基于Flexsim的仿真实验报告.

基于Flexsim的仿真实验报告.
基于Flexsim的仿真实验报告.

基于Flexsim的仿真实验报告

专业班级:工业工程一班

姓名:石洋洋

学号:20100770223

4 基于Flexsim的仿真实验

1.实验报告

2.提交Flexsim的仿真图

基于Flexsim的仿真实验报告

一、实验目的与要求

1.1实验目的

Flexsim是一个基于Windows的,面向对象的仿真环境,用于建立离散事件流程过程。Flexsim是工程师、管理者和决策人对提出的“关于操作、流程、动态系统的方案”进行试验、评估、视觉化的有效工具。Flexsim 能一次进行多套方案的仿真实验。这些方案能自动进行,其结果存放在报告、图表里,这样我们可以非常方便地利用丰富的预定义和自定义的行为指示器,像用处、生产量、研制周期、费用等来分析每一个情节。同时很容易的把结果输出到象微软的Word、Excel等大众应用软件里。另外,Flexsim具有强力的商务图表功能,海图(Charts)、饼图、直线图表和3D文书能尽情地表现模型的信息,需要的结果可以随时取得。

本实验的目的是学习flexsim软件的以下相关内容:

●如何建立一个简单布局

●如何连接端口来安排临时实体的路径

●如何在Flexsim实体中输入数据和细节

●如何编译模型

●如何操纵动画演示

●如何查看每个Flexsim实体的简单统计数据

我们通过学习了解flexsim软件,并使用flexsim软件对实际的生产物流建立模型进行仿真运行。从而对其物流过程,加工工序流程进行分析,改进,从而得出合理的运营管理生产。

1.2实验要求

(1)认识Flexsim 仿真软件的基本概念; (2)根据示例建立简单的物流系统的仿真模型;

(3)通过Flexsim 仿真模型理解物流系统仿真的目的和意义 1.2.1实验2.多产品单阶段制造系统仿真与分析

某工厂加工三种类型产品的过程。这三类产品分别从工厂其它车间到达该车间。这个车间有三台机床,每台机床可以加工一种特定的产品类型。一旦产品在相应的机床上完成加工,所有产品都必须送到一个公用的检验台进行质量检测。质量合格的产品就会被送到下一个车间。质量不合格的产品则必须送回相应的机床进行再加工。

我们希望通过仿真实验找到这个车间的瓶颈所在,以回答如下问题:检验台能否及时检测加工好的产品?或者检验台是否会空闲?缓存区的大小重要吗?

该仿真模型的概念模型如下:

机台1

检验台

机台3

机台2

1类产品

3类产品

2类产品

80%不合格产品

20%不合格产品

1.2.2实验3.产品测试工艺仿真与分析

某工厂车间对两类产品进行检验。这两种类型的产品按照一定的时间间隔方式到达。随后,不同类型的产品被分别送往两台不同的检测机进行检测,每台检测机只检测一种特定的产品类型。其中,类型 1的产品到第一台检测机检测,类型 2 的产品到第二台检测机检测。产品检测完毕后,由传送带送往货架区,再由叉车送

到相应的货架上存放。类型 1的产品存放在第 2个货架上,类型 2 的产品存放在第 1个货架上。

我们希望通过仿真运行来回答如下问题:这个检测流程的效率如何?是否存在瓶颈?如果存在,怎样才能改善整个系统的绩效呢?这些问题都是我们希望通过仿真分析得以解决的。

机台1传送带机台2

产品1

产品2

传送带货架2

货架1

二、实验过程

1.建立概念模型

2.建立Flexsim6的模型:

(1)确立概念模型中各元素的模型实体; (2)在新建模型中加入模型实体;

(3)根据各个模型实体之间的关系建立连接;

(4)根据题目要求的系统数据为不同的模型实体设置相应的参数,已达到对各工序实施控制的目的;

3.模型建立之后,模型的运行与分析;

4.运行完成后输出报表,查看每个模型实体的简单统计数据;

5.根据输出数据对生产工艺流程进行分析,找出瓶颈工序,并合理规划工序流程,合理的进行运营管理。

仿真周期设为1小时,使用复演法做多次独立的仿真试验,然后通过观察、统计、分析实时状态图和导出的仿真实验数据,得到最终的仿真结果。

三、实验心得

系统功能相对简单,实现也很容易,且方法多样。为使系统运行达到最优,可分析调整各设备参数及系统配置,以达到系统运行连贯顺畅,无积压无间断的目的。

通过这次试验,加强了对物流系统的理解,也多了解了一个仿真软件,这个软件有三维功能,能够从不同的角度看出系统存在的问题,并且模型的连接分了不同的种类,A连接和S连接,我觉得这一点仅仅是本软件的优点,因为他将单向物流和双向物流区别对待,这样做更加条例清晰。

建模过程中每个参数的调整都是很容易实现的。但在实际中,任何一个参数的调整都可能会极大的影响着成本和收益,因此模型中达到的最优未必能完全应用到实际中去。另外,建模方案可能有很多个,而且最优方案也可能有很多,最终的方案选取,仍需要管理者综合考虑各方面因素进行决策。但系统建模和仿真对实际决策有着重要的参考价值。随着科技的发展,系统建模和方针必将日益显现出其重要的作用。

四、附上实验2中多产品单阶段制造系统仿真的结果

4.1实验2的模型图

输出的实验2多产品单阶段制造系统仿真的截图,如下图所示:

4.2模拟仿真运行时的运行状态及模拟仿真结果

4.2.1输出的模拟仿真运行时的运行状态截图,如下图所示:

在描述系统中我们提到希望能找出系统的瓶颈,有几种途径可以做到这点:第一种方法是,你可以从视觉上观察每个暂存区的容量。如果一个暂存区始终堆积着大量的产品,这就表明从该暂存区取货的一台或几台加工机床形成了系统的瓶颈。

在该模型仿真运行时,由上图可以注意到第二个暂存区堆积很多待加工的产品,而第一个暂存区的待加工产品较少,很显然是由于检查台,也就是processer4的工作能力较低造成的,说明processer4即检查台就是该模型中的瓶颈工序。需要对该工序进行改进,以减少瓶颈带来的损失。

4.2.2模拟运行后的输出数据表:

Flexsim State Report

Time: 48301.85

Object Class idle proce

ssing busy blocke

d

genera

ting

empty colle

cting

releas

ing

Queue1 Queue 0.00% 0.00% 0.00% 0.00% 0.00% 3.49% 0.00% 96.51%

Proces sor1 Processor 11.41% 88.59

%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Proces sor2 Processor 15.96% 84.04

%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Proces sor3 Processor 23.05% 76.95

%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Queue6 Queue 0.00% 0.00% 0.00% 0.00% 0.00% 5.14% 0.00% 94.86%

Proces sor4 Processor 1.83% 98.17

%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Sink8 Sink 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.0

0%

0.00%

Source 1 Source 0.00% 0.00% 0.00% 0.00% 100.00

%

0.00% 0.00% 0.00%

4.2.3根据输出数据,以各个加工工位的加工和空闲时间进行对比,做出圆饼图进行观察各工序的工作状态:

第一个机台Process1:

第二个机台Process2:

第三个机台Process3:

检查台Process4:

4.2.4输出结果分析

在描述系统中我们提到希望能找出系统的瓶颈,第二种途径:从主要工序的空闲与工作的比例元饼图分析,工作的比重最大且接近于100%的即是瓶颈工序。

从以上几个主要工序的空闲与工作的比例元饼图中可以看出,检验台工作的时间占总仿真时间的比例是最大的。通过这些圆饼图,我们可以很容易的发现检验台是瓶颈所在,而非那三台加工机床。

现在已经找出了瓶颈,接下来将考虑瓶颈的改善。这取决于与成本收益相关的多个因素,以及这个车间的长期规划目标。在将来,是否需要以更快的速率加工产品呢?在这个模型中,Source 平均每5 秒生成一个产品,而检测台也是平均每5 秒将一个成品送到Sink。检验台的5 秒平均值是由其4 秒的检测时间和80/20 的路径策略计算得出的。因此随着时间的推移,这个模型的总生产能力下降。如果这个工厂想加工更多的产品,Source 必须有更高的产品到达率(也就是说更短的到达间隔时间)。如果不对检验台进行修改,模型中就会不断积累越来越多的待加工品,而暂存区的容量也会不断增加直到无法再加。为了解决这个问题,我们不得不添加一个检验台,因为检验台是整个系统的瓶颈所在。

如果检验台处暂存区的容量很关键,那么同样需要我们添加一个检验台。当检验台暂存区存货过高而导致过高成本时,添加一个检验台是很明智的,这样使得暂存区的容量不会过高,而该暂存区内待检验产品的等待时间也不会过长。让我们来看看该暂存区的统计值。继续运行此模型,你将会注意到这些数值随着仿真运行而改变。查看平均容量和平均逗留时间值。逗留时间指流动实体在暂存区中停留的时间。在仿真运行的前期,暂存区的平均容量较小,但随着仿真的继续,增大到几百,如果暂存区的容量不是很大或造成成本很高是,那么就有必要增加一个检验台,来缓解瓶颈。

五、附上实验3中产品测试工艺仿真与分析结果

5.1实验3的模型图

输出的实验3产品测试工艺仿真的截图,如下图所示:

5.2模拟仿真运行时的运行状态及模拟仿真结果

5.2.1输出的模拟仿真运行时的运行状态截图,如下图所示:运行状态:

由图可以看出暂存区1的堆积的待加工产品非常多,而缓存区2的容量就几

乎没有堆积,说明两台机床的加工效率较低,造成待加工产品堆积。说明加工机床的加工工序就是该模型中的瓶颈所在。

5.2.2模拟运行后的输出数据表:

5.2.3输出每个模型实体的简单统计数据:

Flexsim State Report

Time: 6628.26

Objec t Class idle proce ssing block ed gener ating empty relea sing waiti ng

for trans porte r

conve ying

trave l empty Trave l loade

d

offse t trave l empty

offs et trav el load ed Sourc e1 Sourc e 0.00% 0.00% 1.43% 98.57%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Queue 2 Queue 0.00% 0.00% 0.00% 0.00% 4.68% 95.32% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Proce ssor3 Proce ssor 4.46% 73.75% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Proce ssor4 Proce ssor 7.31% 69.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% Conve yor5 Conve yor 0.00% 0.00% 0.00% 0.00% 73.94% 0.00% 0.00% 26.06%

0.00% 0.00% 0.00%

0.00% Conve yor6 Conve yor 0.00% 0.00% 0.00% 0.00% 72.13%

0.00% 0.00% 27.87%

0.00% 0.00% 0.00%

0.00% Queue 7 Queue 0.00% 0.00% 0.00% 0.00% 28.51% 0.00% 71.49% 0.00% 0.00% 0.00% 0.00% 0.00% Rack8 Rack 100.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% Rack9 Rack 100.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% Trans porte r11 Trans porte r

16.44% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 35.11% 15.07%

4.45%

28.92%

Source1

Queue1:

Processer1:

Processer2:

系统工程实验报告

系统工程实验报告 学院:管工学院 班级:工业工程102班 姓名:管华同 学号:109094042

实验一:解释结构模型 一、实验目的: 熟悉EXCEL,掌握解释结构模型规范方法。 二、实验内容: 1.已知可达矩阵如下表1 12345678 111010000 201000000 311110000 401010000 501011000 601011111 701011011 800000001 2. EXCEL中对错误!未找到引用源。中的可达矩阵用实用方法建立其递阶结构模型。(1)对可达矩阵进行缩减,得到缩减矩阵 12345678 111010000 201000000 311110000 401010000 501011000 601011111 701011011 800000001 (2)按小到大给每行排序 1 2 3 4 5 6 7 8 每行的和 2 0 1 0 0 0 0 0 0 1 8 0 0 0 0 0 0 0 1 1 4 0 1 0 1 0 0 0 0 2 1 1 1 0 1 0 0 0 0 3 5 0 1 0 1 1 0 0 0 3 3 1 1 1 1 0 0 0 0 4 7 0 1 0 1 1 0 1 1 5 6 0 1 0 1 1 1 1 1 6

(3)调整行列构成对角单位矩阵 2 8 4 1 5 3 7 6 每行的和 2 1 0 0 0 0 0 0 0 1 8 0 1 0 0 0 0 0 0 1 4 1 0 1 0 0 0 0 0 2 1 1 0 1 1 0 0 0 0 3 5 1 0 1 0 1 0 0 0 3 3 1 0 1 1 0 1 0 0 4 7 1 1 1 0 1 0 1 0 5 6 1 1 1 0 1 0 1 1 6 (4)画出递阶结构有向图 28 4 15 37 6(4)递阶结构模型完成。第一级第五级第二级 第三级第四级

Flexsim仿真课设实验报告

实验一多产品多阶段指导系统仿真与分析 一、目的 通过本次上机实验,熟悉和使用Flexsim的基本操作,并建立一个简单的模型,实现相应的功能。 二、问题描述 有一个制造车间由4组机器组成,第1,2,3,4组机器分别有3,2,4,3台相同的机器。这个车间需要加工四种原料,四种原料分别要求完成4、3、2、3道工序,而每道工序必须在指定的机器组上处理,按照事先规定好的工艺顺序进行。 假定在保持车间逐日连续工作的条件下,对系统进行365天的仿真运行(每天按8 小时计算),计算每组机器队列中的平均产品数以及平均等待时间。通过仿真运行,找出影响系统的瓶颈因素,并对模型加以改进。 系统数据 四种原料到达车间的间隔时间分别服从均值为50,30,75,40分钟的正态分布。 四种原料的工艺路线如表6.1 所示。第1种原料首先在第3组机器上加工,然后在第1组、再在第2组机器上加工,最后在第4组机器上完成最后工序。第1种原料在机器组3、1、2、4加工,在机器组3、1、2、4加工的平均时间分别为30、36、51、30;第2种原料在机器组4、1、3加工,在机器组4、1、3加工的平均时间分别为66、48、45;第3种原料在机器组2、3加工,在机器组2、3加工的平均时间分别为72、60,第四种原料在机器组在1、4、2加工,在机器组1、4、2加工的平均时间分别为60,55,42如下表所示。 该组机器处的一个一个服从先进现出FIFO(FIRST IN FIRST OUT)规则的队列。前一天没有完成的任务,第二天继续加工,在某机器上完成一个工序的时间服从Erlang分布,其平均值取决于原料的类别以及机器的组别。例如表11.1中的第2类原料,它的第一道工序是在第4组机器上加工,加工时间服从66的Erlang分布。

信号与系统仿真实验报告

信号与系统仿真实验报告1.实验目的 了解MATLAB的基本使用方法和编程技术,以及Simulink平台的建模与动态仿真方法,进一步加深对课程内容的理解。 2.实验项目 信号的分解与合成,观察Gibbs现象。 信号与系统的时域分析,即卷积分、卷积和的运算与仿真。 信号的频谱分析,观察信号的频谱波形。 系统函数的形式转换。 用Simulink平台对系统进行建模和动态仿真。 3.实验内容及结果 3.1以周期为T,脉冲宽度为2T1的周期性矩形脉冲为例研究Gibbs现象。 已知周期方波信号的相关参数为:x(t)=∑ak*exp(jkω),ω=2*π/T,a0=2*T1/T,ak=sin(kωT1)/kπ。画出x(t)的波形图(分别取m=1,3,7,19,79,T=4T1),观察Gibbs现象。 m=1; T1=4; T=4*T1;k=-m:m; w0=2*pi/T; a0=2*T1/T; ak=sin(k*w0*T1)./(k*pi); ak(m+1)=a0; t=0:0.1:40; x=ak*exp(j*k'*w0*t); plot(t,real(x)); 3.2求卷积并画图 (1)已知:x1(t)=u(t-1)-u(t-2), x2(t)=u(t-2)-u(t-3)求:y(t)=x1(t)*x2(t)并画出其波形。 t1=1:0.01:2; f1=ones(size(t1)); f1(1)=0; f1(101)=0; t2=2:0.01:3; f2=ones(size(t2)); f2(1)=0; f2(101)=0; c=conv(f1,f2)/100;

t3=3:0.01:5; subplot(311); plot(t1,f1);axis([0 6 0 2]); subplot(312); plot(t2,f2);axis([0 6 0 2]); subplot(313); plot(t3,c);axis([0 6 0 2]); (2)已知某离散系统的输入和冲击响应分别为:x[n]=[1,4,3,5,1,2,3,5], h[n]=[4,2,4,0,4,2].求系 统的零状态响应,并绘制系统的响应图。 x=[1 4 3 5 1 2 3 5]; nx=-4:3; h=[4 2 4 0 4 2]; nh=-3:2; y=conv(x,h); ny1=nx(1)+nh(1); ny2=nx(length(nx))+nh(length(nh)); ny=[ny1:ny2]; subplot(311); stem(nx,x); axis([-5 4 0 6]); ylabel('输入') subplot(312); stem(nh,h); axis([-4 3 0 5]); ylabel('冲击效应') subplot(313); stem(ny,y); axis([-9 7 0 70]); ylabel('输出'); xlabel('n'); 3.3 求频谱并画图 (1) 门函数脉冲信号x1(t)=u(t+0.5)-u(t-0.5) N=128;T=1; t=linspace(-T,T,N); x=(t>=-0.5)-(t>=0.5); dt=t(2)-t(1); f=1/dt; X=fft(x); F=X(1:N/2+1); f=f*(0:N/2)/N; plot(f,F)

安工大系统工程实验报告

《系统工程》实验报告 姓名:**** 班级:**** 学号:**** 指导老师:**** 2014年12 月4 日

实验三 简单库存模型 一、 实验目的 1、 熟悉STELLA 软件的基本操作 2、 加深对系统动力学主要要素和基本思想的理解 3、 学会利用STELLA 软件建立一阶反馈系统模型、仿真运行及结果分析 二、 实验要求 1、简单库存模型各变量及其因果关系图如下图: 2、各变量之间的关系可用如下方程表示: LI?K=I ?J+DT*R1?JK NI=1000 RR1?KL=DK/Z AD?K=Y-I ?K CZ=5 CY=6000 3、要求利用STELLA 建立上述库存模型的流图,仿真计算并分析结果 三、实验步骤 1、确定水准变量、速率变量、辅助变量、常量及水准变量初值; 2、熟悉STELLA 软件操作指导,建立模型的四个基本构造块为:栈(stock )、流(flow )、转换器(converter)、连接器(connector ),设置仿真参数(采用默认值); 2、根据因果关系图连接流; 3、确定水准方程、速率方程、辅助方程、赋初值方程和常量方程; 库存量 库存 差额 订货量 + (—) R1 D I — + 期望库存Y

4、建立模型仿真结果分析所需的数据模块; 5、仿真及结果分析 实验内容: 1.确定水准变量、速率变量、辅助变量、常量及水准变量初值; 2.建立四个基本块,根据关系图连接,如下图 3.确定水准方程、速率方程、辅助方程、赋初值方程和常量方程,并且运行仿真得输出特性示意图,如下图.

4.仿真得出数据随时间变化的精确流程,如下图

物流仿真Flexsim实验2报告

14.2 自动分拣系统仿真 袁峰 0726210427 1.实验目的 通过建立一个传送带系统,学习Flexsim提供的运动系统的定义;学习Flexsim提供的传送系统的建模;进一步学习模型调整与系统优化。 2.实验内容 (1)仿真模型截图 自动分拣系统仿真模型的正投视图的截图如图2-1所示。 图2-1 自动分拣系统仿真模型的正投视图 (2)仿真模型各对象参数设置说明 仿真模型各对象参数设置说明如表2-1所示。 表2-1 各对象参数设置说明

(3)仿真结束时间 根据24小时(86400)工作制和8小时(28800)工作制设定模型运行, 所以仿真结束时间有两个,分别为:86400和28800。 3.仿真结果分析 (1)该分拣系统一天的总货物流量 该分拣系统一天的总货物流量是系统末端四个Queue和一个Sink的输入量之和,5次实验结果如下: 该系统的总货物流量如表2-2所示。 表2-2 总货物流量表 (2)系统的最大日流量 8小时(28800)工作制,该系统运行5次,最后4个Queue的实验数据如表2-3所示。 表2-3 最后4个Queue的实验数据

所以,最大日流量= 59.8÷8.776%÷95%+134.8÷29.576%÷96%+93.4÷13.356%÷97%+316.2÷44.474%÷98% = 2638.460 (3)8小时工作制和24小时工作制的部分数据对比 四个处理器的5次实验数据分别如表2-4至2-7所示。 表2-4 Processor1的利用率 表2-5 Processor2的利用率 表2-6 Processor3的利用率

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

通信工程系统仿真实验报告

通信原理课程设计 实验报告 专业:通信工程 届别:07 B班 学号:0715232022 姓名:吴林桂 指导老师:陈东华

数字通信系统设计 一、 实验要求: 信源书记先经过平方根升余弦基带成型滤波,成型滤波器参数自选,再经BPSK ,QPSK 或QAM 调制(调制方式任选),发射信号经AWGN 信道后解调匹配滤波后接收,信道编码可选(不做硬性要求),要求给出基带成型前后的时域波形和眼图,画出接收端匹配滤波后时域型号的波形,并在时间轴标出最佳采样点时刻。对传输系统进行误码率分析。 二、系统框图 三、实验原理: QAM 调制原理:在通信传渝领域中,为了使有限的带宽有更高的信息传输速率,负载更多的用户必须采用先进的调制技术,提高频谱利用率。QAM 就是一种频率利用率很高的调制技术。 t B t A t Y m m 00sin cos )(ωω+= 0≤t ≤Tb 式中 Tb 为码元宽度t 0cos ω为 同相信号或者I 信号; t 0s i n ω 为正交信号或者Q 信号; m m B A ,为分别为载波t 0cos ω,t 0sin ω的离散振幅; m 为 m A 和m B 的电平数,取值1 , 2 , . . . , M 。 m A = Dm*A ;m B = Em*A ; 式中A 是固定的振幅,与信号的平均功率有关,(dm ,em )表示调制信号矢量点在信号空

间上的坐标,有输入数据决定。 m A 和m B 确定QAM 信号在信号空间的坐标点。称这种抑制载波的双边带调制方式为 正交幅度调制。 图3.3.2 正交调幅法原理图 Pav=(A*A/M )*∑(dm*dm+em*em) m=(1,M) QAM 信号的解调可以采用相干解调,其原理图如图3.3.5所示。 图3.3.5 QAM 相干解调原理图 四、设计方案: (1)、生成一个随机二进制信号 (2)、二进制信号经过卷积编码后再产生格雷码映射的星座图 (3)、二进制转换成十进制后的信号 (4)、对该信号进行16-QAM 调制 (5)、通过升余弦脉冲成形滤波器滤波,同时产生传输信号 (6)、增加加性高斯白噪声,通过匹配滤波器对接受的信号滤波 (7)、对该信号进行16-QAM 解调 五、实验内容跟实验结果:

flexsim物流工程实验报告

垃圾回收场仿真与分析 1.建立概念模型 1.1系统描述 近几十年来,由于人类的滥砍、滥伐,无情的破坏我们的大自然,地球上能用的资产和能源逐渐地减少,环保团体发现如果我们不再注重保护环境,终有一天我们会失去地球这个美好的家园。所以近年来,环保团体大力的提倡垃圾回收,位于某地的一家垃圾回收站,把回收来的资源分成铁铝罐、保特瓶和塑胶三大类后存储起来。下面这个模型就是对该资源回收站的仿真。 1.2系统数据 垃圾到达的时间间隔服从均值为15,标准差为3的正态分布; 分拣垃圾的时间间隔服从最大值为7的的指数分布; 储存垃圾的容器容积各为500单位; 垃圾经过分类处理后需要起重机和叉车运送到储存容器。 1.3概念模型

2.建立Flexsim4模型 第1步:模型实体设计 第2步:在模型中加入Source(发生器) 从库中拖入一个Source到模型中。右键点击该实体,选择Properties(属性), 在弹出的属性页中选择Visual项目,改变Position, Rotation, and Size 中的RZ(绕Z轴方向旋转的角度)为45,使Processor偏转45度角放置。点击Apply 和OK保存设置。更改后布局图如图12-3所示: 说明:

所有固定实体资源都可以通过这种操作来改变摆放的角度,故本章后面的类似实体摆放将不再截图描述操作细节。 第3步:在模型中加入Queue和Separator 从库中拖放一个Queue和一个Separator到模型中。如图摆放它们的角度和位置。 其中Queue和Separator的摆放角度(RZ值)都为45度。如图12-4所示: 第4步:在模型中加入Conveyor(传送带) 拖放两条Conveyor到模型中。 更改Conveyor的摆放角度和布局。 先改变Conveyor属性页中的RZ值为-45度。 双击Conveyor打开参数页,点选Layout项目。 更改section1中得length数值为5; 点击Add Curved添加一段弯曲得传送带,设置其radius为3。 点击Apply和OK保存并关闭窗口。

系统仿真实验报告

中南大学系统仿真实验报告 指导老师胡杨 实验者 学号 专业班级 实验日期 2014.6.4 学院信息科学与工程学院

目录 实验一MATLAB中矩阵与多项式的基本运算 (3) 实验二MATLAB绘图命令 (7) 实验三MATLAB程序设计 (9) 实验四MATLAB的符号计算与SIMULINK的使用 (13) 实验五MATLAB在控制系统分析中的应用 (17) 实验六连续系统数字仿真的基本算法 (30)

实验一MATLAB中矩阵与多项式的基本运算 一、实验任务 1.了解MATLAB命令窗口和程序文件的调用。 2.熟悉如下MATLAB的基本运算: ①矩阵的产生、数据的输入、相关元素的显示; ②矩阵的加法、乘法、左除、右除; ③特殊矩阵:单位矩阵、“1”矩阵、“0”矩阵、对角阵、随机矩阵的产生和运算; ④多项式的运算:多项式求根、多项式之间的乘除。 二、基本命令训练 1.eye(m) m=3; eye(m) ans = 1 0 0 0 1 0 0 0 1 2.ones(n)、ones(m,n) n=1;m=2; ones(n) ones(m,n) ans = 1 ans = 1 1

3.zeros(m,n) m=1,n=2; zeros(m,n) m = 1 ans = 0 0 4.rand(m,n) m=1;n=2; rand(m,n) ans = 0.8147 0.9058 5.diag(v) v=[1 2 3]; diag(v) ans = 1 0 0 0 2 0 0 0 3 6.A\B 、A/B、inv(A)*B 、B*inv(A) A=[1 2;3 4];B=[5 6;7 8]; a=A\B b=A/B c=inv(A)*B d=B*inv(A) a = -3 -4 4 5 b = 3.0000 -2.0000 2.0000 -1.0000

系统工程仿真实验报告

系统工程仿真实验报告 姓名:_蒋智颖_ 学号:_110061047_ 成绩:___________ 实验一:基于VENSIM的系统动力学仿真 一、实验目的 VENSIM是一个建模工具,可以建立动态系统的概念化的,文档化的仿真、分析和优化模型。PLE(个人学习版)是VENSIM的缩减版,主要用来简单化学习动态系统,提供了一种简单富有弹性的方法从常规的循环或储存过程和流程图建立模型。本实验就是运用VENSIM进行系统动力学仿真,进一步加深对系统动力学仿真的理解。 二、实验软件 VENSIM PLE 三、原理 1、在VENSIM中建立系统动力学流图; 2、写出相应的DYNAMO方程; 3、仿真出系统中水准变量随时间的响应趋势; 四、实验内容及要求 某城市国营和集体服务网点的规模可用SD来研究。现给出描述该问题的DYNAMO方程及其变量说明。 L S·K=S·J+DT*NS·JK N S=90 R NS·KL=SD·K*P·K/(LENGTH-TIME·K) A SD·K=SE-SP·K C SE=2 A SP·K=SR·K/P·K A SR·K=SX+S·K C SX=60 L P·K=P·J+DT*NP·JK N P=100 R NP·KL=I*P·K C I=0.02 其中:LENGTH为仿真终止时间、TIME为当前仿真时刻,均为仿真控制变量;S为个体服务网点数(个)、NS为年新增个体服务网点数(个/年)、SD为实际千人均服务网点与期望差(个/千人)、SE为期望的千人均网点数、SP为的千人均网点数(个/千人)、SX为非个体服务网点数(个)、SR为该城市实际拥有的服务网点数(个)、P为城市人口数(千人)、NP为年新

物流系统仿真

基于Flexsim的仿真实验报告

基于Flexsim的仿真实验报告 一、实验目的与要求 1.1实验目的 Flexsim是一个基于Windows的,面向对象的仿真环境,用于建立离散事件流程过程。Flexsim是工程师、管理者和决策人对提出的“关于操作、流程、动态系统的方案”进行试验、评估、视觉化的有效工具。 Flexsim 能一次进行多套方案的仿真实验。这些方案能自动进行,其结果存放在报告、图表里,这样我们可以非常方便地利用丰富的预定义和自定义的行为指示器,像用处、生产量、研制周期、费用等来分析每一个情节。同时很容易的把结果输出到象微软的Word、Excel等大众应用软件里。另外,Flexsim具有强力的商务图表功能,海图(Charts)、饼图、直线图表和3D文书能尽情地表现模型的信息,需要的结果可以随时取得。 本实验的目的是学习flexsim软件的以下相关容: 如何建立一个简单布局

●如何连接端口来安排临时实体的路径 ●如何在Flexsim实体中输入数据和细节 ●如何编译模型 ●如何操纵动画演示 ●如何查看每个Flexsim实体的简单统计数据 我们通过学习了解flexsim软件,并使用flexsim软件对实际的生产物流建立模型进行仿真运行。从而对其物流过程,加工工序流程进行分析,改进,从而得出合理的运营管理生产。 1.2实验要求 (1)认识Flexsim仿真软件的基本概念; (2)根据示例建立简单的物流系统的仿真模型; (3)通过Flexsim仿真模型理解物流系统仿真的目的和意义 二、实验步骤

1.建立概念模型 2.建立Flexsim7的模型: (1)确立概念模型中各元素的模型实体; (2)在新建模型中加入模型实体; (3)根据各个模型实体之间的关系建立连接; (4)根据题目要求的系统数据为不同的模型实体设置相应的参数,已达到对各工序实施控制的目的; 三、实验心得 系统功能相对简单,实现也很容易,且方法多样。为使系统运行达到最优,可分析调整各设备参数及系统配置,以达到系统运行连贯顺畅,无积压无间断的目的。 通过这次试验,加强了对物流系统的理解,也多了解了一个仿真软件,这个软件有三维功能,能够从不同的角度看出系统存在的问题,并且模型的连接分了不同的种类,A连接和S连接,我觉得这一点仅仅是本软件的优点,因为他将单向物流和双向物流区别对待,这样做更加条

交通运输系统仿真实验报告

一、系统描述 1.1.系统背景 本系统将基于下面的卫星屏幕快照创建一个模型。当前道路网区域的两条道路均为双向,每个运动方向包含一条车道。Tapiolavagen路边有一个巴士站,Menninkaisentie路边有一个带五个停车位的小型停车场。 1.2.系统描述 (1)仿真十字路口以及三个方向的道路,巴士站,停车点;添加小汽车、公交车的三维动画,添加红绿灯以及道路网络描述符; (2)创建仿真模型的汽车流程图,三个方向产生小汽车,仿真十字路口交通运行情况。添加滑条对仿真系统中的红绿灯时间进行实时调节。添加分析函数,统计系统内汽车滞留时间,用直方图进行实时展示。 二、仿真目标 1、timeInSystem值:在流程图的结尾模块用函数统计每辆汽车从产生到丢弃的,在系统中留存的时间。 2、p_SN为十字路口SN方向道路的绿灯时间,p_EW为十字路口EW方向道路的绿灯时间。 3、Arrival rate:各方向道路出现车辆的速率(peer hour)。

三、系统仿真概念分析 此交通仿真系统为低抽象层级的物理层模型,采用离散事件建模方法进行建模,利用过程流图构建离散事件模型。 此十字路口交通仿真系统中,实体为小汽车和公交车,可以源源不断地产生;资源为道路网络、红绿灯时间、停车点停车位和巴士站,需要实施分配。系统中小汽车(car)与公共汽车(bus)均为智能体,可设置其产生频率参数,行驶速度,停车点停留时间等。 四、建立系统流程 4.1.绘制道路 使用Road Traffic Library中的Road模块在卫星云图上勾画出所有的道路,绘制交叉口,并在交叉口处确保道路连通。 4.2.建立智能体对象 使用Road Traffic Library中的Car type模快建立小汽车(car)以及公共汽车(bus)的智能体对象。 4.3.建立逻辑 使用Road Traffic Library中的Car source、Car Move To、Car Dispose、

《工程系统建模》实验报告.

《工程系统建模与仿真》实验报告 姓名XXXXXXX 学号XXXXXXX 班级XXXXXXX 专业XXXXXXX 报告提交日期XXXXXXX

实验一 扭摆法测定物体的转动惯量 一、 实验名称 扭摆法测定物体的转动惯量 二、 同组成员 学号 姓名 XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX XXXXXX XXX 三、 实验器材 1) 转动惯量测试仪 2) 数字式电子台秤 3) 游标卡尺 4) 扭摆及几种有规则的待测转动惯量的物体:金属载物圆盘、塑料圆柱体、 木球、验证转动惯量平行轴定理用的金属细杆,杆上有两块可以自由移动的金属滑块。 四、 实验原理 转动惯量的测量,一般都是使刚体以一定形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。本实验使物体作扭转摆动,由于摆动周期及其它参数的测定计算出物体的转动惯量。 扭摆的构造如图 1-1所示,在垂直轴1上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。在轴的上方可以装上各种待测物体。垂直轴与支座间装有轴承,以降低摩擦力矩。3为水平仪,用来调整系统平衡。 将物体在水平面内转过一定角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作周期往返扭转运动。 根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正 比,即:M=-Kθ (1) 上式中,K 为弹簧的扭转常数。 由转动定律M =Iβ得:β=M /I (2) 令ω2=K /I ,忽略轴承的摩擦阻力矩,由式(1)、(2)得: 2 22 d K dt I θβθωθ= =-=- 图 1-1 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比, 且方向相反。此方程的解为:θ=Acos (ωt +?)。 式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期

物流系统flexsim仿真实验报告

广东外语外贸大学 物流系统仿真实验 通达企业立体仓库实验报告 指导教师:翟晓燕教授专业:物流管理1101 姓名:李春立 20110402088 吴可为 201104020117 陈诗涵 201104020119 丘汇峰 201104020115

目录 一、企业简介 (2) 二、通达企业立体仓库模型仿真 (2) 1................................ 模型描述:2 2................................ 模型数据:3 3.............................. 模型实体设计4 4.................................. 概念模型4 三、仿真模型内容——Flexsim模型 (4) 1.................................. 建模步骤4 2.............................. 定义对象参数5 四、模型运行状态及结果分析 (7) 1.................................. 模型运行7 2................................ 结果分析:7 五、报告收获 (9) 一、企业简介 二、通达企业立体仓库模型仿真 1. 模型描述: 仓储的整个模型分为入库和出库两部分,按作业性质将整个模型划分为暂存区、分拣区、

储存区以及发货区。 入库部分的操作流程是: ①.(1)四种产品A,B,C,D首先到达暂存区,然后被运输到分类输 送机上,根据设定的分拣系统将A,B,C,D分拣到1,2,3,4,端口; ②.在1,2,3,4,端口都有各自的分拣道到达处理器,处理器检验合格 的产品被放在暂存区,不合格的产品则直接吸收掉;每个操作工则将暂存 区的那些合格产品搬运到货架上;其中,A,C产品将被送到同一货架上, 而B,D则被送往另一货架; ③.再由两辆叉车从这两个货架上将A/B,C/D运输到两个暂存区上; 此时,在另一传送带上送来包装材料,当产品和包装材料都到达时,就可 以在合成器上进行对产品进行包装。 出库部分的操作流程是:包装完成后的产品将等待被发货。 2. 模型数据: ①.四种货物A,B,C,D各自独立到达高层的传送带入口端: A: normal(400,50) B: normal(400,50) C: uniform(500,100) D: uniform(500,100) ②.四种不同的货物沿一条传送带,根据品种的不同由分拣装置将其推 入到四个不同的分拣道口,经各自的分拣道到达操作台。 ③.每检验一件货物占用时间为60,20s。 ④.每种货物都可能有不合格产品。检验合格的产品放入检验器旁的暂 存区;不合格的吸收器直接吸收;A的合格率为95%,B为96%,C的合格 率为97%,D的合格率为98%。 ⑤.每个检验操作台需操作工一名,货物经检验合格后,将货物送至货 架。 ⑥.传送带叉车的传送速度采用默认速度(包装物生成时间为返回60 的常值),储存货物的容器容积各为1000单位,暂存区17,18,21容量为 10;

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

系统工程仿真计算实验报告

系统工程实验报告 开课实验室: 1、实验目的 通过vensim仿真软件使用介绍,结合理论课内容,根据系统工程课后案例构建系统动力学模型,使学生得到仿真软件的基本技能训练。 2、实验内容 本部分实验分两个环节,第一环节主要熟悉vensim软件各功能模块的情况并能够完成课本例题的仿真;第二个环节主要是运用vensim软件解决课后习题第9、10、11、12题的流程图绘制以及仿真,并结合部分试题撰写实验报告(把过程截图放到报告中)。 9、绘制因果关系图和流程图 9.1因果关系图 9.2流程图 10 画出因果关系图和流程图,写出相应的DYNAMO方程,对该校未来3~5年的在校本科生和教师人数进行仿真计算,分析系统动力学方法的优点,以及缺点,能否用其他模型

方法来分?又如何分析? 10.1因果关系图 10.2流程图 10.3DYNAMO方程 L S.K=S.J+DT*SR.JK L T.K=T.J+DT*TR.JK N S=10000 N T=1500 R SR.KL=X*T.K R TR.KL=W*S.K C X=1 C Y=0.05 10.4仿真计算(以年为单位)

系统动力学方法的优点: (1)系统动力学是自然科学的理论体系(系统论,控制论,信息论)与经济学的综合,可以用来分析复杂的社会经济系统,帮助做出决策。 (2)系统动力学的方法是一种面向实际结构模型的建模方法,可以方便的处理非线性和时变现象,能做长期、动态、战略的仿真分析与研究。 (3)系统动力学定义复杂系统为高阶次、多回路和非线性的反馈结构,绘制因果关系图和流图,可以知道各个因素之间的因果关系。 (4)系统动力学以仿真实验为基本手段,以计算机为主要工具,进行计算时较为方便,数据较为精确。 系统动力学的缺点: (1)系统动力学是在对一些系统的研究之后,进行主观抽象和和概括的结果,存在一定的主观性。(2)进行系统动力学仿真计算时,必须有数据的支撑才能进行仿真。 (3)DYNAMO方程的建立需要一定的数学基础,需要也一定的计算机软件操作基础。 (4)系统动力学能做长期、动态的战略分析,相对于短期,中期,较为有限。 可以使用数学模型进行分析,采用状态空间模型法,构建差分方程。 11、 绘制相应的流程图以及因果关系图,在因果关系图当中找出因果反馈回路,并判断回路的性质,根据给出的方程,进一步仿真,提供仿真结果,并对结果进行分析。 11.1因果关系图 一阶正反馈回路:城市人口数、年增长人口数 一阶负反馈回路:年新增个体网点服务数、个体网点服务数、实际拥有服务网点数、千人均网点数、实际人均服务网点与期望差。

嵌入式操作系统实验报告

《嵌入式操作系统》实验报告 班级计算机 学号 姓名 指导教师庄旭菲

内蒙古工业大学信息工程学院计算机系 2018年6月 实验一 Linux内核移植与编译实验 1. 实验目的 了解 Linux 内核相关知识与内核结构 了解 Linux 内核在 ARM 设备上移植的基本步骤和方法 掌握 Linux 内核裁剪与定制的基本方法 2. 实验内容 分析 Linux 内核的基本结构,了解 Linux 内核在 ARM 设备上移植的一些基本步骤及常识。 学习 Linux 内核裁剪定制的基本配置方法,利用 UP-Magic210 型设备配套 Linux 内核进行自定义功能(如helloworld 显示)的添加,并重新编译内核源码,生成内核压缩文件 zImage,下载到 UP-Magic210 型设备中测试。 3. 实验步骤 实验目录:/UP-Magic210/SRC/kernel/编译内核:在宿主机端为UP-Magic210 设备的Linux 内核编写简单的测试驱动(内核)程序并修改内核目录中相关文件,添加对测试驱动程序的支持。 (1)、使用 vim 编辑器手动编写实验代码

内如如下: #include #include MODULE_LICENSE("Dual BSD/GPL"); (3)、进入实验内核源码目录修改 driver/char/目录下的 Makefile 文件,按照内核中Makefile 语法添加 helloworld程序的编译支持 [root@localhost vi drivers/char/Makefile 在 Makefile 中(大约在 91 行)添加如下一行 obj-$(CONFIG_TOSHIBA) += obj-$(CONFIG_I8K) += obj-$(CONFIG_DS1620) += obj-$(CONFIG_HW_RANDOM) += hw_random/ obj-$(CONFIG_HELLO_MODULE) += obj-$(CONFIG_PPDEV) += (4)、运行 make menuconfig 配置内核对 helloworld 程序的支持: [root@localhost make distclean [root@localhost make menuconfig 先加载内核配置单,如图: 然后进入到 Device Drivers --->菜单中如图:

物流系统flexsim仿真实验报告

物流系统f l e x s i m仿真 实验报告 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

广东外语外贸大学 物流系统仿真实验 通达企业立体仓库实验报告 指导教师:翟晓燕教授专业:物流管理1101

目录

一、企业简介 二、通达企业立体仓库模型仿真 1.模型描述: 仓储的整个模型分为入库和出库两部分,按作业性质将整个模型划分为暂存区、分拣区、储存区以及发货区。 入库部分的操作流程是: ①.(1)四种产品A,B,C,D首先到达暂存区,然后被运 输到分类输送机上,根据设定的分拣系统将A,B,C,D分拣到 1,2,3,4,端口; ②.在1,2,3,4,端口都有各自的分拣道到达处理器,处理 器检验合格的产品被放在暂存区,不合格的产品则直接吸收掉; 每个操作工则将暂存区的那些合格产品搬运到货架上;其中,A, C产品将被送到同一货架上,而B,D则被送往另一货架; ③.再由两辆叉车从这两个货架上将A/B,C/D运输到两个 暂存区上;此时,在另一传送带上送来包装材料,当产品和包装 材料都到达时,就可以在合成器上进行对产品进行包装。 出库部分的操作流程是:包装完成后的产品将等待被发货。 2.模型数据: ①.四种货物A,B,C,D各自独立到达高层的传送带入口端:

A:normal(400,50)B:normal(400,50)C:uniform(500,100)D:uniform(500,100) ②.四种不同的货物沿一条传送带,根据品种的不同由分拣 装置将其推入到四个不同的分拣道口,经各自的分拣道到达操作 台。 ③.每检验一件货物占用时间为60,20s。 ④.每种货物都可能有不合格产品。检验合格的产品放入检 验器旁的暂存区;不合格的吸收器直接吸收;A的合格率为95%, B为96%,C的合格率为97%,D的合格率为98%。 ⑤.每个检验操作台需操作工一名,货物经检验合格后,将 货物送至货架。 ⑥.传送带叉车的传送速度采用默认速度(包装物生成时间 为返回60的常值),储存货物的容器容积各为1000单位,暂存 区17,18,21容量为10; ⑦.分拣后A、C存放在同一货架,B、D同一货架,之后由 叉车送往合成器。合成器比例A/C : B/D : 包装物 = 1: 1 :4 整个流程图如下: 3.模型实体设计

《Flexsim仿真实验》报告

安徽工业大学管理科学与工程学院 《Flexsim仿真实验》报告 专业物流工程班级流131 姓名潘霞学号 139094152 指导老师张洪亮 实验(或实训)时间十九周

实验报告提交时间 2016年7月7日 一、实验(或实训)目的、任务 1基本掌握全局表的使用 2理解简单的仿真语言 3简单使用可视化工具 二、实验(或实训)基本内容(要点) 运用Flexsim软件了解多产品加工生产系统仿真的过程。 模型介绍: 发生器产生四种临时实体,服从整数均匀分布,类型值分别为1、2、3、4,颜色分别为绿色、蓝色、白色、黄色,进入暂存区1;临时实体到达的时间间隔exponential(0,10,0) 然后随机进入处理器进行加工,可以使用的处理器有四个,不同类型的临时实体在处理器上的加工时间不同,详情如下表: 加工结束后,进入暂存区2存放,并由叉车搬运至货架。

同时,在各个处理器附近用可视化工具显示该处理器的实时加工时间。 三、实验(实训)原理(或借助的理论) 系统仿真的基本概念 系统、模型和系统仿真 系统式相互联系、相互作用、的对象的组合。可以分为工程系统和非工程系统。系统模型是反映内部要素的关系,反映系统某昔日方面本质特征,以及内部要素与外界环境关系的形同抽象。模型主要分为两大类:一类是形象模型,二类是抽象模型,包括概念模型、模拟模型、图标模型和数学模型等。 通过Flexsim可成功解决:提高设备的利用率,减少等候时间和排队长度,有效分配资源,消除缺货问题,把故障的负面影响减至最低,把废弃物的负面影响减至最低,研究可替换的投资概念,决定零件经过的时间,研究降低成本计划,建立最优批量和工件排序,解决物料发送问题,研究设备预置时间和改换工具的影响。 Flexsim软件的基本术语:Flexsim实体,临时实体,临时实体类型,端口,模型视图。 四、所使用到的实验设备、仪器、工具、图纸或软件等 计算机 Flexsim软件 五、实验(或实训)步骤 步骤一:模型布局 双击Flexsim图标打开应用程序,此时可看到Flexsim菜单、工具条、实

通信系统仿真实验报告(DOC)

通信系统实验报告——基于SystemView的仿真实验 班级: 学号: 姓名: 时间:

目录 实验一、模拟调制系统设计分析 -------------------------3 一、实验内容-------------------------------------------3 二、实验要求-------------------------------------------3 三、实验原理-------------------------------------------3 四、实验步骤与结果-------------------------------------4 五、实验心得------------------------------------------10 实验二、模拟信号的数字传输系统设计分析------------11 一、实验内容------------------------------------------11 二、实验要求------------------------------------------11 三、实验原理------------------------------------------11 四、实验步骤与结果------------------------------------12 五、实验心得------------------------------------------16 实验三、数字载波通信系统设计分析------------------17 一、实验内容------------------------------------------17 二、实验要求------------------------------------------17 三、实验原理------------------------------------------17 四、实验步骤与结果------------------------------------18 五、实验心得------------------------------------------27

相关文档
最新文档