时滞泛函微分方程的某些稳定性定理

时滞泛函微分方程的某些稳定性定理
时滞泛函微分方程的某些稳定性定理

非线性微分方程和稳定性

第六章 非线性微分方程和稳定性 在19世纪中叶,通过刘维尔的工作,人们已经知道绝大多数的微分方程不能用初等积分方法求解.这个结果对于微分方程理论的发展产生了极大影响,使微分方程的研究发生了一个转折.既然初等积分法有着不可克服的局限性,那么是否可以不求微分方程的解,而是从微分方程本身来推断其解的性质呢?定性理论和稳定性理论正是在这种背景下发展起来的.前者由法国数学家庞加莱(Poincar é,1854-1912)在19世纪80年代所创立,后者由俄国数学家李雅普罗夫(Liapunov,1857-1918)在同年代所创立.它们共同的特点就是在不求出方程的解的情况下,直接根据微分方程本身的结构和特点,来研究其解的性质.由于这种方法的有效性,近一百多年以来它们已经成为常微分方程发展的主流.本章对定性理论和稳定性理论的一些基本概念和基本方法作一简单介绍. §6.1 引言 考虑微分方程 (,)d f t dt =x x (6.1) 其中函数(,)f t x 对n D R ∈?x 和t ∈(-∞,+∞)连续,对x 满足局部李普希兹条件. 设 方程(5.1)对初值(t 0,x 1)存在唯一解01(,,)x t t x ?=,而其它解记作00(,,)x x t t x =.现在的问题是:当01x x -很小时,差0001(,,)(,,)x t t x t t x ?-的变化是否也很小?本章向量1(,...,)T n x x =x 的范数取1 221 ()n i i x ==∑x . 如果所考虑的解的存在区间是有限闭区间,那么这是解对初值的连续依赖性,第2章的定理2.7已有结论.现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性(见下面的例3),这就产生了李雅普诺夫意义下的稳定性概念. 如果对于任意给定的0ε>和00t ≥都存在0(,)0t δδε=>,使得只要0x 满足

微分方程稳定性分解

带有时滞的动力系统的运动稳定性 分五部分内容,第一部分是Понтрягин定理,给出解实部、虚部的形式;第二部分分析了线性系统的一般性质、特征方程重根时解的表示和解的指数估计;第三部分讨论解的存在唯一性;第四部分探讨解的表达式;第五部分给出Фрид定理。以此说明特征方程根的实部的符号可以用以判断带有时滞的线性系统的稳定性。 直接法的基本定理 一、Понтрягин定理 要讨论的常系数线性系统的滞量τ为常数,所指的滞后型与中立型系统分别为1()()n i ij j ij j j x a x t b x t τ=??=+-??∑, 1 ()()()n i ij j ij j ij j j x a x t b x t c x t ττ=??=+-+-??∑,1,2, ,i n =0τ>, 这时,相应的特征方程分别是0ij ij ij a b e λτδλ-+-=, 0ij ij ij ij a b e c e λτλτλδλ--++-=。 对0τ=的情形0ij ij ij a b e λτδλ-+-=为一代数方程1 10n n n P P λλ -+++=。 在常微分方程解的稳定性理论中,关于特征方程()0P λ=的根的实部符号这样一个问题是极其重要的。如果给了方程组的平衡态之位置及其对应的特征多项式()P λ,则欲是平衡态的位置稳定,其充要条件是特征多项式()P λ的所有根都有负实部。 但是,现在的特征方程0ij ij ij a b e λτδλ-+-=,0ij ij ij ij a b e c e λτλτλδλ--++-=已不再是代数方程,可系统的稳定性仍然与特征根的分布紧紧联系在一起,这两个特征方程的一切根i λ都有0i Re λδ≤<时,系统 1()()n i ij j ij j j x a x t b x t τ=??=+-??∑, 1 ()()()n i ij j ij j ij j j x a x t b x t c x t ττ=??=+-+-??∑,1,2, ,i n =0τ>

时滞泛函微分方程的一个不稳定性定理

第16卷第3期纺织高校基础科学学报Vjl.16,№.3 s(删cEsJOuRNALoFTExlⅡEUNIVERs哪Sept.,20032003年9月BAsIc 文章编号:l006—8341(2003)03一0205一03 时滞泛函微分方程的一个不稳定性定理 高剑明1,马戈2 (1.东华大学理学院,上海200051;2.南阳理工学院数理部,河南南阳473004) 摘要:给出了时滞泛函微分方程的零解不稳定性的新判据,取消了牵雅普诺夫泛函y的传统 限制:m,/出≥O,推广了J+K卜hle的结果. 关键词:时滞泛函微分方程;不稳定性;李雅普诺夫泛函 中圈分类号:O175.13文献标识码:A 0引言 本文中研究时滞泛函微分方程零解的不稳定性.关于不稳定性的判别,一般假设_[7常正‘“,本文中借鉴文献[2]的想法,改进了这个条件,矿的下界可以是某些条件下的变号函数,推广了文献[1]的不稳定性判别的结果,减弱了定理的条件. 考虑时滞泛函微分方程 蚓出=,(f,z).(1)设,.,×c—m连续,且满足解唯一性定理的条件,,(},o)=o,£∈,=陆,。。),岛为某实数.记c—c([一7,o],RH),对于驴∈c,定义范数I|PiI一。∈{要“lP(口)I,dd,妒)(f)表示方程(1)的过o,9)的解,对于泛函E,×c—R,y按照方程(1)对£的导数矿(£,P)定义为 矿o,妒)一!匦{[y“+^,玉+“£,妒))一V(£,掌)]. h一“ 1定理及证明 引理1设y:‰,+o。)一R连续,,:R+呻R连续可微且,(“)>o(“>o),其中R+一[o,十o。),则 —瞬/ty(}))=,(V(r))n}y(f),f∈{fly(f)>0,f∈,}, 其中日.表示右下导数. 证明记,(“)一F(“).由假设知,(“)一几")=F(})(“一口),其中}在“和。之间,于是 q几w。’’2等音[,(矿。+∞’一,(y‘∞]5等去F‘。?[矿o+∞一H。)]?其中}在V(f)和V(£+肋之间,且}一V(£)(^一O+). 对于£∈{}Jy(f)>o,f∈‰,。。))和F(“)的连续性知 limF(手)一F(y(f))=,(y0))>O. ?收稿日期:2003一05-27 作者简介t高剑明(1963一).男。江苏省海安县人,东华大学理学院讲师 万方数据

时滞微分方程解的存在性

时滞微分方程解的存在性 时滞方程更能反映真实的自然现象,关于Banach 空间中具有整数阶物质导数的时滞微分方程解的存在性的研究已有了不少,包括积分方程最优控制,边值问题,方法也都类似,但对于分数阶导数的方程的研究不多。可能是因为分数阶导数问题还没有被应用到更广泛的领域,或者是因为分数阶导数较整数阶研究更为困难。 一般研究微分方程是在实数空间内,为了使结果更具一般性,下面本文研究抽象空间中一般分数阶物质导数的方程解的存在性,从而得到一般性的结论。为后文的工作做理论准备。 现有的研究分数阶导数的微分方程解的存在性的文章不多,事先查得的的一篇文章是研究整数阶的有时滞项的微分方程的解的存在性的。由于分数阶导数和整数阶导数的性质有很大差异,研究整数阶导数方程的方法不能照搬到分数阶导数方程上,所以我们研究时加上了一条限制条件,即方程右端的非线性项的范数小于一个常数加上一个常数和解函数范数的乘积,之后用了皮卡迭代方法,得到一个函数序列,然后用数学归纳法证明此序列一致有界且等度连续,然后结合相关文献,就证明了上面得到的函数序列有弱收敛子列,最后证明弱收敛子列的极限函数就是方程的解。从而证明了该方程解的存在性。具体过程如下: 令E 为Banach 空间,E*为其对偶空间并且E 0 =C([?h,0],E),上面的范数分别为:,* 和 0E ,0 [,0]max ()t h E t ??∈-=,同时, 00(,){:},X X B y r y X y y r =∈-≤ 其中,X E =或0E ,(), 表示E 和E*中的元素的内积。考虑如下Banach 空间分数阶微分方程的初值问题: 00()(,),0,01,(2.0.1)t D u t f t u t u E ααψ?=≥<

无穷时滞泛函微分方程的概周期解

第22卷第1期 2005年02月工程数学学报CHINESE JOURNAL OF ENGINEERING MATHEMATICS Vol.22No.1Feb.2005文章编号:1005-3085(2005)01-0072-05 无穷时滞泛函微分方程的概周期解? 刘易成,李志祥 (国防科技大学理学院数学系,湖南长沙410073) 摘要:讨论一类高维的具无穷时滞的中立型泛函微分方程的概周期解问题。利用C h 空间,矩阵测度 和Krasnoselskii 不动点定理获得了其概周期的存在性与唯一性定理。同时给出了模包含关系,推广了相应文献的结果。 关键词:中立型泛函微分方程;概周期解;矩阵测度;无穷时滞分类号:AMS (2000)34C25 中图分类号: O175.1文献标识码:A 1引言 近年来,对无穷时滞的中立型泛函微分方程的周期解和概周期的研究引起了人们极大的关注,尤其是对无穷时滞Volterra 型积分微分方程的周期解存在性有比较详细的结果[1~4],而对概周期解存在性的研究更备受关注。在文[1~5]的基础上考虑下列方程d d t (x (t )? 0?∞q (s )x (t +s )d s )=A (t,x (t ))x (t )+f (t,x t )(1)d d t (x (t )? 0?∞ q (s )x (t +s )d s )=A (t )x (t )+f (t,x t )(2)的概周期解的存在性和稳定性,利用矩阵测度和不动点方法得到了它存在概周期解的几个充分条件。 我们采用文[6,8]的符号。AP 表示R 上所有概周期(Almost periodic function)函数的全体,M (f )表示f (t )的平均值,定义为M (f )=lim T →∞1T T 0f (s )d s 。由文[6,8]知如果f ∈AP ,则f 的平均值一定存在;当f (t )为周期函数时,M (f )=1T T 0 f (s )d s 。序列{αn }记为α且T α(f )=lim n →∞f (t +αn ).mod(f )表示概周期函数f (t )的模,定义为mod (f )={μ:μ=N j =1n j λj ,n j ,N ∈N ,λj ∈∧f }[6,8],其中∧f 表示f 的指数集。 在R n 和R n ×n 中定义范数: x =( n i =1x 2i )12; A =(n i,j =1a 2ij )12,则R n ×n 中的矩阵测度定义为μ(A )=λmax (12(A T +A ))。 记R ?=(?∞,0],BC ={?|?∈C (R ?,R n ),?(s )有界,s ∈R ?},设h ∈C (R ?,R ),h (s )>0且l = 0?∞h (s )d s <+∞。可设l =1(否则有1=l ?1 0?∞h (s )d s )。对?∈BC ,定义|?|h ? 0?∞h (s )|?|[s,0]d s ,其中|?|[s,0]?max s θ 0 |?(θ)|,则|·|h 是BC 的模,记(BC,|·|h )为BC h ,由文[1]知BC h 是Banach 空间。且对?∈BC h ,设x :(?∞,τ+A )→R n 使收稿日期:2003-03-28.作者简介:刘易成(1977年9月生),男,硕士,助教,研究方向:微分方程的定性理论.?基金项目:国防科技大学预研基金. 万方数据

微分方程稳定性理论简介

第五节 微分方程稳定性理论简介 这里简单介绍下面将要用到的有关内容: 一、 一阶方程的平衡点及稳定性 设有微分方程 ()dx f x dt = (1) 右端不显含自变量t ,代数方程 ()0f x = (2) 的实根0x x =称为方程(1)的平衡点(或奇点),它也是方程(1)的解(奇解) 如果从所有可能的初始条件出发,方程(1)的解()x t 都满足 0lim ()t x t x →∞ = (3) 则称平衡点0x 是稳定的(稳定性理论中称渐近稳定);否则,称0x 是不稳定的(不渐近稳定)。 判断平衡点0x 是否稳定通常有两种方法,利用定义即(3)式称间接法,不求方程(1)的解()x t ,因而不利用(3)式的方法称直接法,下面介绍直接法。 将()f x 在0x 做泰勒展开,只取一次项,则方程(1)近似为: 0'()()dx f x x x dt =- (4) (4)称为(1)的近似线性方程。0x 也是(4)的平衡点。关于平衡点0x 的稳定性有如下的结论: 若0'()0f x <,则0x 是方程(1)、(4)的稳定的平衡点。 若0'()0f x >,则0x 不是方程(1)、(4)的稳定的平衡点 0x 对于方程(4)的稳定性很容易由定义(3)证明,因为(4)的一般解是 0'()0()f x t x t ce x =+ (5) 其中C 是由初始条件决定的常数。

二、 二阶(平面)方程的平衡点和稳定性 方程的一般形式可用两个一阶方程表示为 112212 () (,)()(,) dx t f x x dt dx t g x x dt ?=??? ?=?? (6) 右端不显含t ,代数方程组 1212 (,)0 (,)0f x x g x x =?? =? (7) 的实根0012 (,)x x 称为方程(6)的平衡点。记为00 012(,)P x x 如果从所有可能的初始条件出发,方程(6)的解12(),()x t x t 都满足 101lim ()t x t x →∞ = 20 2lim ()t x t x →∞ = (8) 则称平衡点00 012(,)P x x 是稳定的(渐近稳定);否则,称P 0是不稳定的(不渐 近稳定)。 为了用直接法讨论方法方程(6)的平衡点的稳定性,先看线性常系数方程 11112 22122 () ()dx t a x b x dt dx t a x b x dt ?=+??? ?=+?? (9) 系数矩阵记作 1 12 2a b A a b ??=???? 并假定A 的行列式det 0A ≠ 于是原点0(0,0)P 是方程(9)的唯一平衡点,它的稳定性由的特征方程 det()0A I λ-= 的根λ(特征根)决定,上方程可以写成更加明确的形式: 2120()det p q p a b q A λλ?++=? =-+??=? (10) 将特征根记作12,λλ,则

时滞微分方程

function sol = ch4ex1 global tau omega tau = 42.0; omega = 0.15; sol = dde23(@ddes, [tau, omega], [15; 0; 2; 3], [0, 350]); plot(sol.x,sol.y) legend(’S(t)’, ’E(t)’, ’I(t)’, ’R(t)’) %========================================== function dydt = ddes(t,y,Z) global tau omega % Parameters: A = 0.330; d = 0.006; lambda = 0.308; gamma = 0.040; epsilon = 0.060; % Variable names used in stating the DDEs: S = y(1); E = y(2); I = y(3); R = y(4); % Z(:,1) corresponds to the lag tau. Itau = Z(3,1); % Z(:,2) corresponds to the lag omega. Somega = Z(1,2); Eomega = Z(2,2); Iomega = Z(3,2); Romega = Z(4,2); Noft = S + E + I + R; Nomega = Somega + Eomega + Iomega + Romega; dSdt = A - d*S - lambda*((S*I)/Noft) + gamma*Itau*exp(-d*tau); dEdt = lambda*((S*I)/Noft) - ... lambda*((Somega*Iomega)/Nomega)* exp(-d*omega) - d*E; dIdt = lambda*((Somega*Iomega)/Nomega)*exp(-d*omega) ... - (gamma+epsilon+d)*I; dRdt = gamma*I - gamma*Itau*exp(-d*tau) - d*R;

几类偏泛函微分方程解的动力学行为研究

几类偏泛函微分方程解的动力学行为研究主要运用偏泛函微分方程理论,算子半群理论和无穷维动力系统理论,研究了几类偏泛函微分方程解的动力学行为,包括拉回吸引子的存在性、维数及其上半连续性,平衡解的多项式稳定性和指数稳定性.全文共分六章:第一章介绍了偏泛函微分方程和无穷维动力系统的研究背景和意义,综述了近年来关于偏泛函微分方程与无穷维动力系统的研究现状,并概括了本论文的主要工作.第二章首先运用经典的Faedo-Galerkin逼近方法证明了非自治随机p-Laplace方程弱解的存在唯一性,并利用一致估计和渐近紧性得到了双空间随机吸引子的存在性及其上半连续性;然后结合Galerkin近似和Aubin-Lions紧性证明了时滞p-Laplace 方程弱解的存在唯一性,并运用能量方法得到了拉回吸引子的存在性及其上半连续性.第三章借助泛函微分方程理论证明了无界时滞的Navier-Stokes方程弱解的存在唯一性,运用Lyapunov函数等方法证明了其平衡解的局部稳定性,通过构造合适的Lyapunov泛函得到了该平衡解的渐近稳定性,并在一种特殊的无界时滞的情形下证明了该平衡解具有多项式稳定性;然后使用Ito公式证明了无限时滞的随机Navier-Stokes方程弱解的存在唯一性,通过构造合适的Lyapunov泛函得到了其平衡解的渐近稳定性,并在一种特殊的无界时滞的情形下证明了该平衡解的多项式稳定性.第四章结合能量方法和紧性理论分析了一类时滞不可压缩非Newtonian流体弱解的存在唯一性,并运用一致估计和分解方法证明了拉回吸引子的存在性;然后综合运用Lax-Milgram定理和Schauder不动点定理证明了时滞不可压缩非Newtonian流体平衡解的存在唯一性,最后运用Razumikhin等方法证明了平衡解的指数稳定性.第五章运用算子半群理论证明了无限时滞的分数阶随机反应扩散方程温和解的存在唯一性及其关于初值的连续依赖性,得到了具有有

时滞微分方程的定性研究

时滞微分方程的定性研究 【摘要】:微分方程是近代数学的一个重要的学科分支,随着现代化社会的发展,无论是在工程、宇航等自然科学领域还是在经济、金融等社会科学领域,都有着广泛的应用。在力学、物理学、生态学、生物学、经济学等多种应用技术中往往用时滞微分方程比常微分方程来刻划更符合实际。国内外学者也对时滞泛函微分方程的基本理论及定性理论进行了卓有成效的研究。有关时滞泛函微分方程的研究无论在理论上还是在应用上都具有非常重要的意义。开展这方面的研究,一方面将丰富和发展时滞泛函微分方程理论,另一方面也为一些问题的实际应用提供必要的理论基础。本文就时滞微分方程定性理论中的一些问题作了深入系统的研究,主要围绕以下几个方面展开:1、时滞微分方程周期解的存在性问题。本文第二章第一节,第三章第二节中给出了描述两个种群的捕食系统的时滞微分方程模型,并利用重合度理论中的延拓定理给出了周期解存在的充分条件。利用重合度研究周期解的多重性的问题已有许多工作。第三章第二节在研究具非单调功能性反应的捕食一食饵系统时,通过选择不同的相空间,区域划分,解的先验估计等手段,克服了计算算子拓扑度的困难,保证了系统至少有两个正周期解。这两类系统的正周期解的存在性不仅具有生态学应用价值,同时对时滞泛函微分方程理论研究也非常重要。第二章第二节利用非紧性测度的k-集压缩原理及某些分析技巧研究了二阶时滞微分方程,推广与改进了一些相关结果。第三章第一节利用锥映射

不动点定理研究了时滞微分方程周期解的多重性问题,得到了多个正解存在的充分条件,所用的手段是比较新的。2.时滞微分方程周期解的存在性,唯一性及全局吸引性。第四章利用比较原理及不动点定理得到了时滞微分方程的正周期解存在性定理。一方面在非时滞的情况下通过构造比较函数,利用Brouwer不动点定理得到非时滞微分方程正周期解的存在唯一性,及周期解全局吸引的充分条件。另一方面,在时滞存在的情况下利用周期性与非时滞情况相比较得到周期解的存在性,唯一性。由于此时构造Lyapunov泛函比较困难,【关键词】:时滞微分方程重合度周期解积分方程不动点定理渐近稳定性全局吸引性 【学位授予单位】:山西大学 【学位级别】:博士 【学位授予年份】:2006 【分类号】:O175 【目录】:中文摘要4-6英文摘要6-9中文目录9-11英文目录11-13主要符号表13-14第一章序言14-251.1研究背景14-181.2本文主要工作及内容安排18-201.3预备知识20-25第二章时滞微分方程周期解的存在性25-402.1一类时滞捕食系统周期解的存在性25-322.2一类时滞微分方程的周期解32-40第三章时滞微分方程多个周期解的存在性

第5章 定性和稳定性理论简介(常微分方程)

第5章定性和稳定性理论简介 在十九世纪中叶,通过Liouville等人的工作,人们已经知道绝大多数微分方程不能用初等积分法求解.这个结果对微分方程理论的发展产生了极大的影响,使微分方程的研究发生了一个转折.既然初等积分法有着不可克服的局限性,那么是否可以不求微分方程的解,而从微分方程本身来推断其性质呢?定性理论和稳定性理论正是在这种背景下发展起来的.前者由法国数学家Poincare(1854-1912)在19世纪80年代所创立,后者由俄国数学家Liapunov(1857-1918)在同年代所创立.它们共同的特点就是在不求出方程解的情况下,直接根据微分方程本身的结构与特点,来研究其解的性质.由于这种方法的有效性,近一百多年以来它们已经成为常微分方程发展的主流.本章对定性理论和稳定性理论的一些基本概念和基本方法作一简单介绍. 第一讲§5.1 稳定性(Stability)概念(5课时) 一、教学目的:理解稳定、渐近稳定和不稳定的概念;掌握零解的稳 定、渐近稳定的概念;学会判定一些简单微分方程零 解的稳定和渐近稳定性。 二、教学要求:理解稳定、渐近稳定和不稳定的概念;掌握简单微分 方程零解的稳定和渐近稳定性的判定。 三、教学重点:简单微分方程零解的稳定和渐近稳定性的判定。 四、教学难点:如何把一般解的稳定性转化为零解的稳定性。 五、教学方法:讲练结合教学法、提问式与启发式相结合教学法。 六、教学手段:传统板书与多媒体课件辅助教学相结合。 七、教学过程:

1.稳定性的定义 考虑微分方程组 (,)dx f t x dt = (5.1) 其中函数(,)f t x 对n x D R ∈?和(,)t ∈-∞+∞连续,对x 满足局部Lipschitz 条件。 设方程(5.1)对初值01(,)t x 存在唯一解01(,,)x t t x ?=,而其它解记作00(,,)x x t t x = 。 现在的问题是:当01x x -很小是,差 0001(,,)(,,) x t t x t t x ?-的变化是否也很小?本章向量1 2 (,,,)T n x x x x = 的范数取 1 221n i i x x =?? = ? ?? ∑。 如果所考虑的解的存在区间是有限区间,那么这是解对初值的连续依赖性,在第二章的定理2.7已有结论。现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性,这就产生了Liapunov 意义下的稳定性概念。 定义 5.1 如果对于任意给定的0 ε>和00t ≥都存在0(,)0 t δδε=>, 使得只要 01x x δ -<,就有 0001(,,)(,,)x t t x t t x ?ε -< 对一切0t t ≥成立,则 称(5.1)的解01(,,)x t t x ?=是稳定的。否则是不稳定的。 定义5.2 假定01(,,)x t t x ?=是稳定的,而且存在11(0)δδδ<≤,使得只要 011x x δ-< ,就有 0001l i m ((,,) (,,))0t x t t x t t x ?→∞ -= ,则称 (5.1)的解01(,,)x t t x ?=是渐近稳定的。 为了简化讨论,通常把解01(,,)x t t x ?=的稳定性化成零解的稳定性问题.下面记00()(,,) x t x t t x =01()(,,)t t t x ??=作如下变量代换. 作如下变量代 换.

微分方程稳定性

目录 摘要 ............................... 错误!未定义书签。ABSTRACT ............................ 错误!未定义书签。前言 ............................... 错误!未定义书签。微分方程稳定性分析原理.................. 错误!未定义书签。捕鱼业的持续收获模型 ................... 错误!未定义书签。种群的相互竞争模型..................... 错误!未定义书签。参考文献 ............................ 错误!未定义书签。

摘要 微分方程稳定性理论是微分方程的一个重要的理论。微分方程理论就是通过一些定量的计算来研究系统的稳定性,也就是系统在受到干扰项偏离平衡状态后能否恢复到平衡状态或者是平衡状态附近的位置。用微分方程描述的物质运动的特点依赖于初值,而初值的计算或者测定不可避免的又会出现误差和干扰。如果描述这个系统运动的微分方程的特解是不稳定的,则初值的微小误差和干扰都会导致严重的后果。因此,不稳定的特解不适合作为我们研究问题的依据,只有稳定的特解才是我们需要的。本文就一阶微分方程和二阶微分方程的平衡点及稳定性进行了分析,并且建立了捕鱼业持续收获模型和两种群相互竞争模型。 【关键词】微分方程;平衡点;稳定性;数学建模

ABSTRACT Differential equation stability theory is an important theory of differential equations. Differential equation theory is to study the stability of the system by some quantitative calculation, also is the system in the disturbance of deviating from the equilibrium state after the item will return to equilibrium or is near the equilibrium position. Using differential equation to describe the characteristics of the material movement depends on the initial value, and the calculation of initial value or determination of the inevitable will appear the error and interference. If the special solution of the differential equation describing the system movement is unstable, the initial value of small errors and interference will lead to serious consequences. Therefore, special solution is not suitable for the unstable as the basis of our research question, only stable solution is we need. In this paper, the first order differential equation of second order differential equation and the balance and the stability are analyzed, and the fishing sustained yield model is established and two species and two species competing models. 【key words】Differential equations; Balance; Stability; Mathematical modeling

常微分方程作业(四)

《常微分方程》第四次作业 第4章 n 阶线性微分方程 1.试求下列各方程的通解 (1)0209=+'+''y y y (2)02=+'-''y y y (3)0=-''y y (4)0)4(=''-y y (5)0)4(=+y y (6)0=+'-''-'''y y y y (7)022)4()6(=+''--y y y y 2.试求下述各方程满足给定的初始条件的解: (1)023=+'-''y y y ,2)0(=y ,3)0(-='y ; (2)044=+'+''y y y ,4)2(=y ,0)2(='y ; (3)0='+''y y ,2)0(=y ,5)0(='y . 3.求下列各方程的通解: (1)5127=+'-''y y y (2)x y y y 2e 3=+'+'' (3)873782++=+'-''x x y y y (4))25(e 1362+-=++t t x x x t (4)x x y y y 2cos 102=+'-'' 4.一拉紧弹簧所受到的拉力与它的长度成正比,当弹簧受到9.8N (1kg 力)拉力时,其长度增长1cm 。今有重2kg 的物体挂在弹簧下端,保持平衡。假若将它稍向下拉,然后再放开,试求由此所产生振动的周期。 5.一质量为m 的质点由静止开始沉入液体中,当下沉时,液体的反作用与下沉的速度成正比,求此质点的运动规律。 6.有一LRC 电器,其中LC 并联。再与R 及电器E = t v ωsin 串联,试求:(1)通过电阻R 的电流强度;(2)在解频率等于何值时,电流强度最大或最小? 第5章 定性和稳定性理论简介 1.设0)0,(=t f 用δε-语言叙述微分方程),(d d x t f t x =的零解不稳定的定义。 2.考虑纯量方程x t a t x )(d d =,)(t a 是),0[∞+上的连续函数。证明: (1)零解x = 0是稳定的充分必要条件是存在0)(0>t M ,使得?≤t t t M ds s a 0)()(0对一切00≥≥t t 成立。 (2)零解0=x 是渐近稳定的充分必要条件是-∞=?∞→t t t ds s a 0)(lim 。 3.证明方程组 ???????+--=+-=)(d d )(d d 2222y x ay x t y y x ax y t x 的零解是渐近稳定的(其中0>a )。 4.试研究单摆的运动方程 0sin =+θθl g

常微分方程 稳定性理论

§6.4 李雅普诺夫第二方法上一节我们介绍了稳定性概念,但是据此来判明系统解的稳定性,其应用范围是极其有限的. 李雅普诺夫创立了处理稳定性问题的两种方法:第一方法要利用微分方程的级数解,在他之后没有得到大的发展;第二方法是在不求方程解的情况下,借助一个所谓的李雅普诺夫函数)(x V 和通过微分方程所计算出来的导数 dt x dV ) (的符号性质,就能直接推断出解的稳定性,因此又称为直接法.本节主要介绍李雅普诺夫第二方法. 为了便于理解,我们只考虑自治系统 )(x F dt dx =n R x ∈ (6.11) 假设T n x F x F x F ))(,),(()(1 =在{} K x R x G n ≤∈=上连续,满足局部利普希茨条件,且 O O F =)(. 为介绍李雅普诺夫基本定理,先引入李雅普诺夫函数概念. 定义6.3 若函数 R G x V →:)( 满足0)(=O V ,)(x V 和 i x V ??),,2,1(n i =都连续,且若存在K H ≤<0,使在{} H x x D ≤=上)0(0)(≤≥x V ,则称)(x V 是常正(负)的;若在D 上除O x ≠外总有 )0(0)(<>x V ,则称)(x V 是正(负)定的;既不是常正又不是常负的函数称为变号函数. 通常我们称函数)(x V 为李雅普诺夫函数.易知: 函数2 22 1x x V +=在),(21x x 平面上为正定的; 函数 )(2 22 1x x V +-=在),(21x x 平面上为负定的; 函数222 1x x V -=在),(21x x 平面上为变号函数;

函数 2 1x V =在),(21x x 平面上为常正函数. 李雅普诺夫函数有明显的几何意义. 首先看正定函数),(21x x V V =. 在三维空间),,(21V x x 中, ),(21x x V V =是一个位于坐标面21Ox x 即0=V 上方的曲面.它与坐标面21Ox x 只在一个点,即原点)0,0,0(O 接触(图6-1(a)).如果用水平面 C V =(正常数)与),(21x x V V =相交,并将截口垂直投影到21Ox x 平面上,就得到一组一个套一个的闭曲线族C x x V =),(21 (图6-1(b)),由于),(21x x V V =连续可微,且 0)0,0(=V ,故在021==x x 的充分小的邻域中, ),(21x x V 可以任意小.即在这些邻域中 存在C 值可任意小的闭曲线C V =. 对于负定函数),(21x x V V =可作类似的几何解释,只是曲面),(21x x V V =将在坐标面21Ox x 的下方. 对于变号函数),(21x x V V =,自然应对应于这样的曲面,在原点O 的任意邻域,它既有在21Ox x 平面上方的点,又有在其下方的点. 定理6.1 对系统(6.11),若在区域D 上存在李雅普诺夫函数)(x V 满足 (1) 正定; (2) )(1 ) 11.5(x F x V dt dV i n i i ∑ =??=常负, (a) (b)

微分方程稳定性理论简介

微分方程稳定性理论简介 1、一阶自治方程 ()()x t f x = (1) 使代数方程()0f x =的实根=x 0x 称为(1)的平衡点或奇点。0x x =也是方程(1)的解。 设x(t)是方程的解,若从0x 的 某邻域的任一初值出发都有0lim ()t x t x →+∞=,则称0x 是方程(1)的稳定平衡点(渐近稳定);否则,称0x 是方程(1) 的不稳定平衡点。 例 dx x dt =- 判断平衡点稳定性的方法 (1) 间接法:利用定义,需要求出方程的解 (2) 直接法:不求方程的解 方程(1)的近似方程为: ))(()(00x x x f t x -'= (2) 对于一阶方程(1)与(2)的平衡点0x 的稳定性有如下结论: 若0()0f x '<,则0x 是(1)与(2)的稳定平衡点 若0()0f x '>,则0x 是(1)与(2)的不稳定平衡点 2、二阶方程 可用两个一阶方程表示为 ()(,)()(,)x t f x y y t g x y =??=? (3) 二维(平面)自治系统 使 (,)0(,) 0f x y g x y =??=? 的实根000(,)P x y 称为(3)的平衡点。同样,若存在000(,)P x y 的某个邻域的任一初值))0(),0((y x 出发,当t →+∞时 00((),())(,)x t y t x y →,则称000(,)P x y 是稳定的平衡点。 应用直接法讨论(3)的稳定性,先看线性常系数方程 ()()x t ax by y t cx dy =+??=+? (4) 二维(平面)线性自治系统

系数矩阵记做 a b A c d ??=???? ,设det 0A ≠,此时(4)有唯一平衡点0(0,0)P 。它的稳定性由(4)的特征方程 det()0A I λ-= 的根所决定。 2det()()0a b A I a d ad bc c d λλλλλ --==-++-=- 结论: 0????→???????????→???????????????????????????????????→???????→?? - (S 稳定)同号结点相异+ (U )异号鞍点 (U)实根- (S)临界结点+ (U)重根- (S)退化结点+ (U)- (S)实部不为0焦点复根+ (U) 实部为中心(U ) 进一步,令()p a d =-+,det q ad bc A =-=,则特征方程为20p q λλ++=,特征根为 1,21 (2p λ=-± 1)240p q -> i) 0q > 0结点(S )p >→ 0结点(U )p <→ ii) 0鞍点(U )q <→ 2) 240p q -= 0临界(退化)结点(S )p >→0临界(退化)结点(U )p <→ 3) 240p q -< 0焦点(S )p >→0焦点(U )p >→

第六章 非线性微分方程和稳定性

第六章 非线性微分方程和稳定性 研究对象 二阶驻定方程组(自治系统) ?????? ?==),(),(y x Y dt dy y x X dt dx 1 基本概念 1)稳定性 考虑方程组 ),(x f x t dt d = (6.1) 其中 ???? ? ?? ??=n x x x 21x ,??? ??????? ? ??=dt dx dt dx dt dx dt d n 21x ,? ?????? ??=),,,;(),,,;(),,,;()(21212211n n n n x x x t f x x x t f x x x t f x f 。 总假设),(x f t 在D I ?上连续,且关于x 满足局部李普希兹条件,R I ?,区域 n R D ?,00=),(t f ,∑== n i i x 1 2x 。 如果对任意给定的0>ε,存在0)(>εδ(一般ε与0t 有关),使得当任一0x 满足 δ≤0x 时,方程组(6.1)满足初始条件00)(x x =t 的解)(t x ,均有εx <)(t 对一切0 t t ≥成立,则称方程组(6.1)的零解0=x 为稳定的。 如果方程组(6.1)的零解0=x 稳定,且存在这样的00>δ,使当00δ

常微分方程平衡点及稳定性研究

本文给出了微分方程稳定性的概念,并举了一些例子来说明不同稳定性定义之间的区别和联系。这些例子都是通过求出方程解析解的方法来讨论零解是否稳定。在实际问题中提出的微分方程往往是很复杂的,无法求出其解析解,这就需要我们从方程本身来判断零解的稳定性。所以我们讨论了通过Liapunov稳定性定理来判断自治系统零解的稳定性,并用类似的方法讨论了非自治系统零解的稳定性。在此基础上,讨论了一阶和二阶微分方程的平衡点及其稳定性,这对其研究数学建模的稳定性模型起到很大的作用,并且利用相关的差分方程的全局吸引性研究了具时滞的单种群模型 ()()()() () .1 1N t N t r t N t cN t ττ -- = -- 的平衡点1 x=的全局吸引性,所获结果改进了文献中相关的结论。 关键词:自治系统平衡点稳定性全局吸引性 Abstract In this paper,we gived the conceptions of differential equation stability. Simultaneously a number of examples to illustrate the difference between the definition of different stability and contact. These examples are obtained by analytical solution equation method to discuss the stability of zero solution. Practical issues raised in the often very complicated differential equations, analytical solution can not be obtained, which requires us to determine from the equation itself, the stability of zero solution. So we discussed the stability theorem to determine through the stability of zero solution of autonomous systems, and use similar methods to discuss the non-zero solution of autonomous system stability. On this basis,we discuss a step and the second-step and the stability, which plays the major role to its stability of the model, and the global attractivity of the positive equilibrium 1 x=of the following delay single population model ()()()() () .1 1N t N t r t N t cN t ττ -- = -- is investigated by using the corresponding result related to a difference equation.The obtained results improve some known results in the literature. Key Words:autonomous system;equilibrium point;stability;delay;globally asymptotic stability;global attractivity

相关文档
最新文档