常微分方程进展简史

常微分方程进展简史
常微分方程进展简史

第三讲 常微分方程发展简史——解析理论

与定性理论阶段

3、常微分方程解析理论阶段:19世纪

19世纪为常微分方程发展的解析理论阶段. 作为微分方程向复数域的推广, 微分方程解析理论是由Cauchy 开创的. 在Cauchy 之后,重点转向大范围的研究。

级数解和特殊函数

这一阶段的主要结果之一是运用幂级数和广义幂级数解法, 求出一些重要的二阶线性

方程的级数解, 并得到极其重要的一些特殊函数.

常微分方程是17、18世纪在直接回答物理问题中兴起的. 在着手处理更为复杂的物理现象, 特别是在弦振动的研究中, 数学家们得到了偏微分方程. 用变量分离法解偏微分方程的努力导致求解常微分方程的问题. 此外, 因为偏微分方程都是以各种不同的坐标系表出的, 所以得到的常微分方程是陌生的, 并且不能用封闭形式解出. 为了求解应用分离变量法与偏微分方程后得到的常微分方程, 数学家们没有过分忧虑解的存在性和解应具有的形式, 而转向无穷级数的方法. 应用分离变量法解偏微分方程而得到的常微分方程中最重要的是Bessel 方程.

222()0

x y xy x n y '''++-=其中参数和都可以是复的.

n x 对Bessel 来说, 和都是实的. 此方程的特殊情形早在1703年Bernoulli Jacobi 给n x Leibnitz 的信中就已提到, 后来Bernoulli Daniel 、Euler 、Fourier 、Poisson 等都讨论过此问题. 对此方程的解的最早的系统研究是由Bessel 在研究行星运动时作出的. 对每个, 此方n 程存在两个独立的基本解,

记作和,

分别称为第一类Bessel 函数和第二类

()n J x ()n Y x Bessel 函数, 它们都是特殊函数或广义函数(初等函数之外的函数). Bessel 自1816年开始研究此方程, 首先给出了积分关系式

20

()cos(sin ).

2n q

J x nu x u du π

π

=

-?1818年Bessel 证明了有无穷多个零点. 1824年, Bessel 对整数给出了递推关系式

()n J x n 11()2()()0

n n n xJ x nJ x xJ x +--+=和其他的关于第一类Bessel 函数的关系式.

后来又有众多的数学家(研究天体力学的数学家)独立地得到了Bessel 函数及其表达式和关系式. Bessel 为微分方程解析理论作出了巨大贡献。

解析理论中另一重要内容是Legendre 方程的级数解和Legendre 多项式方面的结果. 1784年, Legendre 研究了Legendre 方程, 给出了幂级数形式的解,

2

(1)20x y xy y λ'''-++=

得到了Legendre 多项式. 与此同时, Hermite C 研究了方程, 得到了其幂20y xy y λ'''-+=级数解,当为非负偶数时即为著名的Hermite 多项式.

Tchebyshevy 在研究方程

λ的解时, 得到了Tchebyshevy 多项式.

22(1)0x y xy p y '''--+=1821年, Gauss 研究了Gauss 几何方程

.

(1)[(1)]0x x y y y γαβαβ'''-+-++-=这个方程及其级数解

2

(1)(1)(,,,)1112

(1)F x x x αβααββαβγγγγ++=+

++???

+ 早已为人们所熟知了,因为它已由Euler 研究过. 此级数称为超几何级数, 包含了几乎所有

的当时已知的初等函数和许多像Bessel 函数、球函数那样的超越函数. 除了证明此级数的一些性质外,Gauss 还建立了著名的关系式

.

()()

(,,,1)()()

F γγαβαβγγαγβΓΓ--=

Γ-Γ-Gauss 还建立了此级数的收敛性。记号应归源于Gauss.

(,,,)F x αβγ这一时期关于常微分方程级数解和特殊函数方面的工作还有很多, 这里不一一介绍.

奇点理论、自守函数

19世纪中期,常微分方程的研究走上了一个新的历程。存在性定理和Sturm-Liouville 理论都预先假设在考虑解的区域内,微分方程包含解析函数或至少包含连续函数。另一方面,某些已经考虑过的微分方程,如Bessel 方程、Legendre 方程、Gauss 超几何方程,如果表示成具有变系数的线性齐次$n$解常微分方程且最高阶导数项系数为1时,它们的系数具有奇异性,在奇异点的邻域内级数解的形式是特别的,所以数学家们便转而研究奇点邻域内的解,

也就是一个或多个系数在其上奇异的那种点的邻域内的解。对于这个问题,Gauss 关于超几何级数的工作指明了道路。先导者是Riemann 和Fuchs (Weierstrass 的学生和他在柏林的继承者)。此理论被称为线性常微分方程的Riemann-Fuchs L 奇点理论,这是19世纪常微分方程解析理论中一个非常重要的成果。奇点邻域内的解的研究是由Briot(1866年)和Bounque(1856年)起始的,他们的关于一阶线性方程的结果很快就得到了推广,在这个新领域中,人们的注意力集中于形为

()(1)1()()0

n n n y p z y p z y -++???+=的线性常微分方程,其中除在孤立奇点外是复变数$z$的单值解析函数。此方程之所()i p z 以受到重视,是因为它的解包括所有初等函数甚至某些高等函数。

这方面的重要工作还有Briot A A 和Bouquet J 的由常微分方程出发建立的椭圆函数(特殊的自守函数)的一般理论、Fuchs 和Poincare 的关于一阶非线性微分方程的理论, 最后是1882年至1884年Poincare J 的工作和Klein F 在1884年的工作由于自守函数理论

板进行隔开处理;同一线槽,需要在事前掌握图纸资料高中资料试卷方案。

一变压器组在发生内部故障

而使微分方程解析理论臻于顶峰. 这样, 微分方程和自守函数建立了密切的联系.

当自守函数理论还正处在创立的阶段时,天文学方面的工作激起了对一个二阶常微分方程的兴趣。此方程源于著名的体问题。体问题可以用一句话写出来:在三维空间N N 中给定个质点,如果在它们之间只有万有引力的作用,那么在给定它们的初始位置和速N 度的条件下,它们会怎样在空间中运动。最简单的例子就是太阳系中太阳,地球和月球的运动。在浩瀚的宇宙中,星球的大小可以忽略不及,所以我们可以把它们看成质点。如果不计太阳系其他星球的影响,那么它们的运动就只是在引力的作用下产生的,所以我们就可以把它们的运动看成一个三体问题。我们知道地球和月球都在进行一种周期性运动,这样我们才有了年,月和日的概念。所以大家不难想象周期运动可能是三体问题的一种解。

1877年Hill George William (美国数学家)私人出版了关于月球近地点运动的一篇具有卓越创见性的论文。1878年,他在AJM 上又发表了一篇关于月球运动的论文,创立了周期系数的线性齐次微分方程的数学理论。Hill 的一个基本思想是对月球运动的诸微分方程确定一个近似于实际观察到的运动的周期解。于是他对这个周期解变差写出方程,便得到了一个带有周期系数的四阶线性常微分方程组。知道了某些积分后,他将此四阶方程组化简为单独一个二阶线性微分方程

22

()0,d x

t x dt θ+=其中为周期的偶函数。Hill 证明了此二阶方程存在周期解,因而证实了月球近地点()t θπ的运动是周期性的,开创了周期系数方程的研究。

在他的证明中,首先将展开为Fourier 级数,然后用待定系数法确定级数解。他()t θ的方法用到了无穷行列式和无穷线性方程组,证明不够严格,他的工作一直受人嘲笑。1885-1886年,Poincare 证明了Hill 的证明手法的收敛性。Poincare 对Hill 的成就的注意和完善,使Hill 和有关课题著名了。

Poincare 参与了Hill 方程的研究,在Hill 的工作的刺激下,Poincare 为支配行星运动以及行星和卫星轨道稳定性的微分方程的周期解的研究开辟了一条新的途径,开创了常微分方程定性研究的新时代。

4、常微分方程定性理论阶段:19世纪末期和20世纪初期

从时间上看, 19世纪末期和20世纪初期是常微分方程发展的第三个阶段. 这个阶段常微分方程在三个方面有重大发展, 都与Poincare 的工作相联系。一是微分方程的解析理论, 前面已作论述;二是Poincare 的定性理论;三是Liapunov 的稳定性理论.

Poincare 的定性理论

在代数学中,五次代数方程没有一般的根式求解公式这一事实并不防碍Sturm 创立用代数方法决定实根个数的新成就。类似地,在非线性方程一般不能求``初等解"的事实下,Poincare 独立开创了常微分方程实域定性理论这一新分支。

1881-1886年, Poincare 同一标题下连续发表了四篇论文,开创了常微分方程实域定性理论. 他只求通过考察微分方程本身就可以回答的关于稳定性等问题的方法, 为微分方程定性理论奠定了坚实的基础.

1892年至1898年间, Poincare刻画了天体力学系统运动的特征, 并引导到微分方程定性理论的创立. 他发现微分方程的奇点起着关键作用.

他把奇点分为鞍点、结点、焦点和中心四类, 讨论了解在各种奇点附近的性态. Poincare将他的论文定名为《论微分方程所定义的积分曲线》是突出了他所研究的主题和

应用的方法。这一新分支的内容包括奇点附近积分曲线的分布、极限环(即孤立周期解)、奇点的大范围分布、环面上的积分曲线、以及三维空间周期解附近积分曲线的情形等等。Poincare关于常微分方程定性理论的一系列课题, 成为动力系统理论的开端.

Poincare的定性理论在研究思想上成功突破了常微分方程定量求解的束缚, 其创新之处体现在以下几个方面:由复域的研究又转到实域的研究,由定量研究转向定性研究,由分析方法转为分析和几何方法的有机结合,由函数作为对象的研究转到曲线作为对象的研究,由个别解的研究转到解的集体的研究,由解的解析性质的研究转到解所定义的积分曲线的几何拓扑性质的定性研究,由应用等式转到应用不等式,由局部研究转向全局研究。

常微分方程定性理论另一位主要创始人是挪威数学家Bendixson, 从1900年起,他开始从事Poincare所开创的微分方程轨线的拓扑性质的研究工作, 1901年发表了著名论文《由微分方程定义的曲线》。

1926年至1927年Birkhoff G以三体问题为背景继承和发展了Poincare的工作, 创立了动力系统理论. 到了20世纪30年代, 由于新的物理、力学以及工程技术和自动控制等问题的推动, 使微分方程定性理论中的概念、问题和方法又在新的条件下得到发展.

1937年, Andronov A和Pontryagin L提出了结构稳定性概念, 并严格证明了其充要条件, 使动力系统的研究向大范围发展.

由于天体力学,特别是"三体问题"的需要,庞加莱总结了天文学家A.林斯泰特等人的方法,系统地整理在《天体力学的新方法》一书中,并加以发展成为摄动理论或小参数理论。

Liapunov的稳定性理论

稳定性理论是微分方程理论的重要组成部分, 研究方程的解当时间趋于无穷时解的性态. 该理论在自然科学、工程技术、社会经济等方面有着广泛的应用。

众所周知, 任何一个实际系统总是经受着各种各样的干扰. 对于某些系统,微小干扰的影响并不显著,而对另外一些系统,微小干扰对系统的影响可能很显著. 承受干扰之后, 首先要考虑的性能就是系统能否稳妥地保持预定的运动或工作状态, 这就是稳定性. 严格地说, 数学模型仅是实际系统的近似刻画, 这主要是由于在建立数学模型过程中, 不得不忽略某些次要因素, 或者存在测量误差或计算的舍入误差等. 近似的数学模型能否如实地反映客观实际的动态, 在某种意义上说, 也是一个稳定性问题.

稳定性的概念, 最早源于力学. 一个力学系统具有某种平衡状态, 在微小干扰的作用下, 这种平衡状态能否保持, 这就是稳定性的雏形. 在静力学方面, 早在17世纪, Torricelli E就给出了Torricelli原理: 若物体仅受重力作用, 则当其重心位置最低时, 其平衡是稳定的, 当重心位置最高时, 其平衡是不稳定的; 后来, Laplace P证明了太阳系的稳定性, 建立了微分方程模型并提出了Laplace方程; 1788年, Lagrange L也证明了太阳系的稳定性, 建立了力学系统孤立平衡的稳定性定理: 当作用于系统的力函数在这一平衡位置有极大值时, 平衡是稳定的(Dirichlet J第一个给出了证明), 奠定了近代力学的基础; 1868年, Maxwell J关于离心调速系统的研究以及Thomson W和Tait P也采用过稳定性的概念, 但都没有给出稳定性的精确的数学定义; 1877年, Routh E给出了某些循环运动稳定性的判别法; 1895年, Hurwitz A也提出了现在的Routh-Hurwitz判别法, 但这些工作都有一定的局限性, 没有在理论上解

决一般稳定性问题. 至于对某些具体问题所建立的非线性微分方程组稳定性的研究, D'Alambert,

Lagrange, Maxwell, Minkowski, Ctodola 等都曾应用一次近似的线性方程组来代替非线性微分方程组研究稳定性, 但未能从数学上证明这种代替的合理性. 稳定性的一般理论迟迟未建立起来.

1892年, Lyapunov A 在其博士学位论文(运动稳定性的一般问题)中将Poincare 关于在奇点附近积分曲线随时间变化的定性研究发展至高维一般情形而形成专门的“运动稳定性”分支. Poincare 在平面上引入的“无切线段”的概念被Liapunov 推广成高维空间中的“Liapunov 函数”的概念。Liapunov 第一次给出了运动稳定性的精确的数学定义, 建立了运动稳定性的一般理论. 给出了判定运动稳定性的普遍的数学方法与理论基础.

1892年, Liapunov 在其博士学位论文中提出了研究稳定性的两类方法. 第一类方法是归结为把一般解表示成某种级数的形式, 称为Liapunov 第一方法; 第二类方法是归结为寻

找具有某种特性的辅助函数, 称之为Liapunov 第二方法或直接法.

(,)V t x Liapunov 第一方法在理论上是比较完整的, 但一般推理较长, 条件也较多, 它要确定解的幂级数, 判定它的收敛性, 确定一次近似系统的Liapunov 示性数的符号与性质等, 但把解表示成级数以及检验级数的收敛性却并非易事, 因此, 这一方法在实用上有很大的局限性, “第一方法”在20世纪60年代末以前还有一些发展. Liapunov 第二方法或直接法虽然减轻了求解的负担, 但构造函数却没有一个普遍的方法可循, 从而引起了一系列需要解决(,)V t x 的理论和技术困难, 如的存在性和构造方法等. 近年来, Liapunov 第二方法得到了长(,)V t x 足的发展, 成为研究稳定性的基本方法.

研究非线性ODEs 系统的稳定性, 主要采用Liapunov 直接法, Liapunov 直接法是整个稳定性理论的核心, 其基本思想是引入一个称为 Liapunov 函数的辅助函数, 这一方法的优点在于避免十分困难的方程求解.

1892年, Liapunov 以Liapunov 函数为基础首先提出了稳定、一致稳定、渐近稳定和不稳定的四个定理(称为Liapunov 基本定理), 这四个基本定理奠定了运动稳定性理论的基础. 自此以后, 许多学者对Liapunov 直接法的基本理论进行了深入而广泛的研究.

5、20世纪中期以后

20世纪中期起,常微分方程的发展既深又广,进入了一个新的阶段,包括了四个方面的工作。

第一是由于工程技术的需要而产生新型问题和新的分支。如:泛函微分方程、随机微分方程、分数阶微分方程、时标动力学方程等.

第二是由于应用问题需要解析形式的解,虽然明知一般非线性问题得不到精确的解析形式的解,但退而要求给出近似的解析形式的解。这方面包括PLK (庞加莱-莱特希尔-郭永怀)方法、WKB (文策尔-克拉默斯-布里尤安)方法、КБМ(克雷洛夫-博格柳博夫-米特罗波利斯基)方法、多尺度法、匹配法、奇摄动法、区域分析法,等等;以及由于电子计算机的出现而产生的其他近似的解析形式的解的求法。

第三是电子计算机的出现与发展对于常微分方程研究的推动及由此产生的成果。包括常微分方程的数值求解法(如“刚性”方程的求解),常微分方程的数值模拟,(如用于洛仑茨方程的定性研究),常微分方程中若干公式的机器推导(如中心焦点判定公式的机器推导),

等等。常微分方程由解析解难求而转到定性研究,当定性研究也困难时,又转而用计算机“强攻”, 得出一定的数值模拟结果后,为定性研究提供了感性的新信息。这方面的发展正在兴起。

第四是常微分方程理论本身向高维数、抽象化的方向发展。包括从普通空间常微分方程向抽象空间常微分方程发展,具体动力系统向抽象动力系统发展,实域定性理论向复域定性理论发展,二维平面上的一维积分曲线的研究向四维空间中二维积分曲面的研究发展等等。

常微分方程在实际问题中有着广泛的应用. 为了弄清楚一个实际系统随时间变化的规律, 需要讨论微分方程解的各种性态. 通常有三种主要方法: 求方程的解析解(包括级数形式的解); 求方程的数值解; 对解的性态进行定性分析. 三种方法各有特点和局限性, 在ODEs的研究中, 它们相互补充, 相辅相成.

(完整版)常微分方程发展简史——解析理论与定性理论阶段3常微分

第三讲 常微分方程发展简史——解析理论 与定性理论阶段 3、常微分方程解析理论阶段:19世纪 19世纪为常微分方程发展的解析理论阶段. 作为微分方程向复数域的推广, 微分方程解析理论是由Cauchy 开创的. 在Cauchy 之后,重点转向大范围的研究。 级数解和特殊函数 这一阶段的主要结果之一是运用幂级数和广义幂级数解法, 求出一些重要的二阶线性方程的级数解, 并得到极其重要的一些特殊函数. 常微分方程是17、18世纪在直接回答物理问题中兴起的. 在着手处理更为复杂的物理现象, 特别是在弦振动的研究中, 数学家们得到了偏微分方程. 用变量分离法解偏微分方程的努力导致求解常微分方程的问题. 此外, 因为偏微分方程都是以各种不同的坐标系表出的, 所以得到的常微分方程是陌生的, 并且不能用封闭形式解出. 为了求解应用分离变量法与偏微分方程后得到的常微分方程, 数学家们没有过分忧虑解的存在性和解应具有的形式, 而转向无穷级数的方法. 应用分离变量法解偏微分方程而得到的常微分方程中最重要的是Bessel 方程. 222 ()0x y xy x n y '''++-= 其中参数n 和x 都可以是复的. 对Bessel 来说, n 和x 都是实的. 此方程的特殊情形早在1703年Bernoulli Jacobi 给Leibnitz 的信中就已提到, 后来Bernoulli Daniel 、Euler 、Fourier 、Poisson 等都讨论过此问题. 对此方程的解的最早的系统研究是由Bessel 在研究行星运动时作出的. 对每个n , 此方程存在两个独立的基本解, 记作()n J x 和()n Y x , 分别称为第一类Bessel 函数和第二类Bessel 函数, 它们都是特殊函数或广义函数(初等函数之外的函数). Bessel 自1816年开始研究此方程, 首先给出了积分关系式 20 ()cos(sin ).2n q J x nu x u du ππ=-? 1818年Bessel 证明了()n J x 有无穷多个零点. 1824年, Bessel 对整数n 给出了递推关系式 11()2()()0n n n xJ x nJ x xJ x +--+= 和其他的关于第一类Bessel 函数的关系式. 后来又有众多的数学家(研究天体力学的数学家)独立地得到了Bessel 函数及其表达式和关系式. Bessel 为微分方程解析理论作出了巨大贡献。 解析理论中另一重要内容是Legendre 方程的级数解和Legendre 多项式方面的结果. 1784年, Legendre 研究了Legendre 方程2 (1)20x y xy y λ'''-++=, 给出了幂级数形式的解, 得到

(整理)常微分方程发展简史经典阶段

第一讲 常微分方程发展简史——经典阶段 一、引 言 Newton 和Lebinitz 创立的微积分是不严格的, 18世纪的数学家们一方面努力探索微积分严格化的途径, 一方面往往又不顾基础问题的困难而大胆前进, 大大地扩展了微积分的应用范围, 尤其是与力学的有机结合, 当时几乎所有的数学家也是力学家. Newton 和Lebinitz 都处理过与常微分方程有关的问题. 微积分的产生的一个重要的动因来自于人们探求物质世界运动规律的需求. 一般地, 认识规律 很难完全靠实验观测认识清楚,因为人们不太可能观测到运动的全过程. 运动是服从一定的客观规律的, 物质运动与瞬时变化率之间有着紧密的联系, 而这种联系, 用数学语言表述出来, 即抽象为某种数学结构, 其结果往往形成一个微分方程, 一旦求出其解或研究清楚其动力学行为, 运动规律就一目了然了. 在微分方程模型建立过程中, 平衡原理扮演着重要的角色. 微分方程模型通常均是建立在平衡原理基础之上的.``平衡"是我们在现实生活中随处可见的现象. 如:物理学中的能量守恒和动量守恒等定律以及力的平衡等都是在描述物理中的一些平衡现象. 再如考虑一段时间内(或一定范围内)物质的变化,容易发现这段时间内物质的改变量与它的增加量和减少量之差也处于平衡的状态, 这种平衡规律称为物质平衡.所谓平衡原理是指自然界的任何物质在其变化的过程中一定受到某种平衡关系的支配.注意发掘实际问题中的平衡原理无疑应该是从物质运动机理的角度组建数学模型的一个关键问题. 作为例子, 我们介绍著名的Malthus 模型, 它是最简单的生态学模型, 也是本书中唯一的线性模型. 给定一个种群, 我们的目的是确定种群的数量是如何随着时间而发展变化的. 为此,我们作出如下假设: 模型假设: 121()H 初始种群规模已知00()x t x =,种群数量非常大,世代互相重叠,因此种群的数量可以看作是连续变化的; 221()H 种群在空间分布均匀,没有迁入和迁出 (或迁入和迁出平衡); 321()H 种群的出生率和死亡率为常数,即不区分种群个体的大小、年龄、性别等. 421()H 环境资源是无限的. 确定变量和参数: 为了把问题转化为数学问题, 我们首先确定建模中需要考虑的变量和参数: t: 自变量, x(t): t 时刻的种群密度, b: 瞬时出生率, d: 瞬时死亡率. 模型的建立与求解: 考查时间段[,]t t t +? (不失一般性, 设0t ?>), 由物质平衡原理,在此时间段内种群的数量满足: t t ?+时刻种群数量 – t 时刻种群数量 = t ?内新出生个体数 – t ?内死亡个体数,

一阶线性微分方程的研究与应用毕业论文

阶线性微分方程的研究与应用 摘要:本文分析了一阶线性微分方程的几种初等解法类型以及应用,总结出了这些不同类型方程可借助变量变换或积分因子化成变量分离方程和恰当方程两种类型,从而归纳了一阶微分方程的求解问题以及应用领域。 矢键i司:变量变换积分因子变量分离方程恰当方程 引言 对于一阶微分方程的初等解法,通常我们把他们归结为方程的积分问题,虽然一般的一阶方程没有初等解法,但是对于一些有限的有初等解法的类型,它们却反映了实际问题中出现的微分方程的相当部分,因此,掌握这些类型方程的解法还是有重要实际意义的,下面我们就对这些类型方程的解法一作以总结。 微分方程 微分方程就是联系着自变量、未知函数及其导数的尖系式,形如 般)” 的方程,称为一阶线性微分方程。 1、变量变换方法 形如的方程,称为变量分离方程,这里的(1?1) f(x))g(y)分别x, y的连续函数. 如果g(y) 土0,我们将(1?1)改写成二f(x)dx,两边积分得,gCy) (1-2) 其中c任意常数。 例1求方程 £=pa)y 的通解,其中P(X)是X的连续函数。 解将变量分离,得到

—=p(x)dx y 两边积分,即得 In |y|= / p(x) dx+ C 这里c是任意常数,由对数定义,即有 lyl y= g/ p(x)dx+c 土gCgJ p(x)dx 求解方程生一¥ dx y

将变量分离,得到 y d y=?x d x, 两边积分,即得 因而,通解为 这里c是任意正常数。或者解出y,写出显函数形式的解 y= dy y | . y 例3求解方程〒=-+tan- dx X X y dy du 解这是齐次微分方程,以?二u及子二X —+U代入,则原方程变为 K dx dx du I A+u=u+anu du tan u dx X 将上式分离变量,即有 cot udu =— x 两边积分,得到

常微分方程初值问题数值解法.

常微分方程初值问题数值解法 朱欲辉 (浙江海洋学院数理信息学院, 浙江舟山316004) [摘要]:在常微分方程的课程中讨论的都是对一些典型方程求解析解的方法.然而在生产实 际和科学研究中所遇到的问题往往很复杂, 在很多情况下都不可能给出解的解析表达式. 本篇文章详细介绍了常微分方程初值问题的一些数值方法, 导出了若干种数值方法, 如Euler法、改进的Euler法、Runge-Kutta法以及线性多步法中的Adams显隐式公式和预测校正 公式, 并且对其稳定性及收敛性作了理论分析. 最后给出了数值例子, 分别用不同的方法计算出近似解, 从得出的结果对比各种方法的优缺点. [关键词]:常微分方程;初值问题; 数值方法; 收敛性; 稳定性; 误差估计 Numerical Method for Initial-Value Problems Zhu Yuhui (School of Mathematics, Physics, and Information Science, Zhejiang Ocean University, Zhoushan, Zhejiang 316004) [Abstract]:In the course about ordinary differential equations, the methods for analytic solutions of some typical equations are often discussed. However, in scientific research, the problems are very complex and the analytic solutions about these problems can’t be e xpressed explicitly. In this paper, some numerical methods for the initial-value problems are introduced. these methods include Euler method, improved Euler method, Runge-Kutta method and some linear multistep method (e.g. Adams formula and predicted-corrected formula). The stability and convergence about the methods are presented. Some numerical examples are give to demonstrate the effectiveness and accuracy of theoretical analysis. [Keywords]:Ordinary differential equation; Initial-value problem; Numerical method; Convergence; Stability;Error estimate

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

微分方程在经济方面的应用.

目录 摘要.................................................................................................................... I Abstract................................................................................................................ I I 第1章绪论 (1) 1.1 课题研究背景及目的 (1) 1.2 研究现状 (1) 1.3 研究方法 (1) 1.4 研究内容 (2) 第2章经济学中常用微分方程的解法 (3) 2.1 微分方程的简介 (3) 2.2经济中常用微分方程的解法 (3) 第3章三个经济模型 (8) 3.1价格调整模型 (8) 3.2蛛网模型 (9) 3.3Logistic模型 (10) 第4章微分方程在经济的两个分析中的应用 (12) 4.1边际分析 (12) 4.2弹性分析 (12) 结语 (14) 参考文献............................................................................... 错误!未定义书签。附录................................................................................... 错误!未定义书签。致谢................................................................................... 错误!未定义书签。

常微分方程初值问题的数值解法

贵州师范大学数学与计算机科学学院学生实验报告 课程名称: 数值分析 班级: 实验日期: 年 月 日 学 号: 姓名: 指导教师: 实验成绩: 一、实验名称 实验六: 常微分方程初值问题数值解法 二、实验目的及要求 1. 让学生掌握用Euler 法, Runge-Kutta 法求解常微分方程初值问题. 2. 培养Matlab 编程与上机调试能力. 三、实验环境 每人一台计算机,要求安装Windows XP 操作系统,Microsoft office2003、MATLAB6.5(或7.0). 四、实验内容 1. 取步长h=0.1,0.05,0.01, ,用Euler 法及经典4阶Runge-Kutta 法求解初值 问题 ?? ?=≤≤++-=1 )0() 10(2222'y t t t y y 要求: 1) 画出准确解(准确解22t e y t +=-)的曲线,近似解折线; 2) 把节点0.1和0.5上的精确解与近似解比较,观察误差变化情况. 2. 用 Euler 法,隐式Euler 法和经典4阶R-K 法取不同步长解初值问题 ?? ? ??= ∈-=21 )0(],1,0[,50'y x y y 并画出曲线观察稳定性. 注:题1必须写实验报告 五、算法描述及实验步骤 Euler 法: 输入 000),(,,,),,(y a x x h b a y x f = 输出 Euler 解y 步1 ),,2,1(;m n h n a x h a b m n =?+=-? 步2 对1,,2,1,0-=m n 执行),(1n n n n y x f h y y ?+?+

步3 输出T m y y y y ),,,(21 = 经典4阶R-K 法: 输入 000),(,,,),,(y a x x h b a y x f = 输出 4阶R-K 解y 步1 ),,2,1(;m n h n a x h a b m n =?+=-? 步2 对1,,2,1,0-=m n 执行),(1n n y x f K ?,)5.0,(15.02hK y x f K n n +?+, )5.0,(25.03hK y x f K n n +?+,),(314hK y x f K n n +?+ )22(6 43211K K K K h y y n n ++++?+ 步3 输出T m y y y y ),,,(21 = 六、调试过程及实验结果 >> shiyan6 Y1 = 0.8000 0.6620 0.5776 0.5401 0.5441 0.5853 0.6602 0.7662 0.9009 1.0627 Y2 = 0.8287 0.7103 0.6388 0.6093 0.6179 0.6612 0.7366 0.8419 0.9753 1.1353

常微分方程在数学建模中的应用论文

毕业论文 论文题目:常微分方程在数学建模中的应用姓名: 学科专业: 指导教师: 完成时间:

常微分方程是数学理论(特别是微积分)联系实际的重要工具,它不仅与几何学、力学、电子技术、自动控制、星际航行、甚至和化学、生物学、农业以及经济学都有着密切的联系。本文结合实践背景,建立数学模型,并利用所得结果去解释某些实际问题。 关键字常微分方程、人口预测模型、市场价格模型、混合溶液的数学模型、震动模型

第一章人口预测模型 第二章市场价格模型 第三章混合溶液的数学模型第四章震动模型

绪论 当我们描述实际对象的某些特性随时间(或空间)而演变的过程、分析它的变化规律、预测它的未来性态,研究它的控制手段时,通常要建立对象的动态模型。建模时首先要根据建模目的和对问题的具体分析作出简化假设,然后按照对象内在的或可以类比的其他对象的规律列出微分方程,求出方程的解并将结果翻译回实际对象,就可以进行描述、分析、预测或控制了。 事实上在微分方程课程中,解所谓应用题时我们遇到简单的建立动态模型问题,例如“一质量为m的物体自高h处自由下落,初速度是零,设阻力与下落速度的平方成正比,比例系数为k,求下落速度随时间的变化规律。”又如“容器内有盐水100L,内含盐10kg,令以3L/min的速度从一管放进净水,以2L/min的速度从另一管抽出盐水,设容器内盐水浓度始终是均匀的,求容器内含盐量随时间变化规律。”本文讨论的是常微分方程在数学建模中的应用。

第一章 人口预测模型 由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型. 例1(马尔萨斯(Malthus )模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型. 解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ?+时间段内,人口的增长量为 t t rN t N t t N ?=-?+)()()(, 并设0t t =时刻的人口为0N ,于是 ?????==. , 00)(d d N t N rN t N 这就是马尔萨斯人口模型,用分离变量法易求出其解为 )(00e )(t t r N t N -=, 此式表明人口以指数规律随时间无限增长. 模型检验:据估计1961年地球上的人口总数为91006.3?,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3?=N ,02.0=r ,于是 )1961(02.09e 1006.3)(-?=t t N . 这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史 摘要:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。虽然这些特殊的技术只适用于相对较少的情况下,但是他们可以解决许多微分方程在力学和几何中的问题,所以,他们的研究具有非常重要的现实意义。这些特殊的方法和问题,将有助于我们解决很多问题。 引言:很多的科学问题是需要人们根据事物的变化率来确定事物的特征。比如,我们可以 试着用已知的速度或加速度来计算粒子的位置,又比如,一些放射性物质可能是已知的衰变率,这就要求我们在一个给定的时间内确定材料的总量。通过这些例子,我们可以发现,如果知道自变量、未知函数以及函数的导数(或者微分)组成的关系式,得到的就是微分方程。最后再通过微分方程求出未知函数。 关键字:微分方程起源发展史 一、微分方程的思想萌芽 微分方程就是联系着自变量,未知函数以及其导数的关系式。微分方程理论的发展是跟随着微积分理论的建立发展起来的,一般地,客观世界的时间要服从一定的客观规律,这种连接,用数学语言表达,即是抽象为微分方程,一旦获得或研究的解决方案是明确的空气动力学行为,变量之间的规律是一目了然的。例如在物体运动中,唯一的计算就与瞬间速度之间有着紧密的联系,其结果往往形成一个微分方程,一旦求出解或研究清楚气动力学行为,就明确的掌握了物体的运动规律。 1.1微分方程的起源:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布 尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。 1.2微分方程在实际问题中的应用:运用微分方程理论解决一些实际问题,即根 据生物学,物理学,化学,几何学等学科的实际问题及相关知识建立微分方程,讨论该方程解的性质,并由所得的解或解的性质反过来解释该实际过程。物质运动和它的变化规律在数学上是用函数关系描述的,但是在实际问题中往往不能直接写出反映运动规律的函数,却比较容易建立这些变量与他们的导数之间的关系式,即微分方程。只有一个自变量的微分方程称为常微分方程,简称微分方程。 例1 传染病模型 传染病(瘟疫)经常在全世界各地流行,假设传染病传播期间其他地区的总 x,在t时的健康人数为)(t y,染病人数不变,为常数n,最开始的染病人数为 人数为)(t x。 因为总人数为常数n

浅谈常微分方程的数值解法及其应用[文献综述]

毕业论文文献综述 信息与计算科学 浅谈常微分方程的数值解法及其应用 一、前言部分 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时,对简单的微分方程用级数来求解. 后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论. 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法.微分方程也就成了最有生命力的数学分支.总之,力学、天文学、几何学等领域的许多问题都导致微分方程.在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型等.因而微分方程的研究是与人类社会密切相关的. [1] “常微分方程”是理学院数学系所有专业学生的重要专业基础课之一,也是工科、经济等专业必学内容之一.其重要性在于它是各种精确自然科学、社会科学中表述基本定律和各种问题的根本工具之一,换句话说,只要根据实际背景,列出了相应的微分方程,并且能(数值地或定性地)求出这种方程的解,人们就可以预见到,在已知条件下这种或那种“运动”过程将怎样进行,或者为了实现人们所希望的某种“运动”应该怎样设计必要的装置和条件等等.例如,我们要设计人造卫星轨道,首先,根据力学原理,建立卫星运动的微分方程,列出初始条件,然后求出解,即卫星运行轨道.随着物理科学所研究的现象在广度和深度两方面的扩展,微分方程的应用范围更广泛. [2]从数学自身的角度看,微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展.从这个角度说,微分方程变成了数学的中心. [3]总之,微分方程从它诞生起即日益成为人类认识并进而改造自然、社会的有力工具,成为数学科学联系实际的主要途径之一.文章就常微分的数值解法以及应用展开简单的论述。 二、主体部分 2.1微分方程概念介绍

常微分方程初值问题的数值解法

第七章 常微分方程初值问题的数值解法 --------学习小结 一、本章学习体会 通过本章的学习,我了解了常微分方程初值问题的计算方法,对于解决那些很难求解出解析表达式的,甚至有解析表达式但是解不出具体的值的常微分方程非常有用。在这一章里求解常微分方程的基本思想是将初值问题进行离散化,然后进行迭代求解。在这里将初值问题离散化的方法有三种,分别是差商代替导数的方法、Taylor 级数法和数值积分法。常微分方程初值问题的数值解法的分类有显示方法和隐式方法,或者可以分为单步法和多步法。在这里单步法是指计算第n+1个y 的值时,只用到前一步的值,而多步法则是指计算第n+1个y 的值时,用到了前几步的值。通过对本章的学习,已经能熟练掌握如何用Taylor 级数法去求解单步法中各方法的公式和截断误差,但是对线性多步法的求解理解不怎么透切,特别是计算过程较复杂的推理。 在本章的学习过程中还遇到不少问题,比如本章知识点多,公式多,在做题时容易混淆,其次对几种R-K 公式的理解不够透彻,处理一个实际问题时,不知道选取哪一种公式,通过课本里面几种方法的计算比较得知其误差并不一样,,这个还需要自己在往后的实际应用中多多实践留意并总结。 二、本章知识梳理 常微分方程初值问题的数值解法一般概念 步长h ,取节点0,(0,1,...,)n t t nh n M =+=,且M t T ≤,则初值问题000 '(,),()y f t y t t T y t y =≤≤?? =?的数值解法的一般形式是 1(,,,...,,)0,(0,1,...,)n n n n k F t y y y h n M k ++==-

常微分方程的发展史

常微分方程的发展史 摘要:20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组).70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程. 从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解.常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数.偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定.命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元素的解称为“通解”.在很长一段时间里,人们致力于“求通解”. 关键词:常微分方程,发展,起源 正:常微分方程是由用微积分处理新问题而产生的,它主要经历了创立及解析理论阶段、定性理论阶段和深入发展阶段。17 世纪,牛顿(I.Newton ,英国,1642-1727)和莱布尼兹(G.W.Leibniz ,德国,1646-1716)发明了微积分,同时也开创了微分方程的研究最初,牛顿在他的著作《自然哲学的数学原理机(1687年)中,主要研究了微分方程在天文学中的应用,随后微积分在解决物理问题上逐步显示出了巨大的威力。但是,随着物理学提出日益复杂的问题,就需要更专门的技术,需要建立物理问题的数学模型,即建立反映该问题的微分方程。1690 年,雅可比·伯努利(Jakob Bernouli,瑞士,1654-1705)

提出了等时间题和悬链线问题.这是探求微分方程解的早期工作。雅可比·伯努利自己解决了前者。翌年,约翰伯努利(Johann Bernouli ,瑞士,1667-1748)、莱布尼兹和惠更斯(C.Huygens ,荷兰,1629-1695)独立地解决了后者。 有了微分方程,紧接着就是解微分方程,并对所得的结果进行物理解释,从而预测物理过程的特定性质.所以求解就成为微分方程的核心,但求解的困难很大,一个看似很简单的微分方程也没有普遍适用的方法能使我们在所有的情况下得出它的解。因此,最初人们的注意力放在某些类型的微分方程的一般解法上。 1691 年,莱布尼兹给出了变量分离法。他还把一阶齐次方程使其变量分离。1694 年,他使用了常数变易法把一阶常微分方程化成积分。 1695 年,雅可比·伯努利给出著名的伯努利方程。莱布尼兹用变换,将其化为线性方程。约翰和雅可比给出了各自的解法,其本质上都是变量分离法。 1734 年,欧拉(L.Euler,瑞士,1707-1783)给出了恰当方程的定义。他与克莱罗(A.C. Clairaut,法国,1713-1765)各自找到了方程是恰当方程的条件,并发现:若方程是恰当的,则它是可积的。那么对非恰当方程如何求解呢?1739 年克莱罗提出了积分因子的概念,欧拉确定了可采用积分因子的方程类属。这样,到 18 世纪 40 年

常微分方程初等解法和求解技巧毕业论文

目 录 摘 要 .............................................................. I 关键词 ............................................................. I Abstract ........................................................... I Key words .......................................................... I 1.前 言 (1) 2.常微分方程的求解方法 (1) 2.1常微分方程变量可分离类型解法 (1) 2.1.1直接可分离变量的微分方程 (2) 2.1.2可化为变量分离方程 (2) 2.2常数变易法 (9) 2.2.1一阶线性非齐次微分方程的常数变易法 (9) 2.2.2一阶非线性微分方程的常数变易法 (10) 2.3积分因子法 (16) 3.实例分析说明这几类方法间的联系及优劣 (17) 3.1几个重要的变换技巧及实例 (18) 3.1.1变dx dy 为dy dx ............................................... 18 3.1.2分项组合法组合原则 (19) 3.1.3积分因子选择 (20) 参考文献 (21) 致 (22)

常微分方程初等解法及其求解技巧 摘要 常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中.求解常微分的问题,常常通过变量分离、两边积分,如果是高阶的则通过适当的变量代换,达到降阶的目的来解决问题.本文就是对不同类型的常微分方程的解法及其求解技巧的系统总结:先介绍求解常微分方程的几种初等解法,如变量分离法,常数变易法,积分因子法等,在学习过程中,通过对不同类型的方程求解,揭示常微分方程的求解规律.然后介绍几类方程求解中的变换技巧及规律,并通过实例来分析这几类方法之间的联系及优劣,从而能快速的找到最佳解法. 关键词 变量分离法常数变易法积分因子变换技巧 Elementary Solution and Solving Skills of Ordinary Differential Equation Abstract Ordinary differential equations are important components of calculus and used extensively for the studies on specific issues. Ordinary differential equations are often resolved by the means of variable separation and both sides integral. If they are higher-order ones, we can reduce their order by proper variable substitution to solve this problem. This essay aims at concluding systematically the methods of different types of differential equations and its resoling skills. First of all, I’d would like to introduce several basic resolutions of differential equations, such as variable separation, constant threats, points factor, etc. In the process of learning, I’d like to reduce the law of resolving ordinary differential equations by resolving different types of equations. Then, we describe several equations resolutions and for transformation techniques and its laws, and we also analyze the advantages and disadvantages and connections by using the examples of these methods to be able to find the best solution quickly. Key words

最新常微分方程发展简史经典阶段

常微分方程发展简史 经典阶段

第一讲常微分方程发展简史——经典阶段一、引言 Newton 和Lebinitz创立的微积分是不严格的, 18世纪的数学家们一方面努力探索微积分严格化的途径, 一方面往往又不顾基础问题的困难而大胆前进, 大大地扩展了微积分的应用范围, 尤其是与力学的有机结合, 当时几乎所有的数学家也是力学家. Newton和Lebinitz都处理过与常微分方程有关的问题. 微积分的产生的一 个重要的动因来自于人们探求物质世界运动规律的需求. 一般地, 认识规律很难完全靠实验观测认识清楚,因为人们不太可能观测到运动的全过程. 运动是服从一定的客观规律的, 物质运动与瞬时变化率之间有着紧密的联系, 而这种联系, 用数学语言表述出来, 即抽象为某种数学结构, 其结果往往形成一个微分方程, 一旦求出其解或研究清楚其动力学行为, 运动规律就一目了然了. 在微分方程模型建立过程中, 平衡原理扮演着重要的角色. 微分方程模型通常均是建立在平衡原理基础之上的.``平衡"是我们在现实生活中随处可见的现象. 如:物理学中的能量守恒和动量守恒等定律以及力的平衡等都是在描述物理中的一些平衡现象. 再如考虑一段时间内(或一定范围内)物质的变化,容易发现这段时间内物质的改变量与它的增加量和减少量之差也处于平衡的状态, 这种平衡规律称为物质平衡.所谓平衡原理是指自然界的任何物质在其变化的过程中一定受到某种平衡关系的支配.注意发掘实际问题中的平衡原理无疑应该是从物质运动机理的角度组建数学模型的一个关键问题. 作为例子, 我们介绍著名的Malthus模型, 它是最简单的生态学模型, 也是本书中唯一的线性模型.

微分方程在经济中的应用论文 (1)

哈尔滨学院本科毕业论文(设计)题目:微分方程在经济中的应用 院(系)理学院 专业数学与应用数学 年级2009级 姓名赵忠媛学号09031430 指导教师姜秀英职称副教授 2013年05月03日

目录 摘要 (1) ABSTRACT (2) 第一章微分方程的基本理论 (3) 1.1微分方程的概念 (3) 1.2微分方程的解 (4) 第二章微分方程的经济模型 (8) 2.1 经济增长模型 (8) 2.2供需均衡的价格调整模型 (9) 2.3索洛新古典经济增长模型 (10) 2.4公司资产函数模型 (11) 2.5新产品的推广模型 (12) 2.6人才分配模型 (13) 2.7价格调整模型 (14) 第三章微分方程在经济中的应用举例 (16) 3.1商品的需求量(供应量)问题 (16) 3.2产量、收入、成本及利润问题 (18) 3.3国民收入问题 (20) 3.4国民债务问题 (21) 3.5流动的收入、消费和投资问题 (21) 3.6商品存储过程中的腐败问题 (22) 3.7汽车中的经济问题 (22) 参考文献 (25) 后记 (26)

摘要 本文首先把微分方程的基本理论进行了概述,通过对微分方程概念和解的介绍,给下文的微分方程在经济中的应用做了很好的铺垫,在介绍微分方程基本理论的基础上,介绍了微分方程的七种经济模型,并通过对经济模型的求解,解释了相应经济量的意义或规律,结合具体的社会经济实际意义进行了分析和推断。把微分方程应用到社会经济领域中,列举了微分方程在经济中的七个方面的应用。 关键词: 微分方程;数学模型;经济增长;应用举例;

ABSTRACT In this paper,the basic theory of differential equations are summarized .Based on the differential equations to introduce the concept of reconciliation .Application to differential equation below in the economy have made the very good upholstery.After introducing the basic concepts ,seven kinds of mathematical economic models are also presented.To explain the economic quantity corresponding meaning or laws through the solution. then explaining and counting the differential equations.analysis and deduce the concrete reality meaning of social economy.Then the differential equation is applied to the field of social economy and the seven aspects in the economy of the differential equation. Key words:Differential equation;Mathematic model;Economic growth;Examples of application

常微分方程初值问题

常微分方程初值问题 12.1引言 在数学模型中经常出现的常微分方程在科学的许多分支中同样出现,例如工程和经济学。不幸的是却很少出现这些方程可得到表示在封闭的形式的解的情况,所以通常采用数值方法来寻找近似解。如今,这通常可以非常方便的达到高精度和在解析解和数值逼近之间可靠的误差界。在本节我们将关注一阶微分方程(12.1)形式关于实值函数y的实变 量x的结构和数值分析方法,其中和f是一个给定的实值函数的两个变量。为了从解曲线的无限族选择一个特定的积分构成(12.1)的通解,微分方程将与初始条件一起考虑:给定两个实数和,我们寻求一个(12.1)的解决方案,对于有 (12.2) 微分方程(12.1)与初始条件(12.2)被称为一个初值问题。如果你认为任何(12.1),(12.2)形式的初始值问题具有一个唯一解,看看以下例子。 例12.1考虑微分方程,初始条件,其中α是一个固定的实数,α∈(0,1)。 这是一个关于上述想法的简单验证,对于任何非负实数C, 是初值问题在区间[ 0,∞)上的一个解。因此解的存在性是肯定的,但解不一定唯一;事实上,初始值问题的解有一个无限族,当参数。 我们注意到,在与α∈(0,1)相反的情况下,当α≥1,初值问题,具有唯一解y(x)≡0。 例12.1表明函数f必须遵循相对于它的第二个参数的一定的增长性条件,以保证(12.1),(12.2)有唯一解。精确的保证初始值问题(12.1),(12.2)假设f解的存在惟一基于下面的定理。 定理12.1(Picard theorem)假定实值函数是连续的矩形区域D定义 ;当时;且f 满足Lipschitz条件:存在L>0则 。

如何求解常微分方程

如何求解常微分方程? 常数变易法、积分因子法,函数变换法。 大致与微积分同时产生。事实上,求y′=f(x)的原函数问题便是最简单的微分方程。I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。用现在叫做“首次积分”的办法,完全解决了它的求解问题。17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。总之,力学、天文学、几何学等领域的许多问题都导致微分方程。在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。因而微分方程的研究是与人类社会密切相关的。当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题。 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式。但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。

相关文档
最新文档