(整理)常微分方程发展简史经典阶段

(整理)常微分方程发展简史经典阶段
(整理)常微分方程发展简史经典阶段

第一讲 常微分方程发展简史——经典阶段

一、引 言

Newton 和Lebinitz 创立的微积分是不严格的, 18世纪的数学家们一方面努力探索微积分严格化的途径, 一方面往往又不顾基础问题的困难而大胆前进, 大大地扩展了微积分的应用范围, 尤其是与力学的有机结合, 当时几乎所有的数学家也是力学家.

Newton 和Lebinitz 都处理过与常微分方程有关的问题. 微积分的产生的一个重要的动因来自于人们探求物质世界运动规律的需求. 一般地, 认识规律 很难完全靠实验观测认识清楚,因为人们不太可能观测到运动的全过程. 运动是服从一定的客观规律的, 物质运动与瞬时变化率之间有着紧密的联系, 而这种联系, 用数学语言表述出来, 即抽象为某种数学结构, 其结果往往形成一个微分方程, 一旦求出其解或研究清楚其动力学行为, 运动规律就一目了然了.

在微分方程模型建立过程中, 平衡原理扮演着重要的角色. 微分方程模型通常均是建立在平衡原理基础之上的.``平衡"是我们在现实生活中随处可见的现象. 如:物理学中的能量守恒和动量守恒等定律以及力的平衡等都是在描述物理中的一些平衡现象. 再如考虑一段时间内(或一定范围内)物质的变化,容易发现这段时间内物质的改变量与它的增加量和减少量之差也处于平衡的状态, 这种平衡规律称为物质平衡.所谓平衡原理是指自然界的任何物质在其变化的过程中一定受到某种平衡关系的支配.注意发掘实际问题中的平衡原理无疑应该是从物质运动机理的角度组建数学模型的一个关键问题.

作为例子, 我们介绍著名的Malthus 模型, 它是最简单的生态学模型, 也是本书中唯一的线性模型.

给定一个种群, 我们的目的是确定种群的数量是如何随着时间而发展变化的. 为此,我们作出如下假设:

模型假设:

121()H 初始种群规模已知00()x t x =,种群数量非常大,世代互相重叠,因此种群的数量可以看作是连续变化的;

221()H 种群在空间分布均匀,没有迁入和迁出 (或迁入和迁出平衡);

321()H 种群的出生率和死亡率为常数,即不区分种群个体的大小、年龄、性别等.

421()H 环境资源是无限的.

确定变量和参数: 为了把问题转化为数学问题, 我们首先确定建模中需要考虑的变量和参数:

t: 自变量, x(t): t 时刻的种群密度,

b: 瞬时出生率, d: 瞬时死亡率.

模型的建立与求解:

考查时间段[,]t t t +? (不失一般性, 设0t ?>), 由物质平衡原理,在此时间段内种群的数量满足:

t t ?+时刻种群数量 – t 时刻种群数量 = t ?内新出生个体数 – t ?内死亡个体数,

()()()(),x t t x t bx t t dx t t +?-=?-?

亦即

()()()(),x t t x t b d x t t +?-=-? 令0t ?→,可得

()()():()dx t b d x t rx t dt

=-= 满足初始条件0(0)N N =的解为

()00().b d t rt x t x e

x e -== 于是有

0r >,即 b d >,则有 lim (),t x t →∞

=+∞ 0r =,即 b d =,则有 0lim (),t x t N →∞

= 0r <,即 b d <,则有 lim ()0.t x t →∞

= Malthus 模型的积分曲线 ()x t 呈“J ”字型, 因而种群的指数增长又称为“J ”型增长.

二、常微分方程发展简史

常微分方程是伴随着微积分发展起来的, 微积分是它的母体, 生产生活实践是它生命的源泉. 300年来,常微分方程诞生于数学与自然科学(物理学、力学等)进行崭新结合的16、17世纪,成长于生产实践和数学的发展进程,表现出强大的生命力和活力,蕴含着丰富的数学思想方法。

按照历史年代划分, 常微分方程研究的历史发展大体可分为四个阶段:

● 18世纪及其以前;

● 19世纪初期和中期;

● 19世纪末期及20世纪初期;

● 20世纪中期以后。

按照研究内容分可以分为:

● 常微分方程经典阶段;

● 常微分方程适定性理论阶段;

● 常微分方程解析理论阶段;

● 常微分方程定性理论阶段。

1、常微分方程经典阶段:18世纪及其以前

尽管在Napier John 所创立的对数理论(讨论过微分方程的近似解)以及da Vinci Leonardo 的饿狼扑兔问题中都已涉及到微分方程的思想萌芽, 但人们通常认为常微分方程

的开端工作是由意大利科学家Galileo完成的. 现在通常称为弹性理论这一领域中的问题促进了微分方程的研究. 17世纪欧洲的建筑师们在建筑教堂和房屋时, 需要考虑垂直梁和水平梁在外力作用下的变形, 以及当外力撤销时梁的恢复程度, 也就是梁的弹性问题. 当时的建筑师们处理此类问题大多依赖于经验. Galileo从数学角度对梁的性态进行了研究, 将研究成果记录在《关于两门新科学的对话》一书中, 这些研究成果成为常微分方程开端.

饿狼扑兔问题:

一只兔子正在洞穴正南面60码的地方觅食,一只饿狼此刻正在兔子正东100码的地方游荡。兔子回首间猛然遇见了饿狼贪婪的目光,预感大难临头,于是急忙向自己的洞穴奔去。说时迟,那时快,恶狼见即将到口的美食就要失落,立即以一倍于兔于的速度紧盯着兔子追去。于是,狼与兔之间,展开了一场生与死的惊心动魄的追逐。

问:兔子能否逃脱厄运?

?一阶常微分方程

从17世纪末开始, 摆的运动, 弹性理论及天体力学等实际问题的研究引出了一系列常微分方程, 这些问题在当时往往以挑战的形式被提出而在数学家之间引起热烈的讨论. 常微分方程最早的著作出现在数学家们彼此的通信中, 或者出现在那些常常重新登载书信中建立的或说明的结果的刊物中. 某人宣布一个结果往往引起另一个人的申辩, 说他更早作了完全相同的工作. 由于存在着激烈的竞争,这种申辩不一定是真实的. 有些证明只是概述, 而且弄不清作者掌握的详情. 同样, 在信上写着的一般解法也仅仅是特例的说明. 由于这些原因, 我们即使不考虑这个问题的严密性, 也很难指出谁是首先得到这些结果的人. 质点动力学是这个阶段研究的问题的主要来源之一。

1693年, Huygens在《教师学报》中明确说到了微分方程, 而Leibniz在同年的《教师学报》的另一篇文章中称微分方程为特征三角形的边的函数. 我们现在所学到的关于常微分方程的观点大约直到1740年才出现.

Bernoulli James用微积分求解常微分方程解析解的先驱者之一.

●1690年, Bernoulli James研究了与钟摆运动有关的``等时曲线问题: 求一条曲线, 使得摆

沿着它作一次完全的振动时间相等, 无论摆所经历的弧长的大小". Bernoulli James通过分析建立了常微分方程模型, 并用分离变量法解出了曲线方程,即摆线.

●1690年, Bernoulli James提出了“悬链线问题:求一根柔软的但不能伸长的绳子悬挂于两

固定点而形成的曲线”. Leibniz称此曲线为悬链线. 在大自然中,除了悬垂的项链外,我們还可以观察到吊桥上方的悬垂钢索,挂着水珠的蜘蛛网,以及两根电线杆之间所架设的电线,这些都是悬链线.

●这个问题早在15世纪, Leonardo da Vinci已经考虑过此问题. Galileo比Bernoulli James

更早注意到悬链线,他猜测悬链线是抛物线,从外表看的确象,但实际上不是。Huygens 在1646年(当时17岁),经由物理的论证,得知伽利略的猜测不对,但那时,他也求不出答案。在1691年6月的《教师学报》上, Leibniz G, Huggens C (62岁), Bernoulli John 都发表了各自的解答, Huggens的解答是几何的且是不清楚的. John所用方法是诞生不久的微积分,具体说是把问题转化为求解一个二阶常微分方程,解此方程并适当选取参数,即得悬链线.也就是常微分方程教材中采用的解法. Leibniz用微积分的方法也得到了这个结果. John能够解决了悬链线问题, 而他的哥哥James提出这个难题却不能解决, 所以他感到莫大的骄傲.这两个人在学术上一直相互不忿,据说当年John求悬链线的方程,熬了一夜就搞定了,James做了一年也没有结果,实在是很没面子。

Bernoulli一家在欧洲享有盛誉,有一个传说,讲的是Daniel Bernoulli(丹尼尔·伯

努利)(他是John Bernoulli 的儿子)有一次正在做穿过欧洲的旅行,他与一个陌生人聊天,他很谦虚的自我介绍:“我是Daniel Bernoulli 。"那个人当时就怒了,说:“我是还是Issac Newton (牛顿)呢。”Daniel 从此之后在很多的场合深情的回忆起这一次经历,把它当作自己曾经听过的最衷心的赞扬。

● 1694年, Leibniz G 和Bernoulli John 提出了等角轨线问题: 求这样的曲线和曲线族, 使得

它与某已知曲线族的每一条曲线都相交成给定的角度. 当所给定的角为直角时, 等角轨线就称为正交轨线. 等角轨线在许多学科如光学、天文、气象中都有应用.

这个问题一直到1697年都没有公开,那时John 把它作为向James 提出的一个挑战. James 只解决了一些特殊的实例. John 导出了一特殊曲线族的正交轨线的微分方程,并且在1698年解出了它. 后来

Leibniz 找到了曲线族22y bx = (b 是参数)的正交轨线即一族椭圆22/2y x c +=.虽然他只解出了特例, 没有给出一般方法, 但在他的解法中隐含了一般解法.

● 正交轨线问题一直处于沉寂状态, 直到1715年, Leibniz 向英国数学家, 主要对准

Newton 提出挑战: 找出求一已知曲线或曲线族的正交轨线的一般方法. Newton 在造币厂, 白天劳累之后, 用睡觉前时间接触了这个问题, 1716年发表了他的解答. Newton 还指明了如何求与一已知曲线族相交成定角的曲线, 或相交的角是按照给定的规律随族中曲线变化的曲线. 虽然Newton 用了二阶常微分方程, 但他的方法与现代所用的方法没有太大的不同. 关于这个问题的更进一步的工作是由Bernoulli Nicholas 在1716年完成的. 1717年, Hermann J (Bernoulli John 的学生)给出了一般规则, 此方法实际上是Leibniz 的, 只不过Hermann 阐述得更为明确而已. John Bernoulli 向英国人提出了另外一些轨线的难题, 他特别讨厌的是Newton. 由于英国人和欧洲大陆伙伴已经不和, 所以挑战是冷酷的且充满敌意.

● 1754年, Lagrange J 在``等时曲线问题"上取得重要进展, 并开创了变分学.

起初, 数学家们只是用特殊的方法和技巧解决特殊的方程, 然后才逐渐开始寻找带有普遍性的方法.

● 1691年, Leibniz G 提出了求解了变量可分离方程()()y f x g y '=的“变量分离法”; 首次

应用后来被称为Briot-Bouquet 变换的$y=ux$解决了齐次方程(/)y f y x '=的求解问题. 1694年, Bernoulli John 在《教师学报》中对变量可分离方程和齐次方程求解作了更加完整的说明.

● 1695年, Bernoulli James 提出了Bernoulli 方程()()n dy p x y q x y dx

=+, 并于1696年用分离变量法把它解出. 1696年, Leibniz G 利用“变量代换法”求解Bernoulli 方程,即作变量替换1n z y

-=, 将其划为线性方程求解. 还曾试图利用变量代换法统一解决一阶常微分方

程的求解问题. Bernoulli 兄弟(James, John)也推进了分离变量法和变量代换法.

● 1734-1735年Euler L 提出了全微分方程(,)(,)0M x y dx N x y dy +=, 并给出了此方程

是全微分方程的条件: M N y x

??=??. 当一个一阶方程不是全微分方程时, 往往可以将方程乘上一个叫作积分因子的量, 使它变为全微分方程. 积分因子法虽说在一阶方程的特殊问题中已经采用(如John Bernoulli 曾用此方法求解一些变量可分离方程), 但是领会到积分因子这个概念, 并把它作为一种方法提炼出来的却是Euler, Euler L 确立了可采用积分因子法求解的方程的类属; 证明了凡能用分离变量法求解的方程都可用积分因子法求解, 但反之不然; 证明了如果知道了任何一个常微分方程的两个积分因子, 那么令它们的比等于常数, 就是微分方程的一个积分; 还证明了对于高阶方程, 用分离变量法求解是行不通的; 还曾试图利用积分因子的方法统一解决一阶常微分方程的求解问题. ●

1739-1740年Clairaut A 独立地引入了积分因子的概念, 也提出了“积分因子法”. ●

1694年, Leibniz 发现了方程的一个解族的包络也是解. ●

1715-1718年,Taylor B 讨论微分方程的奇解、包络和变量代换公式. ●

1734年, Clairaut 研究了以他名字命名的Clairaut 方程, 发现这个方程的通解是直线族, 而直线的包络线就是奇解; 他知道奇解不包含于通解之中, 但不知道奇解是一包络. Clairaut 和Euler 对奇解进行了全面的研究, 给出从微分方程本身求的奇解的方法. ●

1772年, Laplace P 将奇解概念推广到高阶方程和三个变量的方程. ●

1774年, Lagrange J 对奇解和通解的联系作了系统的研究, 他给出了一般的方法和奇解是积分曲线族的包络的几何解释. ●

● 奇解的完整理论是在19世纪发展起来的, 而且由Cayley 和Darboux 在1872年给出现

代的形式.

到1740年左右, 几乎所有求解一阶方程的初等方法都已经清楚了.

常微分方程知识点总结

常微分方程知识点总结 常微分方程知识点你学得怎么样呢?下面是的常微分方程知识 点总结,欢迎大家阅读! 微分方程的概念 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中 就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和数之间的关系找出来,列出包含一个数或几个数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的 问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似, 也是要把研究的问题中已知函数和函数之间的关系找出来,从列出的包含函数的一个或几个方程中去求得函数的表达式。但是无论在方程

的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常 有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星 的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

(完整版)常微分方程发展简史——解析理论与定性理论阶段3常微分

第三讲 常微分方程发展简史——解析理论 与定性理论阶段 3、常微分方程解析理论阶段:19世纪 19世纪为常微分方程发展的解析理论阶段. 作为微分方程向复数域的推广, 微分方程解析理论是由Cauchy 开创的. 在Cauchy 之后,重点转向大范围的研究。 级数解和特殊函数 这一阶段的主要结果之一是运用幂级数和广义幂级数解法, 求出一些重要的二阶线性方程的级数解, 并得到极其重要的一些特殊函数. 常微分方程是17、18世纪在直接回答物理问题中兴起的. 在着手处理更为复杂的物理现象, 特别是在弦振动的研究中, 数学家们得到了偏微分方程. 用变量分离法解偏微分方程的努力导致求解常微分方程的问题. 此外, 因为偏微分方程都是以各种不同的坐标系表出的, 所以得到的常微分方程是陌生的, 并且不能用封闭形式解出. 为了求解应用分离变量法与偏微分方程后得到的常微分方程, 数学家们没有过分忧虑解的存在性和解应具有的形式, 而转向无穷级数的方法. 应用分离变量法解偏微分方程而得到的常微分方程中最重要的是Bessel 方程. 222 ()0x y xy x n y '''++-= 其中参数n 和x 都可以是复的. 对Bessel 来说, n 和x 都是实的. 此方程的特殊情形早在1703年Bernoulli Jacobi 给Leibnitz 的信中就已提到, 后来Bernoulli Daniel 、Euler 、Fourier 、Poisson 等都讨论过此问题. 对此方程的解的最早的系统研究是由Bessel 在研究行星运动时作出的. 对每个n , 此方程存在两个独立的基本解, 记作()n J x 和()n Y x , 分别称为第一类Bessel 函数和第二类Bessel 函数, 它们都是特殊函数或广义函数(初等函数之外的函数). Bessel 自1816年开始研究此方程, 首先给出了积分关系式 20 ()cos(sin ).2n q J x nu x u du ππ=-? 1818年Bessel 证明了()n J x 有无穷多个零点. 1824年, Bessel 对整数n 给出了递推关系式 11()2()()0n n n xJ x nJ x xJ x +--+= 和其他的关于第一类Bessel 函数的关系式. 后来又有众多的数学家(研究天体力学的数学家)独立地得到了Bessel 函数及其表达式和关系式. Bessel 为微分方程解析理论作出了巨大贡献。 解析理论中另一重要内容是Legendre 方程的级数解和Legendre 多项式方面的结果. 1784年, Legendre 研究了Legendre 方程2 (1)20x y xy y λ'''-++=, 给出了幂级数形式的解, 得到

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

(完整版)常微分方程的大致知识点

= + ?x = + ?x = + ?x 常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有 x 或 y 的项) y x 4、一阶线性非齐次方程 常数变易法,或 y = e ? a ( x )dx [? b (x )e -? a ( x )dx dx + C ] 5、伯努力方程 令 z = y 1-n ,则 dz = (1 - n ) y -n dy ,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 dx 6、全微分方程 若?M ?y 若 ?M ?y dx = ?N ,则u (x , y ) = C ,(留意书上公式) ?x ≠ ?N ,则找积分因子,(留意书上公式) ?x f (x f ( y , (二)毕卡序列 x y 1 y 0 0 x f (x , y 0 )dx , y 2 y 0 0 x f (x , y 1 )dx , y 3 y 0 0 f (x , y 2 )dx ,其余类推 (三)常系数方程 1、常系数齐次L (D ) y = 0 方法:特征方程 7、可降阶的二阶微分方程 d 2 y = , dy ) ,令 dy = d 2 y p ,则 = dy dx 2 d 2 y = dx dy ) ,令 dx dy = p ,则 dx 2 d 2 y dx = p dp dx 2 dx dx dx 2 dy 8、正交轨线族

? ? dy 单的实根, , y = C e 1x + C e 2 x 1 2 1 2 单的复根1, 2 = ± i , y = e x (C cos x + C 2 sin x ) 重的实根 = = , y = (C + C x )e x 1 2 1 2 重的复根1, 2 = ± i ,3, 4 = ± i , y = e x [(C + C 2 x ) c os x + (C 3 + C 4 x ) sin x ] 2、常系数非齐次L (D ) y = 方法:三部曲。 f (x ) 第一步求L (D ) y = 0 的通解Y 第二步求L (D ) y = f (x ) 的特解 y * 第三步求L (D ) y = f (x ) 的通解 y = Y + y * 如何求 y * ? 当 f (x ) = P m (x )e x 时, y * = x k Q (x )e x 当 f (x ) = P m (x )e ux cos vx + Q (x )e ux sin vx 时, y * = x k e ux (R (x ) cos vx + S m (x ) sin vx ) 当 f (x ) 是一般形式时, y * = ? x W (x ,) f ()d ,其中 W(.)是郎斯基行列式 x 0 W () (四)常系数方程组 方法:三部曲。 第一步求 dX dt = A (t ) X 的通解, Φ(t )C 。利用特征方程 A - I = 0 ,并分情况讨论。 第二步求 dX dt 第三步求 dX dt = A (t ) X + f (t ) 的特解, Φ(t )?Φ-1 (s ) f (s )ds ,(定积分与不定积分等价) = A (t ) X + f (t ) 的通解, Φ(t )C + Φ(t )?Φ-1 (s ) f (s )ds (五)奇点与极限环 ? dx = ax + b y dt ? ? = cx + dy 1、分析方程组? dt 的奇点的性质,用特征方程: A - I = 0 特征方程的根有 3 种情况:相异实根、相异复根、相同实根。第一种情况:相异实根,1 ≠ 2 1 1 m m m

(整理)常微分方程发展简史经典阶段

第一讲 常微分方程发展简史——经典阶段 一、引 言 Newton 和Lebinitz 创立的微积分是不严格的, 18世纪的数学家们一方面努力探索微积分严格化的途径, 一方面往往又不顾基础问题的困难而大胆前进, 大大地扩展了微积分的应用范围, 尤其是与力学的有机结合, 当时几乎所有的数学家也是力学家. Newton 和Lebinitz 都处理过与常微分方程有关的问题. 微积分的产生的一个重要的动因来自于人们探求物质世界运动规律的需求. 一般地, 认识规律 很难完全靠实验观测认识清楚,因为人们不太可能观测到运动的全过程. 运动是服从一定的客观规律的, 物质运动与瞬时变化率之间有着紧密的联系, 而这种联系, 用数学语言表述出来, 即抽象为某种数学结构, 其结果往往形成一个微分方程, 一旦求出其解或研究清楚其动力学行为, 运动规律就一目了然了. 在微分方程模型建立过程中, 平衡原理扮演着重要的角色. 微分方程模型通常均是建立在平衡原理基础之上的.``平衡"是我们在现实生活中随处可见的现象. 如:物理学中的能量守恒和动量守恒等定律以及力的平衡等都是在描述物理中的一些平衡现象. 再如考虑一段时间内(或一定范围内)物质的变化,容易发现这段时间内物质的改变量与它的增加量和减少量之差也处于平衡的状态, 这种平衡规律称为物质平衡.所谓平衡原理是指自然界的任何物质在其变化的过程中一定受到某种平衡关系的支配.注意发掘实际问题中的平衡原理无疑应该是从物质运动机理的角度组建数学模型的一个关键问题. 作为例子, 我们介绍著名的Malthus 模型, 它是最简单的生态学模型, 也是本书中唯一的线性模型. 给定一个种群, 我们的目的是确定种群的数量是如何随着时间而发展变化的. 为此,我们作出如下假设: 模型假设: 121()H 初始种群规模已知00()x t x =,种群数量非常大,世代互相重叠,因此种群的数量可以看作是连续变化的; 221()H 种群在空间分布均匀,没有迁入和迁出 (或迁入和迁出平衡); 321()H 种群的出生率和死亡率为常数,即不区分种群个体的大小、年龄、性别等. 421()H 环境资源是无限的. 确定变量和参数: 为了把问题转化为数学问题, 我们首先确定建模中需要考虑的变量和参数: t: 自变量, x(t): t 时刻的种群密度, b: 瞬时出生率, d: 瞬时死亡率. 模型的建立与求解: 考查时间段[,]t t t +? (不失一般性, 设0t ?>), 由物质平衡原理,在此时间段内种群的数量满足: t t ?+时刻种群数量 – t 时刻种群数量 = t ?内新出生个体数 – t ?内死亡个体数,

一阶线性微分方程的研究与应用毕业论文

阶线性微分方程的研究与应用 摘要:本文分析了一阶线性微分方程的几种初等解法类型以及应用,总结出了这些不同类型方程可借助变量变换或积分因子化成变量分离方程和恰当方程两种类型,从而归纳了一阶微分方程的求解问题以及应用领域。 矢键i司:变量变换积分因子变量分离方程恰当方程 引言 对于一阶微分方程的初等解法,通常我们把他们归结为方程的积分问题,虽然一般的一阶方程没有初等解法,但是对于一些有限的有初等解法的类型,它们却反映了实际问题中出现的微分方程的相当部分,因此,掌握这些类型方程的解法还是有重要实际意义的,下面我们就对这些类型方程的解法一作以总结。 微分方程 微分方程就是联系着自变量、未知函数及其导数的尖系式,形如 般)” 的方程,称为一阶线性微分方程。 1、变量变换方法 形如的方程,称为变量分离方程,这里的(1?1) f(x))g(y)分别x, y的连续函数. 如果g(y) 土0,我们将(1?1)改写成二f(x)dx,两边积分得,gCy) (1-2) 其中c任意常数。 例1求方程 £=pa)y 的通解,其中P(X)是X的连续函数。 解将变量分离,得到

—=p(x)dx y 两边积分,即得 In |y|= / p(x) dx+ C 这里c是任意常数,由对数定义,即有 lyl y= g/ p(x)dx+c 土gCgJ p(x)dx 求解方程生一¥ dx y

将变量分离,得到 y d y=?x d x, 两边积分,即得 因而,通解为 这里c是任意正常数。或者解出y,写出显函数形式的解 y= dy y | . y 例3求解方程〒=-+tan- dx X X y dy du 解这是齐次微分方程,以?二u及子二X —+U代入,则原方程变为 K dx dx du I A+u=u+anu du tan u dx X 将上式分离变量,即有 cot udu =— x 两边积分,得到

常微分方程的大致知识点

常微分方程的大致知识点Last revision on 21 December 2020

常微分方程的大致知识点 (一)初等积分法 1、线素场与等倾线 2、可分离变量方程 3、齐次方程(一般含有x y y x 或的项) 4、一阶线性非齐次方程 常数变易法,或])([)()(?+??=-C dx e x b e y dx x a dx x a 5、伯努力方程 令n y z -=1,则dx dy y n dx dz n --=)1(,可将伯努力方程化成一阶线性非齐次或一阶线性齐次 6、全微分方程 若x N y M ??=??,则C y x u =),(,(留意书上公式) 若 x N y M ??≠??,则找积分因子,(留意书上公式) 7、可降阶的二阶微分方程 ),(22dx dy x f dx y d =,令dx dy dx y d p dx dy ==22,则 ),(22dx dy y f dx y d =,令dy dp p dx y d p dx dy ==22,则 8、正交轨线族 (二)毕卡序列 ?+=x x dx y x f y y 0),(001,?+=x x dx y x f y y 0),(102,?+=x x dx y x f y y 0),(203,其余类推 (三)常系数方程 1、常系数齐次0)(=y D L 方法:特征方程 单的实根21,λλ,x x e C e C y 2121λλ+= 单的复根i βαλ±=2,1,)sin cos (21x C x C e y x ββα+= 重的实根λλλ==21,x e x C C y λ)(21+= 重的复根i βαλ±=2,1,i βαλ±=4,3,]sin )(cos )[(4321x x C C x x C C e y x ββα+++=

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

微分方程在经济方面的应用.

目录 摘要.................................................................................................................... I Abstract................................................................................................................ I I 第1章绪论 (1) 1.1 课题研究背景及目的 (1) 1.2 研究现状 (1) 1.3 研究方法 (1) 1.4 研究内容 (2) 第2章经济学中常用微分方程的解法 (3) 2.1 微分方程的简介 (3) 2.2经济中常用微分方程的解法 (3) 第3章三个经济模型 (8) 3.1价格调整模型 (8) 3.2蛛网模型 (9) 3.3Logistic模型 (10) 第4章微分方程在经济的两个分析中的应用 (12) 4.1边际分析 (12) 4.2弹性分析 (12) 结语 (14) 参考文献............................................................................... 错误!未定义书签。附录................................................................................... 错误!未定义书签。致谢................................................................................... 错误!未定义书签。

2018年电大第三版常微分方程答案知识点复习考点归纳总结参考

习题1.2 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=|)1(|ln 1 +x c 3.dx dy =y x xy y 321++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=31x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c 另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为:

dx dy =- y x y x +- 令x y =u 则dx dy =u+x dx du 代入有: -1 12++u u du=x 1 dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令x y =u dx dy =u+ x dx du 211u - du=sgnx x 1 dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32+=0 解:原方程为:dx dy =y e y 2e x 3 2 e x 3-3e 2y -=c. 9.x(lnx-lny)dy-ydx=0 解:原方程为: dx dy =x y ln x y 令 x y =u ,则dx dy =u+ x dx du

常微分方程在数学建模中的应用论文

毕业论文 论文题目:常微分方程在数学建模中的应用姓名: 学科专业: 指导教师: 完成时间:

常微分方程是数学理论(特别是微积分)联系实际的重要工具,它不仅与几何学、力学、电子技术、自动控制、星际航行、甚至和化学、生物学、农业以及经济学都有着密切的联系。本文结合实践背景,建立数学模型,并利用所得结果去解释某些实际问题。 关键字常微分方程、人口预测模型、市场价格模型、混合溶液的数学模型、震动模型

第一章人口预测模型 第二章市场价格模型 第三章混合溶液的数学模型第四章震动模型

绪论 当我们描述实际对象的某些特性随时间(或空间)而演变的过程、分析它的变化规律、预测它的未来性态,研究它的控制手段时,通常要建立对象的动态模型。建模时首先要根据建模目的和对问题的具体分析作出简化假设,然后按照对象内在的或可以类比的其他对象的规律列出微分方程,求出方程的解并将结果翻译回实际对象,就可以进行描述、分析、预测或控制了。 事实上在微分方程课程中,解所谓应用题时我们遇到简单的建立动态模型问题,例如“一质量为m的物体自高h处自由下落,初速度是零,设阻力与下落速度的平方成正比,比例系数为k,求下落速度随时间的变化规律。”又如“容器内有盐水100L,内含盐10kg,令以3L/min的速度从一管放进净水,以2L/min的速度从另一管抽出盐水,设容器内盐水浓度始终是均匀的,求容器内含盐量随时间变化规律。”本文讨论的是常微分方程在数学建模中的应用。

第一章 人口预测模型 由于资源的有限性,当今世界各国都注意有计划地控制人口的增长,为了得到人口预测模型,必须首先搞清影响人口增长的因素,而影响人口增长的因素很多,如人口的自然出生率、人口的自然死亡率、人口的迁移、自然灾害、战争等诸多因素,如果一开始就把所有因素都考虑进去,则无从下手.因此,先把问题简化,建立比较粗糙的模型,再逐步修改,得到较完善的模型. 例1(马尔萨斯(Malthus )模型) 英国人口统计学家马尔萨斯(1766—1834)在担任牧师期间,查看了教堂100多年人口出生统计资料,发现人口出生率是一个常数,于1789年在《人口原理》一书中提出了闻名于世的马尔萨斯人口模型,他的基本假设是:在人口自然增长过程中,净相对增长(出生率与死亡率之差)是常数,即单位时间内人口的增长量与人口成正比,比例系数设为r ,在此假设下,推导并求解人口随时间变化的数学模型. 解 设时刻t 的人口为)(t N ,把)(t N 当作连续、可微函数处理(因人口总数很大,可近似地这样处理,此乃离散变量连续化处理),据马尔萨斯的假设,在t 到t t ?+时间段内,人口的增长量为 t t rN t N t t N ?=-?+)()()(, 并设0t t =时刻的人口为0N ,于是 ?????==. , 00)(d d N t N rN t N 这就是马尔萨斯人口模型,用分离变量法易求出其解为 )(00e )(t t r N t N -=, 此式表明人口以指数规律随时间无限增长. 模型检验:据估计1961年地球上的人口总数为91006.3?,而在以后7年中,人口总数以每年2%的速度增长,这样19610=t ,901006.3?=N ,02.0=r ,于是 )1961(02.09e 1006.3)(-?=t t N . 这个公式非常准确地反映了在1700—1961年间世界人口总数.因为,这期间

常微分方程期末复习提要(1)

常微分方程期末复习提要 中央电大 顾静相 常微分方程是广播电视大学本科开放教育数学与应用数学专业的统设必修课程.本课程的主要任务是要使学生掌握常微分方程的基本理论和方法,增强运用数学手段解决实际问题的能力.本课程计划学时为54,3学分,主要讲授初等积分法、基本定理、线性微分方程组、线性微分方程、定性理论简介等内容。本课程的文字教材是由潘家齐教授主编、中央电大出版社出版的主辅合一型教材《常微分方程》.现已编制了28学时的IP 课件供学生在网上学习. 一、复习要求和重点 第一章 初等积分法 1.了解常微分方程、常微分方程的解的概念,掌握常微分方程类型的判别方法. 常微分方程与解的基本概念主要有:常微分方程,方程的阶,线性方程与非线性方程,解,通解,特解,初值问题。 2.了解变量分离方程的类型,熟练掌握变量分离方程解法. (1)显式变量可分离方程为: )()(d d y g x f x y = ; 当0≠g 时,通过积分??+=C x x f y g y d )()(d 求出通解。 (2)微分形式变量可分离方程为: y y N x M x y N x M d )()(d )()(2211=; 当0)()(21≠x M y N 时,通过积分 ??+=C x x M x M y y N y N d ) ()(d )()(2112求出通解。 3.了解齐次方程的类型,熟练掌握齐次方程(即第一类可化为变量可分离的方程)的解法. 第一类可化为变量可分离方程的一阶齐次微分方程为: )(d d x y g x y = ; 令x y u =,代入方程得x u u g x u -=)(d d ,当0)(≠-u u g 时,分离变量并积分,得?=-u u g u x C )(d 1e ,即)(e u C x ?=,用x y u =回代,得通解)(e x y C x ?=. 4.了解一阶线性方程的类型,熟练掌握常数变易法,掌握伯努利方程的解法. (1)一阶线性齐次微分方程为: 0)(d d =+y x p x y 通解为:?=-x x p C y d )(e 。 (2)一阶线性非齐次微分方程为: )()(d d x f y x p x y =+; 用常数变易法可以求出线性非齐次方程的通解:??+?=-]d e )([e d )(d )(x x f C y x x p x x p 。 (3)伯努利方程为:)1,0()()(d d ≠=+n y x f y x p x y n ,

常微分方程解题方法总结.doc

常微分方程解题方法总结 来源:文都教育 复习过半, 课本上的知识点相信大部分考生已经学习过一遍 . 接下来, 如何将零散的知 识点有机地结合起来, 而不容易遗忘是大多数考生面临的问题 . 为了加强记忆, 使知识自成 体系,建议将知识点进行分类系统总结 . 著名数学家华罗庚的读书方法值得借鉴, 他强调读 书要“由薄到厚、由厚到薄”,对同学们的复习尤为重要 . 以常微分方程为例, 本部分内容涉及可分离变量、 一阶齐次、 一阶非齐次、 全微分方程、 高阶线性微分方程等内容, 在看完这部分内容会发现要掌握的解题方法太多, 遇到具体的题 目不知该如何下手, 这种情况往往是因为没有很好地总结和归纳解题方法 . 下面以表格的形 式将常微分方程中的解题方法加以总结,一目了然,便于记忆和查询 . 常微分方程 通解公式或解法 ( 名称、形式 ) 当 g( y) 0 时,得到 dy f (x)dx , g( y) 可分离变量的方程 dy f ( x) g( y) 两边积分即可得到结果; dx 当 g( 0 ) 0 时,则 y( x) 0 也是方程的 解 . 解法:令 u y xdu udx ,代入 ,则 dy 齐次微分方程 dy g( y ) x dx x u g (u) 化为可分离变量方程 得到 x du dx 一 阶 线 性 微 分 方 程 P ( x)dx P ( x) dx dy Q(x) y ( e Q( x)dx C )e P( x) y dx

伯努利方程 解法:令 u y1 n,有 du (1 n) y n dy , dy P( x) y Q( x) y n(n≠0,1)代入得到du (1 n) P(x)u (1 n)Q(x) dx dx 求解特征方程:2 pq 三种情况: 二阶常系数齐次线性微分方程 y p x y q x y0 二阶常系数非齐次线性微分方程 y p x y q x y f ( x) (1)两个不等实根:1, 2 通解: y c1 e 1x c2 e 2x (2) 两个相等实根:1 2 通解: y c1 c2 x e x (3) 一对共轭复根:i , 通解: y e x c1 cos x c2 sin x 通解为 y p x y q x y 0 的通解与 y p x y q x y f ( x) 的特解之和. 常见的 f (x) 有两种情况: x ( 1)f ( x)e P m ( x) 若不是特征方程的根,令特解 y Q m ( x)e x;若是特征方程的单根,令特 解 y xQ m ( x)e x;若是特征方程的重根, 令特解 y*x2Q m (x)e x; (2)f (x) e x[ P m ( x) cos x p n ( x)sin x]

浅谈微分方程的起源与发展史

浅谈微分方程的起源与发展史 摘要:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。虽然这些特殊的技术只适用于相对较少的情况下,但是他们可以解决许多微分方程在力学和几何中的问题,所以,他们的研究具有非常重要的现实意义。这些特殊的方法和问题,将有助于我们解决很多问题。 引言:很多的科学问题是需要人们根据事物的变化率来确定事物的特征。比如,我们可以 试着用已知的速度或加速度来计算粒子的位置,又比如,一些放射性物质可能是已知的衰变率,这就要求我们在一个给定的时间内确定材料的总量。通过这些例子,我们可以发现,如果知道自变量、未知函数以及函数的导数(或者微分)组成的关系式,得到的就是微分方程。最后再通过微分方程求出未知函数。 关键字:微分方程起源发展史 一、微分方程的思想萌芽 微分方程就是联系着自变量,未知函数以及其导数的关系式。微分方程理论的发展是跟随着微积分理论的建立发展起来的,一般地,客观世界的时间要服从一定的客观规律,这种连接,用数学语言表达,即是抽象为微分方程,一旦获得或研究的解决方案是明确的空气动力学行为,变量之间的规律是一目了然的。例如在物体运动中,唯一的计算就与瞬间速度之间有着紧密的联系,其结果往往形成一个微分方程,一旦求出解或研究清楚气动力学行为,就明确的掌握了物体的运动规律。 1.1微分方程的起源:微分方程起源于17世纪,简单的微分方程分别是牛顿、莱布 尼茨和伯努利从几何和力学问题上解决的问题。这些早期发现开始于1690年,这逐渐导致一些特殊的微分方程的“特殊技能”的发展。 1.2微分方程在实际问题中的应用:运用微分方程理论解决一些实际问题,即根 据生物学,物理学,化学,几何学等学科的实际问题及相关知识建立微分方程,讨论该方程解的性质,并由所得的解或解的性质反过来解释该实际过程。物质运动和它的变化规律在数学上是用函数关系描述的,但是在实际问题中往往不能直接写出反映运动规律的函数,却比较容易建立这些变量与他们的导数之间的关系式,即微分方程。只有一个自变量的微分方程称为常微分方程,简称微分方程。 例1 传染病模型 传染病(瘟疫)经常在全世界各地流行,假设传染病传播期间其他地区的总 x,在t时的健康人数为)(t y,染病人数不变,为常数n,最开始的染病人数为 人数为)(t x。 因为总人数为常数n

浅谈常微分方程的数值解法及其应用[文献综述]

毕业论文文献综述 信息与计算科学 浅谈常微分方程的数值解法及其应用 一、前言部分 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时,对简单的微分方程用级数来求解. 后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论. 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法.微分方程也就成了最有生命力的数学分支.总之,力学、天文学、几何学等领域的许多问题都导致微分方程.在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型等.因而微分方程的研究是与人类社会密切相关的. [1] “常微分方程”是理学院数学系所有专业学生的重要专业基础课之一,也是工科、经济等专业必学内容之一.其重要性在于它是各种精确自然科学、社会科学中表述基本定律和各种问题的根本工具之一,换句话说,只要根据实际背景,列出了相应的微分方程,并且能(数值地或定性地)求出这种方程的解,人们就可以预见到,在已知条件下这种或那种“运动”过程将怎样进行,或者为了实现人们所希望的某种“运动”应该怎样设计必要的装置和条件等等.例如,我们要设计人造卫星轨道,首先,根据力学原理,建立卫星运动的微分方程,列出初始条件,然后求出解,即卫星运行轨道.随着物理科学所研究的现象在广度和深度两方面的扩展,微分方程的应用范围更广泛. [2]从数学自身的角度看,微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展.从这个角度说,微分方程变成了数学的中心. [3]总之,微分方程从它诞生起即日益成为人类认识并进而改造自然、社会的有力工具,成为数学科学联系实际的主要途径之一.文章就常微分的数值解法以及应用展开简单的论述。 二、主体部分 2.1微分方程概念介绍

常微分方程期末试题知识点复习考点归纳总结参考

期末考试 一、填空题(每空2 分,共16分)。 1.方程22d d y x x y +=满足解的存在唯一性定理条件的区域是 . 2. 方程组 n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的图象是 维空间中的一条积分曲线. 3.),(y x f y '连续是保证方程),(d d y x f x y =初值唯一的 条件. 4.方程组???????=-=x t y y t x d d d d 的奇点)0,0(的类型是 5.方程2)(2 1y y x y '+'=的通解是 6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是 7.二阶线性齐次微分方程的两个解)(1x y ?=,)(2x y ?=成为其基本解组的充要条件是 8.方程440y y y '''++=的基本解组是 二、选择题(每小题 3 分,共 15分)。 9.一阶线性微分方程 d ()()d y p x y q x x +=的积分因子是( ). (A )?=x x p d )(e μ (B )?=x x q d )(e μ (C )?=-x x p d )(e μ (D )?=-x x q d )(e μ 10.微分方程0d )ln (d ln =-+y y x x y y 是( ) (A )可分离变量方程 (B )线性方程 (C )全微分方程 (D )贝努利方程 11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( ). (A) 1±=x (B)1±=y

(C )1±=y , 1±=x (D )1=y , 1=x 12.n 阶线性非齐次微分方程的所有解( ). (A )构成一个线性空间 (B )构成一个1-n 维线性空间 (C )构成一个1+n 维线性空间 (D )不能构成一个线性空间 13.方程222+-='x y y ( )奇解. (A )有一个 (B )有无数个 (C )只有两个 (D )无 三、计算题(每小题8分,共48分)。 14.求方程22 2d d x y xy x y -=的通解 15.求方程0d )ln (d 3=++y x y x x y 的通解 16.求方程2 221)(x y x y y +'-'=的通解

常微分方程的发展史

常微分方程的发展史 摘要:20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组).70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程. 从“求通解”到“求解定解问题”数学家们首先发现微分方程有无穷个解.常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数.偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定.命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元素的解称为“通解”.在很长一段时间里,人们致力于“求通解”. 关键词:常微分方程,发展,起源 正:常微分方程是由用微积分处理新问题而产生的,它主要经历了创立及解析理论阶段、定性理论阶段和深入发展阶段。17 世纪,牛顿(I.Newton ,英国,1642-1727)和莱布尼兹(G.W.Leibniz ,德国,1646-1716)发明了微积分,同时也开创了微分方程的研究最初,牛顿在他的著作《自然哲学的数学原理机(1687年)中,主要研究了微分方程在天文学中的应用,随后微积分在解决物理问题上逐步显示出了巨大的威力。但是,随着物理学提出日益复杂的问题,就需要更专门的技术,需要建立物理问题的数学模型,即建立反映该问题的微分方程。1690 年,雅可比·伯努利(Jakob Bernouli,瑞士,1654-1705)

提出了等时间题和悬链线问题.这是探求微分方程解的早期工作。雅可比·伯努利自己解决了前者。翌年,约翰伯努利(Johann Bernouli ,瑞士,1667-1748)、莱布尼兹和惠更斯(C.Huygens ,荷兰,1629-1695)独立地解决了后者。 有了微分方程,紧接着就是解微分方程,并对所得的结果进行物理解释,从而预测物理过程的特定性质.所以求解就成为微分方程的核心,但求解的困难很大,一个看似很简单的微分方程也没有普遍适用的方法能使我们在所有的情况下得出它的解。因此,最初人们的注意力放在某些类型的微分方程的一般解法上。 1691 年,莱布尼兹给出了变量分离法。他还把一阶齐次方程使其变量分离。1694 年,他使用了常数变易法把一阶常微分方程化成积分。 1695 年,雅可比·伯努利给出著名的伯努利方程。莱布尼兹用变换,将其化为线性方程。约翰和雅可比给出了各自的解法,其本质上都是变量分离法。 1734 年,欧拉(L.Euler,瑞士,1707-1783)给出了恰当方程的定义。他与克莱罗(A.C. Clairaut,法国,1713-1765)各自找到了方程是恰当方程的条件,并发现:若方程是恰当的,则它是可积的。那么对非恰当方程如何求解呢?1739 年克莱罗提出了积分因子的概念,欧拉确定了可采用积分因子的方程类属。这样,到 18 世纪 40 年

常微分方程初等解法和求解技巧毕业论文

目 录 摘 要 .............................................................. I 关键词 ............................................................. I Abstract ........................................................... I Key words .......................................................... I 1.前 言 (1) 2.常微分方程的求解方法 (1) 2.1常微分方程变量可分离类型解法 (1) 2.1.1直接可分离变量的微分方程 (2) 2.1.2可化为变量分离方程 (2) 2.2常数变易法 (9) 2.2.1一阶线性非齐次微分方程的常数变易法 (9) 2.2.2一阶非线性微分方程的常数变易法 (10) 2.3积分因子法 (16) 3.实例分析说明这几类方法间的联系及优劣 (17) 3.1几个重要的变换技巧及实例 (18) 3.1.1变dx dy 为dy dx ............................................... 18 3.1.2分项组合法组合原则 (19) 3.1.3积分因子选择 (20) 参考文献 (21) 致 (22)

常微分方程初等解法及其求解技巧 摘要 常微分方程是微积分学的重要组成部分,广泛用于具体问题的研究中.求解常微分的问题,常常通过变量分离、两边积分,如果是高阶的则通过适当的变量代换,达到降阶的目的来解决问题.本文就是对不同类型的常微分方程的解法及其求解技巧的系统总结:先介绍求解常微分方程的几种初等解法,如变量分离法,常数变易法,积分因子法等,在学习过程中,通过对不同类型的方程求解,揭示常微分方程的求解规律.然后介绍几类方程求解中的变换技巧及规律,并通过实例来分析这几类方法之间的联系及优劣,从而能快速的找到最佳解法. 关键词 变量分离法常数变易法积分因子变换技巧 Elementary Solution and Solving Skills of Ordinary Differential Equation Abstract Ordinary differential equations are important components of calculus and used extensively for the studies on specific issues. Ordinary differential equations are often resolved by the means of variable separation and both sides integral. If they are higher-order ones, we can reduce their order by proper variable substitution to solve this problem. This essay aims at concluding systematically the methods of different types of differential equations and its resoling skills. First of all, I’d would like to introduce several basic resolutions of differential equations, such as variable separation, constant threats, points factor, etc. In the process of learning, I’d like to reduce the law of resolving ordinary differential equations by resolving different types of equations. Then, we describe several equations resolutions and for transformation techniques and its laws, and we also analyze the advantages and disadvantages and connections by using the examples of these methods to be able to find the best solution quickly. Key words

相关文档
最新文档