正弦余弦值

正弦余弦值
正弦余弦值

1、sin0°=0

2、sin90°=1

3、sin180°=0

4、cos0°=1

5、cos90°=0

6、cos180°=-1

7、sin-30°

8、sin-45°=-

9、sin-60°=-

10、sin-90°=-1

11、cos-

(1)特殊角三角函数值sin0=0 sin30=

0.5 sin45=

0.7071二分之根号2 sin60=

0.8660二分之根号3 sin90=1 cos0=1 cos30= 0.4二分之根号3 cos45=

0.1二分之根号2 cos60=

0.5 cos90=0 tan0=0 tan30=

0.9三分之根号3 tan45=1

tan60=

1.根号3 tan90=无cot0=无cot30=

1.根号3 cot45=1cot60= 0.9三分之根号3 cot90=0 附:

三角函数值表

sin0=0,

sin15=(√6-√2)/4 ,

sin45=√

sin60=√

sin75=(√6+√2)/2 ,

sin90=1,

sin105=√√

sin120=√√

(√6-√2)/4

sin180=0

sin270=-1

sin360=0

sin1=

0.

1.诱导公式

sin(-a)=-sin(a)

cos(-a)=cos(a)

sin(2π-a)=cos(a)

cos(2π-a)=sin(a)

sin(2π+a)=cos(a)

cos(2π+a)=-sin(a)

sin(π-a)=sin(a)

cos(π-a)=-cos(a)

sin(π+a)=-sin(a)

cos(π+a)=-cos(a)

tgA=tanA=sinAcosA

2.两角和与差的三角函数

sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化积公式

sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)?sin(b)=2cos(a+b2)sin(a-b2) cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)

4.积化和差公式(上面公式反过来就得到了) sin(a)sin(b)=-12?[cos(a+b)-cos(a-b)]

cos(a)cos(b)=12?[cos(a+b)+cos(a-b)]

sin(a)cos(b)=12?[sin(a+b)+sin(a-b)]

5.二倍角公式

sin(2a)=2sin(a)cos(a)

cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 6.半角公式

sin2(a2)=1-cos(a)2

cos2(a2)=1+cos(a)2

tan(a2)=1-cos(a)sin(a)=sina1+cos(a)

7.万能公式

sin(a)=2tan(a2)1+tan2(a2)

cos(a)=1-tan2(a2)1+tan2(a2)

tan(a)=2tan(a2)1-tan2(a2)

8.其它公式(推导出来的)

a?sin(a)+b?cos(a)=a2+b2sin(a+c)其中tan(c)=ba a?sin(a)-b?cos(a)=a2+b2cos(a-c)其中tan(c)=ab 1+sin(a)=(sin(a2)+cos(a2))2

1-sin(a)=(sin(a2)-cos(a2))2

csc(a)=1sin(a)

sec(a)=1cos(a)

正弦余弦正切

直角三角形的边角关系—正弦、余弦、正切 知识要点 1.正弦:在直角三角形中,一个锐角所对的直角边与斜边的比,叫做这个角的正弦. 即:c a A A =∠= 斜边的对边sin ; c b B B =∠=斜边的对边sin . 2.余弦:在直角三角形中,一个锐角的邻边与斜边的比,叫做这个角的余弦. 即:c b A A =∠= 斜边的邻边cos ; c a B B =∠=斜边的邻边cos 3.正切:在直角三角形中,一个锐角所对的直角边与邻边的比,叫做这个角的正切. 即:b a A A A =∠∠= 的邻边的对边tan ; a b B B B =∠∠=的邻边的对边tan . 4.特殊角的正弦,余弦值: =?0sin 0;= ?30sin 2 1 ;=?45sin 22;=?60sin 23;=?90sin 1; =?0cos 1;= ?30cos 23;=?45cos 22;=?60cos 2 1 ;=?90cos 0. =?0tan 0 ;= ?30tan 3 3 ;=?45tan 1 ;=?60tan 3;?90tan 不存在 ; 5.正、余弦、正切值随锐角大小的变化(即增减性): 正弦值随锐角的增大而增大,余弦值随锐角的增大而减小,正切值随锐角的增大而增大。 6.互余两角的正弦,余弦间的关系: 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值. ()ααcos 90sin =-?; ()ααsin 90cos =-?. 7.同角的正弦,余弦间的关系: (1)平方和的关系:1cos sin 22=+A A . (2)大小比较:当?<. 当?<

关于正弦函数和余弦函数的计算公式

同角三角函数的基本关系式 倒数关系: 商的关系:平方关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα

cot(π-α)=-cotα sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanα sin(2π-α)=-sinαcos(2π-α)=cosα tan(2π-α)=-tanαcot(2π-α)=-cotα sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)

正弦函数余弦函数的图像(附答案)

正弦函数、余弦函数的图象 [学习目标] 1.了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. 知识点一 正弦曲线 正弦函数y =sin x (x ∈R )的图象叫正弦曲线. 利用几何法作正弦函数y =sin x ,x ∈[0,2π]的图象的过程如下: ①作直角坐标系,并在直角坐标系y 轴的左侧画单位圆,如图所示. ②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x 轴的垂线,可以得到对应于0,π6,π3,π 2,…,2π等角的正弦线. ③找横坐标:把x 轴上从0到2π(2π≈6.28)这一段分成12等份. ④平移:把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合. ⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y =sin x ,x ∈[0,2π]的图象. 在精度要求不太高时,y =sin x ,x ∈[0,2π]可以通过找出(0,0),(π2,1),(π,0),(3π 2,-1), (2π,0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图. 思考 在所给的坐标系中如何画出y =sin x ,x ∈[0,2π]的图象?如何得到y =sin x ,x ∈R 的图象? 答案 y =sin x ,x ∈[0,2π]的图象(借助五点法得)如下: 只要将函数y =sin x ,x ∈[0,2π)的图象向左、向右平行移动(每次2π个单位长度),就可以得到正弦函数y =sin x ,x ∈R 的图象. 知识点二 余弦曲线 余弦函数y =cos x (x ∈R )的图象叫余弦曲线.

正弦和余弦

正弦和余弦 导读:本文正弦和余弦,仅供参考,如果觉得很不错,欢迎点评和分享。 教学建议1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等. 2.重点、难点分析 (1)正弦、余弦函数的定义是本节的重点,因为它是全章乃至整个三角学的预备知识.有了正弦、余弦函数的定义,再学习正切和余切、解直角三角形、引入任意角三角函数便都有了基础. (2)正弦、余弦的概念隐含着角度与数值之间有一一对应关系的函数思想,并且用含有几个字母的符号组sinA,cosA来表示,学生过去未接触过,所以正弦、余弦的概念是难点. 3.理解一个锐角的正弦、余弦值的唯一性,是理解三角函数的核心. 锐角的正弦、余弦值是这样规定的:当一个锐角确定了,那么这个锐角所在的直角三角形虽然有无穷多个,但它们都是彼此相似的.如上图,当确定时,包含的直角三角形有无穷多个,但它们彼此相似:

∽ ∽ ∽ ……因此,由于相似三角形的对应边成比例,所以这些三角形的对应边的比都是相等的. 这就是说,每当一个锐角确定了,包含这个角的直角三角形的上述2种比值也就唯一确定了,它们有确定不变的对应关系.为了简单地表达这些对应关系,我们引入了正(余)弦的说法,创造了sin 和cos这样的符号. 应当注意:单独写出三角函数的符号或cos等是没有意义的.因为它们离开了确定的锐角是无法显示出它的含义;另一方面,这些符号和角写在一起时(如),它表示的就不再是角,而是一个特定的三角形的两条边的比值了(如).真正理解并掌握这些,才真正掌握了这些符号的含义,才能正确地运用它们. 4.我们应当学会认识任何位置的直角三角形中的一个锐角的正弦、余弦的表达式. 我们不仅应当熟练掌握如图那样的标准位置的直角三角形的正弦、余弦的表达式,而且能熟练地写出无论怎样放置的直角三角形的正弦、余弦的表达式.如,如图所示,若,则有 有的直角三角形隐藏在更复杂的图形中,我们也应能正确地写出所需要的三角函数表达式,如图中,ABCD是梯形,,作,我们应正确地写出如下的三角函数关系式:

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

正弦函数值表

0.0{0.0000} 0.1{0.0017} 0.2{0.0035} 0.3{0.0052} 0.4{0.0070} 0.5{0.0087} 0.6{0.0105} 0.7{0.0122} 0.8{0.0140} 0.9{0.0157} 1.0{0.0175} 1.1{0.0192} 1.2{0.0209} 1.3{0.0227} 1.4{0.0244} 1.5{0.0262} 1.6{0.0279} 1.7{0.0297} 1.8{0.0314} 1.9{0.0332} 2.0{0.0349} 2.1{0.0366} 2.2{0.0384} 2.3{0.0401} 2.4{0.0419} 2.5{0.0436} 2.6{0.0454} 2.7{0.0471} 2.8{0.0488} 2.9{0.0506} 3.0{0.0523} 3.1{0.0541} 3.2{0.0558} 3.3{0.0576} 3.4{0.0593} 3.5{0.0610} 3.6{0.0628} 3.7{0.0645} 3.8{0.0663} 3.9{0.0680} 4.0{0.0698} 4.1{0.0715} 4.2{0.0732} 4.3{0.0750} 4.4{0.0767} 4.5{0.0785} 4.6{0.0802} 4.7{0.0819} 4.8{0.0837} 4.9{0.0854} 5.0{0.0872} 5.1{0.0889} 5.2{0.0906} 5.3{0.0924} 5.4{0.0941} 5.5{0.0958} 5.6{0.0976} 5.7{0.0993} 5.8{0.1011} 5.9{0.1028} 6.0{0.1045} 6.1{0.1063} 6.2{0.1080} 6.3{0.1097} 6.4{0.1115} 6.5{0.1132} 6.6{0.1149} 6.7{0.1167} 6.8{0.1184} 6.9{0.1201} 7.0{0.1219} 7.1{0.1236} 7.2{0.1253} 7.3{0.1271} 7.4{0.1288} 7.5{0.1305} 7.6{0.1323} 7.7{0.1340} 7.8{0.1357} 7.9{0.1374} 8.0{0.1392} 8.1{0.1409} 8.2{0.1426} 8.3{0.1444} 8.4{0.1461} 8.5{0.1478} 8.6{0.1495} 8.7{0.1513} 8.8{0.1530} 8.9{0.1547} 9.0{0.1564} 9.1{0.1582} 9.2{0.1599} 9.3{0.1616} 9.4{0.1633} 9.5{0.1650} 9.6{0.1668} 9.7{0.1685} 9.8{0.1702} 9.9{0.1719} 10.0{0.1736} 10.1{0.1754} 10.2{0.1771} 10.3{0.1788} 10.4{0.1805} 10.5{0.1822} 10.6{0.1840} 10.7{0.1857} 10.8{0.1874} 10.9{0.1891} 11.0{0.1908} 11.1{0.1925} 11.2{0.1942} 11.3{0.1959} 11.4{0.1977} 11.5{0.1994} 11.6{0.2011} 11.7{0.2028} 11.8{0.2045} 11.9{0.2062} 12.0{0.2079} 12.1{0.2096} 12.2{0.2113} 12.3{0.2130} 12.4{0.2147} 12.5{0.2164} 12.6{0.2181} 12.7{0.2198} 12.8{0.2215} 12.9{0.2233} 13.0{0.2250} 13.1{0.2267} 13.2{0.2284} 13.3{0.2300} 13.4{0.2317} 13.5{0.2334} 13.6{0.2351} 13.7{0.2368} 13.8{0.2385} 13.9{0.2402} 14.0{0.2419} 14.1{0.2436} 14.2{0.2453} 14.3{0.2470} 14.4{0.2487} 14.5{0.2504} 14.6{0.2521} 14.7{0.2538} 14.8{0.2554} 14.9{0.2571} 15.0{0.2588} 15.1{0.2605} 15.2{0.2622} 15.3{0.2639} 15.4{0.2656} 15.5{0.2672} 15.6{0.2689} 15.7{0.2706} 15.8{0.2723} 15.9{0.2740} 16.0{0.2756} 16.1{0.2773} 16.2{0.2790} 16.3{0.2807} 16.4{0.2823} 16.5{0.2840} 16.6{0.2857} 16.7{0.2874} 16.8{0.2890} 16.9{0.2907} 17.0{0.2924} 17.1{0.2940} 17.2{0.2957} 17.3{0.2974} 17.4{0.2990} 17.5{0.3007} 17.6{0.3024} 17.7{0.3040} 17.8{0.3057} 17.9{0.3074} 18.0{0.3090} 18.1{0.3107} 18.2{0.3123} 18.3{0.3140} 18.4{0.3156} 18.5{0.3173} 18.6{0.3190} 18.7{0.3206} 18.8{0.3223} 18.9{0.3239} 19.0{0.3256} 19.1{0.3272} 19.2{0.3289} 19.3{0.3305} 19.4{0.3322} 19.5{0.3338} 19.6{0.3355} 19.7{0.3371} 19.8{0.3387} 19.9{0.3404} 20.0{0.3420} 20.1{0.3437} 20.2{0.3453} 20.3{0.3469} 20.4{0.3486} 20.5{0.3502} 20.6{0.3518} 20.7{0.3535} 20.8{0.3551} 20.9{0.3567} 21.0{0.3584} 21.1{0.3600} 21.2{0.3616} 21.3{0.3633} 21.4{0.3649} 21.5{0.3665} 21.6{0.3681} 21.7{0.3697} 21.8{0.3714} 21.9{0.3730} 22.0{0.3746} 22.1{0.3762} 22.2{0.3778} 22.3{0.3795} 22.4{0.3811} 22.5{0.3827} 22.6{0.3843} 22.7{0.3859} 22.8{0.3875} 22.9{0.3891} 23.0{0.3907} 23.1{0.3923} 23.2{0.3939} 23.3{0.3955} 23.4{0.3971} 23.5{0.3987} 23.6{0.4003} 23.7{0.4019} 23.8{0.4035} 23.9{0.4051} 24.0{0.4067} 24.1{0.4083} 24.2{0.4099} 24.3{0.4115} 24.4{0.4131} 24.5{0.4147} 24.6{0.4163} 24.7{0.4179} 24.8{0.4195} 24.9{0.4210} 25.0{0.4226} 25.1{0.4242} 25.2{0.4258} 25.3{0.4274} 25.4{0.4289} 25.5{0.4305} 25.6{0.4321} 25.7{0.4337} 25.8{0.4352} 25.9{0.4368} 26.0{0.4384} 26.1{0.4399} 26.2{0.4415} 26.3{0.4431}

正弦和余弦转换

正弦和余弦转换 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα

tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

正弦函数和余弦函数的图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值;

正弦函数与余弦函数的图像教案

1.4.1正弦函数与余弦函数的图像 一、教学目标 (1)利用单位圆中的三角函数线作出R x x y ∈=,sin 的图象,明确图象的形状; (2)根据关系)2 sin(cos π+=x x ,作出R x x y ∈=,cos 的图象; (3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题; 二、课时 1课时 三、教学重点 正弦函数和余弦函数的图象; 四、教学难点 将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系. 五、教具 多媒体、实物投影仪 六、教学过程 思路1.(复习导入)遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx 与y=cosx 的图象是怎样的呢?回忆我们在必修1中学过的指数函数、对数函数的图象是什么?是如何画出它们图象的(列表描点法:列表、描点、连线)?进而引导学生通过取值,画出当x ∈[0,2π]时,y=sinx 的图象. 思路2.(情境导入)请学生动手做一做章头图表示的“简谐运动”实验.教师指导学生将塑料瓶底部扎一个小孔做成一个漏斗,再挂在架子上,就做成了一个简易单摆.在漏斗下方放一块纸板,板的中间画一条直线作为坐标系的横轴.把漏斗灌上沙并拉离平衡位置,放手使它摆动,同时匀速拉动纸板,这样就可在纸板上得到一条曲线,它就是简谐运动的图象.物理中把简谐运动的图象叫做“正弦曲线”或“余弦曲线”.它表示了漏斗对平衡位置的位移s(纵坐标)随时间t(横坐标)变化的情况. 有了上述实验,你对正弦函数、余弦函数的图象是否有了一个直观的印象?画函数的图象,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图象. 推进新课 新知探究 提出问题 问题①:作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应点的精确位置.我们如何得到任意角的三角函数值并用线段长(或用有向线段数值)表示x 角的三角函数值?怎样得到函数图象上点的两个坐标的准确数据呢?简单地说,就是如何得到y=sinx,x ∈[0,2π]的精确图象呢? 问题②:如何得到y=sinx,x ∈R 时的图象? 活动:教师先让学生阅读教材、思考讨论,对于程度较弱的学生,教师指导他们查阅课本上的正弦线.此处的难点在于为什么要用正弦线来作正弦函数的图象,怎样在x 轴上标横坐标?为什么将单位圆分成12份?学生思考探索仍不得要领时,教师可进行适时的点拨.只要解决了y=sinx,x ∈[0,2π]的图象,就很容易得到y=sinx,x ∈R 时的图象了. 对问题①,第一步,可以想象把单位圆圆周剪开并12等分,再把x 轴上从0到2π这一段分

正弦和余弦教案一查表

正弦和余弦教案(四) 一、素质教育目标 (一)知识教学点 使学生会查“正弦和余弦表”,即由已知锐角求正弦、余弦值.(二)能力渗透点 逐步培养学生观察、比较、分析、概括等逻辑思维能力. (三)德育训练点 培养学生良好的学习习惯. 二、教学重点、难点 1.重点:“正弦和余弦表”的查法. 2.难点:当角度在0°~90°间变化时,正弦值与余弦值随角度变化而变化的规律. 三、教学步骤 (一)明确目标 1.复习提问 1)30°、45°、60°的正弦值和余弦值各是多少?请学生口答. 2)任意锐角的正弦(余弦)与它的余角的余弦(正弦)值之间的关系怎样?通过复习,使学生便于理解正弦和余弦表的设计方式. (二)整体感知 我们已经求出了30°、45°、60°这三个特殊角的正弦值和余弦值,但在生产和科研中还常用到其他锐角的正弦值和余弦值,为了使用上的方便,我们把0°—90°间每隔1′的各个角所对应的正弦值和余弦值(一般是含有四位有效数字的近似值),列成表格——正弦和余弦表.本节课我们来研究如何使用正弦和余弦表. (三)重点、难点的学习与目标完成过程 1.“正弦和余弦表”简介

学生已经会查平方表、立方表、平方根表、立方根表,对数学用表的结构与查法有所了解.但正弦和余弦表与其又有所区别,因此首先向学生介绍“正弦和余弦表”. (1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角. 2)表中角精确到1′,正弦、余弦值有四位有效数字. 3)凡表中所查得的值,都用等号,而非“≈”,根据查表所求得的值进行近似计算,结果四舍五入后,一般用约等号“≈”表示. 2.举例说明 例4 查表求37°24′的正弦值. 学生因为有查表经验,因此查sin37°24′的值不会是到困难,完全可以自己解决. 例5 查表求37°26′的正弦值. 学生在独自查表时,在正弦表顶端的横行里找不到26′,但26′在24′~30′间而靠近24′,比24′多2′,可引导学生注意修正值栏,这样学生可能直接得答案.教师这时可设问“为什么将查得的5加在0.6074的最后一个数位上,而不是0.6074减去0.0005”.通过引导学生观察思考,得结论:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小). 解:sin37°24′=0.6074. 角度增2′,值增0.0005. sin37°26′=0.6079. 例6 查表求sin37°23′的值. 如果例5学生已经理解,那么例6学生完全可以自己解决,通过对比,加强理解. 解:sin37°24′=0.6074 角度减1′,值减0.0002 sin37°23′=0.6072. 在查表中,还应引导学生查得:

正弦和余弦的相互关系公式

正弦和余弦的相互关系公式 教学目标 1.使学生理解正、余弦相互关系的两个公式的推导过程,理解公式成立的条件,并能利用它们及其变形公式解答一些基本问题; 2.通过公式的推导过程,培养学生从特殊到一般提出猜想和发现问题的能力; 3.培养学生运用知识结构总结问题的能力。 教学重点和难点 公式的推导和应用是重点;而公式的应用又是难点。 教学过程设计 一、从学生原有的认知结构提出问题 A (投影)问:直角三角形有什么性质?(图6-13) ①c >a ,c >b 答:(1)边的关系:②a+b >c ,… b c ③a 2+b 2=c 2。 (2)角的关系:∠A+∠B=90°。 C a B (3)边角关系:sinA=a/c ,cosA=b/c ,… 图 6-13 教师归纳指出:由此可见,在一个直角三角形中,由于三边之间,两个锐角之间和边角之间都有一定的关系,而正弦和余弦又是表示直角边和斜边的比值,因此自然要问:正弦和余弦之间有什么样的相互关系?这就是我们今天所要学习的问题。(板书课题) 二、互为余角的正、余弦相互关系公式的教学过程 1.复习特殊角三角函数值。 (边问边按下列格式打出投影片,如图6-14) sin30°= ; cos60°= ; sin60°= ; cos30°= ; sin45°= ; cos45°= 。 问:你能发现什么规律? 答:sin30°=cos60°,sin60°=cos30°,sin45°=cos45°。 2.从特殊到一般提出猜想。 猜想:设A 和B 互为余角,则:sinA=cosB , 30° cosA=sinB 。 2 3.证明猜想,形成公式。 (采取学生口述,教师板演,在此基础上归纳出互为余的 正、余弦相互关系的三种表达形式。) 1 45° 互为余角的正、余弦的相互关系: 1 (1)若∠A+∠B=90°,则sinA=cosB ,或cosA=sinB 。 (2)sin α=cos (90°-α),或cos α=sin (90°-α)。 图 6-14 1 (3)数学语言叙述:任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。 练习1(口答) sin37°=cos ; cos62°=sin ; sin47°-cos43°= ; 72sin 18cos = 。 4.应用公式,变式练习。 32

正弦余弦换算公式

三角函数诱导公式常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为:

对于k·π/2±α(k∈Z)的个三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 (符号看象限) 例如: sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。 当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。 所以sin(2π-α)=-sinα 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦;三为切;四余弦”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内只有正切是“+”,其余全部是“-”; 第四象限内只有余弦是“+”,其余全部是“-”. 上述记忆口诀,一全正,二正弦,三正切,四余弦 1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(2π-a)=cos(a) cos(2π-a)=sin(a) sin(2π+a)=cos(a) cos(2π+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) s in(π+a)=-sin(a) cos(π+a)=-cos(a) tgA=tanA=sinAcosA 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b)

正弦函数和余弦函数的图象

1.4.1 正弦函数和余弦函数的图象 编写人: 杨朝书 审核人:王维芳 时间 2010-3-22 一、学习目标 1、 了解如何利用正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象。 2、 会用“五点法”画出正弦函数、余弦函数的简图。 二、重点难点 重点:正弦函数、余弦函数的图象。 难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数和余弦函数图象间的关系。 三、知识链接 1、sin(2)k απ+=_____________,cos(2)k απ+=____________,tan(2)k απ+=__________ (其中k Z ∈) 2、三角函数的几何表示,即___________,作出角 23 π 的正弦线、余弦线和正切线。 3、诱导公式:sin()2πα-= sin()2 πα+= cos()πα-= cos()πα+= 4、函数的定义__________________________________________________________________ 四、学习过程 [知识探究]正弦函数、余弦函数的图象 阅读课本30p 第一段:正弦函数、余弦函数的定义是:__________________________________. 问题1、用描点法作出正弦函数sin y x =的图象(试填写下表并描点,作出图象) 阅读课本31p 完成问题2、用几何法作出正弦函数sin y x =的图象。 1、利用几何法作正弦函数的图象可分为两步:一是画出______________的图象;二是把这一图象向_____________________________连续平移(每次2π个单位长度) 2、“五点法”作图的一般步骤是①_________;②_____________;③________________ 3、“五点法”作正弦函数图象的五个点是_______________________________;“五点法”作余弦函数图象的五个点是 _______________________________ 4、函数cos y x =(x R ∈)的图象可以通过sin ()y x x R =∈的图象向_______平移_____个单位长度得到。 5、通过图象能说出正弦曲线和余弦曲线是否是轴对称图象和中心对称图形?若是对称轴是什么?对称中心是什么? [典型例题] 例题 画出下列函数的简图: ⑴1sin y x =+,[0,2]x π∈;⑵cos ,[0,2]y x x π=-∈;⑶1sin(2)26 y x π= + 变式:你能否从函数图象变换的角度出发,利用函数sin y x =,[0,2]x π∈的图象来得到1sin y x =+, [0,2]x π∈的图象?同样的,能否从函数cos ,[0,2]y x x π=∈的图象得到函数cos ,[0,2] y x x π=-∈的图象?

正弦函数和和余弦函数的定义与诱导公式题目与答案

正弦函数和余弦函数的定义与诱导公式 正弦函数和余弦函数的定义 【要点链接】 1.单位圆的定义: 注意两点:以原点为圆心,以单位长为半径. 2.任意角的正弦函数和余弦函数的定义: 对于任意角α,使角α的顶点与原点重合,始边与x 轴正半轴重合: ①终边与单位圆交于点),(v u P ,过P 作PM 与x 轴垂直,垂足为M , 那么v =αsin ,u =αcos ;线段MP 为角α的正弦线,线段OM 为角α的余弦线. ②可设终边上不同于原点的任意一点为),(y x P ,r OP =, 那么r y = αsin ,r x =αcos . 注意②是正弦函数和余弦函数的定义的推广,可直接应用. 3.周期与最小正周期: 记住正弦函数和余弦函数的最小正周期都为π2,可直接用. 会判断一个数是否是一个函数的周期. 【随堂练习】 一、选择题 1.单位圆是指( ) A .半径为1的圆 B .圆心为坐标原点且半径为1的圆 C .半径为整数的圆 D .圆心为坐标原点且半径为整数的圆 2.若sin cos 0αα>且cos 0α<,则α的终边所在象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.已知角α的终边过点(1,2)P -,则cos α的值为( ) A .25 B . C .552 D .-4.设0a <,角α的终边经过点(3,4)P a a -,那么sin 2cos αα+的值等于( ) A .52 B .-52 C .51 D .-5 1 二、填空题 5.0 sin(60)-=_______. 6.若角α的终边在直线2y x =上,且sin 0α<,那么cos α=_______. 7.角α的终边上有一点(,5)P m ,且)0(,13 cos ≠=m m α,则m =______. 三、解答题 8.已知单位圆上一点()2 P a - ,设以射线OP 为终边的角(02)θθπ<<,求角θ 的正弦值,并作出角θ的正弦线. 9.已知角α终边上一点P 与x 轴的距离和与y 轴的距离之比为3∶4(且均不为零), 求2sin cos αα+的值.

正弦余弦值

1、sin0°=0 2、sin90°=1 3、sin180°=0 4、cos0°=1 5、cos90°=0 6、cos180°=-1 7、sin-30° 8、sin-45°=- 9、sin-60°=- 10、sin-90°=-1 11、cos- (1)特殊角三角函数值sin0=0 sin30= 0.5 sin45= 0.7071二分之根号2 sin60= 0.8660二分之根号3 sin90=1 cos0=1 cos30= 0.4二分之根号3 cos45= 0.1二分之根号2 cos60= 0.5 cos90=0 tan0=0 tan30= 0.9三分之根号3 tan45=1 tan60= 1.根号3 tan90=无cot0=无cot30=

1.根号3 cot45=1cot60= 0.9三分之根号3 cot90=0 附: 三角函数值表 sin0=0, sin15=(√6-√2)/4 , sin45=√ sin60=√ sin75=(√6+√2)/2 , sin90=1, sin105=√√ sin120=√√ (√6-√2)/4 sin180=0 sin270=-1 sin360=0 sin1= 0. 1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a)

sin(2π-a)=cos(a) cos(2π-a)=sin(a) sin(2π+a)=cos(a) cos(2π+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) tgA=tanA=sinAcosA 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化积公式 sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)?sin(b)=2cos(a+b2)sin(a-b2) cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)

相关文档
最新文档