初中数学抛物线与几何专题训练及答案

初中数学抛物线与几何专题训练及答案
初中数学抛物线与几何专题训练及答案

初中数学抛物线与几何专题训练及答案

公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

全国各地中考试题压轴题精选讲座

抛物线与几何问题

【知识纵横】

抛物线的解析式有下列三种形式:1、一般式:

2y ax bx c =++(a ≠0);2、顶点式:y =a(x —h) 2-+k ;3、交点式:y=a(x —x 1)(x —x 2 ) ,这里x 1、x 2 是方程ax 2 +bx+c=0的两个实根。 解函数与几何的综合题,善于求点的坐标,进而求出函数解析式是解题的基础;而充分发挥形的因素,数形互动,把证明与计算相结合是解题的关键。 【典型例题】

【例1】 (浙江杭州) 在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b )。平移二

次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B ,C 两点(∣OB∣<∣OC∣),连结A ,B 。 (1)是否存在这样的抛物线F , OC OB OA ?=2

请你作出判断,并说明理由;

(2)如果AQ∥BC,且tan∠ABO=2

3

,求抛

物线F 对应的二次函数的解析式。

【思路点拨】(1)由关系式OC OB OA ?=2

来构建关于t 、b 的方程;(2)讨论

t 的取值范围,来求抛物线F 对应的二次函数的解析式。

【例2】(江苏常州)如图,抛物线24y x x =+与x 轴分别相交于点B 、O,它的顶点为A,连接AB,把AB 所的直线沿y 轴向上平移,使它经过原点O,得到直线l,设P 是直线l 上一动点.

(1)求点A 的坐标;

(2)以点A 、B 、O 、P 为顶点的四边形中,有菱形、等

腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P 的坐标;

(3)设以点A 、B 、O 、P 为顶点的四边形的面积为S,

点P 的横坐标为x,当462682S +≤≤+时,求x 的取值范围.

【思路点拨】(3)可求得直线l 的函数关系式是y=-2x ,所以应讨论①当点P 在第二象限时,x<0、 ②当点P 在第四象限是,x>0这二种情况。

【例3】(浙江丽水)如图,在平面直角坐标系中,已知点A 坐标为(2,4),直线2=x 与x 轴相交于点B ,连结OA ,抛物线2x y =从点O 沿OA 方向平移,与直线2=x 交于点P ,顶点M 到A 点时停止移动.

(1)求线段OA 所在直线的函数解析式; (2)设抛物线顶点M 的横坐标为m ,

①用m 的代数式表示点P 的坐标;

②当m 为何值时,线段PB 最短; y B

A P M

x

(3)当线段PB 最短时,相应的抛物线上是否存在点Q ,使△QMA 的面积与△PMA 的面积相等,若存在,请求出点Q 的坐标;若不存在,请说明理由.

【思路点拨】(2)构建关于PB 的二次函数,求此函数的最小

值;(3)分当点Q 落在直线OA 的下方时、当点Q 落在直线OA 的上方时讨论。

【例4】(广东省深圳市)如图1,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =

OC ,tan∠ACO=3

1

(1)求这个二次函数的表达式.

(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,

使以点A 、C 、E 、F 为顶点的四边形为平行四边形若存在,请求出点F 的坐标;若不存在,请说明理由.

(3)若平行于x 轴的直线与该抛物线交于M 、N 两点,且以MN 为直径的圆与x

轴相切,求该圆半径的长度.

(4)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上

一动点,当点P 运动到什么位置时,△APG 的面积最大求出此时P 点的

坐标和△APG 的最大面积.

【思路点拨】(2)可先以A 、C 、E 、F 为顶点的四边形为平行四边形时,求F 点的坐标,再代入抛物线的表达式检验。(3)讨论①当直线MN 在x 轴上方时、②当直线MN 在x 轴下方时二种情况。(4)构建S 关于x 的二次函数,求它的最大值。

【例5】(山东济南)已知:抛物线2y ax bx c =++(a ≠0),顶点C (1,3-),与x 轴交于A 、B 两点,(10)A -,.

(1)求这条抛物线的解析式.

(2)如图,以AB 为直径作圆,与抛物线交于点D ,与抛物线对称轴交于点E ,依次连接A 、D 、B 、E ,点P 为线段AB 上一个动点(P 与A 、B 两点不重合),过点P 作PM ⊥AE 于M ,

PN ⊥DB 于N ,请判断PM PN BE

AD

+是否为定值 若是,请求出此定值;若不

是,请说明理由.

(3)在(2)的条件下,若点S 是线段EP 上一点,过点S 作FG ⊥EP ,FG 分别与边.

AE 、BE 相交于点F 、G (F 与A 、E 不重合,G 与E 、B 不重合),请判断PA EF PB

EG

=是否成

【思路点拨】(2)证△APM ∽△ABE ,PM BE 同理: PN PB AD AB = (3)证PH =BH 且△APM ∽△再证△MEP ∽△EGF 可得。

【学力训练】

1、(广东梅州)如图所示,在梯形ABCD 中,已知AB ∥CD , AD ⊥DB ,AD =DC =CB ,AB =4.以AB 所在直线为x 轴,过D 且垂直于AB 的直线为y 轴建立平面直角坐标系.

(1)求∠DAB 的度数及A 、D 、C 三点的坐标;

(2)求过A 、D 、C 三点的抛物线的解析式及其对称轴L .

(3)若P 是抛物线的对称轴L 上的点,那么使?PDB 为等腰三角形的点P 有几个(不必求点P 的坐标,只需说明理由)

2、(广东肇庆)已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线x x y 1252+=上.

(1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;

(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式如果存在,试给出一个,并加以证明;如果不存在,说明理由.

3、(青海西宁)如图,已知半径为1的1O 与x 轴交于A B ,两点,

OM 为1O 的切线,切点为M ,圆心1O 的坐标为(20),

,二次函数2y x bx c =-++的图象经过A B ,两点. (1)求二次函数的解析式;

(2)求切线OM 的函数解析式;

(3)线段OM 上是否存在一点P ,使得以

P O A ,,为顶点的三角形与1OO M △相似.若

y x

O

A

B M O 1

存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

4、(辽宁12市)如图,在平面直角坐标系中,直线

33

y x

=--与x轴交于点A,与y轴交于点C,抛物线

223

(0)

y ax x c a

=-+≠经过A B C

,,三点.

(1)求过A B C

,,三点抛物线的解析式并求出

顶点F的坐标;

(2)在抛物线上是否存在点P,使ABP

△为直

角三角形,若存在,直接写出P点坐标;若不存在,请说明理由;

(3)试探究在直线AC上是否存在一点M,使得MBF

△的周长最小,若存在,求出M点的坐标;若不存在,请说明理由.

5、(四川资阳)如图,已知点A的坐标是

(-1,0),点B的坐标是(9,0),以AB为直

径作⊙O′,交y轴的负半轴于点C,连接AC、

BC,过A、B、C三点作抛物线.

(1)求抛物线的解析式;

(2)点E是AC延长线上一点,∠BCE的平分

线CD交⊙O′于点D,连结BD,求直线BD的解析

式;

(3)在(2)的条件下,抛物线上是否存在点

P,使得∠PDB=∠CBD如果存在,请求出点P的坐标;如果不存在,请说明理由.

6、(辽宁沈阳)如图所示,在平面直角坐标系中,矩形ABOC

的边BO在x轴的

负半轴上,边OC在y轴的正半轴上,且1

AB=,3

OB=,矩形ABOC绕点O按顺时针方向旋转60

y

E

F

A O x

y

B

F

C

后得到矩形EFOD.点A的对应点为点E,点B的对应点为点F,点C 的对应点为点D,抛物线2

=++过点A E D

y ax bx c

,,.

(1)判断点E是否在y轴上,并说明理由;

(2)求抛物线的函数表达式;

(3)在x轴的上方是否存在点P,点Q,使以点O B P Q

,,,为顶点的平行四边形的面积是矩形ABOC面积的2倍,且点P在抛物线上,若存在,请求出点P,点Q的坐标;若不存在,请说明理由.

7、(苏州市)如图,抛物线y=a(x+1)(x-5)与x轴的交点为M、N.直线y=kx+b

与x轴交于P(-2,0),与y轴交于C.若A、B两点在直线y=kx+b 上,且AO=BO=2,AO⊥BO.D为线段MN的中点,OH为Rt△OPC斜边上的高.

(1)OH的长度等于___________;k=___________,b=

____________;

(2)是否存在实数a,使得抛物线y=a(x+1)(x-5)上有一点E,满

足以D、N、E为顶

点的三角形与△AOB相似若不存在,说明理由;若存在,求所有符合条件的抛物线的解析式,同时探索所求得的抛物线上是否还有符合条件的E点(简要说明理由);并进一步探索对符合条件的每一个E点,直线NE

与直线AB的交点G是否总满足PB·PG<2

10,写出探索过程.

抛物线与几何问题的参考答案

【典型例题】

【例1】 (浙江杭州)(1)∵ 平移2tx y -=的图象得到的抛物线F 的顶点为Q ,

∴ 抛物线F 对应的解析式为:b t x t y +--=2)(. ∵ 抛物线与x 轴有两个交点,∴0>b t . 令0=y , 得-

=t OB t b

,+=t OC t

b , ∴ -

=?t OC OB (|||||t

b

)( +t t b

)|-=2|t 22|OA t t

b == , 即2

2t t t b ±=-, 所以当32t b =时, 存在抛物线F 使得||||||2OC OB OA ?=.-

- 2分

(2) ∵BC AQ //, ∴ b t =, 得F : t t x t y +--=2)(,

解得1,121+=-=t x t x . 在?Rt AOB 中,

1) 当0>t 时,由 ||||OC OB <, 得)0,1(-t B , 当01>-t 时, 由=

∠ABO tan 23=|||

|OB OA =1

-t t , 解得3=t , 此时, 二次函数解析式为241832-+-=x x y ; 当01<-t 时, 由=

∠ABO tan 23=||||OB OA =1+-t t , 解得=t 5

3

,

此时,二次函数解析式为-

=y 532x +

2518x +125

48

. 2) 当0

3

-, 3-=t , (也可由x -代x ,y -代y 得到) 所以二次函数解析式为 =

y 532x +

2518

x –125

48或241832++=x x y . 【例2】(江苏常州) (1)∵4)2(422-+=+=x x x y ∴A(-2,-4)

(2)四边形ABP 1O 为菱形时,P 1(-2,4)

四边形ABOP 2为等腰梯形时,P 1(545

2-,)

四边形ABP 3O 为直角梯形时,P 1(58

54,-)

四边形ABOP 4为直角梯形时,P 1(5

12

56-,)

(3)

由已知条件可求得AB 所在直线的函数关系式是y=-2x-8,所以直线l 的函数关系式是y=-2x

①当点P 在第二象限时,x<0, △POB 的面积x x S POB 4)2(42

1-=-??=?

∵△AOB 的面积8442

1

=??=?AOB S , ∴)0(84<+-=+=??x x S S S POB AOB ∵286264+≤≤+S ,

∴?????+≤+≥2

86264S S 即?????+≤+-+≥+-2

868426484x x ∴???

????-≤-≥22412232S x

∴x 的取值范围是

2

2322241-≤≤-x ②当点P 在第四象限是,x>0,

过点A 、P 分别作x 轴的垂线,垂足为A ′、P ′ 则四边形POA ′A 的面积

44)2(21

)2(224+=??-+?+=

-='?'''x x x x x S S S O P P A A P 梯形P A A PO ∵△AA ′B 的面积4242

1

=??='?B

A A S ∴)0(84>+=+='?'x x S S S

B A A A A PO ∵286264+≤≤+S ,

∴?????+≤+≥286264S S 即?????+≤++≥+2

868426484x x ∴???

?

???-≤-≥2

12422

23S x ∴x 的取值范围是

2

1

242223-≤≤-x

【例3】(浙江丽水)(1)设OA 所在直线的函数解析式为

kx y =,

∵A (2,4), ∴42=k , 2=∴k ,

∴OA 所在直线的函数解析式为

2y x =

(2)①∵顶点M 的横坐标为m ,且在线段

OA 上移动,

∴2y m =(0≤m ≤2).

∴顶点M 的坐标为(m ,2m ).

∴抛物线函数解析式为2

()2y x m m

=-+. ∴当2=x 时,

2(2)2y m m =-+2

24

m m =-+(0≤m ≤2). ∴点P 的坐标是(2,224m m -+).

② ∵PB =224m m -+=2

(1)3

m -+, 又∵0≤m ≤2, ∴当1m =时,PB 最短

(3)当线段PB 最短时,此时抛物线的解析式为()212

+-=x y .

假设在抛物线上存在点Q ,使Q M A P M A

S S =. 设点Q 的坐标为(x ,2

23x x -+).

(第24

①当点Q 落在直线OA 的下方时,过P 作直线

P C AO y C 3P B =4A B =1A

P =1O C =C 1-∵点P

直线P C 的函数解析式为1

2-=x y . ∵Q M A P M A

S S =,∴点Q 落在直线12-=x y 上. ∴2

23x x -+=21x -.

解得122,2x x ==

,即点Q (2,3). ∴点Q 与点P 重合.

∴此时抛物线上不存在点Q ,使△QMA 与△A P M 的面积相等.

②当点Q 落在直线OA 的上方时,

作点P 关于点A 的对称称点D ,过D 作直线

DE AO y E 1A P =1E OD A ==E D DE 1

2+=x y ∵Q M A P M A

S S =,∴点Q 落在直线12+=x y 上. ∴2

23x x -+=21x +.

解得:12x =22x =

. 代入12+=x y ,得15y =

+25y =- ∴此时抛物线上存在点(12

Q ,()225,222--Q 使△QMA 与△P M A 的面积相等.

综上所述,抛物线上存在点(12

Q ,(

)

225,222--Q 使△QMA 与△P M A 的面积相等.

【例4】(广东省深圳市)(1)方法一:由已知得:C (0,-3),A (-1,0)

将A 、B 、C 三点的坐标代入得???

??-==++=+-30390c c b a c b a

解得:??

?

??-=-==321c b a

所以这个二次函数的表达式为:322--=x x y (2)存在,F 点的坐标为(2,-3)

易得D (1,-4),所以直线CD 的解析式为:3--=x y ∴E 点的坐标为(-3,0) ∵以A 、C 、E 、F 为顶点的四边形为平行四边形

∴F 点的坐标为(2,-3)或(―2,―3)或(-4,3) 代入抛物线的表达式检验,只有(2,-3)符合

∴存在点F ,坐标为(2,-3)

(3)如图,①当直线MN 在x 轴上方时,设圆的半径为R (R>0),则N (R+1,R ),

代入抛物线的表达式,解得2

17

1+=

R ②当直线MN 在x 轴下方时,设圆的半径为r

则N (r+1,-r ),

代入抛物线的表达式,解得2

17

1+-=

r ∴圆的半径为

2171+或2

17

1+-. (4)过点P 作y 轴的平行线与AG 交于点Q , 易得G (2,-3),直线AG 为1--=x y .

设P (x ,322--x x ),则Q (x ,-x -1),PQ 22++-=x x .

3)2(2

1

2?++-=

+=???x x S S S GPQ APQ APG 当2

1

=

x 时,△APG 的面积最大 此时P 点的坐标为??? ??-

415,2

1,8

27

的最大值为APG S ?.

【例5】(山东济南)

(1)设抛物线的解析式为2(1)3y a x =--

将A (-1,0)代入: 20(11)3a =--- ∴ 34

a =

∴ 抛物线的解析式为23(1)34

y x =--,即:23394

2

4

y x x =--

(2)是定值,1PM PN BE

AD

+=

∵ AB 为直径,∴ ∠AEB =90°,∵ PM ⊥AE ,∴ PM ∥BE ∴ △APM ∽△ABE ,∴ PM AP BE

AB

= ①

同理: PN PB AD

AB

= ② ① + ②:1PM PN AP PB BE

AD

AB

AB

+=+=

(3)∵ 直线EC 为抛物线对称轴,∴ EC 垂直平分AB

∴ EA =EB

∵ ∠AEB=90°

∴ △AEB为等腰直角三角形.

∴ ∠EAB=∠EBA=45° ... 7分

如图,过点P作PH⊥BE于H,

由已知及作法可知,四边形PHEM是矩形,

∴PH=ME且PH∥ME

在△APM和△PBH中

∵∠AMP=∠PHB=90°,

∠EAB=∠BPH=45°

∴ PH=BH

且△APM∽△PBH

∴ PA PM

=

PB BH

∴ PA PM PM

==①

PB PH ME

在△MEP和△EGF中,

∵ PE⊥FG,∴ ∠FGE+∠SEG=90°

∵∠MEP+∠SEG=90° ∴ ∠FGE=∠MEP

∵ ∠PME=∠FEG=90° ∴△MEP∽△EGF

∴PM EF

=②

ME EG

由①、②知:PA EF

=

PB EG

【学力训练】 1、(广东梅州)

(1) DC ∥AB ,AD =DC =CB ,

∴ ∠CDB =∠CBD =∠DBA ,

∠DAB =∠CBA , ∴∠DAB =2∠DBA ,

∠DAB +∠DBA =90 , ∴∠DAB =60 , ∠DBA =30 , AB =4, ∴DC =AD =2,

R t ?AOD ,OA =1,OD =3,

∴A (-1,0),D (0, 3),C (2,

3).

(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点

A (-1,0),

B (3,0),

故可设所求为 y =a (x +1)( x -3) 将点D (0, 3)的坐标代入上式得, a =3

3-

. 所求抛物线的解析式为 y =).3)(1(3

3

-+-x x 其对称轴L 为直线x =1.

(3) ?PDB 为等腰三角形,有以下三种情况:

①因直线L 与DB 不平行,DB 的垂直平分线与L 仅有一个交点P 1,

P 1D =P 1B ,

?P 1DB 为等腰三角形;

②因为以D 为圆心,DB 为半径的圆与直线L 有两个交点P 2、P 3,

DB =DP 2,DB =DP 3, ?P 2DB , ?P 3DB 为等腰三角形;

③与②同理,L 上也有两个点P 4、P 5,使得 BD =BP 4,BD =BP 5. 由于以上各点互不重合,所以在直线L 上,使?PDB 为等腰三角形的点P 有5个.

2、(广东肇庆)(1)由5x x 122+=0,

(1分)

得01=x ,5

12

2-=x .∴抛物线与x 轴的交点坐标为(0,0)、(5

12

-

,0). ····················· (3分) (2)当a =1时,得A (1,17)、B (2,44)、C (3,81), 分别过点A 、B 、C 作x 轴的垂线,垂足分别为D 、E 、F ,则有

ABC S ?=S ADFC 梯形 -ADEB S 梯形 -BEFC S 梯形

=2

2)8117(?+-21)4417(?+-2

1

)8144(?+ =5(个单位面积)

(3)如:)(3123y y y -=.

事实上,)3(12)3(523a a y ?+?= =45a 2+36a .

3(12y y -)=3[5×(2a )2+12×2a -(5a 2

+12a )]

=45a 2+36a .

∴)(3123y y y -=.

初中数学几何空间与图形知识点

初中数学《几何空间与图形》知识点 初中数学《几何空间与图形》知识点 A、图形的认识 1、点,线,面 点,线,面:图形是由点,线,面构成的。面与面相交得线,线与线相交得点。点动成线,线动成面,面动成体。 展开与折叠:在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。N棱柱就是底面图形有N条边的棱柱。截一个几何体:用一个平面去截一个图形,截出的面叫做截面。 视图:主视图,左视图,俯视图。 多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。 弧、扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。圆可以分割成若干个扇形。 2、角 线:线段有两个端点。将线段向一个方向无限延长就形成了射线。射线只有一个端点。将线段的两端无限延长就形成了直线。直线没有端点。经过两点有且只有一条直线。 比较长短:两点之间的所有连线中,线段最短。两点之间线段的长度,叫做这两点之间的距离。 角的度量与表示:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。一度的1/60是一分,一分的1/60是一秒。角的比较:角也可以看成是由一条射线绕着他的端点旋转而成的。一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。 平行:同一平面内,不相交的两条直线叫做平行线。经过直线外一点,有且只有一条直线与这条直线平行。如果两条直线都与第3条直线平行,那么这两条直线互相平行。

初中数学几何题及答案

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典难题(二) A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D B

P C G F B Q A D E 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) · A D H E M C B O · G A O D B E C Q P N M · O Q P B D E C N M · A A F D E C B

初中数学几何辅助线技巧

几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆形

半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径联。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 由角平分线想到的辅助线 一、截取构全等: 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自己试一试。 二、角分线上点向两边作垂线构全等: 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。 三、三线合一构造等腰三角形: 如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。四、角平分线+平行线: 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。

初中数学几何基础知识整理

初中数学几何基础知识整理 轴对称 31. 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的中垂线 32. 轴对称图形的对称轴,是任何一对对应点所连线段的中垂线 33. 定理线段垂直平分线上的点到这条线段两个端点的距离相等 34. 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 35. 关于某条直线对称的两个图形是全等形 36. 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 37. 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 38. 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 39. 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等 (等角对等边) 40. 等边三角形的各角都相等,并且每一个角都等于 60° 41. 三个角都相等的三角形是等边三角形 42. 有一个角等于 60°的等腰三角形是等边三角形 直角三角形 43. 在直角三角形中,如果一个锐角等于 30°那么它所对的直角边等于斜边的一半

44. 直角三角形斜边上的中线等于斜边上的一半 45. 如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。(新增) 46. 勾股定理直角三角形两直角边 a、b的平方和、等于斜边 c的平方,即a2+b2=c2 47. 勾股定理的逆定理如果三角形的三边长 a、b、c 有关系a2+b2=c2,那么这个三角形是直角三角形 四边形 48. 平行四边形性质定理 1 平行四边形的对角相等 49. 平行四边形性质定理 2 平行四边形的对边相等 50. 平行四边形性质定理 3 平行四边形的对角线互相平分 51. 平行四边形判定定理 1 两组对角分别相等的四边形是平行四边形 52. 平行四边形判定定理 2 两组对边分别相等的四边形是平行四边形 53. 平行四边形判定定理 3 对角线互相平分的四边形是平行四边形 54. 平行四边形判定定理 4 一组对边平行相等的四边形是平行四边形55. 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半 56. 矩形性质定理 1 矩形的四个角都是直角 57. 矩形性质定理 2 矩形的对角线相等 58. 矩形判定定理 1 有三个角是直角的四边形是矩形 59. 矩形判定定理 2 对角线相等的平行四边形是矩形 60. 矩形判定定理 3 有一个角是直角的平行四边形是矩形 61. 菱形性质定理 1 菱形的四条边都相等 62. 菱形性质定理 2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

初中数学几何题(超难)及答案分析

几何经典难题 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初三) 2、已知:如图,P 是正方形ABCD 内点, ∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1 的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交 MN 于E 、F . 求证:∠DEN =∠F . 5、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初三) A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D M B · A D H E M C B O

P C G F B Q A D E 6、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E , 直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初三) 7、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初三 ) 8、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) · G A O D B E C Q P N M · O Q P B D E C N M · A

中考数学几何专题知识点总结78点中考数学几何压轴题

中考数学几何专题知识点总结78点中考数学 几何压轴题 1 同角或等角的余角相等 2 过一点有且只有一条直线和已知直线垂直 3 过两点有且只有一条直线 4 两点之间线段最短 5 同角或等角的补角相等 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边

16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理有两角和它们的夹边对应相等的两个三角形全等 24 推论有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理有三边对应相等的两个三角形全等 26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

初中数学几何图形初步经典测试题及答案解析

初中数学几何图形初步经典测试题及答案解析 一、选择题 1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( ) A .主视图 B .俯视图 C .左视图 D .一样大 【答案】C 【解析】 如图,该几何体主视图是由5个小正方形组成, 左视图是由3个小正方形组成, 俯视图是由5个小正方形组成, 故三种视图面积最小的是左视图, 故选C . 2.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( ) A .210824(3) cm - B .(2 108123cm - C .(2 54243cm - D .(2 54123cm - 【答案】A 【解析】 【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9?36ah 求解. 【详解】 解:设正六棱柱的底面边长为acm ,高为hcm ,

如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°, ∴BD = 12a cm ,AD =32 a cm , ∴AC =2AD =3a cm , ∴挪动前所在矩形的长为(2h +23a )cm ,宽为(4a + 1 2 a )cm , 挪动后所在矩形的长为(h +2a +3a )cm ,宽为4acm , 由题意得:(2h +23a )?(h +2a +3a )=5,(4a +1 2 a )?4a =1, ∴a =2,h =9?23, ∴该六棱柱的侧面积是6ah =6×2×(9?23)=210824(3) cm -; 故选:A . 【点睛】 本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键. 3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( ) A .90° B .75° C .105° D .120° 【答案】B 【解析】 【分析】 根据平行线的性质可得30E BCE ==?∠∠,再根据三角形外角的性质即可求解AFC ∠的度数. 【详解】

全新 中考数学几何知识点全总结

初中几何公式:线 1、同角或等角的余角相等 2、过一点有且只有一条直线和已知直线垂直 3、过两点有且只有一条直线 4、两点之间线段最短 5、同角或等角的补角相等 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 初中几何公式:角 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 初中几何公式:三角形 15、定理三角形两边的和大于第三边 16、推论三角形两边的差小于第三边 17、三角形内角和定理三角形三个内角的和等于180° 18、推论1 直角三角形的两个锐角互余 19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22、边角边公理有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理有两角和它们的夹边对应相等的两个三角形全等 24、推论有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理有三边对应相等的两个三角形全等 26、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1 在角的平分线上的点到这个角的两边的距离相等

28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 初中几何公式:等腰三角形 30、等腰三角形的性质定理等腰三角形的两个底角相等 31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和高互相重合 33、推论3 等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1 三个角都相等的三角形是等边三角形 36、推论2 有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理1 关于某条直线对称的两个图形是全等形 43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形 初中几何公式:四边形 48、定理四边形的内角和等于360° 49、四边形的外角和等于360° 50、多边形内角和定理n边形的内角的和等于(n-2)×180° 51、推论任意多边的外角和等于360° 52、平行四边形性质定理1 平行四边形的对角相等 53、平行四边形性质定理2 平行四边形的对边相等

初二数学几何解题技巧

初二数学几何解题技巧 【知识梳理】 1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2、掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【专题一】证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 【专题二】证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。 【专题三】证明线段和的问题 (一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法) (二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

(易错题精选)初中数学几何图形初步易错题汇编及答案解析

(易错题精选)初中数学几何图形初步易错题汇编及答案解析 一、选择题 1.如图,将三个同样的正方形的一个顶点重合放置,如果145∠=°,330∠=°时,那么2∠的度数是( ) A .15° B .25° C .30° D .45° 【答案】A 【解析】 【分析】 根据∠2=∠BOD+EOC-∠BOE ,利用正方形的角都是直角,即可求得∠BOD 和∠EOC 的度数从而求解. 【详解】 ∵∠BOD=90°-∠3=90°-30°=60°, ∠EOC=90°-∠1=90°-45°=45°, ∵∠2=∠BOD+∠EOC-∠BOE , ∴∠2=60°+45°-90°=15°. 故选:A . 【点睛】 此题考查余角和补角,正确理解∠2=∠BOD+EOC-∠BOE 这一关系是解题的关键. 2.将如图所示的Rt △ACB 绕直角边AC 旋转一周,所得几何体的主视图(正视图)是( )

A.B.C. D. 【答案】D 【解析】 解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形. 故选D. 首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可. 3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是() A.20°B.30°C.35°D.50° 【答案】C 【解析】 【分析】 由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,再由平行线的性质可得到∠2的度数. 【详解】 解: 由垂线的性质可得∠ABC=90°, 所以∠3=180°﹣90°﹣∠1=35°, 又∵a∥b, 所以∠2=∠3=35°. 故选C. 【点睛】

人教版初中数学中考几何知识点大全.docx

. 目录 一、形的知??????????????????????????????2 二、平行知点?????????????????????????????3 三、命、定理??????????????????????????????3 四、平移?????????????????????????????????3 五、平面直角坐系知点?????????????????????????4 六、与三角形有关的段??????????????????????????5 七、与三角形有关的角???????????????????????????5 八、多形及其角和???????????????????????????6 九、嵌?????????????????????????????????6 十、全等三角形知点???????????????????????????7 十一、称???????????????????????????????7 十二、勾股定理??????????????????????????????8 十三、四形???????????????????????????????8 十四、旋????????????????????????????????9 十五、知点????????????????????????????10 十六、相似三角形?????????????????????????????13 十七、投影与?????????????????????????????14 十八、尺作??????????????????????????????15

初中中考数学几何知识点大全 直线:没有端点,没有长度 射线:一个端点,另一端无限延长,没有长度 线段:两个端点,有长度 一、图形的认知 1、我们把从实物中抽象出的各种图形统称为几何图形 2、有些几何图形的各部分不都在同一平面,它们是立体图形 3、有些几何图形的各部分都在同一平面,它们是平面图形 4、有些立体图形是由一些平面图形转成的,将它们的表面适当展开,可以展开成平面图形。 这样的平面图形称为相应立体图形的展开图 5、长方体、正文体、圆柱、圆锥、球等都是几何体,简称体 6、包围着体的是面,面有平面和曲面两种。 由若干个多边形所围成的几何体,叫做多面体。 围成多面体的各个多边形叫做多面体的面,两个面的公共边叫做多面体的棱,若干个面的公共顶点叫做多面体的顶点。 注意:各面都是平面的立体图形称为多面体。像圆锥、圆台因为有的面是曲面,而不被称为“多面体”。 圆锥、圆柱、圆台统称为旋转体。立体图形的各个面都是平的面,这样的立体图形称为多面体。 7、经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线 8、当两条不同的直线有一个公共点时,我们就称这两条直线相交。这个公共点叫做它们的交点 9、两点的所有连线中,线段最短。简单说成:两点之间,线段最短 10、连接两点间的线段的长度,叫做这两点的距离 11、角:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边 12、角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线 13、余角和补角:如果两个角加起来为90,则一个角是另一个角的余角 如果两个角加起来为180,则一个角是另一个角的补角 邻补角 :相邻的补角 14、同角的余角相等,等角的余角相等 同角的补角相等,等角的补角相等 二、平行线知识点 1、对顶角性质:对顶角相等。注意:对顶角的判断 一个角的两边分别是另一个角两边的反向延长线,这两个角是对顶角。 两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶

最新初中数学几何题解题技巧

最新初中数学几何题解题技巧 初中数学几何题解题技巧一.添辅助线有二种情况 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此"添线"应该叫做"补图"!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线

(2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整

时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形

初中数学代数几何解题技巧

如何用好题目中的条件暗示 有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。 【例1】直线与x轴、y轴分别交于B、A两点,如图1。 图1 (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。 解析:(1)容易求得,A(0,1)。 (2)如图2, 图2 ∵,A(0,1), ∴OB=,OA=1。 ∴在Rt△AOB中,容易求得∠OBA=30° ∵把△AOB以直线AB为轴翻折, ∴∠OBC=2∠OBA=60°,BO=BC。 ∴△OBC是等边三角形 以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。 反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。 图3 (1)求三解形ABC的面积。 (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值。 解析:(1)容易求得:A(,0),B(0,1), ∴。 (2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。 图4 (3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得: ∴, ∵,

初二数学几何综合训练题及答案

初二几何难题训练题 1,如图矩形ABCD对角线AC、BD交于O,E F分别是OA、OB的中点(1)求证△ADE≌△BCF:(2)若AD=4cm,AB=8cm,求CF的长。 2,如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm. (1)求证:四边形ABFE是等腰梯形; (2)求AE的长.

3,如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q, (1)若AB=6,求线段BP的长; (2)观察图形,是否有三角形与△ACQ全等?并证明你的结论 4,已知点E,F在三角形ABC的边AB所在的直线上,且AE=BF,FH//EG//AC,FH、EC分别交边BC所在的直线于点H,G 1 如果点E。F在边AB上,那么EG+FH=AC,请证明这个结论 2 如果点E在AB上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么? 3 如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么? 4 请你就1,2,3的结论,选择一种情况给予证明 5,如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离.

6,如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C,(1)求证:△ABF∽△EAD ;(2)若AB=5,AD=3,∠BAE=30°,求BF 的长 7,如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,GF与AB相交于点G,若CF=15cm,求GF之长。 8, 如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FH∥CD交BC于H,可以证明结论FH/AB =FG /BG 成立.(考生不必证明)(1)探究:如图2,上述条件中,若G在CD的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由; (2)计算:若菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG 交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长.(3)发现:通过上述过程,你发现G在直线CD上时,结论FH /AB =FG /BG 还成立吗?

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

初中数学经典几何题及答案

4e d c 经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 A N F E C D M B

P C G F B Q A D E 经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.(初二) 经典难题(三) 1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二) · A D H E M C B O · G A O D B E C Q P N M · O Q P B D E C N M · A A F D E C B

初中数学几何基础知识.

初中数学几何基础知识、基本公式集锦 1过两点有且只有一条直线 2两点之间线段最短 3同角或等角的补角相等 4同角或等角的余角相等 5过一点有且只有一条直线和已知直线垂直 6直线外一点与直线上各点连接的所有线段中,垂线段最短 7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行 10内错角相等,两直线平行 11同旁内角互补,两直线平行 12两直线平行,同位角相等 13两直线平行,内错角相等 14两直线平行,同旁内角互补 15定理三角形两边的和大于第三边 16推论三角形两边的差小于第三边 17三角形内角和定理三角形三个内角的和等于180° 18推论1直角三角形的两个锐角互余

19推论2三角形的一个外角等于和它不相邻的两个内角的和 20推论3三角形的一个外角大于任何一个和它不相邻的内角 21全等三角形的对应边、对应角相等 22边角边公理(SAS有两边和它们的夹角对应相等的两个三角形全等 23角边角公理(ASA有两角和它们的夹边对应相等的两个三角形全等 24推论(AAS有两角和其中一角的对边对应相等的两个三角形全等 25边边边公理(SSS有三边对应相等的两个三角形全等 26斜边、直角边公理(HL有斜边和一条直角边对应相等的两个直角三角形全等 27定理1在角的平分线上的点到这个角的两边的距离相等 28定理2到一个角的两边的距离相同的点,在这个角的平分线上 29角的平分线是到角的两边距离相等的所有点的集合 30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31推论1等腰三角形顶角的平分线平分底边并且垂直于底边 32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33推论3等边三角形的各角都相等,并且每一个角都等于60° 34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35推论1三个角都相等的三角形是等边三角形

相关文档
最新文档