晶间腐蚀教学文稿

晶间腐蚀教学文稿
晶间腐蚀教学文稿

晶间腐蚀

不锈钢产品晶间腐蚀的危害和防止措施

自然界的腐蚀无处不在,腐蚀给人类带来的危害和损失远远的超过了火灾、水灾和地震等自然灾害的总合,它可以在不知不觉中毁掉你能看到的东西,腐蚀造成损失是非常巨大的,而由于腐蚀引起的突发恶性事故,不仅仅带来巨大经济损失,而往往会引发火灾、中毒、爆炸、人身伤亡等灾祸,造成严重的社会后果,应引起我们的高度重视。据资料统计在石油化工设备腐蚀失效设备中,我国每年因金属腐蚀造成的损失至少200亿,晶间腐蚀占了9%左右。1.晶间腐蚀的特征:

晶间腐蚀与一般的腐蚀不同,它不是从金属外表面开始,而是集中发生在金属的晶界区,沿着金属晶界向内部扩展。这种腐蚀使得金属在外表面看不出任何迹象的情况下,完全丧失其力学性能,危害极大。已晶间腐蚀的不锈钢产品,表面看起来还是很光亮的,但是内部已经损坏,严重时已失去金属的声音,在外表面轻轻的敲击就会破碎成细粒。用显微镜观察,发现晶界已成网状,晶界区因腐蚀已造破坏,这时晶粒已接近分离状态,稍受外力作用即发生晶界断裂,成为粉末,造成设备破坏和人员伤亡。晶间腐蚀隐蔽性强是突发事故,危害巨大。

2.晶间腐蚀原因:

2.1介质:引起A氏体不锈钢晶间腐蚀的介质主要酸性介质,如工业醋酸、硫酸、硝酸、草酸、盐酸等,在强氧化性介质中,随着不锈钢中Cr含量的减少,出现晶界贫Cr,因此晶界的腐蚀速度远远大于晶粒本体的腐蚀速度。

2.2不锈钢是否产生晶间腐蚀以及腐蚀的程度取决于产品的受热过程,不锈钢在450°C~850°C 范围内加热,有产生晶间腐蚀的倾向,其中在650°C~750°C范围内加热对晶间腐蚀最为敏感,此温度称为“敏化温度”,在敏化温度下产生的晶间腐蚀倾向的时间最短,加热时间越长,晶间腐蚀的倾向越大。

2.3晶界合金元素的贫Cr化是产生晶间腐蚀的主要原因,不锈钢在450°C~850°C范围内,Cr的碳化物主要在晶间析出,这种碳化物中Cr的含量远高于基体中的含Cr量,势必引起临近区域Cr 的集聚和扩散,从而形成贫Cr区(Cr<12%),贫Cr区不能抵抗某些介质的腐蚀,就形成晶间腐蚀。

2.4钢种的含碳量越高,碳向晶界扩散的倾向越大,晶间腐蚀的倾向就越大,

2.5发生晶间腐蚀的电化学条件

2.5.1晶粒和晶界区的组织不同,电化学性质存在显著差异,晶界为阳极,晶粒为阴极,两级的电位不同,形成电位差,这是产生晶间腐蚀的内因。

2.5.2腐蚀和应力、晶界间的不均匀性有关,晶粒和晶界间的差异要在一定的条件和环境温度下才能显露出来,在腐蚀介质和内外应力的作用下,晶界的电化学腐蚀就显现出来了,这是产生腐蚀的外因条件。

3.防止晶间腐蚀的措施:

3.1原材料

3.1.1首先应满足晶间腐蚀的要求,进厂后进行复验,合格后入库。

我司目前不锈钢材料晶间腐蚀的种类按GB/T4334标准中E法、B法、C法(三周期或五个周期)3.1.2 B法、C法试样尺寸及制备数量

3.1.3 E法试样尺寸及制备数量3.1.4试验方法介绍

阀门的检验及试验规定

目录 一、适用范围 (1) 二、检查、检验和补充检验 (1) 三、压力试验 (4) 四、压力试验程序 (8) 五、合格证书 (10) API Std 598-1996 阀门的检验和试验规定 一、适用范围 1. 本标准适用于对闸阀、截止阀、旋塞阀、球阀、止回阀、蝶阀的 检查、检验,补充检验和压力试验的要求。 但经采购方与阀门制造厂商定,API598也可用于其它类阀门。 2. 检查要求适用于由制造厂进行的检验和试验及采购方要求在制造 厂内进行任何补充试验。 试验要求的适用于在制造厂内进行的需要的和任选的压力试验。 3. 本标准所规定的试验和检验如下: a. 壳体试验 b. 上密封试验 c. 低压密封试验 d. 高压密封试验 e. 铸件的外观检验 f. 高压气体壳体试验 二、检查、检验和补充检验 1、在阀门制造厂内的检查。 采购方将在订单中规定要在制造厂内检查阀门,并见证阀门的检验和试验,可自由进入制造厂内与其有关的任何部门。 2、在阀门制造厂外的检查

当采购方规定,检查包括在制造厂外制造的壳体部件时,应在制造地接受采购方检查。 3、检查范围 检查范围可在订单中规定,除另外说明外,检查应限于下列各 项。 1)在装配过程中对阀门进行检查,以保证符合订单中的规定, 检查可包括使用规定的无损检验方法。 2)现场见证需要和规定任选的压力试验和检验。 3)现场见证任何补充检验。 ?各种补充检验仅在订单中规定时,并仅在规定范围内进行。 ?铸钢件或锻钢件的MT、RT、PT、UT应符合ASME B16.34 第8章或采购方自己的验收准则。 ?这些检验应在采购方现场见证的情况下,由阀门制造厂进行。 4)审查加工记录和无损检验记录(包括规定的RT记录). 4、阀门检验 1)制造厂应对所有的阀体、阀盖和密封件的铸件进行外观检验, 以保证符合MSS SP-55的规定。 2)制造厂应对每个阀门进行检验,以保证符合本标准和采购规 范。 3)所有的检验均应按根据相应标准编制的书面程序进行。 5、检验内容(此条参照SH3518规定) 1)阀体上应有制造厂铭牌:型号、公称压力、公称通径及制造厂 名称等标识。 2)质量证明文件:包括制造厂名称、出厂日期、产品名称、型号 及规格、公称压力、公称通径、适用介质及适用温度、依据的标准、检验结论及检验日期、出厂编号、检验人员及负责检验人员签章。 3)设计要求作低温密封试验的阀门,应有制造厂的低温密封试验 合格证明书。 4)铸钢阀门的MT和RT由供需双方协定,如需检验,厂方应按 合同要求的标准检验,并出具报告。

不锈钢钢材的进场验收

材料 所有材料按照要求进行尺寸、外观、表面质量检查,同时根 据RCCM和材料采购合同中,由于钢材在生产过程由ACPP全程 监造并提供质保第三方见证报告,因此对于进入现场的钢材 针对与不锈钢水池直接接触的不锈钢覆面抽检并按照RCCM规 定进行成份和机械性能检验,不锈钢覆面抽检钢材如下。 ——Z2CN18-10钢板 3mm、4mm、6mm; ——Z2CN17-12钢板 3mm。 检验项目 5. 1 尺寸公差 厚度=3mm钢板,按BTS4.02如下要求:厚度公差±0.1mm, 长度公差±2mm,宽度公差±1mm。 厚度>3mm钢板按照EN10029的规定如下: 不锈钢板厚度 h(mm) 厚度公差(mm) 3<h<5-0.3~+0.9 5≤h<8-0.3~+1.2 8≤h<15-0.3~+1.4 15≤h<25-0.3~+1.6 25≤h<40-0.3~+1.9 40≤h<80-0.3~+2.5 80≤h<150-0.3~+2.9 不锈钢板长度L(mm)长度公差(mm)

L<40000~20 4000≤L<60000~30 6000 ≤L<80000~40 不锈钢板宽 宽度公差(mm) D(mm) 600≤D<20000~20 2000≤D<30000~25 5. 2 外观检查 所有钢板必须进行目检,钢板表面必须平坦而均匀,不得凹凸 不平、卷边、起泡、裂纹和夹渣。钢板切割到交货状态尺寸 后,应按MC7100 要求对边缘进行目检,不得有开裂和分层 (例如,在轧制过程中引出细小夹杂物夹层)现象。如必 要,按MC4000 的规定进行液体渗透检验。 验收准则 只允许下列情况: a)对于2 级设备钢板 ——钢板厚度≤40mm 时,允许呈现长度≤8mm 的线性痕迹, 钢板厚度>40mm 时,允许呈现长度≤10mm 的线性痕迹。 另外,当钢板的使用条件有可能导致层状撕裂的危险时,则 只允许存在下述的密集显示,在缺陷最密集的1 米范围内, 显示总长度为: ——钢板厚度≤40mm 时,<30mm; ——钢板厚度>40mm 时,<40mm。 如果相邻两个痕迹间距小于其中较小者长度的两倍时,则可 视为一个痕迹。 其总长度等于两个痕迹长度之和再加上两个痕迹之间的距

晶间腐蚀方法

6.4不锈钢局部腐蚀(晶间腐蚀、点蚀)试验结果与对比 6.4.1不锈钢晶间腐蚀试验方法 1)沸腾硝酸法(E法,用于304、410S、430、409L) 目的:检测304(敏化后)和410S、430、409L(热轧态)的耐晶间腐蚀性能;实验条件:试样在65%硝酸溶液中微沸48h(304)或24h(其他); 试样情况:试样表面抛光,并用乙醇清洗; 检测:测量失重;腐蚀后的特征形貌; 标准:GB 4334.3 2)硫酸-硫酸铜法(用于奥氏体不锈钢304) 目的:检测304(敏化后)的耐晶间腐蚀性能; 实验条件:试样在CuSO4+H2SO4+铜屑的微沸溶剂中24h(对于≤18%C r的不锈钢); 试样情况:试样表面抛光,并用乙醇清洗; 检测:测量失重;腐蚀后的金相特征; 溶剂配方:100g CuSO4+100ml H2SO4加蒸馏水稀释至1000ml。 标准:GB 4334.2 注1:304不锈钢为热轧后再经650℃、2h处理的敏化态,铁素体不锈钢为热轧态。 注2:以上二法对304都适用;对铁素体不锈钢,试验表明:410、430、409L 在硫酸-硫酸铜 溶液中试样表面发生较严重的镀铜现象,故仅采用沸腾硝酸法。因此, 为了便于304与其它3种铁素体不锈钢进行耐晶间腐蚀性能的对比分 析,以下以沸腾硝酸法为主,此外还要与晶间腐蚀的电化学试验、分 析相结合(参6.7)。

图0-1 晶间腐蚀试验装置图0-2 点蚀试验装置(恒温水浴锅)6.7 不锈钢局部腐蚀的电化学分析与对比 6.7.1不锈钢晶间腐蚀电化学试验方法 主要目的:对不锈钢耐晶间腐蚀的电化学性能的测定和对比分析,与浸泡试验结果相辅相成。 测试项目:用动电位再活化法测得晶间腐蚀的电化学曲线,可得阳极化环和再活化环的最大电流Ia和Ir,并以其比值Ir/Ia作为耐晶间腐蚀性能的度量。 试样状态:304---650o C 2h、空冷; 430、410、409L---热轧态;均经机械抛光。 所用仪器:CHI600C电化学分析仪 标准:JIS G0580-1986,ASTM G108,GB/T 15260-1994 晶间腐蚀电化学测定方法: 采用电化学动电位再活化法(EPR):以0.5mol/L的H2SO4为腐蚀介质(30o C),采用双环EPR法,以6V/h的扫描速度从腐蚀电位[约-400mv(SCE)] 极化到+300mv(SCE),一旦达到这个电位则扫描方向反转,以相同速度降低到腐蚀电位。分别测定阳极化环和 再活化环的最大电流Ia和Ir(如图2,单位为A),Ir:Ia比值越小越耐晶间腐蚀。

不锈钢晶间腐蚀控制措施

不锈钢晶间腐蚀控制措施 1 问题的提出 技术统一规定中通常包括“奥氏体不锈钢制容器用于可能引起晶间腐蚀的环境, 焊后应做固 溶或稳定化处理”, 提出这样的要求, 自有其存在的合理性。但即使设计人员在图样的技术要求中提出这一条, 要求制造厂进行不锈钢制容器(比如换热器) 的焊后热处理, 由于实际热处理工艺参数难以控制和其他一些意想不到的困难, 通常难以达到设计人员提出的理想要求, 实际上在役的不锈钢设备绝大部分是在焊后态使用。这就促使我们去思考:晶间腐蚀是奥氏体不锈钢最常见的腐蚀形式, 那么产生晶间腐蚀的机理是什么? 在什么介质环境下会引起晶间腐蚀?防止和控制晶间腐蚀的主要方法有哪些?奥氏体不锈钢制容器用于可能引起晶间腐蚀的环境焊后是否都要热处理?本文查阅有关的标准、规范,专著,结合生产实际谈谈个人看法。 2 晶间腐蚀的产生机理 晶间腐蚀是一种常见的局部腐蚀, 腐蚀沿着金属或合金晶粒边界或它的临近区域发展, 而晶粒腐蚀很轻微,这种腐蚀便称为晶间腐蚀,这种腐蚀使晶粒间的结合力大大削弱。严重的晶间腐蚀,可使金属失去强度和延展性,在正常载荷下碎裂。现代晶间腐蚀理论, 主要有贫铬理论和晶界杂质选择溶解理论。 2. 1 贫铬理论 常用的奥氏体不锈钢, 在氧化性或弱氧化性介质中之所以产生晶间腐蚀, 多半是由于加工或使用时受热不当引起的。所谓受热不当是指钢受热或缓慢冷却通过450~850 ℃温度区, 钢就会对晶间腐蚀产生敏感性。所以这个温度是奥氏体不锈钢使用的危险温度。不锈钢材料在出厂时已经固溶处理,所谓固溶处理就是把钢加热至1050~1150 ℃后进行淬火, 目的是获得均相固溶体。奥氏体钢中含有少量碳, 碳在奥氏体中的固溶度是随温度下降而减小的。如0Cr18Ni9Ti , 在1100 ℃时, 碳的固溶度约为0. 2 % , 在500~700 ℃时, 约为0. 02 %。所以经固溶处理的钢,碳是过饱和的。当钢无论是加热或冷却通过450~850 ℃时,碳便可形成( Fe 、Cr) 23C6 从奥氏体中析出而分布在晶界上。( Fe 、Cr) 23C6 的含铬量比奥氏体基体的含铬量高很多, 它的析出自然消耗了晶界附近大量的铬, 而消耗的铬不能从晶粒中通过扩散及时得到补充, 因为铬的扩散速度很慢, 结果晶界附近的含铬量低于钝化必须的的限量(即12 %Cr) ,形成贫铬区, 因而钝态受到破坏, 晶界附近区域电位下降, 而晶粒本身仍维持钝态, 电位较高, 晶粒与晶界构成活态———钝态微电偶电池, 电池具有大阴极小阳极的面积比,这样就导致晶界区的腐蚀。 2. 2 晶界杂质选择溶解理论 在生产实践中, 我们还了解到奥氏体不锈钢在强氧化性介质(如浓硝酸) 中也能产生晶间腐蚀, 但腐蚀情况和在氧化性或弱氧化性介质中的情况不同。通常发生在经过固溶处理的钢上,经过敏化处理的钢一般不发生。当固溶体中含有磷这种杂质达100ppm时或硅杂质为1000 - 2000ppm 时, 它们便会偏析在晶界上。这些杂质在强氧化性介质作用下便发生溶解, 导致晶间腐蚀。而钢经敏化处理时, 由于碳可以和磷生成(MP) 23C6 , 或由于碳的首先偏析限制了磷向晶界扩散, 这两种情况都会免除或减轻杂质在晶界的偏析, 就消除或减弱了钢对晶间腐蚀的敏感性。 上述两种解释晶间腐蚀机理的理论各自适用于一定合金的组织状态和一定的介质, 不是互相排斥而是互相补充的。生产实践中最常见的不锈钢的晶间腐蚀多数是在弱氧化性或氧化性介质中发生的,因而绝大多数的腐蚀实例都可以用贫铬理论来解释。 3 引起晶间腐蚀的的介质环境

晶间腐蚀

不锈钢产品晶间腐蚀的危害和防止措施 自然界的腐蚀无处不在,腐蚀给人类带来的危害和损失远远的超过了火灾、水灾和地震等自然灾害的总合,它可以在不知不觉中毁掉你能看到的东西,腐蚀造成损失是非常巨大的,而由于腐蚀引起的突发恶性事故,不仅仅带来巨大经济损失,而往往会引发火灾、中毒、爆炸、人身伤亡等灾祸,造成严重的社会后果,应引起我们的高度重视。据资料统计在石油化工设备腐蚀失效设备中,我国每年因金属腐蚀造成的损失至少200亿,晶间腐蚀占了9%左右。 1.晶间腐蚀的特征: 晶间腐蚀与一般的腐蚀不同,它不是从金属外表面开始,而是集中发生在金属的晶界区,沿着金属晶界向内部扩展。这种腐蚀使得金属在外表面看不出任何迹象的情况下,完全丧失其力学性能,危害极大。已晶间腐蚀的不锈钢产品,表面看起来还是很光亮的,但是内部已经损坏,严重时已失去金属的声音,在外表面轻轻的敲击就会破碎成细粒。用显微镜观察,发现晶界已成网状,晶界区因腐蚀已造破坏,这时晶粒已接近分离状态,稍受外力作用即发生晶界断裂,成为粉末,造成设备破坏和人员伤亡。晶间腐蚀隐蔽性强是突发事故,危害巨大。 2.晶间腐蚀原因: 2.1介质:引起A氏体不锈钢晶间腐蚀的介质主要酸性介质,如工业醋酸、硫酸、硝酸、草酸、盐酸等,在强氧化性介质中,随着不锈钢中Cr含量的减少,出现晶界贫Cr,因此晶界的腐蚀速度远远大于晶粒本体的腐蚀速度。 2.2不锈钢是否产生晶间腐蚀以及腐蚀的程度取决于产品的受热过程,不锈钢在450°C~850°C范围内加热,有产生晶间腐蚀的倾向,其中在650°C~750°C范围内加热对晶间腐蚀最为敏感,此温度称为“敏化温度”,在敏化温度下产生的晶间腐蚀倾向的时间最短,加热时间越长,晶间腐蚀的倾向越大。 2.3晶界合金元素的贫Cr化是产生晶间腐蚀的主要原因,不锈钢在450°C~850°C范围内,Cr的碳化物主要在晶间析出,这种碳化物中Cr的含量远高于基体中的含Cr量,势必引起临近区域Cr 的集聚和扩散,从而形成贫Cr区(Cr<12%),贫Cr区不能抵抗某些介质的腐蚀,就形成晶间腐蚀。 2.4钢种的含碳量越高,碳向晶界扩散的倾向越大,晶间腐蚀的倾向就越大, 2.5发生晶间腐蚀的电化学条件 2.5.1晶粒和晶界区的组织不同,电化学性质存在显著差异,晶界为阳极,晶粒为阴极,两级的电位不同,形成电位差,这是产生晶间腐蚀的内因。 2.5.2腐蚀和应力、晶界间的不均匀性有关,晶粒和晶界间的差异要在一定的条件和环境温度下才能显露出来,在腐蚀介质和内外应力的作用下,晶界的电化学腐蚀就显现出来了,这是产生腐蚀的外因条件。

无损探伤实验报告

2011—2012 学年第2 学期实验(实习)报告 课程名称:飞机结构防腐 授课班级:090146A 授课教师:郭巧荣 姓名:李一鲁 学号:090146111

实验一超声波检测法 一、实验目的 1、了解超声波检测法的基本原理、优点和应用局限性。 2、熟悉超声波检测设备的基本使用方法;熟悉使用垂直探头和斜探头探测试件内部缺陷的操作过程。 二、实验仪器设备(只需写明实验设备的重要组成部分,无需写具体型号) 数字式超声波探伤仪、被测试块和耦合剂 三、实验原理 所谓超声波检测法是利用超声波在被检材料中的响应关系来 检测孔蚀、裂纹等缺陷及厚度的一种检测方法。利用压电材料产生超声波,入射到被检材料中。超声波在异质界面上会发生反射、折射等现象,尤其是不能通过气体固体界面。如果金属中有气孔、裂纹、分层等缺陷(缺陷中有气体),超声波传播到金属与缺陷的界面处时,就会全部或部分反射。反射回来的超声波被探头接收,通过仪器内部的电路处理,在仪器的荧光屏上就会显示出不同高度和有一定间距的波形。可以根据波形的变化特征判断缺陷在工件中的深度、位置和形状。 四、实验步骤 1. 探头连接:将直探头、斜探头或其它类型探头与超声波探伤仪相连接。 2. 超声波探伤仪基本参数的设定:根据探伤构件的材料、外形尺寸及选用的探头类型,调节、设定超声波探伤仪的声速、声程等检测参数。 3. 仪器校准:利用标准校准试块,校准仪器,设定仪器零点。 4. 涂耦合剂:在探伤区域内涂抹耦合剂。

5. 进行探伤操作。 五、实验结果描述 纵波进行检测,工件无缺陷时,只显示始波T和底波B,当工件中有缺陷时,在始波和底波之间出现一个伤波;当工件中缺陷横截面积很大时,将无底波,声束被缺陷全反射。 用横波进行检测,工件无缺陷时,一般只显示始波T而不显示底波B,因为横波的穿透能力差,当有缺陷时,在始波后出现一个伤波。 六、回答思考题 1、简述超声波检测法的特点及适用性。 超声波检测法可用于金属、非金属、复合材料制件的损伤探测,既可以检测工件内部的缺陷,也可以检测工件表面的缺陷。可用来检测锻件、型材的裂纹、分层、夹杂,铸件中的气孔、裂纹、疏松等缺陷,焊缝中的裂纹、气孔、未焊透等缺陷,复合材料的分层、脱胶等缺陷,还可以测定工件的厚度。 采用超声波厚度仪从一侧测量构件的厚度,精确度可达到±1%。 可以用超声波厚度仪检测轻微的腐蚀,但不能检测中等或严重的腐蚀损伤。这是因为中等以上的腐蚀损伤,由于超声波的散射,不会得到构件厚度度数。但是,当清除腐蚀产物后,可以用它来测量去腐后的构件的厚度,并可以进一步确定腐蚀造成的材料的减少量。 2、说明纵波探测法根据什么确定缺陷的位置和大小。 设探测面到缺陷的距离为x,材料的厚度为t,从示波器始波T 到伤波F的长度为Lf,从始波到底波的长度为Lb,可得x=(LF/LB)t。由此,可求出缺陷的位置。另外伤波高度随缺陷或损伤增大而增高,所以可由伤波高度估计缺陷或损伤的大小。当缺陷或损伤很大时,可以移动探头,按显示缺陷或损伤的范围求出缺陷或损伤的延伸尺寸。 3、分析超声波探测法中使用斜探头产生横波的特点,说明为

材料化学失效与控制实验:晶间腐蚀

材料化学失效与控制综合实验 执笔人:汪崧 说明:本综合实验涉及热处理、金相、电化学的内容,以及一种晶间腐蚀国家标准试验方法,试验分为三部分: 1.按照《不锈钢硫酸-硫酸铜腐蚀试验方法(GB4334.5-90)》检验不同敏化 处理的不锈钢晶间腐蚀敏感性 2.EPR法判断不同敏化处理的不锈钢晶间腐蚀敏感性 3.塔菲尔直线外推法测量不同敏化处理的不锈钢的腐蚀速度 一、实验目的 1.了解热处理制度对材料组织及材料性能的影响 2.掌握奥氏体不锈钢产生晶间腐蚀的机理及其影响因素 3.了解不锈钢晶间腐蚀实验方法的国家标准及其适用范围 4.了解用电化学手段检测不锈钢晶间腐蚀敏感性的原理和方法 5.掌握塔菲尔直线外推法测量金属腐蚀速度的原理和方法 二、实验原理 1.奥氏体不锈钢产生晶间腐蚀的机理 2.奥氏体不锈钢产生晶间腐蚀的影响因素 3.不锈钢晶间腐蚀实验方法的国家标准及其适用范围 4.EPR法检测不锈钢晶间腐蚀敏感性的原理和方法 5.塔菲尔直线外推法测金属腐蚀速度的原理和方法 奥氏体不锈钢具有优良的抗均匀腐蚀的能力,但在一定成分、应力和腐蚀介质下特别容易发生晶间腐蚀,这种腐蚀是由敏化引起的。所谓敏化是指奥氏体不锈钢在Cr的碳化物沿其晶界脱溶的温度下保持足够长的时间,而引起对晶间腐蚀敏感的现象。经过热处理的不锈钢,在晶界上析出Cr23 C6,使晶界附近形成贫Cr区,从而发生晶间腐蚀。 电化学动电位再活化法( Electrochemical Poten2tiokinetic Reactivation,简称EPR)是一种快速、无损、定量检测不锈钢敏化的电化学测试方法,可用于工业现场检验材料的晶间腐蚀敏感性。其原理是利用不锈钢的钝化再活化特性与钝化膜中的主体合金元素的含量及膜的特性有关这一特点,研究钢的敏化行为。在钝化状态下,钝化膜的形态、结构在很大程度上依赖于固溶体中Cr、Mo的含量。在一定电介质和外加电位作用下,钢的表面将形成一层完整、致密的钝化膜;而经敏化的试样因晶界贫Cr,形成的钝化膜是不完整的,在外加电位回扫到再活化区时,不完整的钝化膜将优先受到腐蚀,再活化电流增高。利用这一性质可判断钢的敏化程度。

奥氏体不锈钢晶间腐蚀试验

奥氏体不锈钢晶间腐蚀试验方法 一、试验方法:奥氏体不锈钢10%草酸浸蚀试验方法 试样在10%的草酸溶液中电解浸蚀后,在显微镜下观察浸蚀表面的金相组织。 二、试样 1、取样及制备: 1)焊接试样从与产品钢材相同而且焊接工艺也相同的试块上取样,试样应包括母材、热影响区以及焊接金属的表面; 2)取样方法:原则上用锯切,如用剪切方法时应通过切削或研磨的方法除去剪切影响部分;3)试样被检查的表面应抛光,以便进行腐蚀和显微组织检验; 2、试样的敏化处理 1)敏化前和试验前试样用适当的溶剂或洗涤剂(非氯化物)除油并干燥; 2)焊接试样直接以焊后状态进行试验。对焊后还要经过350℃以上热加工的焊接件,试样在焊后还应进行敏化处理。试样的敏化处理在研磨前进行,敏化处理制度为650℃,保温1小时,空冷。 三、试验方法 1、试验溶液:将100克符合GB/T9854的优先级纯草酸溶解于900ml蒸馏水或去离子水中, 配置成10%草酸溶液; 2、实验仪器和设备:阴极为奥氏体不锈钢制成的钢杯或表面积足够大的钢片,阳极为试样, 如用钢片作阴极时要采用适当形状的夹具,使试样保持于试验溶液中,浸蚀电路如图1所示。 1——不锈钢容器 2——试样 3——直流电源 4——变阻器 5——电流表 6——开关 图1 电解浸蚀装置图 3、试验条件和步骤: 1)把浸蚀试样作阴极,以不锈钢杯或不锈钢片作为阴极,倒入10%草酸溶液,接通电流。阳极电流密度为1A/cm2,浸蚀时间为90s,浸蚀溶液温度为20℃~50℃。 2)试样浸蚀后,用流水洗净,干燥。在金相显微镜下观察试样的全部浸蚀表面,放大倍数为200倍~500倍,根据表1、表2和图2~图8判定组织的类别。 3)每次试验使用新的溶液。 4、浸蚀组织的分类 1)显示晶界形态浸蚀组织的分类见表1;

理化检验控制.

第 11章理化检验控制 11.1 目的 本章对 A1级、 A2级压力容器产品理化试验中有关人员的资格、检验设备仪器管理、理化检验管理、试验方法和试验过程管理、试样制备、原始记录和试验报告确认、重复试验、部分理化检验分包等控制环节的基本内容作出了规定,以保证各项试验报告准确可靠,真实并可追溯。 11.2适用范围 适用于压力容器制造过程中理化检验质量活动控制。 11.3 职责 11.3.1理化质量控制系统由质管部归口管理,生产部、技术部、采购部和车间配合。 11.3.2理化质量控制实行理化责任工程师负责制。负责本系统控制环节和控制点的管理,对理化报告的正确性负责,并接受质保工程师的监督和检查。 11.4 控制要求 “理化检验控制系统控制程序”见图 11-1。 11.4.1理化人员资格控制 11.4.1.1理化试验人员、检验人员经申请, 批准后参加省、市有关部门组织的培训考试,取得“理化试验人员资格等级证书”后方可上岗。

11.4.1.2理化责任人应具备理化试验专业技术并由总经理任命, 负责全厂理化试验的质量控制,对理化试验的取样、加工操作、计算的技术标准执行的正确性负责,对理化试验报告做技术性结论。其人员资格和责任制见公司标准 Q/HL20815-2012《理化试验管理制度》第 4章相关内容。 11.4.2试验委托 11.4.2.1原材料、焊接材料、焊接工艺评定试件、焊工考试试件及产品试件需进行化学分析、力学试验、晶间腐蚀试验时,应由委托部门开具“送检委托单” , “送检委托单”填写要求按公司标准 Q/HL20815-2012《理化试验管理制度》第 5.3节的规定执行。 11.4.2.2焊接工艺评定试件、焊工考试试件、产品试件,先进行外观检验合格,再进行无损检测后,才可进行力学试验委托。 11.4.2.3理化责任人应认真核查检验委托单是否符合要求。检验委托单应经理化责任人审核签字。检验委托单具体要求见公司标准 Q/HL20815-2012《理化试验管理制度》。 11.4.3试样制备 11.4.3.1试件取样、标记、加工和制备的基本要求和程序按有关标准及公司标准 Q/HL20815-2012《理化试验管理制度》第 5.4节的规定程序及工艺科提供的试样加工图进行。

不锈钢晶间腐蚀

《材料腐蚀与防护》结课作业304奥氏体不锈钢的晶间腐蚀报告 班级:成型1303班 :旭男 学号:20132336

304奥氏体不锈钢是指在常温下具有奥氏体组织的不锈钢,钢中含Cr约18%、含Ni约8%、C约0.1%时,具有稳定的奥氏体组织。它是一种很常见的不锈钢材料,业也叫做18/8不锈钢。奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不可能通过相变使之强化,仅能通过冷加工进行强化,具有良好的易切削性。 304奥氏体不锈钢的防锈性能比200系列的不锈钢材料要强,密度为7.93 g/。它在耐高温方面也比较好,最高可承受1000℃~1200℃。它具有优良的耐腐蚀性能和较好的抗晶间腐蚀性能,加工性能好且韧性高,被广泛应用。适用于食品的加工储存、家庭用品、汽车配件、医疗器具、化学建材,农业船舶部件等。 304奥氏体不锈钢中最为重要的元素是Ni和Cr,但是又不仅限于这两种元素。对于304奥氏体不锈钢来说,其成分中的Ni元素十分重要,直接决定着它的抗腐蚀能力。它正是因为有足够含量的铬,其保护性氧化膜是自愈性的。当其 薄膜破坏时,重新形成新的保护性氧化薄膜。致使它能进行机械加工也不失去抗氧化性能。然而当金属含铬量不够或某些原因造成不锈钢晶界贫铬,就不能形成保护性氧化膜。这就说明不锈钢之所以不锈,关键在于要有足够的铬和足够的氧。 此外,Ni与Cr配合,在不锈钢中发挥着重要作用。Ni在不锈钢中的主要作用在于其改变了钢的晶体结构,形成奥氏体晶体结构,从而改善和加强Cr 的钝化机理,其抗晶间腐蚀能力得到提高。

304、347、321钢的化学成分表格1(%) 奥氏体不锈钢在许多介质环境中容易发生晶间腐蚀、点腐蚀、缝隙腐蚀、应力腐蚀、腐蚀疲劳等腐蚀类型。在其中加入不同元素可得到不同特性,加Mo改善点蚀和耐缝隙腐蚀,降低C含量或加入Ti和Nb可减少晶间腐蚀倾向,加Ni 和Cr可改善高温抗氧化性和强度,加Ni改善抗应力腐蚀性能。我查阅了晶间腐蚀的相关资料,因为以前在《金属学与热处理》里接触过晶间腐蚀,而且在《材料腐蚀与防护》的课堂上,自己对晶间腐蚀也更感兴趣。 晶间腐蚀是一种常见的局部腐蚀,遭受这种腐蚀的不锈钢,表面看来还很光亮,但只要轻轻敲击便会破碎成细粒。由于晶间腐蚀不易检查,会造成设备突然破坏,所以危害性极大。奥氏体不锈钢是工业中应用最广的不锈钢之一,多半在约427℃~816℃的敏化温度围,在特定的腐蚀环境中易发生晶间腐蚀,晶间腐蚀也会加快整体腐蚀。

不锈钢晶间腐蚀试验规程

1.主题内容与适用范围 本标准规定了不锈钢硫酸—硫酸铜试验方法的试验设备,试验条件和步骤,试验结果的评定和试验报告的要求。 本标准适用于本厂不锈钢晶间腐蚀试验。 2.试样的选取 2.1 压力加工钢材的试样从同一炉号、同一批热处理和同一规格的钢材中选取。 2.2 焊接试样从产品钢材相同而且焊接工艺也相同的试板上选取。 2.3 试样尺寸及选取方法见表一。 3.试样的制备 3.1 试样用锯切取,如用剪刀时,应通过切削或研磨方法除去剪刀的影响部份。 3.2 试样上有氧化皮时,要通过切削或研磨除掉。需要敏化处理的试样,应在敏化处理后研磨。 3.3 试样切取及表面研磨时,应防止过热,被试验的试样表面粗糙度R a必须小于0.08μm。不能进行研磨的试样,根据双方协议也可采用其他方法处理。 试样尺寸及选取方法表一mm

4. 试样的敏化处理 4.1 试样的敏化处理在研磨前进行。 4.2 敏化处理前试样用适当的溶剂或洗涤剂(非氧化物)去油并干燥。 4.3 含碳量大于0.08%,不含稳定化元素的钢种不进行敏化处理。 4.4 对超低碳钢(碳含量不大于0.03%时)或稳定化钢种(添加钛或铌),敏化处理温度为650℃,压力加工试样保温2小时,铸件保温1小时。 4.5 含碳量大于0.03%,不大于0.08%,不含稳定化元素并用于焊接的钢种,应以敏化处理的试样进行试验。敏化处理制度在协议中另行规定。 4.6 焊接试样直接以焊后状态进行试验。对焊后还要经过350℃以上热加工的焊接件,试样在焊后还应进行敏化处理,敏化处理制度在协议中另行规定。 5. 试验设备 5.1 1容量为1-2L带回流冷凝器的启口—锥形烧瓶。 5.2 使试验溶液能保持微沸状态的加热装置。 6. 试验条件和步骤: 6.1 试验溶液:将100g硫酸铜(GB665 分析纯)溶介于700毫升蒸馏水或离子水中,再加入100ml硫酸(GB625 优级纯),用蒸馏水或去离子水稀释至1000ml,配制成硫酸—硫酸铜溶液。 6.2 试验前将试样用适当的溶剂或洗涤剂(非氯化物)去油并干燥。 6.3 在烧瓶底部铺一层铜屑(纯度不小于99.5%),然后放置试样。保证每个试样与铜屑接触的情况下,同一烧瓶中允许放几层同一钢种试样。但是试样之间要互不接触。 6.4 试验溶液应高出最上层试样20mm以上,每次试验都应使用新试验液。 6.5 将烧瓶放在加热装置上,通以冷却水,加热试验溶液,使之保持微沸状态。试样连续16小时。 6.6 试验后取出试样、洗净、干燥、弯曲。 7. 试验结果评定 7.1 压力加工件和焊接件试样弯曲度为180°,焊接接头沿溶合线进行弯曲。 7.2 试样弯曲用的压头直径,当试样厚度不大于1mm时,压头直径为1mm,当试样厚度大于1mm 时,压头直径为5mm。 7.3 弯曲后的试样在10倍放大镜下观察弯曲试样外表面,有无因晶间腐蚀而产生的裂纹。从试样的弯曲部位棱角产生的裂纹,以及不伴有裂纹的滑移线,绉纹和表面粗糙等都不能认为是晶间腐蚀而产生的裂纹。 7.4 试样不能进行弯曲评定或弯曲裂纹难以判定时,则采用金相法观察。金相磨片经浸蚀后,

腐蚀机理(上篇)

由于腐蚀的危害性十分大,为了搞好防腐蚀工作,作为防腐施工的技术人员和工人对材料受到腐蚀的起因、原理等应进一步加深了解,以便合理地选择防腐蚀的方法。 一、腐蚀 腐蚀是指材料在环境的作用下引起的破坏或变质。这里所说的材料包括金属材料和非金属材料。 金属的腐蚀是指金属和周围介质发生化学或电化学作用而引起的破坏。有时还伴随有机械、物理和生物作用。 非金属腐蚀是指非金属材料由于直接的化学作用(如氧化、溶解、溶胀、老化等)所引起的破坏。 这里应当指出,单纯的机械磨损和破坏不属于腐蚀的范畴。 二、腐蚀分类 腐蚀在这里指金属腐蚀,金属腐蚀的分类方法很多。通常是根据腐蚀机理、腐蚀破坏的形式和腐蚀环境等几个方面来进行分类。 (1)按腐蚀机理分类从腐蚀机理的角度来考虑,金属腐蚀可分为化学腐蚀和电化学腐蚀两大类。 1 化学腐蚀金属的化学腐蚀是指金属和纯的非电解质直接发生纯化学作用而引起的金属破坏,在腐蚀过程中没有电流产生。例如,铝在纯四氯化碳和甲烷中的腐蚀,镁、钛在纯甲醇中的腐蚀等等,都属于化学腐蚀。实际上单纯的化学腐蚀是很少见的,原因是在上述的介质中,往往都含有少量的水分,而使金属的化学腐蚀转变为电化学腐蚀。 2电化学腐蚀金属的电化学腐蚀是指金属和电解质发生电化学作用而引起金属的破坏。它的主要特点是:在腐蚀过程中同时存在两个相对独立的反应过程———阳极反应和阴极反应,并有电流产生。例如,钢铁在酸、碱、盐溶液中的腐蚀都属于电化学腐蚀。金属的电化学腐蚀是最普遍的一种腐蚀现象,电化学腐蚀造成的破坏损失也是最严重的。 (2)按腐蚀破坏的形式分类金属腐蚀破坏的形式多种多样,但无论哪种形式,腐蚀一般都从金属表面开始,而且伴随着腐蚀的进行,总会在金属表面留下一定的痕迹,即腐蚀破坏的形式。可以通过肉眼、放大镜或显微镜等进行观察分析。根据腐蚀破坏的形式,可将金属腐蚀分为全面腐蚀和局部腐蚀两大类。 1 全面腐蚀金属的全面腐蚀亦称为均匀腐蚀,是指腐蚀作用以基本相同的速度在整个金属表面同时进行。如碳钢在强酸、强碱中发生的腐蚀一般都是全面腐蚀。由于这种腐蚀可以根据各种材料和腐蚀介质的性质,测算出其腐蚀速度,这样就可以在设计时留出一定的腐蚀裕量。所以,全面腐蚀的危害一般是比较小的。

晶间腐蚀标准

Standard practices for Detecting susceptibility to intergranular attack in austenitic stainless steels 奧氏體不銹鋼晶間腐蝕敏感性標準實驗 1.scope 1.應用範圍 these practices cover the following five tests: 1.2 這些實驗包括下列五類: 1.1.1 parctics A- oxalic acid etch test for classification of etch structures of austenitic stainless steels(section 3 to 7, inclusive) 1.1.1實驗A——奧氏體不銹鋼草酸浸蝕試驗後的浸蝕組織分類(包括3-7部分 1.2 the following factors govern the application of these practices: 1.2以下因素主導著這類實驗: 1.2.1 susceptibility to intergranular attack associated with the precipitation of chromium carbides is readily detected in all six tests. 1.2.1晶間腐蝕敏感性同碳鉻化合物的快速析出 1.2.2 sigma phase in wrought chromium-nickel-molybdenum steels. Which may or may not be visible in the microstructure, can

防腐实验报告

2011—2012学年第一学期实验(实习)报告 课程名称:飞机结构防腐 授课班级:090146F 授课教师:谭娜 姓名:桑磊 学号:090146619

实验一超声波检测法 一、实验目的 1、了解超声波检测法的基本原理、优点和应用局限性。 2、熟悉超声波检测设备的基本使用方法;熟悉使用垂直探头和斜探头探 测试件内部缺陷的操作过程。 二、实验仪器设备(只需写明实验设备的重要组成部分,无需写具 体型号) 数字式超声波探伤仪、被测试块和耦合剂 三、实验原理 超声波工作的原理:主要是基于超声波在试件中的传播特性。 a 、声源产生超声波,采用一定的方式使超声波进入试件; b、超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传 播方向或特征被改变; c 、改变后的超声波通过检测设备被接收,并可对其进行处理和分析; d 、根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺 陷的特性。 四、实验步骤 1、探头连接:将直探头、斜探头或其它类型探头与超声波探伤仪相连接。 2、超声波探伤仪基本参数的设定:根据探伤构件的材料、外形尺寸及选 用的探头类型,调节、设定超声波探伤仪的声速、声程等检测参数。 3、仪器校准:利用标准校准试块,校准仪器,设定仪器零点。 4、涂耦合剂:在探伤区域内涂抹耦合剂。 5、进行探伤操作 五、实验结果描述 1、在纵波检测法中:工件无缺陷时,只显示始波和底波,当工件有缺陷

时,在始波和底波之间出现一个伤波,当缺陷横截面积很大时,将无底波,声束被缺陷全反射。 2、在横波检测法中:横波检测可以弥补纵波检测的不足之处,近表面检 测能力高。因为横波穿透能力差,所以检测一般无底部回波,在缺陷的地方只有一个伤波出现,。 六、回答思考题 1、简述超声波检测法的特点及适用性。 答:超声波检测法的特点: (1)优点:a、穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;b、对面积型缺陷的检出率较高;c、灵敏度高,可检测试件内部尺寸很小的缺陷;d、检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便,可进行现场检测。 (2)缺点:a、对具有复杂形状或不规则外形的试件进行超声检测有困难;b 、缺陷的位置、取向和形状对检测结果有一定影响;c 、材质、晶粒度等对检测有较大影响; (3)超声波检测法的适用性: 超声波检测法可用于金属、非金属、复合材料制件的损伤探测,既可以检测工件内部的缺陷,也可以检测工件表面的缺陷。可用来检测锻件、型材的裂纹、分层、夹杂,铸件中的气孔、裂纹、疏松等缺陷,焊缝中的气孔、裂纹、未焊透等缺陷,复合材料的分层、脱胶等缺陷,还可以测定工件的厚度。 2、说明纵波探测法根据什么确定缺陷的位置和大小。 答:根据伤波出现的时间可以确定缺陷的位置。根据伤波与始波的相对高度来确定缺陷的大小。 3、分析超声波探测法中使用斜探头产生横波的特点,说明为什么在超声 波检测中使用横波探测来辅助纵波探测。 答:横波检测通过选择探头角度,使声束与缺陷走向垂直,从而使反射回波最大,达到检测的目的。因此,横波检测可以发现与工件表面成一定角

晶间腐蚀检验方法

不锈钢硫酸-硫酸铁腐蚀试验方法(GB4334.2-84)适用于将奥氏体不锈钢在硫酸-硫酸铁溶液中煮沸试验后,以腐蚀率评定晶间腐蚀倾向的一种试验方法。试验步骤: 1)将硫酸用蒸馏水或去离子水配制成50±0.3%(质量百分比)的硫酸溶液,然后取该溶液600ml加入25g硫酸铁加热溶解配制成试验溶液。 2)测量试样尺寸,计算试样面积(取三位有效数字)。 3)试验前后称质量(准确到1mg)。 4)溶液量按试样表面积计算,其量不小于20ml/cm2。每次试验用新的溶液。5)试样放在试验溶液中用玻璃支架保持于溶液中部,连续沸煮沸120h。每一容器内只放一个试样。 6)试验后取出试样,在流水中用软刷子刷掉表面的腐蚀产物,洗净、干燥、称重。 试验结果以腐蚀率评定为 W前-W后 腐蚀率=──────(g/m2.h) St 式中W前──试验前试样的质量(g); W后──试验后试样的质量(g); S──试样的表面积; t──试验时间(h)。 (3)不锈钢65%硝酸腐蚀试验方法(GB4334.3-84)适用于将奥氏体不锈钢在65%硝酸溶液中煮沸试验后,以腐蚀率评定晶间腐蚀倾向的试验方法。 试验步骤: 1)试验溶液的配制将硝酸用蒸馏水或去离子水配制成65±0.2%(质量百分比)的硫酸溶液。 2)、3)、4)同硫酸-硫酸铁试验方法。 5)每周期连续煮沸48h,试验五个周期。

试验结果以腐蚀率评定,同硫酸-硫酸铁试验方法。 焊接试样发现刀状腐蚀即为具有晶间腐蚀倾向,性质可疑时,可用金相法判定。(4)不锈钢硝酸-氢氟酸腐蚀试验方法(GB4334.4-84)适用于检验含钼奥氏体不锈钢的晶间腐蚀倾向。用在70℃、10%硝酸-3%氢氟酸溶液中的腐蚀率的比值来判定晶间腐蚀倾向。 试验步骤: 1)试验溶液:将硝酸和氢氟酸试剂,用蒸馏水或去离子水配制成质量分数为10%的硝酸-3%的氢氟酸试验溶液。 2)、3)同硫酸-硫酸铁试验方法。 4)将支架放入容器中,溶液量按试样表面积计算,其量不少于10ml/cm2。 5)装有试验溶液的容器放入恒温水槽中,试验溶液的温度加热到70±0.5℃时再将试样放入容器内的支架上,使试样处于溶液中部,连续保持2h。每一容器内只放一个试样。 6)同硫酸-硫酸铁试验方法。 7)试验两个周期,每周期为2h。每周期必须使用新的溶液。 试验结果以腐蚀率评定,同硫酸-硫酸铁试验方法。 将两周期的腐蚀率相加,然后按下式求腐蚀率的比值,取两位小数: 对于一般含碳量的钢种为 交货状态试样的腐蚀率 腐蚀率的比值=────────────── 再固溶处理后试样的腐蚀率 对于超低碳钢种(也用于焊接的非超低碳钢种)为 敏化处理后试样的腐蚀率 腐蚀率的比值=────────────── 交货状态试样的腐蚀率 (5)不锈钢硫酸-硫酸铜试验方法(GB4334.5-90)适用于检验奥氏体、奥氏体-铁素体不锈钢在加有铜屑的硫酸-硫酸铜溶液中的晶间腐蚀倾向。

细说不锈钢晶间腐蚀

细说不锈钢晶间腐蚀 1 问题的提出 技术统一规定常包括“奥氏体不锈钢制容器用于可能引起晶间腐蚀的环境,焊后应做固溶或稳定化处理”,提出这样的要求,自有其存在的合理性。但即使设计人员在图样的技术要求中提出这一条,要求制造厂进行不锈钢制容器(比如换热器)的焊后热处理,由于实际热处理工艺参数难以控制和其他一些意想不到的困难,通常难以达到设计人员提出的理想要求,实际上在役的不锈钢设备绝大部分是在焊后态使用。 这就促使我们去思考:晶间腐蚀是奥氏体不锈钢最常见的腐蚀形式,那么产生晶间腐蚀的机理是什么?在什么介质环境下会引起晶间腐蚀?防止和控制晶间腐蚀的主要方 法有哪些?奥氏体不锈钢制容器用于可能引起晶间腐蚀的 环境焊后是否都要热处理?本文查阅有关的标准、规,专著,结合生产实际谈谈个人看法。 2 晶间腐蚀的产生机理晶间腐蚀是一种常见的局部腐蚀,腐蚀沿着金属或合金晶粒边界或它的临近区域发展,而晶粒腐蚀很轻微,这种腐蚀便称为晶间腐蚀,这种腐蚀使晶粒间的结合力大大削弱。严重的晶间腐蚀,可使金属失去强度和延展性,在正常载荷下碎裂。现代晶间腐蚀理论,主

要有贫铬理论和晶界杂质选择溶解理论。 2. 1 贫铬理论 常用的奥氏体不锈钢,在氧化性或弱氧化性介质中之所以产生晶间腐蚀,多半是由于加工或使用时受热不当引起的。所谓受热不当是指钢受热或缓慢冷却通过450~850 ℃温度区,钢就会对晶间腐蚀产生敏感性。所以这个温度是奥氏体不锈钢使用的危险温度。不锈钢材料在出厂时已经固溶处理,所谓固溶处理就是把钢加热至1050~1150 ℃后进行淬火,目的是获得均相固溶体。奥氏体钢中含有少量碳,碳在奥氏体中的固溶度是随温度下降而减小的。如 0Cr18Ni9Ti , 在1100 ℃时,碳的固溶度约为0. 2 % , 在500~700 ℃时,约为0. 02 %。所以经固溶处理的钢,碳是过饱和的。 当钢无论是加热或冷却通过450~850 ℃时,碳便可形成(Fe 、Cr)23C6 从奥氏体中析出而分布在晶界上。(Fe 、Cr)23C6 的含铬量比奥氏体基体的含铬量高很多,它的析出自然消耗了晶界附近大量的铬,而消耗的铬不能从晶粒过扩散及时得到补充,因为铬的扩散速度很慢,结果晶界附近的含铬量低于钝化必须的的限量(即12 %Cr),形成贫铬区,因而钝态受到破坏,晶界附近区域电位下降,而晶粒本身仍维持钝态,电位较高,晶粒与晶界构成活态———钝态微电偶电池,电池具有大阴极小阳极的面积比,

哈氏合金C-276试验总结

一、前言 C-276合金是抗腐蚀的Ni-Mo-Cr合金,它对大部分氧化性和还 原性腐蚀介质具有极好的耐蚀性能,对点蚀、缝隙腐蚀以及应力腐蚀 开裂等局部腐蚀也具有良好的耐蚀能力,同时具备良好的加工成型性 能和焊接性能,现广泛应用于各种耐蚀性要求较高的工况。 我公司为以后承接C-276合金产品做准备,开展了焊接试验,摸 索C-276合金的焊接工艺,并进行了焊接工艺评定。 二、C-276合金的焊接特点 1. C-276合金的化学成份: Cr Fe C Mn Si Mo W Co V P S Ni 14.5-16.5 4.0-7.0 ≤0.01 ≤1.0 ≤0.08 15.0-17.0 3.0-4.5 ≤2.5 ≤0.35 ≤0.04 ≤0.03 余 2 焊丝ERNiCrMo-4的化学成分(%) C Cr Mo Fe V Co W Mn Si P S Ni ≤0.0214.5-1 6.5 15.0-17 .0 4.0-7.0 ≤0.35 ≤2.5 3.0- 4. 5 ≤1.0 ≤0.08 ≤0.04 ≤0.03 余 3 焊条ENiCrMo-4的化学成分(%) C Cr Mo Fe V Co W Mn Si P S Ni ≤0.0214.5-1 6.5 15.0-17 .0 4.0-7.0 ≤0.35 ≤2.5 3.0- 4. 5 ≤1.0 ≤0.2 ≤0.04 ≤0.03 余 4. C-276合金的力学性能: σb≥690MPa σ0.2 ≥283MPa δ4≥40% HRB ≤100(HV10≤253)

5. C-276合金的焊接特点 1). C-276合金线膨胀系数大,具有较高的热裂纹敏感性,焊接时易产生热裂纹,如凝固裂纹、多边化裂纹和高温失塑裂纹。结晶裂纹最容易发生在焊道弧坑,形成火口裂纹,多半沿焊缝中心线纵向开裂,也有垂直于焊道。液化裂纹多出现在紧靠熔合线的热影响区中,有的还出现在多层焊的前层焊缝中。高温失塑裂纹既可能发生在热影响区中,也可能发生在焊缝中。各种热裂纹有时是宏观裂纹,但有时仅有微观裂纹。热裂纹发生在高温下,常温下不再扩展。 要提高焊缝的抗裂能力和耐腐蚀性能,需特别注意焊前焊接区的彻底清洁及工件的清理,避免有害杂质熔入焊缝。非常重要的一点是要保证首层焊道外表面呈外凸的形状,另外填满弧坑也可以有效防止热裂纹的产生。 2). 焊接时一般不需要预热,但当母材温度低于15℃以下时,应对接头两侧250-300mm宽的区域加热到15-20℃,以免湿气冷凝导致焊缝气孔。为了防止焊缝和热影响区的晶粒长大和碳化物的析出,应控制低的层间温度,一般不超过93℃。由于敏化温度区内晶界易发生贫Cr、贫Mo现象,导致晶间腐蚀和应力腐蚀倾向发生。避免焊接区在高温停留时间过长,注意快速冷却就可以防止腐蚀倾向。 3). C-276合金液态金属流动性差,接头的坡口角度需较大些;另外其焊缝金属熔深浅,易形成未焊透,接头的钝边厚度要较小一些,焊接时线能量不能过小;但不能通过增大焊接电流来提高它的工艺特性,焊接电流超过推荐范围不仅使熔池过热,增大热裂纹敏感性,而

相关文档
最新文档