)在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a和相邻两缝间不透光部分宽度b的关系为[ ] (A) a=0.5b (B) a=b (C) a=2b (D)a=3b [答案:B] 14.2 填空题 (1)将波长为的平行单色光垂直投射于一狭缝上,若对应于衍射图样的第一级暗纹位置的衍射角的绝对值为,则缝的宽度等于________________. λθ] [答案:/sin (2)波长为的单色光垂直入射在缝宽a=4 的单缝上.对应于衍射角=30°,单缝处的波面可划分为______________个半波带。 [答案:4] (3)在夫琅禾费单缝衍射实验中,当缝宽变窄,则衍射条纹变;当入射波长变长时,则衍射条纹变。(填疏或密) [答案:变疏,变疏]

最新第六章习题答案-数值分析

第六章习题解答 2、利用梯形公式和Simpson 公式求积分2 1 ln xdx ? 的近似值,并估计两种方法计算值的最大 误差限。 解:①由梯形公式: 21ln 2 ()[()()][ln1ln 2]0.3466222 b a T f f a f b --= +=+=≈ 最大误差限 3''2 ()111 ()()0.0833******** T b a R f f ηη-=-=≤=≈ 其中,(1,2)η∈ ②由梯形公式: 13()[()4()()][ln14ln()ln 2]0.38586262 b a b a S f f a f f b -+= ++=++≈ 最大误差限 5(4)4()66 ()()0.0021288028802880 S b a R f f ηη-=-=≤≈, 其中,(1,2)η∈。 4、推导中点求积公式 3''()()()()() ()224 b a a b b a f x dx b a f f a b ξξ+-=-+<

数值分析习题集及答案[1].(优选)

数值分析习题集 (适合课程《数值方法A 》和《数值方法B 》) 长沙理工大学 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出 它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: ********12412324(),(),()/,i x x x ii x x x iii x x ++其中**** 1234 ,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 1n n Y Y -=( n=1,2,…) 计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字27.982). 8. 当N 充分大时,怎样求2 1 1N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设 212S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对 误差增加,而相对误差却减小. 11. 序列 {}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字), 计算到 10y 时误差有多大?这个计算过程稳定吗? 12. 计算6 1)f =, 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 -- 13. ()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若

半导体物理第六章习题答案

半导体物理第六章习题 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第6章 p-n 结 1、一个Ge 突变结的p 区n 区掺杂浓度分别为N A =1017cm -3和N D =51015cm -3, 求该pn 结室温下的自建电势。 解:pn 结的自建电势 2(ln )D A D i N N kT V q n = 已知室温下,0.026kT =eV ,Ge 的本征载流子密度1332.410 cm i n -=? 代入后算得:1517 132 510100.026ln 0.36(2.410)D V V ??=?=? 4.证明反向饱和电流公式(6-35)可改写为 202 11()(1)i s n n p p b k T J b q L L σσσ=++ 式中n p b μμ=,n σ和p σ分别为n 型和p 型半导体电导率,i σ为本征半导体电导率。 证明:将爱因斯坦关系式p p kT D q μ= 和n n kT D q μ=代入式(6-35)得 0000( )p n p n S p n n p n p n p p n n p J kT n kT p kT L L L L μμμμμμ=+=+ 因为002i p p n n p =,00 2 i n n n p n =,上式可进一步改写为 221111( )( )S n p i n p i n p p p n n n p p n J kT n qkT n L p L n L L μμμμμμσσ=+ =+ 又因为 ()i i n p n q σμμ=+ 22222222()(1)i i n p i p n q n q b σμμμ=+=+ 即

大学物理课后习题答案(赵近芳)下册

习题八 8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系 ? 解: 如题8-1图示 (1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷 2 220)3 3(π4130cos π412a q q a q '=?εε 解得 q q 3 3- =' (2)与三角形边长无关. 题8-1图 题8-2图 8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2 图所示.设小球的半径和线的质量都可 解: 如题8-2图示 ?? ? ?? ===220)sin 2(π41 sin cos θεθθl q F T mg T e 解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式2 04r q E πε= ,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解 ?

解: 02 0π4r r q E ε= 仅对点电荷成立,当0→r 时,带电体不能再视为点电 荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大. 8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f = 2 024d q πε,又有人 说,因为f =qE ,S q E 0ε=,所以f =S q 02 ε.试问这两种说法对吗?为什么? f 到底应等于多少 ? 解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强S q E 0ε= 看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S q E 02ε= ,另一板受它的作用 力S q S q q f 02 022εε= =,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l 的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为 r E = 302cos r p πεθ, θ E =3 04sin r p πεθ 证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r 的分量 θsin p . ∵ l r >>

数值分析习题集及答案

(适合课程《数值方法A 》和《数值方法B 》) 第一章 绪 论 1. 设x >0,x 的相对误差为δ,求ln x 的误差. 2. 设x 的相对误差为2%,求n x 的相对误差. 3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位 有效数字: ***** 123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====? 4. 利用公式(3.3)求下列各近似值的误差限: * * * * * * * * 12412324(),(),()/,i x x x ii x x x iii x x ++其中* * * * 1234,,,x x x x 均为第3题所给的数. 5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少? 6. 设028,Y =按递推公式 11783 100 n n Y Y -=- ( n=1,2,…) 计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差? 7. 求方程2 5610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982). 8. 当N 充分大时,怎样求 2 11N dx x +∞+?? 9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2 ? 10. 设2 12S gt = 假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加, 而相对误差却减小. 11. 序列{}n y 满足递推关系1101 n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10 y 时误差有多大?这个计算过程稳定吗? 12. 计算6 (21)f =-,取 2 1.4≈,利用下列等式计算,哪一个得到的结果最好? 3 6 3 11,(322), ,9970 2. (21) (322) --++ 13. 2 ()ln(1)f x x x =- -,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等 价公式 2 2 ln(1)ln(1)x x x x - -=-+ + 计算,求对数时误差有多大? 14. 试用消元法解方程组{ 10 10 12121010; 2. x x x x +=+=假定只用三位数计算,问结果是否可靠? 15. 已知三角形面积 1sin , 2 s ab c = 其中c 为弧度, 02c π << ,且测量a ,b ,c 的误差分别为,,.a b c ???证 明面积的误差s ?满足 . s a b c s a b c ????≤ ++ 第二章 插值法 1. 根据( 2.2)定义的范德蒙行列式,令

数值分析课后答案

1、解:将)(x V n 按最后一行展开,即知)(x V n 是n 次多项式。 由于 n i i i n n n n n i n x x x x x x x x x x V ...1...1... ......... ...... 1 )(21110 20 0---= ,.1,...,1,0-=n i 故知0)(=i n x V ,即110,...,,-n x x x 是)(x V n 的根。又)(x V n 的最高 次幂 n x 的系数为 )(...1...1... ...... .........1),...,,(101 1 21 11 2 2221 02001101j n i j i n n n n n n n n n n n x x x x x x x x x x x x x x V -== ∏-≤<≤-----------。 故知).)...()()(,...,,()(1101101------=n n n n x x x x x x x x x V x V 6、解:(1)设 .)(k x x f =当n k ,...,1,0=时,有.0)()1(=+x f n 对 )(x f 构造Lagrange 插值多项式, ),()(0 x l x x L j n j k j n ∑== 其 0)()! 1() ()()()(1)1(=+=-=++x w n f x L x F x R n n n n ξ, ξ介于j x 之间,.,...,1,0n j = 故 ),()(x L x f n =即 .,...,1,0,)(0 n k x x l x k j n j k j ==∑= 特别地,当0=k 时, 10) (=∑=n j x j l 。 (2) 0)()1(1) ()1()()(0000=-=??? ? ??-??? ? ??-=--=-===∑∑∑∑k j j i j i k j k i i j i i k j n j k i i j k n j j x x x x i k x l x x i k x l x x )利用(。 7、证明:以b a ,为节点进行线性插值,得 )()()(1 b f a b a x a f b a b x x P --+--= 因 0)()(==b f a f ,故0)(1=x P 。而 ))()(("2 1 )()(1b x a x f x P x f --= -ξ,b a <<ξ。 故)("max )(8 122)("max )(max 2 2 x f a b a b x f x f b x a b x a b x a ≤≤≤≤≤≤-=??? ??-≤。 14、解:设 ))...()(()(21n n x x x x x x a x f ---=, k x x g =)(,记)() (1 ∏=-=n j j n x x x w ,则 ),()(x w a x f n n =).()(' j n n j x w a x f = 由差商的性质知 [])! 1()(1,..,,1) (' 1 )(')('1 211 11 -== ==-===∑∑∑ n g a x x x g a x w x a x w a x x f x n n n n n j j n k j n n j j n n k j n j j k j ξ, ξ介于n x x ,...,1之间。 当20-≤≤ n k 时,0)()1(=-ξn g , 当 1-=n k 时,)!1()(1-=-n g n ξ, 故 ???-=-≤≤=-= --=∑1,,20,0)!1()(1) ('1 11 n k a n k n g a x f x n n n n j j k j ξ 16、解:根据差商与微商的关系,有 [] 1! 7! 7!7)(2,...,2,2)7(7 10===ξf f , [ ] 0! 80 !8)(2,...,2,2)8(8 1 ===ξf f 。 ( 13)(47+++=x x x x f 是7次多项式, 故 ,!7)()7(=x f 0)()8(=x f )。 25、解:(1) 右边= [][]dx x S x f x S dx x S x f b a b a ??-+-)(")(")("2)(")("2 = [] d x x S x f x S x S x S x f x f b a ?-++-)("2)(")("2)(")(")("2)(" 222 = [] d x x S x f b a ?-)(")(" 22 = [][]dx x S dx x f b a b a 2 2 )(")("??- =左边。 (2)左边= ? -b a dx x S x f x S ))(")(")(("

数值分析课后题答案

数值分析 2?当x=1,—1,2时,f(x)=O, 一3,4,求f(x)的二次插值多项式。解: X 0 =1,x j = — 1,x 2 = 2, f(X。)= 0, f (xj = -3, f (x2)= 4; l o(x)=(x-xi^~x2\=-1(x 1)(x-2) (x o -X/X o _x2) 2 (x -x0)(x -x2) 1 l i(x) 0 2(x-1)(x-2) (x i ~x0)(x i ~x2) 6 (x—x0)(x—x,) 1 l2(x) 0 1(x-1)(x 1) (X2 -X°)(X2 - X i) 3 则二次拉格朗日插值多项式为 2 L 2(X)= ' y k 1 k ( x) kz0 = -3l°(x) 4l2(x) 1 4 =(x_1)(x—2) 4 (x-1)(x 1) 2 3 5 2 3 7 x x - 6 2 3 6?设Xj, j =0,1,||(,n 为互异节点,求证: n (1 )7 x:l j(x) =x k(k =0,1川,n); j=0 n (2 )7 (X j -x)k l j(x)三0 (k =0,1川,n); j £ 证明 (1)令f(x)=x k

n 若插值节点为X j, j =0,1,|l(, n,则函数f (x)的n次插值多项式为L n(x)八x k l j(x)。 j=0 f (n 十)(?) 插值余项为R n(X)二f(X)-L n(X) n1(X) (n +1)!

.f(n1)( ^0 R n(X)=O n 二瓦x k l j(x) =x k(k =0,1川,n); j :o n ⑵、(X j -x)k l j(x) j卫 n n =為(' C?x j(—x)k_L)l j(x) j =0 i =0 n n i k i i =為C k( -x) (、X j l j(x)) i =0 j=0 又70 _i _n 由上题结论可知 n .原式二''C k(-x)k_L x' i=0 =(X -X)k =0 -得证。 7设f (x) c2 la,b 1且f (a) =f (b)二0,求证: max f(x)兰一(b-a) max a $至小一*丘f (x). 解:令x^a,x^b,以此为插值节点,则线性插值多项式为 L i(x^ f(x o) x x f (xj X o —人x -X o X —X o x-b x-a ==f(a) f(b)- a - b x -a 又T f (a) = f (b)二0 L i(x) = 0 1 插值余项为R(x)二f (x) - L,(x) f (x)(x - X Q)(X - xj 1 f(x) = 2 f (x)(x -X g)(X -xj

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

第六章习题答案数值分析.docx

第六章习题解答 2 2、利用梯形公式和 Simpson 公式求积分 ln xdx 的近似值, 并估计两种方法计算值的最大 1 误差限。 解:①由梯形公式: T ( f ) b a [ f (a) f (b)] 2 1 [ln1 ln 2] ln 2 0.3466 2 2 2 最大误差限 R ( f ) (b a)3 f '' ( ) 1 1 1 0.0833 T 12 12 2 12 12 其中, (1,2) ②由梯形公式: b a 4 f ( b a f (b)] 1 4ln( 3 ln 2] 0.3858 S( f ) [ f (a) ) [ln1 ) 6 2 6 2 最大误差限 R S ( f ) (b a)5 f (4) ( ) 6 6 0.0021, 2880 2880 4 2880 其中, (1,2) 。 4、推导中点求积公式 f ( x)dx (b a) f ( a b ) (b a) 3 (a b) b a 2 24 证明: 构造一次函数 P ( x ),使 P a 2 b f a b , P ' ( a b ) f ' ( a b ), P '' ( x) 0 2 2 2 则,易求得 P( x) f ' ( a b )( x a b ) f ( a b ) 2 2 2 且 P(x)dx f ' ( a b )( x a b ) f ( a b ) dx b b a a 2 2 2 f ( a b )dx (b a) f ( a b ) ,令 P(x)dx I ( f ) b b a 2 2 a 现分析截断误差:令 r ( x) f ( x) P(x) f ( x) f ' ( a b )( x a b ) f ( a b ) 2 2 2 由 r ' ( x) f ' (x) f ' ( a b ) 易知 x a 2 b 为 r (x) 的二重零点, 2 a b )2 , 所以可令 r (x) ( x)( x 2

数值分析第四版习题及答案

第四版 数值分析习题 第一章绪论 1.设x>0,x得相对误差为δ,求得误差、 2.设x得相对误差为2%,求得相对误差、 3.下列各数都就是经过四舍五入得到得近似数,即误差限不超过最后一位得半个单位,试指 出它们就是几位有效数字: 4.利用公式(3、3)求下列各近似值得误差限: 其中均为第3题所给得数、 5.计算球体积要使相对误差限为1%,问度量半径R时允许得相对误差限就是多少? 6.设按递推公式 ( n=1,2,…) 计算到、若取≈27、982(五位有效数字),试问计算将有多大误差? 7.求方程得两个根,使它至少具有四位有效数字(≈27、982)、 8.当N充分大时,怎样求? 9.正方形得边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g就是准确得,而对t得测量有±0、1秒得误差,证明当t增加时S得绝对误差增 加,而相对误差却减小、 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到得结果最好? 13.,求f(30)得值、若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果就是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c得误差分别为证明面积得误差满足 第二章插值法 1.根据(2、2)定义得范德蒙行列式,令 证明就是n次多项式,它得根就是,且 、 2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)得二次插值多项式、 3. 4., 研究用线性插值求cos x 近似值时得总误差界、

半导体物理第六章1

第6章 pn结 把一块p型半导体和一块n型半导体键合在一起,就形成了pn结。pn 结是几乎一切半导体器件的结构基础,了解和掌握pn结的性质具有很重要的实际意义。 §6.1 pn结及其热平衡状态下的能带结构 一、pn结的形成及其杂质分布 半导体产业形成50余年来,已开发了多种形成pn结的方法,各有其特点。 1、合金法 把一小粒高纯铝置于n型单晶硅片的清洁表面上,加热到略高于Al-Si 系统共熔点(580℃)的温度,形成铝硅熔融体,然后降低温度使之凝固,这时在n型硅片的表面就会形成—含有高浓度铝的p型硅薄层,它与n型硅衬底的界面即为pn结(这时称为铝硅合金结)。欲在p型硅上用同样的方法制造pn 结,须改用金锑(Au-Sb)合金,即用真空镀膜法在p型硅的清洁表面镀覆一层含锑0.1%的金膜,然后在400℃左右合金化。 合金结的特点是合金掺杂层的杂质浓度高,而且分布均匀;由于所用衬底一般是杂质浓度较低且分布均匀的硅片,因此形成的pn结具有杂质浓度突变性较大的特点,如图6-1所示。具有这种形式杂质分布的pn 结通常称为单边突变结(p+n结或pn+结)。 合金结的深度对合金过程的温度和时间十分敏感,较难控制。目前 已基本淘汰。 N(x) N D N A x j

x N A 图6-1 合金结的杂质分布图6-2 扩散法制造pn结的过程 x j N D 2、扩散法 1956年发明的能精确控制杂质分布的固态扩散法为半导体器件的产业化及其后的长足发展奠定了基础。扩散法利用杂质原子在高温下能以一定速率向固体内部扩散并形成一定分布的性质在半导体内形成pn结。由于杂质在某些物质,例如SiO2中的扩散系数极低,利用氧化和光刻在硅表面形成选择扩散的窗口,可以实现pn结的平面布局,如图6-2所示,从而诞生了以氧化、光刻、扩散为核心的半导体平面工艺,开创了以集成电路为标志的微电子时代。 用扩散法形成的杂质分布由扩散过程及杂质补偿决定。在表面杂质浓度不变的条件下形成的是余误差分布,在杂质总量不变的条件下形成的是高斯分布,如本节后的附图所示。 3、其他方法 形成pn结的方法还有离子注入法、外延法和直接键合法等,而且这些方法已逐渐成为半导体工业的主流工艺。《半导体工艺》课程将详细介绍,这里不赘述。 4、pn结的杂质分布 pn结的杂质分布一般可近似为两种,即突变结和线性缓变结。合金pn结、高表面浓度的浅扩散结、用离子注入、外延和直接键合法制备的结一般可认为是突变结,而低表面浓度的深扩散结一般视为线性缓变结。直接键合法制备的突变结是最理想的突变结。 图6-3 扩散结的杂质分布形式

最新数值分析课程第五版课后习题答案(李庆扬等)1

第一章 绪论(12) 1、设0>x ,x 的相对误差为δ,求x ln 的误差。 [解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=* ****1)()(ln )(ln x x x x x , 相对误差为* * ** ln ln ) (ln )(ln x x x x r δ εε= = 。 2、设x 的相对误差为2%,求n x 的相对误差。 [解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而n x 的误差为n n x x n x n x x n x x x ** 1 *** %2%2) ()()()(ln * ?=='=-=εε, 相对误差为%2) () (ln )(ln *** n x x x n r == εε。 3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字: 1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5 ?=x 。 [解]1021.1*1 =x 有5位有效数字;0031.0* 2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56* 4 =x 有5位有效数字;0.17*5?=x 有2位有效数字。 4、利用公式(3.3)求下列各近似值的误差限,其中* 4*3*2*1,,,x x x x 均为第3题所给 的数。 (1)* 4*2*1x x x ++; [解]3 334* 4*2*11** *4*2*1*1005.1102 1 10211021)()()()()(----=?=?+?+?=++=? ??? ????=++∑x x x x x f x x x e n k k k εεεε; (2)* 3*2 *1x x x ;

大学物理习题集(下)答案

一、 选择题 1. 对一个作简谐振动的物体,下面哪种说法是正确的? [ C ] (A) 物体处在运动正方向的端点时,速度和加速度都达到最大值; (B) 物体位于平衡位置且向负方向运动时,速度和加速度都为零; (C) 物体位于平衡位置且向正方向运动时,速度最大,加速度为零; (D) 物体处在负方向的端点时,速度最大,加速度为零。 2. 一沿X 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子 的初相为4 3 π,则t=0时,质点的位置在: [ D ] (A) 过1x A 2=处,向负方向运动; (B) 过1x A 2 =处,向正方向运动; (C) 过1x A 2=-处,向负方向运动;(D) 过1 x A 2 =-处,向正方向运动。 3. 一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A ,且向x 轴的正方向运动,代表 此简谐振动的旋转矢量图为 [ B ] 4. 图(a)、(b)、(c)为三个不同的谐振动系统,组成各系统的各弹簧的倔强系数及重物质量如图所示,(a)、(b)、(c)三个振动系统的ω (ω为固有圆频率)值之比为: [ B ] (A) 2:1:1; (B) 1:2:4; (C) 4:2:1; (D) 1:1:2 5. 一弹簧振子,当把它水平放置时,它可以作简谐振动,若把它竖直放置或放在固定的光滑斜面上如图,试判断下面哪种情况是正确的: [ C ] (A) 竖直放置可作简谐振动,放在光滑斜面上不能作简谐振动; (B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动; (C) 两种情况都可作简谐振动; (D) 两种情况都不能作简谐振动。 6. 一谐振子作振幅为A 的谐振动,它的动能与势能相等时,它的相位和坐标分别为: [ C ] (4) 题(5) 题

数值分析 第六章 习题

第六章 习 题 1. 计算下列矩阵的1A ,2A ,A ∞三种范数。 (1)1101A ???=????,(2)312020116A ????=??????? . 2. 用Jacobi 方法和Gauss-Seidel 迭代求解方程组 1231231 238322041133631236x x x x x x x x x ?+=??+?=??++=? 要求取(0)(0,0,0)T x =计算到(5)x ,并分别与精确解(3,2,1)T x =比较。 3. 用Gauss-Seidel 迭代求解 12312312 35163621122x x x x x x x x x ??=??++=???+=?? 以(0)(1,1,1)T x =?为初值,当(1)() 310k k x x +?∞?<时,迭代终止。 4. 已知方程组121122,2,x x b tx x b +=?? +=? (1)写出解方程组的Jacobi 迭代矩阵,并讨论迭代收敛条件。 (2)写出解方程组的Gauss-Seidel 迭代矩阵,并讨论迭代收敛条件. 5. 设有系数矩阵 122111221A ?????=?????? , 211111112B ?????=??????? , 证明:(1)对于系数矩阵A ,Jacobi 迭代收敛,而Gauss-Seidel 迭代不收敛. (2)对于矩阵B ,. 6. 讨论方程组 112233302021212x b x b x b ?????????????=??????????????????? 用Jacobi 迭代和Gauss-Seidel 迭代的收敛性;如果都收敛,比较哪种方法收敛更快.

大学物理下册练习及答案

大学物理下册练习及答 案 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

电磁学 磁力 A 点时,具有速率s m /10170?=。 (1) 欲使这电子沿半圆自A 至C 运动,试求所需 的磁场大小和方向; (2) 求电子自A 运动到C 所需的时间。 解:(1)电子所受洛仑兹力提供向心力 R v m B ev 20 0= 得出T eR mv B 3197 310101.105 .0106.11011011.9---?=?????== 磁场方向应该垂直纸面向里。 (2)所需的时间为s v R T t 87 0106.110 105 .0222-?=??===ππ eV 3100.2?的一个正电子,射入磁感应强度B =的匀强磁场中,其速度 B 成89角,路径成螺旋线,其轴在B 的方向。试求这螺旋线运动的周期T 、螺距h 和半径r 。 解:正电子的速率为 731 19 3106.210 11.9106.110222?=?????==--m E v k m/s 做螺旋运动的周期为 1019 31 106.31 .0106.11011.922---?=????==ππeB m T s 螺距为410070106.1106.389cos 106.289cos --?=????==T v h m 半径为319 7310105.1 0106.189sin 106.21011.989sin ---?=??????==eB mv r m d =1.0mm ,放在 知铜片里每立方厘米有2210?个自由电子,每个电子的电荷19106.1-?-=-e C ,当铜片中有I =200A 的电流流通时, (1)求铜片两侧的电势差'aa U ; (2)铜片宽度b 对'aa U 有无影响为什么 解:(1)53 1928'1023.210 0.1)106.1(104.85 .1200---?-=???-???== nqd IB U aa V ,负号表示'a 侧电势高。 v A C

半导体物理习题第六章第七章答案

第6章 p-n 结 1、一个Ge 突变结的p 区和n 区掺杂浓度分别为N A =1017cm -3和N D =5?1015cm -3,求该pn 结室温下的自建电势。 解:pn 结的自建电势 2(ln )D A D i N N kT V q n = 已知室温下,0.026kT =eV ,Ge 的本征载流子密度1332.410 cm i n -=? 代入后算得:1517 132 510100.026ln 0.36(2.410)D V V ??=?=? 4.证明反向饱和电流公式(6-35)可改写为 202 11()(1)i s n n p p b k T J b q L L σσσ=++ 式中n p b μμ= ,n σ和p σ分别为n 型和p 型半导体电导率,i σ为本征半导体电导率。 证明:将爱因斯坦关系式p p kT D q μ= 和n n kT D q μ=代入式(6-35)得 0000( )p n p n S p n n p n p n p p n n p J kT n kT p kT L L L L μμμμμμ=+=+ 因为002i p p n n p =,0 2 i n n n p n =,上式可进一步改写为 221111( )( )S n p i n p i n p p p n n n p p n J kT n qkT n L p L n L L μμμμμμσσ=+ =+ 又因为 ()i i n p n q σμμ=+ 22222222()(1)i i n p i p n q n q b σμμμ=+=+ 即 22 2 2222 2 ()(1) i i i n p p n q q b σσμμμ==++ 将此结果代入原式即得证

数值分析课后习题答案

第一章 题12 给定节点01x =-,11x =,23x =,34x =,试分别对下列函数导出拉格朗日插值余项: (1) (1) 3 ()432f x x x =-+ (2) (2) 4 3 ()2f x x x =- 解 (1)(4) ()0f x =, 由拉格朗日插值余项得(4)0123() ()()()()()()0 4!f f x p x x x x x x x x x ξ-=----=; (2)(4) ()4!f x = 由拉格朗日插值余项得 01234! ()()()()()() 4! f x p x x x x x x x x x -= ----(1)(1)(3)(4)x x x x =+---. 题15 证明:对于()f x 以0x ,1x 为节点的一次插值多项式()p x ,插值误差 012 10()()()max () 8x x x x x f x p x f x ≤≤-''-≤. 证 由拉格朗日插值余项得 01() ()()()()2!f f x p x x x x x ξ''-= --,其中01x x ξ≤≤, 01 0101max ()()()()()()()() 2!2!x x x f x f f x p x x x x x x x x x ξ≤≤''''-=--≤-- 01210()max () 8x x x x x f x ≤≤-''≤. 题22 采用下列方法构造满足条件(0)(0)0p p '==,(1)(1)1p p '==的插值多项式 ()p x : (1) (1) 用待定系数法; (2) (2) 利用承袭性,先考察插值条件(0)(0)0p p '==,(1)1p =的插值多项式 ()p x . 解 (1)有四个插值条件,故设230123()p x a a x a x a x =+++,2 123()23p x a a x a x '=++, 代入得方程组001231123010231 a a a a a a a a a =? ?+++=?? =? ?++=? 解之,得01230 021 a a a a =??=?? =??=-?

相关文档
最新文档