相似三角形中的射影定理

相似三角形中的射影定理
相似三角形中的射影定理

相似三角形

——相似直角三角形及射影定理

【知识要点】

1、直角三角形的性质:

(1)直角三角形的两个锐角

(2)Rt △ABC 中,∠C=90o,则 2+ 2= 2

(3)直角三角形的斜边上的中线长等于

(4)等腰直角三角形的两个锐角都是 ,且三边长的比值为

(5)有一个锐角为30o的直角三角形,30o所对的直角边长等于 ,且三边长的比值为

2、直角三角形相似的判定定理(只能用于选择填空题)

如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

3、双垂直型:

Rt △ABC 中,∠C=90o,CD ⊥AB 于D ,则

① ∽ ∽

②射影定理:

CD 2= · AC 2= · BC 2= ·

【常规题型】

1、已知:如图,△ABC 中,∠ACB=90°,CD ⊥AB 于D ,S △ABC=20,AB=10。求AD 、BD 的长.

2、已知,△ABC 中,∠ACB=90°,CD ⊥AB 于D 。(1)若AD=8,BD=2,求AC 的长。(2)若AC=12,BC=16,求CD 、AD 的长。

B

A

【典型例题】

例1.如图所示,在△ABC 中,∠ACB=90°,AM 是BC 边的中线,CN ⊥AM 于N 点,连接BN ,求证:BM 2=MN ·AM 。

例2.已知:如图,在四边形ABCD 中,∠ABC=∠ADC=90o,DF ⊥AC 于E ,且与AB 的延长线相交于F ,与BC 相交于G 。求证:AD 2=AB ·AF

例3.(1)已知ABC ?中,?=∠90ACB ,AB CD ⊥,垂足为D ,DE 、DF 分别是BDC ADC ??和的

高,这时CAB DEF ??和是否相似?

【拓展练习】

1、已知:如图,AD 是△ABC 的高,BE ⊥AB ,AE 交BC 于点F ,AB ·AC=AD ·AE 。求证:△BEF ∽△ACF

A B A B C N

D

C

3、已知,如图,CE 是直角三角形斜边AB 上的高,

在EC 的延长线上任取一点P ,连结AP BG AP ⊥,,垂足为G ,交CE 于D ,求证:DE PE CE ?=2.

4、如图,在四边形ABCD 中,?=∠=∠90D B ,由点D 作AC 的垂线交AB 于E ,交AC 于F 。求证:AE AB AD ?=2。

【作业】 1.已知A B C ?中,CD ACB ,90?=∠是高,若b AC a BC ==,,q AD h CD ==,,p BD =,且4,3==b a ,则=c ,=p ,=q ,=h .

2.若直角三角形斜边上的高将斜边分成的两条线段的长分别为cm 2和cm 8,则两条直角边的长分别为 ,斜边上的高为

.

B C D

3.如图,ABC Rt ?,AB CD ACB ⊥?=∠,90于D ,,6cm BD =

cm AD 4=,则=BC .

4.如图,在△ABC 中,∠ACB=90°,AC >BC ,CD ⊥AB ,DE ⊥AC ,EF ⊥AB ,CD=4,AC=54,

则EF:AF=( ) A .1:2 B .5:2 C .5:5 D .52:5

5.如图所示,在Rt △ABC 中,∠C=90°,CD ⊥AB ,垂足为点D ,若AD :BD=9:4则AC :BC 的值

为( )

A .9:4

B .3:2

C .4:9

D .2:3

6. 如图所示,CD 是Rt △ABC 斜边AB 边上的高,23=AC AB ,则=BC

CD ( ) A .2:5 B .2:3 C .3:2 D .3:2

7.如图所示,△ABC 中,∠ACB=90°,AC=10cm ,AB 上的高CD=6cm ,DE ⊥BC 于E ,求DE 的长。

8.如图,在ABC ?中,BC AH BAC ⊥?=∠,90于H ,以AC 和AB 为边在ABC Rt ?形外作等边三角形ABD ?和ACE ?,求证:BDH ?∽AEH ?.

(完整版)相似三角形的判定方法

(一)相似三角形 1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形. ①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可; ②相似三角形的特征:形状一样,但大小不一定相等; ③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例. 2、相似三角形对应边的比叫做相似比. ①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例. ②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽ △ABC的相似比,当它们全等时,才有k=k′=1. ③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出. 3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形. 4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似. ①定理的基本图形有三种情况,如图其符号语言: ∵DE∥BC,∴△ABC∽△ADE; (双A型) ②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”; ③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”. (二)相似三角形的判定 1、相似三角形的判定: 判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。可简单说成:两角对应相等,两三角形相似。 例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.

相似三角形之射影定理

相似三角形之射影定理 1、已知直角三角形ABC 中,斜边AB=5cm,BC=2cm ,D 为AC 上的一点,DE AB ⊥交AB 于E ,且AD=3.2cm ,则DE= ( ) A 、1.24cm B 、1.26cm C 、1.28cm D 、1.3cm 2、如图1-1,在Rt ABC 中,CD 是斜别AB 上的高,在图中六条线段中,你认为只要知道( )线段的长,就可以求其他线段的长 A 、1 B 、2 C 、3 D 、4 3、在Rt ABC 中,90BAC ∠= ,AD BC ⊥于点D ,若34AC AB =,则BD CD =( ) A 、34 B 、43 C 、169 D 、9 16 4、如图1-2,在矩形ABCD 中,1 ,3DE AC ADE CDE ⊥∠=∠,则EDB ∠=( ) A 、22.5 B 、30 C 、45 D 、60 【填空题】 5、ABC 中,90A ∠= ,AD BC ⊥于点D ,AD=6,BD=12,则CD= ,AC= , 22:AB AC = 。 6、如图2-1,在Rt ABC 中,90ACB ∠= ,CD AB ⊥, AC=6,AD=3.6,则BC= .

【解答题】 7、已知CD 是ABC 的高,,DE CA DF CB ⊥⊥,如图3-1,求证:CEF CBA ∽ 8、已知90CAB ∠= ,AD CB ⊥,ACE ,ABF 是正三角形,求证:DE DF ⊥ 9、如图3-2,矩形ABCD 中,AB=a ,BC=b ,M 是BC 的中点,DE AM ⊥,E 是垂足,求证: DE =

参考答案 1、C 2、B 3、C 4、C 5 、3,4:1 6、 8 7、证明:在Rt ADC 中,由射影定律得, 2CD CE AC = ,在R t B C 中, 2C D C F B C = ,CE BC CE AC CF BC CF AC ∴=∴ = 又ECF BCA ∠=∠ ,CEF CBA ∴ 8、证明:如图所示,在Rt BAC 中, 22,AC CD CB AB BD BC == AC CD AD AB AD BD ∴===== ,,AE AD AC AE AB AF BF BD ==∴ = 60,60,FBD ABD EAD CAD ABD CAD ∠=+∠∠=+∠∠=∠ 又 FBD EAD ∴∠=∠,,EAD FBD BDF ADE ∴ ∴∠=∠ 90FDE FDA ADE FDA BDF ∴∠=∠+∠=∠+∠= DE DF ∴⊥ 9、证明:在Rt AMB 和Rt ADE 中,AMB DAE ∠=∠,90ABM AED ∠=∠= 所以Rt AMB ~Rt ADE 所以AB AM DE AD = ,因为AB=a ,BC=b ,

(完整版)相似三角形中的射影定理

相似三角形 ——相似直角三角形及射影定理 【知识要点】 1、直角三角形的性质: (1)直角三角形的两个锐角 (2)Rt△ABC中,∠C=90o,则2+ 2= 2 (3)直角三角形的斜边上的中线长等于 (4)等腰直角三角形的两个锐角都是,且三边长的比值为 (5)有一个锐角为30o的直角三角形,30o所对的直角边长等于,且三边长的比值为 2、直角三角形相似的判定定理(只能用于选择填空题) 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 3、双垂直型: Rt△ABC中,∠C=90o,CD⊥AB于D,则 ①∽∽ ②射影定理: CD2= ·AC2= ·BC2= · 【常规题型】 1、已知:如图,△ABC中,∠ACB=90°,CD⊥AB于D,S△ABC=20,AB=10。求AD、BD的长. 2、已知,△ABC中,∠ACB=90°,CD⊥AB于D。(1)若AD=8,BD=2,求AC的长。(2)若AC=12,BC=16,求CD、AD的长。 B A

【典型例题】 例1.如图所示,在△ABC 中,∠ACB=90°,AM 是BC 边的中线,CN ⊥AM 于N 点,连接BN ,求证:BM 2=MN ·AM 。 例2.已知:如图,在四边形ABCD 中,∠ABC=∠ADC=90o,DF ⊥AC 于E ,且与AB 的延长线相交于F ,与BC 相交于G 。求证:AD 2=AB ·AF 例3.(1)已知ABC ?中,?=∠90ACB ,AB CD ⊥,垂足为D ,DE 、DF 分别是BDC ADC ??和的 高,这时CAB DEF ??和是否相似? 【拓展练习】 1、已知:如图,AD 是△ABC 的高,BE ⊥AB ,AE 交BC 于点F ,AB ·AC=AD ·AE 。求证:△BEF ∽△ACF A B A B C N D C

最新相似三角形常见题型解法归纳.优选

A字形,A’形,8字形,蝴蝶形,双垂直,旋转形 双垂直结论:射影定理:①直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.②每一条直角边是这条直角边在斜边上的射影和斜边的比例中项 ⑴△ACD∽△CDB→AD:CD=CD:BD→CD 2=AD?BD ⑵△ACD∽△ABC→AC:AB=AD:AC→AC2=AD?AB ⑶△CDB∽△ABC→BC:AC=BD:BC→BC2=BD?AB 结论:⑵÷⑶得AC2:BC2=AD:BD 结论:面积法得AB?CD=AC?BC→比例式证明等积式(比例式)策略 1、直接法:找同一三角形两条边变化:等号同侧两边同一三角形三点定形法 2、间接法:⑴3种代换①等线段代换;②等比代换;③等积代换; ⑵创造条件①添加平行线——创造“A”字型、“8”字型 ②先证其它三角形相似——创造边、角条件 相似判定条件:两边成比夹角等、两角对应三边比 相似终极策略: 遇等积,化比例,同侧三点找相似; 四共线,无等边,射影平行用等比; 四共线,有等边,必有一条可转换; 两共线,上下比,过端平行条件边。 彼相似,我角等,两边成比边代换。 (3)等比代换:若d c b a, , ,是四条线段,欲证 d c b a =,可先证得 f e b a =(f e,是两条线段)然 后证 d c f e =,这里把 f e 叫做中间比。 ①∠ABC=∠ADE.求证:AB·AE=AC·AD ②△ABC中,AB=AC,△DEF是等边三角形,求证:BD?CN=BM?CE. ③等边三角形ABC中,P为BC上任一点,AP的垂直平分线交AB、AC于M、N两点。 求证:BP?PC=BM?CN D C A word.

相似射影定理及角平分线定理打印稿

相似三角形(二)(射影定理及角平分线的性质) 射影定理: 【知识要点】 1、直角三角形的性质: (1)直角三角形的两个锐角 (2)Rt △ABC 中,∠C=90o,则 2 + 2 = 2 (3)直角三角形的斜边上的中线长等于 (4)等腰直角三角形的两个锐角都是 ,且三边长的比值为 (5)有一个锐角为30o的直角三角形,30o所对的直角边长等于 ,且三边长的比值为 2、直角三角形相似的判定定理: 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 3、双垂直型: Rt △ABC 中,∠C=90o,CD ⊥AB 于D ,则 ① ∽ ∽ ②S △ABC = 2 2 ③射影定理: CD 2 = · AC 2= · BC 2= · 【常规题型】 1、已知:如图,△ABC 中,∠ACB=90°,CD⊥AB 于D , S△ABC=20,AB=10。求AD 、BD 的长. B A

2、已知,△ABC 中,∠ACB=90°,CD⊥AB 于D 。(1)若AD=8,BD=2,求AC 的长。(2)若AC=12,BC=16,求CD 、AD 的长。 【典型例题】 例1.已知:如图,在四边形ABCD 中,∠ABC=∠ADC=90o,DF ⊥AC 于E ,且与AB 的延长线相交于F ,与BC 相交于G 。求证:AD 2=AB ·AF 例2.如图所示,在△ABC 中,∠ACB=90°,AM 是BC 边的中线,CN ⊥AM 于N 点,连接BN ,求证:BM 2=MN ·AM 。 例3.已知:如图,Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,DE ⊥AC 于E ,DF ⊥BC 于F 。 求证:AE ·BF ·AB =CD 3 A M C D C

相似三角形预备定理证明

课题:相似三角形的判定(预备定理) 教学目标:1 ?掌握预备定理以及用相似三角形的定义判断两三角形相似; 2 ?在探索相似三角形预备定理过程中,感受特殊到一般的思想方法,体验 分析解决 问题的方法; 3?通过思考交流与教师启发,获得探索问题的乐趣,增强数学学习的信心 与原动力。 教学重点: 预备定理的证明与应用。 教学难点: 预备定理的证明。 教学方法: 启发+探究+讲授 教学手段: 常规教学用具,计算机及课件 教学过程: 教学过程 教师活动 学生活动 设计意图 出示情境问题: 1、 什么叫相似三角形?什么叫相似比? 2、 如图,矩形草坪长20m 宽10m 沿草坪四 周有1m 宽的小路。小路的内外边缘所围成的 矩形相似吗? □—''~:—:—A ?—'—>:—?—A 3、 如图两个三角形相似吗?若相似,你是若 何判 断的,相似比是多少?若不相似,也请说 明。 4、 思考:如图:在AA BC 与厶DEF 中,/ A= / D, Z B=Z E ,请问 AA BC 与△ DEF 是否相似? 明确指出: 本节课将研究如何用相似三角形的定义判断 两三角形相似。 板书课题:相似三角形的判定 创 设 情 境 复习相似形 的有关概 思考回答问题: 念,明确否 1、2 口答 定两图形相 3题可能的方法: 似,指出一 ⑴直觉(引导有理有 个不满足的 据); 条件即可, ⑵度量角与边,再计 而冃疋两图 算(指引这种方法简 形相似,则 单易于操作,但有时 需要所有对 会对结果的精确程度 应角相等, 质疑) 对边成比 ⑶根据格点特性计算 例。 (积极鼓励) 而随后的思 考,是为了 给学生点引 一下,预备 定理为什么 叫预备定 理,后继学

相似三角形的判定定理2

A B C A 1 B 1 C 1 A B C D O 1、 相似三角形判定定理2 如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似. 可简述为:两边对应成比例且夹角相等,两个三角形相似. 如图,在ABC ?与111A B C ?中,1A A ∠=∠,1111 AB AC A B AC = ,那么ABC ?∽111A B C ?. 【例1】 如图,四边形ABCD 的对角线AC 与BD 相交于点O , 2OA =,3OB =,6OC =,4OD =. 求证:OAD ?与OBC ?是相似三角形. 相似三角形判定定理2 知识精讲

A B C D A B C D E 【例2】 如图,点D 是ABC ?的边AB 上的一点,且2AC AD AB =g . 求证:ACD ?∽ABC ?. 【例3】 如图,在ABC ?与AED ?中, AB AC AE AD = ,BAD CAE ∠=∠. 求证:ABC ?∽AED ?. 【例4】 下列说法一定正确的是( ) A .有两边对应成比例且一角相等的两个三角形相似 B .对应角相等的两个三角形不一定相似 C .有两边对应成比例且夹角相等的两个三角形相似 D .一条直线截三角形两边所得的三角形与原三角形相似 【例5】 在ABC ?和DEF ?中,由下列条件不能推出ABC ?∽DEF ?的是( ) A .A B A C DE DF = ,B E ∠=∠ B .AB AC =,DE DF =,B E ∠=∠ C .AB AC DE DF = ,A D ∠=∠ D .AB AC =,DE DF =,C F ∠=∠

初三数学相似三角形知识点归纳

初三数学相似三角形知 识点归纳 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

初三数学《相似三角形》知识提纲 (孟老师归纳) 一:比例的性质及平行线分线段成比例定理 (一)相关概念:1.两条线段的比:两条线段的比就是两条线段长度的比 在同一长度单位下两条线段a ,b 的长度分别为m ,n ,那么就说这两条线段 的比是,或写成a :b=m :n ; 其中 a 叫做比的前项,b 叫做比的后项 2:比例尺= 图上距离/实际距离 3:成比例线段:在四条线段a ,b ,c ,d 中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,记作: c d a b =(或a :b=c :d ) ① 线段a ,d 叫做比例外项,线段b ,c 叫做比例内项, ② 线段a 叫首项,d 叫a ,b ,c 的第四比例项。 ③ 比例中项:若 c a b c a b c b b a ,,2是则即?==的比例中项. (二)比例式的性质 1.比例的基本性质: bc ad d c b a =?= 2. 合比:若 ,则或a b c d a b b c d d a b a c d c =±=±±=± 3. 等比:若 ……(若……)a b c d e f m n k b d f n =====++++≠0 4、黄金分割: n m b a =

把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC= 2 1 5-≈, (三)平行线分线段成比例定理 1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 如图:当AD∥BE∥CF 时,都可得到 = . = ,= , 语言描述如下: = , = , = . (4)上述结论也适合下列情况的图形: 图(2) 图(3) 图(4) 图(5) 2.推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. A 型 X 型 由DE ∥BC 可得: AC AE AB AD EA EC AD BD EC AE DB AD = ==或或.

相似三角形预备定理证明学习资料

精品文档 课题: 相似三角形的判定(预备定理) 教学目标:1 ?掌握预备定理以及用相似三角形的定义判断两三角形相似; 2 ?在探索相似三角形预备定理过程中,感受特殊到一般的思想方法,体验分析解决问题的方法; 3?通过思考交流与教师启发,获得探索问题的乐趣,增强数学学习的信心 与原动力。 教学重点:预备定理的证明与应用。 教学难点:预备定理的证明。 教学方法:启发+探究+讲授 教学手段:常规教学用具,计算机及课件 教学过程: 教学过程 教师活动学生活动设计意图 出示情境问题: 1、什么叫相似三角形?什么叫相似比? 2、如图,矩形草坪长20m,宽10m,沿草坪四周有 1m宽的小路。小路的内外边缘所围成的矩形相似吗? C 创设情境3、如图两个三角形相似吗?若相似,你是若何判断的, 相似比是多少?若不相似,也请说 4、思考:如图:在△ ABC 与厶DEF中,/ A= / D,/ B= / E,请问△ ABC 与厶DEF 是否相 似? 复习相似形 的有关概 思考回答问题:念,明确否 1、2 口答定两图形相 3题可能的方法:似,指出一 ⑴直觉(引导有理有个不满足的 据);条件即可, ⑵度量角与边,再计而冃疋两图 算(指引这种方法简形相似,则 单易于操作,但有时需要所有对 会对结果的精确程度应角相等, 质疑)对边成比 ⑶根据格点特性计算例。 (积极鼓励) 而随后的思 考,是为了给 学生点引一 下,预备定理 为什么叫预备 定理,后继学

D 明确指出: 本节课将研究如何用相似三角形的定义判断两三 角形相似。 板书课题:相似三角形的判定 出示特殊题组: 1、如图,在等边三角形厶ABC中,DE//BC,并交于 点D、E,那么△ ADE与厶ABC相似吗?为什么? 口答1题; 发现证明预备疋理2、如图,在Rt△ ABC 中,/ BAC=90 ° , DE//BC,并交于点D、E,那么△ ADE与厶ABC相 似吗?为什么? AD (提示:可设D k) AB 若将特殊三角形的条件去掉,变成一般的三角 形呢? 3、如图,在△ ABC中,DE//BC,并交于点D、E, 那么△ ADE 与厶ABC 相似吗?为什么? 通过计算回答;并认识 到关键是计算: DE BC 在教师的启发下思考讨 论,体会线段转移的来 龙去脉。 预案: 1 : 过D 作 DF//AC 习中的有关 判定定理都 要转化为预 备定理即以 证明,从而感 受预备定理 的学习价值。 题组中的1、 2题,让学生 从简单推理与 计算推理两个 方面认识理解 这种图形。尤 其是计算推理 中所涉及的设 未知数的方 法,应用非常 广泛。而题三 需要深入思 考,更反衬出 题3分析方法 的重要性。 通过题3的 启发引导,

相似三角形中的射影定理

相似三角形中的射影定 理 -CAL-FENGHAI.-(YICAI)-Company One1

相似三角形 ——相似直角三角形及射影定理 【知识要点】 1、直角三角形的性质: (1)直角三角形的两个锐角 (2)Rt△ABC中,∠C=90o,则2+ 2= 2 (3)直角三角形的斜边上的中线长等于 (4)等腰直角三角形的两个锐角都是,且三边长的比值为 (5)有一个锐角为30o的直角三角形,30o所对的直角边长等于,且三边长的比值为 2、直角三角形相似的判定定理(只能用于选择填空题) 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。 3、双垂直型: Rt△ABC中,∠C=90o,CD⊥AB于D,则 ①∽∽ ②射影定理: CD2= · AC2= · BC2= · 【常规题型】 1、已知:如图,△ABC中,∠ACB=90°,CD⊥AB于D,S△ABC=20,AB=10。求AD、BD 的长. 2、已知,△ABC中,∠ACB=90°,CD⊥AB于D。(1)若AD=8,BD=2,求AC的长。(2)若AC=12,BC=16,求CD、AD的长。B A

【典型例题】 例1.如图所示,在△ABC 中,∠ACB=90°,AM 是BC 边的中线,CN ⊥AM 于N 点,连接BN ,求证:BM 2=MN ·AM 。 例2.已知:如图,在四边形ABCD 中,∠ABC=∠ADC=90o ,DF ⊥AC 于E ,且与AB 的延长线相交于F ,与BC 相交于G 。求证:AD 2=AB ·AF A B M C N D C

初中数学相似三角形的判定定理

相似三角形的判定 教学目标1.知道相似三角形的定义及有关概念,知道相似比为1的相似三角形是全等三角形;会读、会用“∽”符号;能准确写出相似三角形的对应角与对应边的比例式; 2、掌握相似三角形判定的预备定理及相似三角形的判定定理1; 3、综合运用所学两个定理,来判定三角形相似,计算相似三角形的边长. 4、了解判定定理1的证题方法与思路,应用判定定理l. 一、复习 1.什么叫做全等三角形?它在形状上、大小上有何特征? 2.两个全等三角形的对应边和对应角有什么关系? 3、复习平行线分线段成比例定理(文字表述及基本图形) 本节学习相似三角形的定义及相关判定定理. 二、学习新课 相似三角形的概念:我们把对应角相等、对应边成比例的两个三角形,叫做相似三角形. 相似三角形的概念作为相似三角形的判定方法之一. [说明]相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.两个三角形形状相同,就是他们的对应角相等,对应边成比例. 相似比的概念:相似三角形对应边的比,叫做相似比(或相似系数). [说明]①两个相似三角形的相似比具有顺序性.②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形. 注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上. 类似地,如果两个边数相等的多边形的对应角相等、对应 边成比例,那么这两个多边形叫做相似多边形.相似多边形的 对应边的比,叫做相似比. 如图,是相似三角形,则 相似可记作∽.由于,则与 的相似比,则与的相似比.

猜测两个三角形全等与相似的区别与联系:当两个相似三角形的相似比时,这两个相似三角形就成为全等三角形,因此全等三角形是相似三角形的特例. 想一想:如果∽,∽那么与相似吗? 利用相似三角形的定义说理.得到相似三角形具有传递性(性质)如果两个三角形分别与同一个三角形相似,那么这两个三角形也相似. 思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么? (2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么? 练习一:选择题 下列四组图形,必是相似形的是() A、有一个角为的两个等腰三角形;B、有一个角为的两个等腰梯形; C、邻边之比都为2:3的两个平行四边形;D、有一个角为的两个等腰三角形. 新授2:相似三角形的预备定理 课本通过探讨的方法,根据题设中有平行线的条件,结合定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是: (1)本定理的导出不仅复习了相似三角形的定义,而且为后面的证明打下了基础。 (2)由本定理的题设所构成的三角形有三种可能,基本图形在“平行线分线段成比例”出现过. (3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,做题时务必要认真仔细,如本定理的比例式,防止出现错误 (4)根据两个三角形相似写对应边的比例式时,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.

相似三角形预备定理证明学习资料

课题:相似三角形的判定(预备定理) 教学目标:1.掌握预备定理以及用相似三角形的定义判断两三角形相似; 2.在探索相似三角形预备定理过程中,感受特殊到一般的思想方法,体验分析解决问题的方法; 3.通过思考交流与教师启发,获得探索问题的乐趣,增强数学学习的信心与原动力。 教学重点:预备定理的证明与应用。 教学难点:预备定理的证明。 教学方法:启发+探究+讲授 教学手段:常规教学用具,计算机及课件

组织学生思考: (1)△ADE与△ABC满足“对应角相等”吗?为什么? (2)△ADE与△ABC满足对应边成比例吗? 由“DE//BC”的条件可得到怎样的比例式?(3)本题的关键归结为“只要证明什么”?(4)根据以前的推论,如何把DE移到BC 上去,即应添怎样的辅助线?(EF//AB) 教师板演证明过程 由此得到预备定理: 定理平行于三角形一边的直线,截其他两边所得的三角形与原三角形相似。2:过E作EF//AB 找关键字词,记忆定 理 层层递进, 突破难点, 提高学生的 分析推理思 维能力。 通过分析定 理,促进理 解。 定理应用与巩固例题选讲: 例如图,D为△ABC的A B边上的一点,过 点D作DE//AC,交BC于E,已知BE:EC=2: 1,AC=6CM,求DE的长以及 DA BD 的值。 E B C A D 在学生思考后,得出: (1)平行线既可得相似三角形,又可得线段 成比例; (2)这种判断两三角形相似的方法比起定义 方便多了,但是局限性很大: 我们能否将这个问题转化为预备定理图形加 以说明呢? 练习: 1、如图,DG//EH//FI//BC,请找出图中所有 的相似三角形,并说明理由。 口述思路:根据平行 线得相似三角形,进 而根据相似比求DE; 根据平行线得线段成 比例求 DA BD 在教师启发下进行解 题反思 通过对例题 的分析,设 置与平行线 有关的截三 角形两边成 比例定理以 及预备定 理,注意所 得的比的差 别,落实好 重点。

相似三角形中的射影定理知识讲解

相似三角形 ――相似直角三角形及射影定理 【知识要点】 1直角三角形的性质: (1) 直角三角形的两个锐角 _____________ (2) Rt A ABC 中,/ C=90o ,贝U 2 + (3) 直角三角形的斜边上的中线长等于 2、已知,△ ABC 中,/ ACB=90 ° , CD 丄 AB 于 D 。( 1)若 AD=8 , BD=2,求 AC 的长。(2)若 AC=12 , BC=16,求 CD 、AD 的长。 精品文档 (4)等腰直角三角形的两个锐角都是 ,且三边长的比值为 (5)有一个锐角为30o 的直角三角形,30o 所对的直角边长等于 ,且三边长的比值为 2、直角三角形相似的判定定理 (只能用于选择填空题) 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那 么这两个直角三角形相似。 3、双垂直型: Rt A ABC 中,/ C=90o , CD 丄 AB 于 D ,则 ① S s ②射影定理: CD 2= ______ 【常规题型】 AC 2= _____ BC 2= ____ 1 已知:如图,△ ABC 中,/ ACB=90

【典型例题】 例1.如图所示,在厶ABC 中,/ ACB=90 BM 2=MN ? AM 。 例2.已知:如图,在四边形 ABCD 中,/ ABC= / ADC=90 o , DF 丄AC 于E ,且与 AB 的延长线相交 于F ,与BC 相交于G 。求证:AD 2=AB ? AF 【拓展练习】 1、已知:如图, AD 是厶ABC 的高,BE 丄AB , AE 交BC 于点F , AB ? AC=AD ? AE 。求证:△ BEF ACF ,AM 是BC 边的中线,CN 丄AM 于N 点,连接BN ,求证: 例 3. (1)已知 ABC 中, ACB 90 , CD 高,这时 DEF 和 CAB 是否相似? AB ,垂足为D , DE 、DF 分别是 ADC 和 BDC 的 C B C F D

相似三角形---射影定理的运用

相似三角形------射影定理的推广及应用 射影定理是平面几何中一个很重要的性质定理,尽管义务教材中没有列入,但在几何证明及计算中应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。一般地,若将定理中的直角三角形条件非直角化,亦可得到类似的结论(这里暂且称之为射影定理的推广),而此结论又可作为证明其它命题的预备定理及联想思路,熟练地掌握并巧妙地运用,定会在几何证明及计算“山穷水尽疑无路”时,“柳暗花明又一村”地迎刃而解。下面结合例子从它的变式推广上谈谈其应用。 一、射影定理 射影定理直角三角形斜边上的高是它分斜边所得两条线段的比例中项;且每条直角边都是它在斜边上的射影和斜边的比例中项。 如图(1):Rt△ABC中,若CD为高, 则有CD2=BD?A D、 BC2=BD?AB或 AC2=AD?AB。(证明略) 二、变式推广 1.逆用如图(1):若△ABC中,CD为高,且有DC2=BD ?AD或AC2=AD?AB或BC2=BD?AB,则有∠DCB=∠A或∠ACD=∠B,均可等到△ABC为直角三角形。 (证明略) 2.一般化,若△ABC不为直角三角形,当点D满足一定条件时,类似地仍有部分结论成立。(后文简称:射影定理变式(2)) 如图(2):△ABC中,D为AB上一点,若∠CDB=∠ACB,或∠ DCB=∠A,则有△CDB∽△ACB,可得BC2=BD?A B;反之,若△ ABC中,D为AB上一点,且有BC2=BD?AB,则有△CDB∽△ACB, 可得到∠CDB=∠ACB,或∠DCB=∠A。 (证明略) 三、应用 例1如图(3),已知:等腰三角形ABC中,AB=AC,高AD、BE交于点H, 求证:4DH?DA=BC2 分析:易证∠BAD=∠CAD=900-∠C=∠H B D,联想到射影定理变式 (2),可得BD2=DH?DA,又BC=2BD,故有结论成立。 (证明略)

相似三角形判定基础 练习

相似三角形的判定① 1、已知两数4和8,试写出第三个数,使这三个数中,其中一个数是其余两数的比例中项,第 三个数是 (只需写出一个即可). 2、在△ABC 中,AB=8,AC=6,点D 在AC 上,且AD=2,若要在AB 上找一点E ,使△ADE 与原三角 形相似,那么AE= 。 3、如图,在△ABC 中,点D 在AB 上,请再添一个适当的条件,使△ADC ∽△ACB ,那么可添加的条件是 4、已知D 、E 分别是ΔABC 的边AB 、AC 上的点,请你添加一个条件, 使ΔABC 与ΔAED 相似. (只需添加一个你认为适当的 条件即可). 5、下列说法:①所有的等腰三角形都相似;②所有的等边三角形都相似;③所有等腰直角三角 形都相似;④所有的直角三角形都相似. 其中正确的是 (把你认为正确的说法的序号都填上). 6、如图,在直角坐标系中有两点A(4,0)、B(0,2),如果点C 在x 轴 上(C 与A 不重合),当点C 的坐标为 或 时,使得由点B 、O 、C 组成的三角形与 ΔAOB 相似(至少写出两个满足条件的点的坐标). 7、下列命题中正确的是 ( ) ①三边对应成比例的两个三角形相似 ②二边对应成比例且一个角对应相等的两个三角形相似 ③一个锐角对应相等的两个直角三角形相似 ④一个角对应相等的两个等腰三角形相似 A 、①③ B 、①④ C 、①②④ D 、①③④ 8、如图,已知D E ∥BC ,E F ∥AB ,则下列比例式中错误的是( ) A AC AE AB AD = B FB EA CF CE = C BD AD BC DE = D CB CF AB EF = 9、如图,D 、E 分别是AB 、AC 上两点,CD 与BE 相交于点O , 下列条件中不能使ΔABE 和ΔACD 相似的是 ( ) A. ∠B=∠C B. ∠ADC=∠AEB C. BE=CD ,AB=AC D. AD ∶AC=AE ∶AB 10、在矩形ABCD 中,E 、F 分别是CD 、BC 上的点,若∠AEF= 90°,则一定有 ( ) A ΔADE ∽ΔAEF B ΔECF ∽ΔAEF C ΔADE ∽ΔECF D ΔAEF ∽ΔABF 11、如图,E 是平行四边形ABCD 的边BC 的延长线上的一点, 连结AE 交CD 于F ,则图中共有相似三角形 ( ) A 1对 B 2对 C 3对 D 4对 12、如图,在大小为4×4的正方形网格中,是相似三角形的是( )

《相似三角形的判定预备定理 》

18.5.1相似三角形的判定——预备定理 【教学目标】 知识技能:掌握用相似三角形的定义和预备定理判断两个三角形相似 过程方法:在探索相似三角形判定定理过程中,体现解决问题的方法 情感态度:在探索相似图形的性质过程中,培养学生与他人交流、合作的意识和品质. 【教学重点】预备定理的证明与应用 【教学难点】预备定理的证明 【教学过程】 一.复习引入 活动1 回顾相似三角形的定义,定义既是判定也是性质;平行线分线段成比例 出示问题:如图,DE//BC, △ADE 与△ABC 有什么关系?说明理由. 学生猜想:相似。能得到△ADE ∽△ABC 吗? 教师活动:教师出示并提出问题,组织学生思考. (1)△ADE 与△ABC 满足“对应角相等”吗?为什么? (2)△ADE 与△ABC 满足对应边成比例吗?由“DE ∥BC ”的条件可得到哪些线段的比相等? (3)根据以前学习的知识如何把DE 移到BC 上去?(作辅助线DF ∥AC ) 学生活动:学生小组讨论:要证△ADE ∽△ABC 只需证∠A=∠A ,∠B=∠2,∠C=∠3←——由平行得 =AD AE DE AB AC BC ?=?? 由DE ∥BC 得相似定义 只需证出:DE AD BC AB =或DE AE BC AC = 由于DE 、BC 不在同一直线上,故可以通过做辅助线平移DE ,将DE 、BC 放在同一直线上 证明: 过D 点作DF ∥AC 交BC 于F ∵DE ∥BC ,DF ∥AC ∴四边形DFCE 是□ ∴DE=CF ∵DF ∥AC ∴CF AD BC BD = ∴DE AD BC BD = ∵DE ∥BC ∴=AD AE BD AC ∵DE ∥BC ∴∠A=∠A ,∠1=∠B ,∠2=∠C ∴△ADE ∽△ABC BC DE AC AE AB AD ==∴21F E B C A D

相似三角形的判定定理1

1 / 7 1、 相似三角形的定义 如果一个三角形的三个角与另一个三角形的三个角对应相等,且它们各有的三边对应成比例,那么这两个三角形叫做相似三角形. 如图,DE 是ABC ?的中位线,那么在ADE ?与ABC ?中, A A ∠=∠, ADE B ∠=∠,AED C ∠=∠; 1 2AD DE AE AB BC AC ===.由相似三角形的定义,可知这两个三角形相似.用符号来表示,记作 ADE ?∽ABC ?,其中点A 与点A 、点D 与点B 、点E 与点C 分 别是对应顶点;符号“∽”读作“相似于”. 用符号表示两个相似三角形时,通常把对应顶点的字母分别写在三角形记号“?”后相应的位置上. 根据相似三角形的定义,可以得出: (1)相似三角形的对应角相等,对应边成比例;两个相似三角形的对应边的比,叫做这两个三角形的相似比(或相似系数). (2)如果两个三角形分别与同一个三角形相似,那么这两个三角形也相似. 2、 相似三角形的预备定理 平行于三角形一边的直线截其他两边所在的直线,截得的三角形与原三角形相似. 如图,已知直线l 与ABC ?的两边AB 、AC 所在直线分别交于点D 和点E ,则ADE ?∽ABC ?. 相似三角形判定定理1 A B C D E A B C D E A B C D E D A B C E

2 / 7 A B C A 1 B 1 C 1 3、 相似三角形判定定理1 如果一个三角形的两角与另一个三角形的两角对应相等,那么这两个三角形相似. 可简述为:两角对应相等,两个三角形相似. 如图,在ABC ?与111A B C ?中,如果1A A ∠=∠、1B B ∠=∠,那么ABC ?∽111A B C ?. 常见模型如下:

(完整版)人教版第27章相似三角形知识点总结

第27章相似三角形知识点 知识点1 有关相似形的概念 1、形状相同的图形叫相似图形, 2、如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形. 3、相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段, 简称比例线段 知识点3 比例的性质(注意性质里的条件:分母不能为0) bc ad d c b a =?=::; a c a b c d b d b d ±±= ?= 知识点4 比例线段的有关定理 1、平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例 已知AD ∥BE ∥CF, 可得 AB DE AB DE BC EF BC EF AB BC BC EF AC DF AB DE AC DF DE EF ===== 或或或或等. 知识点5 相似三角形的概念 对应角相等,对应边成比例的三角形,叫做相似三角形. 相似三角形对应边的比叫做相似比(或相似系数). 相似三角形对应角相等,对应边成比例. 知识点6 三角形相似的判定方法 1、平行法: 平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似. 2、只看角法(AA ): 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. 简述为:两角对应相等,两三角形相似. 3、只看边法 (SSS):如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似. (HL)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例, 那么这两个直角三角形相似. 4、边角组合法(SAS): 如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似. 简述为:两边对应成比例且夹角相等,两三角形相似 B

相似三角形的判定定理

24.4(1)相似三角形的判定 教学目标 1.知道相似三角形的定义及有关概念,知道相似比为1的相似三角形是全等三角形;会读、会用 “∽”符号;能准确写出相似三角形的对应角与对应边的比例式; 2、掌握相似三角形判定的预备定理及相似三角形的判定定理1; 3、综合运用所学两个定理,来判定三角形相似,计算相似三角形的边长. 4、了解判定定理1的证题方法与思路,应用判定定理l. 一、复习 1.什么叫做全等三角形?它在形状上、大小上有何特征? 2.两个全等三角形的对应边和对应角有什么关系? 3、复习平行线分线段成比例定理(文字表述及基本图形) 本节学习相似三角形的定义及相关判定定理. 二、学习新课 相似三角形的概念: 我们把对应角相等、对应边成比例的两个三角形,叫做相似三角形. 相似三角形的概念作为相似三角形的判定方法之一. [说明]相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.两个三角形形状相同,就是他们的对应角相等,对应边成比例. 相似比的概念 :相似三角形对应边的比k ,叫做相似比(或相似系数). [说明]①两个相似三角形的相似比具有顺序性. ②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形. 注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上. 类似地,如果两个边数相等的多边形的对应角相等、对应边成比例,那么这两个多边形叫做相似多边形.相似多边形的对应边的比,叫做相似比. 如图,111,ABC A B C ??是相似三角形,则111,ABC A B C ??相似可记作ABC ?∽111A B C ?.由于 111 2 AB A B =,则ABC ?与111A B C ?的相似比111 2 AB k A B = =,则111A B C ?与ABC ?的相似比,112A B k AB == . C 1 B 1 A 1 C B A

相似三角形射影定理的运用

相似三角形----射影定理的推广及应用 射影定理是平面几何中一个很重要的性质定理,尽管义务教材中没有列入,但在几何证明及计算中 应用很广泛,若能很好地掌握并灵活地运用它,常可取到事半功倍的效果。一般地,若将定理中的直角三 角形条件非直角化,亦可得到类似的结论(这里暂且称之为射影定理的推广) ,而此结论又可作为证明其 它命题的预备定理及联想思路, 熟练地掌握并巧妙地运用,定会在几何证明及计算“山穷水尽疑无路”时, “柳暗花明又一村”地迎刃而解。下面结合例子从它的变式推广上谈谈其应用。 一、 射影定理 射影定理直角三角形斜边上的高是它分斜边所得两条线段的比例中项; 上的射影和斜边的比例中项。 如图(1) : R t △ABC 中,若CD 为高, 则有c D 2=BD ?AD BC 2 = BD ?AB 或 AC 2 = AD ?AB 。(证明略) 二、 变式推广 1 ?逆用 如图(1):若AABC 中,CD 为高,且有DC 2 = AD 或AC 2 =AD ?AB 或BC 2=BD ?AB ,则有ZDCB = ZA 或/ACD = /B ,均可等到AAB C 为直角三角形。 (证明略) 2 ?—般化,若AABC 不为直角三角形,当点D 满足一定条件时,类似地仍有部分结论成立。 文简称:射影定理变式(2)) (证明略) 三、应用 例1 如图(3),已知:等腰三角形ABC 中, AB-AC,高AD 、 BE 交于点H, 求证:4DH ?DA=BC 2 分析: 易证ZBAD = ZCAD =900- / C -Z HBD 联想到射影定理变式(2),可得 BD 2 = DH ? DA,又BC-2BD ,故有结论成立。 (证明略) 例2 如图(4):已知OO 中,D 为弧AC 中点,过点D 的弦BD 被弦AC 分为4和12 两部分, 如图(2) : △ABC 中, D 为 AB 上 一点,若 ZCDB = ZACB ,或/ DCB = ZA ,则有△CDBs^ACB ,可得BC 2 = BD ?AB;反之,若AA BC 中,D 为AB 上 一点,且有BC 2 = BD ?AB,则有△CDBs^ACB, 可得到ZCDB = ZACB ,或ZDCB = ZAo 且每条直角边都是它在斜边 (后 原 1 >

相似三角形预备定理

相似形 本章教学目标 本章的主要内容分为“比例线段”和“相似三角形”,“比例线段”主要介绍线段的比和成比例线段的概念及判定成比例线段的一些定理,“相似三角形”主要研究相似三角形的判定与性质. 通过本章的学习,理解比和比例,线段的比和成比例线段、相似三角形等概念,掌握比例基本性质、合比性质和等比性质,较熟练运用上述性质进行比例和变形,灵活应用平行线分比例线段定理,相似三角形判定定理及性质定理,进行计算和简单的证明. 相似三角形的知识在实际中应用广泛.本章较多地运用了类比的方法、矛盾转化的方法,这些方法对培养我们探求知识,提高分析和解决问题能力起着极其重大的作用. 核心知识 一、知识结构 二、主要内容 1.比例线段及其性质 (1)比例线段:在四条线段中,如果其两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例

线段. (2)比例的性质 ①比例基本性质:=ad=bc ②合比性质:== ③等比性质:==…0…==(b+d+…+n≠0) 2.平行线分比例线段 定理:三条平行线截两条直线,所得的对应线段成比例. 推论;平行于三角形一边的直线截其它两边(或两边的延长线),所得的线段成比例. 3.三角形一边的平行线判定定理 如果一条直线截三角形的两边(或两边的延长线),所得的对应线段成比例,那么这条直线平行于三角形的第三边. 4.三角形相似预备定理 平行于三角形的一边,并且和其它两边相交的直线,所截得的三角形和原三角形的三边对应成比例. 5.相似三角形的判定

(1)平行法:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似. (2)定义法,对应边成比例,对应角相等的三角形叫相似三角形(有了判定定理后,就不用定义判定了). (3)判定定理1.两角对应相等,两三角形相似 (4)判定定理2.两边对应成比例、夹角相等、两三角形相似 (5)判定定理3.三边对应成比例、两三角形相似 (6)直角三角形判定: ①以上方法均可 ②如果一个直角三角形的一条直角边与斜边与另外一个直角三角形的直角边和斜边对应成比例,那么这两个直角形相似 ③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似. 6.相似三角形的性质 (1)相似三角形对应角相等,对应边成比例 (2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比. (3)相似三角形的周长比等于相似比 (4)相似三角形的面积比等于相似比的平方 三、本节常用的解题方法 1.运用中间量变量解题 对于比较复杂的比例关系,有时不能由一对相似三角形直接得出,这时可采用一种中间代替方法,即要

相关文档
最新文档