零维纳米材料

零维纳米材料
零维纳米材料

零维纳米材料

邱松材化07级20071501170

摘要:概括讲述零维材料的各种类型,合成方法,性能和应用以及展望。

总述

零维纳米结构单元的种类有多样,常见的有纳米粒子(Nano-particle)﹑超细粒子(Ultrafine particle)﹑超细粉(Ultrafine powder)﹑烟粒子(Smoke particle)﹑人造原子(Artificial atoms) ﹑量子点(Quantum dop)﹑原子团簇(Atomic cluster)﹑及纳米团簇(Nano-cluster)等,不同之处在于尺寸范围。零维纳米结构材料有量子尺寸效应﹑小尺寸效应﹑表面效应﹑宏观量子效应等。有关这些基本的物理﹑化学性质,对于零维纳米材料的研究与应用极为重要。

一﹑原子团簇

原子团簇是20世纪80年代发现的,指几个至几百个原子的聚集体(粒径小于或等于1nm),如Fe n,Cu n S m,C n H m(n和m都是整数)和碳簇(C60、C70、富勒烯)等。原子团簇有许多奇异的特性,如具有幻数效应、原子团尺寸小于临界值时的“库仑爆炸”、原子团逸出功的震荡行为、极大的比表面使它具有异常高的化学活性和催化活性、光的量子尺寸效应和非线性效应、C60掺杂及掺包原子的导电性和超导性、碳管和碳葱的导电性等。

1、碳原子团簇

1985年,斯摩雷(R.E. Smalley)与英国的科洛托(H.W. Kroto)

等在瑞斯大学的实验室采用激光轰击石墨靶,并用苯来收集碳团簇,

用质谱仪分析发现了由60个碳原子构成的碳团簇丰度最高,同时还

发现了C70 等团簇。C60分子的结构像足球而被称为“足球烯”(由

12个五边形环和20个六边形环组成的球形32面体),它有无数优异

的性质:它本身是半导体,掺杂后可变成临界温度很高的超导体,由

它衍生出来的碳微管比相同直径的金属强度高100万倍。C70原子团

簇的结构与C60类似,呈椭圆球结构,被称为“橄榄球”,由12个五

边形环和25个六边形环组成的37面体。

构成碳团簇的原子数称为幻数,当它为20、24、28、32、36、

50、60、70时具有高稳定性,其中又以C60最稳定。所以,可以用

酸溶去其他的碳团簇,从而获得较纯的C60。

二、人造原子

人造原子又称为量子点,是20世纪90年代提出的新概念。所谓人造原子是由一定数量的实际原子组成的聚集体,尺寸小于

100nm.1996年麻省理工学院的阿休理(Ashoori)在一篇综述中,正

式提出人造原子的概念。1997年,加利福尼亚大学物理系的迈克尤

恩(Mc Euen)把人造原子的内涵进一步扩大,从维数来看,包括准零

维的量子点、准一维的量子棒和准二维的量子圆盘,甚至把100nm

左右的量子器件也看成人造原子。

人造原子与真正原子的运动行为特征和电学性质既相互联系又相互区别。相似之处:(1)人造原子有离散的能级,电荷也是不连续的,电子在人造原子中也是以轨道的方式运动,这与真正的原子极为相似;(2)电子填充

的规律也与真正原子相似,服从洪徳法则,地1激发态存在三重态。差别:(1)人造原子含有一定数量的真正原子;(2)人造原子的形状和对称性是多种多样的,真正的原子则可以用简单的球形和立方形来描述;(3)人造原子电子间强交互作用比实际原子复杂得多,随着人造原子中真正原子数目的增加,电子轨道间距减小,强的库仑排斥和系统的限域效应及泡利不相容原理使电子自旋朝同样方向进行有序排列;(4)实际原子中电子受原子核吸引做轨道运动,而人造原子中电子处于抛物线形的势阱中,具有向势阱底部下落的趋势,由于库仑排斥作用,部分电子处于势阱上部,弱的束缚使它们具有自由电子的特征。

三、纳米粒子

纳米粒子又称为纳米粉末,一般是指粒度在100nm以下的固体粉末

或纳米颗粒。纳米粒子一般为球形或类球形。纳米粒子既具有宏观体相的

元胞和键合结构,又具备块体所没有的崭新的物理化学性能。

1、纳米粒子的制备

纳米粒子的制备方法可分为两大类,“自下至上”法,或称构筑法;“从

上至下”法,或称粉碎法。其中,构筑法是纳米粒子制备的主流技术,因

此主要介绍构筑法制备无机纳米粒子的方法及其技术特征。

常见的无机纳米粒子的制备技术特点

纳米材料特性

《纳米材料导论》作业 1、什么是纳米材料?怎样对纳米材料进行分类? 答:任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料称作纳米材料。它包括体积分数近似相等的两部分:一是直径为几或几十纳米的粒子,二是粒子间的界面。纳米材料通常按照维度进行分类。原子团簇、纳米微粒等为0维纳米材料。纳米线为1维纳米材料,纳米薄膜为2维纳米材料,纳米块体为3维纳米材料,及由他们组成的纳米复合材料。 按照形态还可以分为粉体材料、晶体材料、薄膜材料。 2、纳米材料有哪些基本的效应?试举例说明。 答:纳米材料的基本效应有:一、尺寸效应,纳米微粒的尺寸相当或小于光波波长、传导电子的德布罗意波长、超导态的相干长度或投射深度等特征尺寸时,周期性的边界条件将被破坏,声、光、电、磁、热力学等特征性即呈现新的小尺寸效应。出现光吸收显著增加并产生吸收峰的等离子共振频移; 磁有序态转为无序态;超导相转变为正常相;声子谱发生改变等。例如,纳米微粒的熔点远低于块状金属;纳米强磁性颗粒尺寸为单畴临界尺寸时,具有很高的矫顽力;库仑阻塞效应等。二、量子效应,当能级间距δ大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子效应,随着金属微粒尺寸的减小,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象均称为量子效应。例如,颗粒的磁化率、比热容与所含电子的奇、偶有关,相应会产生光谱线的频移,介电常数变化等。 三、界面效应,纳米材料由于表面原子数增多,晶界上的原子占有相当高的 比例,而表面原子配位数不足和高的表面自由能,使这些原子易与其它原子相结合而稳定下来,从而具有很高的化学活性。引起表面电子自旋构象和电子能谱的变化;纳米微粒表面原子运输和构型的变化。四、体积效应,由于纳米粒子体积很小,包含原子数很少,许多现象不能用有无限个原子的块状物质的性质加以说明,即称体积效应。久保理论对此做了些解释。 3、纳米材料的晶界有哪些不同于粗晶晶界的特点? 答:纳米晶的晶界具有以下不同于粗晶晶界结构的特点:1)晶界具有大量未被原子占据的空间或过剩体积,2)低的配位数和密度,3)大的原子均方间距,4)存在三叉晶界。此外,纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动,晶界还存在有空位团、微孔等缺陷,它们与旋错、晶粒内的位错、孪晶、层错以及晶面等共同形成纳米材料的缺陷。 4、纳米材料有哪些缺陷?总结纳米材料中位错的特点。 答:纳米材料的缺陷有:一、点缺陷,如空位,溶质原子和杂质原子等,这是一种零维缺陷。二、线缺陷,如位错,一种一维缺陷,位错的线长度及位错运动的平均自由程均小于晶粒的尺寸。三、面缺陷,如孪晶、层错等,这是一种二维缺陷。纳米晶粒内的位错具有尺寸效应,当晶粒小于某一临界尺寸时,位错不稳定,趋向于离开晶粒,而当粒径大于该临界尺寸时,位错便稳定地存在于晶粒 T 内。位错与晶粒大小之间的关系为:1)当晶粒尺寸在50~100nm之间,温度<0.5 m

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

纳米材料之零维纳米

零维纳米陶瓷材料 之纳米陶瓷粉体的制备机理分析关键词:零维纳米制备机理固相合成液相合成 摘要: 一般而言,物质的存在形式有固体、液体、气体三种。构成物质的原子在固体中几乎不改变其位置,但在液体中能够比较自由地移动,而在气体中能相当自由地到处移动,这与物质内的原子密度有关。固体内的原子密度高,间距小,原子间相互作用强,并且在长程范围内起作用;气体内原子密度很小,间距很大,原子间的相互作用弱,能够快速地到处运动,当然,发生相互碰撞而改变运动方向是难以避免的;液体则介于气体和固体之间。这样,原子的易动度影响微粒的制备方法和生成颗粒的形貌。纳米陶瓷粉体的制备可以分为固—固、液—液、气—气、固—液、固—气、液呷气、固—液—气几类化学反应,但是从反应物传质的速度上看,其原子或分子在液相中的扩散速度明显比在固相中快,在气相中的扩散速度又明显比在液相中快,所以固—液、固—气、固—液—气反应中的化学反应速度明显受制于物质在固相中的扩散速度,我们可以把它们统统归类到固相反应;同理,液—气反应可以归类到液相反应中;气相反应仅包括气—气反应。 正文: 3.1粉体的固相合成 固相合成工艺主要指:①反应物中至少有一种是固态,所有的固—固、固—液、固—气、固—液—气都属于其研究范围;②产物颗粒是在固相表面生成而不是在气相或液相中成核长大,但同时不排除固相合成工艺中有气相原料及气相反应存在。 应该指出,机械粉碎法是一种常见的固相制粉工艺,尤其是在制备粒度在微米级以上的陶瓷粉体时,这种方法既方便快捷,成本也比较低廉。但到目前为止,用机械粉碎的方法还无法得到纳米颗粒, 3.1.1粉体固相合成的基本原理 3.1.1.1固相合成的分类方法按参加合成反应的反应物情况,粉体固相合成反应基本可分成下述五类 式中:S,C和L分别表示固态、气态和液态,当然还有更复杂的合成反应,比如具有两种以上固态反应物并包括气态反应物等,但这些可视为上述几种反应的组合了。 从微观机制上看,这五类反应是有明显区别的:(1)类反应即是热分解反应,它在一定的温度、压力条件下即可发生。其中不存在反应物的扩散问题,但产物气体的扩散则是必然发生的。由于气体的聚集和释放,结果使固体颗粒变得疏松多子乙而进一步粉化,容易得到纳米颗粒。(2)、(3)和(4)类反应情况较为复杂,它们涉及两种分子参加的反应,只有两种分子通过扩散而相互紧密接触,合成反应才能发生。(3)类反应中涉及的是气体在固体中(或表面)的扩散。(4)类反应中涉及的是液体在固体中的扩散。(5)类反应最复杂,涉及三相反应。

纳米材料制备方法综述

纳米材料制备方法综述 摘要:纳米材料由于其特殊性质,近年来受到人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。纳米材料的制备方法按物态一般可归纳为气相法、液相法、固相法。目前,各国科学家在纳米材料的研究方面已取得了显著的成果。纳米材料将推动21世纪的信息技术、医学、环境、自动化技术及能源科学的发展, 对生产力的发展产生深远的影响。 关键字:纳米材料,制备,固相法,液相法,气相法 近年来,纳米材料作为一种新型的材料得到了人们的广泛关注。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料,具有表面与界面效应,量子尺寸效应,小尺寸效应和宏观量子隧道效应,因而纳米具有很多奇特的性能,广泛应用于各个领域。为此,本文综述了纳米材料制备的各种方法并说明其优缺点。 目前纳米材料制备采用的方法按物态可分为:气相法、液相法和固相法。 一、气相法 气相法是将高温的蒸汽在冷阱中冷凝或在衬底上沉积和生长低维纳米材料的方法。气相法主要包括物理气相沉积(PVD)和化学气相沉积(CVD),在某些情况下使用其他热源获得气源,如电阻加热法,高频感应电流加热法,混合等离子加热法,通电加热蒸发法。 1、物理气相沉积(PVD) 在PVD过程中没有化学反应产生,其主要过程是固体材料的蒸发和蒸发蒸气的冷凝或沉积。采用PVD可制备出高质量的纳米材料粉体。PVD可分为制备出高质量的纳米粉体。PVD可分为蒸气-冷凝法和溅射法。 1.1蒸气-冷凝法 此种制备方法是在低压的Ar、He等惰性气体中加热物质(如金属等),使其蒸发汽化, 然后在气体介质中冷凝后形成5-100 nm的纳米微粒。通过在纯净的惰性气体中的蒸发和冷凝过程获得较干净的纳米粉体。此方法制备的颗粒表面清洁,颗粒度整齐,生长条件易于控制,但是粒径分布范围狭窄。 1.2溅射法 用两块金属板分别作为阳极和阴极,阴极为蒸发用的材料,在两电极间充入Ar气(40~250Pa),两电极间施加的电压范围为0.3~1.5kv。由于两极间的辉光放电使Ar离子形成,在电场的作用下Ar离子冲击阴极靶材表面,使靶材原产从其表面蒸发出来形成超微粒子.并在附着面上沉积下来。用溅射法制备纳米微粒有许多优点:可制备多种纳米金属,包括高熔

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

纳米材料

绪论 1、纳米科技的提出:源自于费曼大师1959年在美国物理学会年会上的一次演讲。Richard Feynman:世界上首位提出纳米科技构想的科学家。 2、纳米材料 (1)纳米材料的定义:物质结构在三维空间至少有一维处于纳米尺度,或由纳米结构单元组成且具有特殊性质的材料(也是以维数划分纳米材料的原因) (2)纳米尺度:1-100 nm范围的几何尺; 纳米的单位:1 nm = 10^-9 m,即千分之一微米(μm)。 (3)纳米结构单元:具有纳米尺度结构特征的物质单元,包括纳米团簇、纳米颗粒、纳米管、纳米线、纳米棒、纳米片等 (4)纳米材料的维度: ○1零维:纳米团簇、纳米颗粒、量子点(三维尺度均为纳米级,没有明显的取向性,近等轴状) ○2一维:纳米线、纳米棒、纳米管(单向延伸、二维尺度为纳米级、第三维尺度不限,、直径大于100 nm,具有纳米结构) ○3二维:纳米片、纳米带、超晶格、纳米薄膜(一维尺度为纳米级,面状分布,,厚度大于100 nm,具有纳米结构) ○4三维:纳米花、四脚针等(包含纳米结构单元,三维尺寸均超过纳米尺度,由不同型低维纳米结构单元复合形成) (5)纳米材料的分类○1具有纳米尺度外形的材料 ○2以纳米结构单元作为主要结构组分所构成的材料 3、久保理论:即金属的超微粒子将出现量子限域效应,显示出与块体金属显著不同的性能;金属纳米粒子,量子限域效应。 4、扫描隧道电子显微镜(STM):将探针靠近导电材料表面进行扫描,获得表面图像。分辨率达0.1~0.2 nm,可以直接观察和移动原子。 5、原子力显微镜(AFM):利用针尖和材料原子间的相互微弱作用力来获得材料表面的形貌图像。可用于研究半导体、导体和绝缘体。 AFM三大特点:原子级高分辨率、观察活生命样品和加工样品的力行为成就。6、纳米科技的研究内容:纳米科学、纳米技术与纳米工程 分支学科:纳米力学:研究物体在纳米尺度的力学性质 纳米物理学:研究物质在纳米尺度上的物理现象及表征 纳米化学:研究纳米尺度范围的化学过程及反应 纳米生物学:利用纳米的手段解决生物学问题,在分子水平揭示细胞内外的物质、能量与信息交换机制; 纳米医学:利用纳米科技解决医学问题的边缘交叉学科 纳米材料学:包括纳米材料的成分、结构、性能与使用效能四个方面。 成分:是影响性能的基础 结构:决定材料性能的关键材料 性能:各种物理或化学性质 效能:材料在使用条件下的表现

低维材料

低维材料的发展现状及前景 —碳纳米管的制备及其应用 摘要:碳纳米管具有奇异的物理化学性能,如独特的金属或半导体导电性、极高的机械强度、储氢能力、吸附能力和较强的微波吸收能力等,90年代初一经发现即刻受到物理、化学和材料科学界以及高新技术产业部门的极大重视。应用研究表明,碳纳米管可用于多种高科技领域。如用它作为增强剂和导电剂可制造性能优良的汽车防护件;用它作催化剂载体可显著提高催化剂的活性和选择性;碳纳米管较强的微波吸收性能,使它可作为吸收剂制备隐形材料、电磁屏蔽材料或暗室吸波材料等。碳纳米管被认为是一种性能优异的新型功能材料和结构材料,世界各国均在制备和应用方面投入大量的研究开发力量,期望能占领该技术领域的制高点。 关键词:碳纳米管,碳纳米管的批量制备,储氢技术 一、碳纳米管的批量制备 碳纳米管要实现工业应用,首先必须解决碳纳米管的低成本大量制备问题。碳纳米管自1991年被发现以来,其制备工艺得到了广泛研究。目前,有三种主要的制备方法,即电弧放电法、激光烧蚀法和固定床催化裂解法。电弧放电法和激光烧蚀法制得的产物中,碳纳米管均与其他形态的碳产物共存,分离纯化困难,收率较低,且难以规模化。第三种固定床催化裂解法由天然气制备碳纳米管具有工艺简便、成本低、纳米管规模易控制、长度大、收率较高等优点,有重要的研究价值,但该方法中催化剂只能以薄层的形式展开,才会有好的效果,否则催化剂的利用率就低,因而产量难以提高。 沸腾床催化裂解反应工艺气固接触良好,适合处理大量固体颗粒催化剂,用沸腾床催化裂解法代替固体床催化裂解法可大幅度提高碳纳米管的制备量。 在沸腾床催化裂解反应器中,原料气体以一定的流速通过气体分布板,将气体分布板上活化了的催化剂“吹”成“沸腾”状态。催化剂颗粒一直处于运动之中,催化剂颗粒之间的距离要比固定床中催化剂颗粒之间的距离大得多,催化剂表面上易生长出直的碳纳米管,又因催化剂颗粒之间的相互碰撞,碳纳米管容易从催化剂表面脱出。这两种作用的结果保证了直而开口率高的碳纳米管的形成。同时沸腾床中催化剂的量可以大量增加,原料气体仍能与催化剂表面充分接触,保证了催化剂的高利用率。 尽管沸腾床催化裂解法在碳纳米管的批量制备上有了较大突破,但与碳纳米管所有的现有制备方法一样,只能间歇操作,不利于低成本大批量碳纳米管的制备。 要实现碳纳米管的大批量制备,必须首先解决催化剂连续投放问题和催化剂与产物及时导出的问题。这们的研究表明,通过特殊的反应装置和工艺可以实现碳纳米管的连续制备,从而达到低成本大批量制备碳纳米管的目的。 连续制备碳纳米管是通过如下过程实现的:在封闭的移动床催化裂解反应器中,经过还原处理的纳米级催化剂通过喷嘴连续均匀地布洒到移动床上,移动床以一定的速度移动。催化剂在恒温区的停留时间可通过控制移动床的运动速度加以调节。原料气的流动方向可与床层的运动方向一致也可相反。原料气在催化剂表面裂解生成碳纳米管。当催化剂在移动床上的停留时间达到设定值时,催化剂连同在其上生成的碳纳米管从移动床上脱出进入收集器,反应尾气通过排气口排出。 采用移动床催化裂解反应器可实现设计尺寸碳纳米管的连续制造,可望大幅度降低生产成本,为碳纳米管的工业应用提供保证。 二、碳纳米管的应用研究

三维纳米材料制备技术综述

三维纳米材料制备技术综述 摘要:纳米材料的制备方法甚多。目前,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集,并控制聚集微粒的生长,使其维持在纳米尺寸。本文主要介绍纳米材料分类和性能,同时介绍了一些三维纳米材料的制备方法,如水热法、溶剂热法和微乳液法。 关键词:纳米材料;纳米器件;纳米阵列;水热法;溶剂热法;微乳液法 1.引言 随着信息科学技术的飞速发展,人们对物质世界认识随之也从宏观转移到了微观,也就是说从宏观的块体材料转移到了微观的纳米材料。所谓纳米材料,是材料尺寸在三维空间中,至少有一个维度处于纳米尺度范围的材料。如果按照维度的数量来划分,纳米材料的的种类基本可以分为四类:(1)零维,指在空间中三维都处在纳米尺度,如量子点,尺度在纳米级的颗粒等;(2)—维,指在空间中两个维度处于纳米尺度,还有一个处于宏观尺度的结构,例如纳米棒、纳米线、纳米管等;(3)二维,是指在空间中只有一个维度处于纳米尺度,其它两个维度具有宏观尺度的材料,典型的二维纳米材料具有层状结构,如多层膜结构、一维超晶格结构等;(4)三维,即在空间中三维都属于宏观尺度的纳米材料,如纳米花、纳米球等各种形貌[1]。 当物质进入纳米级别,其在催化、光、电和热力学等方面都出现特异性,这种现象被称为“纳米效应”。纳米材料具有普通材料所不具备的3大效应:(1)小尺寸效应——其光吸收、电磁、化学活性、催化等性质发生很大变化;(2)表面效应——在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应,例如纳米微粒表现出令人难以置信的奇特的宏观物理特性,如高强度和高韧性,高热膨胀系数、高比热容和低熔点,异常的导电率和磁化率,极强的吸波性,高扩散性,以及高的物理、化学和生物活性等[2]。 纳米科学发展前期,人们更多关注于一维纳米材料,并研究其基本性能。随着纳米科学快速发展,当今研究热点开始转向以微纳结构和纳米结构器件为方向的对纳米阵列组装体系的研究。以特定尺寸和形貌的一维纳米材料为基本单元,采用物理和化学的方法在两维或三维空间内构筑纳米体系,可得到包括纳米阵

常见纳米材料的制备技术

东华大学研究生课程论文封面 教师填写: 本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名: 注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。

常见纳米材料的制备技术 1 概述 纳米材料是指材料的任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料,广义来讲,数百纳米的尺度亦可称为纳米材料。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能,纳米材料的性能往往由量子力学决定。按照纳米材料的空间形态可以将其分为4类:三维尺寸均为纳米量级的纳米粒子或人造原子被称为零维纳米材料;纳米纤维为一维纳米材料;纳米膜(片、层)可以称为二维纳米材料;而有纳米结构的材料可以称为三维纳米材料。目前只有纳米粉末实现了工业化生产(如碳酸钙、氧化锌等),静电纺纳米纤维的产量能够满足实验的需求,其它纳米材料基本上还处于实验室研究阶段[1]。 2 常见的纳米材料 2.1 零维纳米材料 指空间中三个维度的尺寸均在纳米尺度,如纳米尺度颗粒、原子团簇等。纳米球全称“原子自组装纳米球固体润滑剂”,是具有二十面体原子团簇结构的铝基合金,是一种新型纳米/非晶合金固体抗磨自修复剂,采用急冷方法制备抗磨剂粉体,在合金从液体到固体的凝固过程中,形成纳米晶/非晶的复合结构,利用粒度控制的方法对抗磨剂粉末进行超微细化处理而成。该材料具有高硬度、高强度,并具有一定的韧性等性能,在多种减摩自修复机制的综合作用下呈现优良的减摩和抗磨性能,可以起到节省燃油、修复磨损表面、增强机车动力、降低噪音、减少污染物排放、保护环境的作用。 2.2 一维纳米材料 一维纳米材料指空间中有二维处于纳米尺度的材料,如纳米纤维、纳米棒、碳纳米管等。 静电纺纳米纤维是目前唯一一种能够连续制备纳米纤维的技术,它是利用高压电场力将纤维从导电溶液中抽拔出来,在抽拔过程中纤维被拉伸变细、溶剂挥

一维纳米材料的制备概述

学年论文 ` 题目:一维纳米材料的制备方法概述 学院:化学学院 专业年级:材料化学2011级 学生姓名:龚佩斯学号:20110513457 指导教师:周晴职称:助教

2015年3月26日 成绩 一维纳米材料制备方法概述 --气相法、液相法、模板法制备一维纳米材料 材料化学专业2011级龚佩斯 指导教师周晴 摘要:一维纳米材料碳纳米棒、碳纳米线等因其独特的用途成为国内外材料科学家的研究热点。然而关于如何制备出高性能的一维纳米材料正是各国科学家所探究的问题。本文概述了一维纳米材料的制备方法:气相法、液相法、模板法等。 关键词:一维纳米材料;制备方法;气相法;液相法;模板法 Abstract: the nanoscale materials such as carbon nanorods and carbon nanowires have become the focus of intensive research owing to their unique applications. but the question that how to make up highqulity one-dimentional nanostructure is discussing by Scientists all around the world. This parper has reviewed the preparation of one dimention nanomaterials ,such as vapor-state method, liqulid -state method ,template method and so on. Key words: one-dimention nanomaterials ; preparatinal method ; vapor-state method liqulid-state method ; template method 纳米材料是基本结构单元在1nm ~100nm之间的材料,按其尺度分类包括零维、一维、二维纳米材料。自80年代以来,零维纳米材料不论在理论上和实践中均取得了很大的进展;二维纳米材料在微型传感器中也早有应用。[1]一维纳米材料因其特殊的结构效应在介观物理、纳米级结构方面具有广阔的应用前景,它的制备研究为器件的微型化提供了材料基础。本文主要概述了近年来文献关于一维纳米材料的制备方法。 1 一维纳米材料的制备方法 近几年来,文献报导了制备一维纳米材料的多种方法,如溶胶-凝胶法、气相-溶液-固相法、声波降解法、溶剂热法、模板法、化学气相沉积法等。然而不同制备方法的纳米晶体生长机制各异。本文按不同生长机制分类概述,主要介绍气相法、液相法、模板法三大类制备方法。 1.1 气相法 在合成一维纳米结构时,气相合成可能是用得最多的方法。气相法中的主要机

纳米材料与技术作业

纳米材料与技术作业 1.纳米材料按维度划分,可分为几类? (1) 0维材料quasi-zero dimensional—三维尺寸为纳米级(100 nm)以下的颗粒状物质。 (2) 1维材料—线径为1—100 nm的纤维(管)。 (3) 2维材料—厚度为1 — 100 nm的薄膜。 (4) 体相纳米材料(由纳米材料组装而成)。 (5)纳米孔材料(孔径为纳米级) 2. 详细说明纳米材料有那几大特性?这几大特性的特点是什么?为什么纳米材料具有这些特性? (1) 表面效应:我们知道球形颗粒的比表面积是与直径成反比的,故颗粒直径越小,比表面积就会越大,因此,纳米颗粒表面具有超高的活性,在空气中金属颗粒会迅速氧化而燃烧,也正是基于表面活性大的原因,纳米金属颗粒可以看成新一代的高效催化剂,储气材料和低熔点材料; (2) 小尺寸效应:随着颗粒尺寸的量变会引起颗粒宏观物理性质的质变。特殊的光学性质:所有的金属在超微颗粒状态都呈现为玄色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等;特殊的热学性质:固体颗粒在超微细化后其熔点将明显降低,当颗粒小于10纳米量级时尤为明显;特殊的磁学性质:超微的磁性颗粒可以使鸽子、海豚等生物在微弱的地磁场中辨别方向,利用磁性超微颗粒具有高矫顽力的特性,可以做成高贮存密度的磁记录磁粉,大量应用于磁带、磁盘、磁卡以及磁性钥匙等;利用超顺磁性,可以将磁性超微颗粒制成用途广泛的磁性液体;特殊的力学性质:由于纳米材料具有大的界面,界面的原子排列是相当混乱的,原子在外力变形的条件下很轻易迁移,因此表现出甚佳的韧性与一定的延展性。 (3)宏观量子隧道效应:处于分子、原子与大块的固体颗粒之间的超微纳米颗粒具有量子隧道效应,例如:在知道半导体集成电路时,当电路的尺寸接近电子的波长时,电子就会通过隧道效应溢出器件,使器件无法正常工作。 3.半导体纳米材料光催化特性产生的原因是什么?为什么一些半导体纳米材料的光催化特性要远远好于非纳米结构的半导体材料? (1)光催化特性是半导体具有的独特性能之一,在光的照射下,半导体价带中的电子跃迁到导带,从而价带产生空穴,导带中产生电子。空穴具有很强的氧化性,电子具有很强的还原性;(2)光激发和产生的电子和空穴可经历多种变化途径,其中最主要的分离和符合这两个相互竞争的过程,因此为了提高催化效率,需要加入电子或者空穴捕获剂,纳米半导体材料相比于一般的半导体材料具有更大的比表面积,因此具有更好的催化效果。 4.详细说明零维纳米材料具有哪些优良的物理化学特性?产

碳纳米材料综述

碳纳米材料综述 课程:纳米材料 日期:2015年12月

碳纳米材料综述 摘要:纳米材料是一种处于纳米量级的新一代材料,具有多种奇异的特性,展现特异的光、电、磁、热、力学、机械等物理化学性能,这使得纳米技术迅速地渗透到各个研究领域,引起了国内外众多的物理学家、化学家和材料学家的广泛关注,也成为当前世界最热门的科学研究热点。物理学家对纳米材料感兴趣是因为它具有独特的电磁性质,化学家是因为它的化学活性以及潜在的应用价值,材料学家所感兴趣的是它的硬度、强度和弹性。毫无疑问,基于纳米材料的纳米科技必将对当今世界的经济发展和社会进步产生重要的影响。因此,对纳米材料的科学研究具有非常重要的意义。其中,碳纳米材料是最热的科学研究材料之一。 我们知道,碳元素是自然界中存在的最重要的元素之一,具有sp、sp2、sp3等多种轨道杂化特性。因此,以碳为基础的纳米材料是多种多样的,包括常见的石墨和金刚石,还包括近几年比较热门的碳纳米管、碳纳米线、富勒烯和石墨烯等新型碳纳米材料。 关键词:纳米材料碳纳米材料碳纳米管富勒烯石墨烯 1.前言 从人类认识世界的精度来看,人类的文明发展进程可以划分为模糊时代(工业革命之前)、毫米时代(工业革命到20世纪初)、微米和纳米时代(20世纪40年代开始至今)。自20世纪80年代初,德国科学家Gleiter提出“纳米晶体材料’,的概念,随后采用人工制备首次获得纳米晶体,并对其各种物性进行系统的研究以来,纳米材料己引起世界各国科技界及产业界的广泛关注。纳米材料是指特征尺寸在纳米数量级(通常指1—100nm)的极细颗粒组成的固体材料。从广义上讲,纳米材料是指三维空间尺寸中至少有一维处于纳米量级的材料。通常分为零维材料(纳米微粒),一维材料(直径为纳米量级的纤维),二维材料(厚度为纳米量级的薄膜与多层膜),以及基于上述低维材料所构成的固体。从狭义上讲,则主要包括纳米微粒及由它构成的纳米固体(体材料与微粒膜)。纳米材料的研究是人类认识客观世界的新层次,是交叉学科跨世纪的战略科技领域[1]。 碳纳米材料主要包括富勒烯、碳纳米管和石墨烯等,是纳米科学技术中不可或缺的材料,从1985年富勒烯(Fullerene) 的出现到1991年碳纳米管(carbon nanotube,CNTs) 的发现,碳纳米材料所具有的独特物理和化学性质引起了国内外研究人员广泛而深入的研究,二十年来取得了很多的成果。2004 年Geim 研究组的报道使得石墨烯( Graphene)成为碳纳米材料新一轮的研究热点,其出现充实了碳纳米材料家族,石墨烯具有由碳原子组成的单层蜂巢状二维结构,由于它只有一个原子的厚度,可以将其视为形成其它各种维度的石墨相关结构碳材料的基本建筑块,石墨烯既可翘曲形成零维的富勒烯及卷曲形成一维的碳纳米管,亦可面对面堆积形成石墨,由于石墨烯具有优异的电学、导热和机械性能及较大的比表面积,因而在储氢材料、超级电容器、高效催化剂及纳米生物传感等方面有着广泛的应用[2]。 2.常见的碳纳米材料

电化学在制备纳米材料方面的应用

电化学在制备纳米材料方面的应用 摘要:应用电化学方法制备纳米材料是近年来发展起来的一项新技术。本文对应用电化学技术制备纳米材料的方法进行分类,着重介绍了电化学沉积法、电弧法、超声电化学法和电化学腐蚀法,并对其应用前景做了展望。 关键词:电化学纳米材料电沉积 1 前言 纳米材料和纳米技术被广泛认为是二十一世纪最重要的新型材料和科技领域之一。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当材料的粒子尺寸小至纳米级时,材料就具有普通材料所不具备的三大效应:(1)小尺寸效应,指当纳米粒子的尺寸与传统电子的德布罗意波长以及超导体的相干波长等物理尺寸相当或更小时,其周期性的边界条件将被破坏,光吸收、电磁、化学活性、催化等性质发生很大变化的效应;(2)表面效应,指纳米微粒表面原子与总原子数之比。纳米微粒尺寸小,表面能高,位于表面的原子占相当大的比例。随着粒径减小,表面原子数迅速增加。由于表面原子数增加,原子配位不足及高的表面能,使得这些表面原子具有高的活性,极不稳定,使其在催化、吸附等方面具有常规材料无法比拟的优越性;(3)宏观量子隧道效应。微观粒子具有贯穿势垒的能力称为隧道效应。研究发现,一些宏观量,如纳米粒子的磁化强度、量子相干器件中的磁通量也具有隧道效应,称为宏观量子隧道效应。正是由于纳米材料具有上面的三大效应,才使它表现出:(1)高强度和高韧性;(2)高热膨胀系数、高比热容和低熔点;(3)异常的导电率和磁化率;(4)极强的吸波性;(5)高扩散性等令人难以置信的奇特的宏观物理特性。 自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。 由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制在纳米材料合成中是非常重要的。 目前制备纳米材料主要采用机械法、气相法、磁控溅射法等物理方法和溶胶—凝胶法、离子液法、溶剂热法、微乳法化学方法。但在这些方法中,机械法、气相法、磁控溅射法的生产设备及条件要求很高,生产成本高;化学方法中的离子液法和微乳法是近几年发展起来的新兴的研究领域,同时离子液离子液作为一种特殊的有机溶剂,具有粘度较大、离子传导性较高、热稳定性高、低毒、流动性好等独特的物理化学性质,但是离子液体用于纳米材料制备的技术还未成熟。 应用电化学技术制备纳米材料由于简单易行、成本低廉等特点被广泛研究与采用。与其他方法相比,电化学制备方法主要具有以下优点:1、适合用于制备的纳米晶金属、合金及复合材料的种类较多;2、电化学制备纳米材料过程中的电位可以人为控制。整个过程容易实现计算机监控,在技术上困难较小、工艺灵活,易于实验室向工业现场转变;3、常温常压操作,避免了高温在材料内部引入的热应力;4、电沉积易使沉积原子在单晶基底上外延生长,可在大面积和复杂形状的零件上获得较好的外延生长层。 电化学方法已在纳米材料的制备研究领域取得了一系列具有开拓性的研究成果。本文综述了应用电化学技术制备纳米材料的主要的几种方法及其制备原理,并对其优劣进行了比较。 2 应用电化学技术制备纳米材料的种类 2.1 电化学沉积法 与传统的纳米晶体材料制备相比,电沉积法具有以下优点:(1)晶粒尺寸在1~100 nm内;(2)

纳米材料论文

学院:机电工程学院 专业年级:2009级机械五班 学生姓名:刘威学号:20091347 指导老师:袁光明

纳米材料与应用 (中南林业科技大学机电工程学院机械专业20091347,湖南长沙,410004)摘要:简要介绍了纳米材料的分类以及它的基本效应,讲解了纳米材料的特殊性能。分析了新型能源纳米材料中光电转换、热点转换、超级电容器及电池电极的纳米材料;环境净化纳米材料中的光催化、吸附、尾气处理等;较具体的讲述了纳米生物医药材料中纳米陶瓷材料、纳米碳材料、纳米高分子材料、纳米复合材料。 关键词:纳米材料,性能,应用。 【Abstract】: Briefly introduces the classification of nanomaterials and its basic effect, explaining the nanometer material the special performance. A new energy nanomaterials analyzed in photoelectric conversion, hot conversion, super capacitors and battery electrodes nanometer material; Environmental purification of nanomaterials photocatalytic, adsorption, exhaust handling, etc.; The more specific about nano biological medicine materials nano ceramic material, nano carbon materials, nanometer high polymer materials, nano composite materials. 【Keywords】: nanomaterials, performance ,the application. 纳米是一个长度单位,1nm=10ˉ9m。纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1~100nm。当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。纳米尺度和性能的特异变化是纳米材料必须同时具备的两个基本特征。 按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材料和其他非金属纳米材料。 按纳米尺度在空间的表达特征,纳米材料可分为零维纳米材料即纳米颗粒材料、一维纳米材料(如纳米线、棒、丝、管和纤维等)、二维纳米材料(如纳米膜、纳米盘和超晶格等)、纳米结构材料即纳米空间材料(如介孔材料)。 按形态,纳米材料可分为纳米颗粒材料、纳米固体材料(也称纳米块体材料)、纳米膜材料以及纳米液体材料(如磁性液体纳米材料和纳米溶胶等)。 按功能,纳米材料可分为纳米生物材料、纳米磁性材料、纳米药物材料、纳米催化材料、纳米智能材料、纳米吸波材料、纳米热敏材料以及纳米环保材料等)。 当纳米材料的结构进入纳米尺度调至范围时,会表现出小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应等纳米效应。 表面效应是指纳米粒子表面原子数与总原子之比随粒径的变小而急剧增大后引起的性质上的变化。随着粒径的减小,纳米粒子的表面原子数、比表面积、表面能及表面结合能都迅速增大。表面原子处于裸露状态,周围缺少相邻的原子,有许多剩余键力,易与其他原子结合而稳定具有较高的化学活性。纳米材料中界面原子所占的体积分数很大,它对材料性能的影响非常显著。低温超塑性是纳米材料的一个重要特性,普通陶瓷只有在1 000℃以上,在小于一定的应变速率时才能表现出塑性,而许多纳米陶瓷在室温下就会发生塑性变形。这种纳米陶瓷增韧效应主要归因于大量界面的存在。而它的塑性变形主要是通过晶粒之间相对滑移而实现的。 而小尺寸效应纳米粒子的熔点可远低于块状本体,此特性为粉末冶金工业提供了新工艺,利用等离子共振频移随颗粒尺寸变化的性质,可通过改变颗粒尺寸,控制吸收边的位移,构造具有一定频宽的微波吸收纳米材料,用于电磁波屏蔽、隐形飞机等。 对于量子尺寸而言,对于晶粒状态难以发光的间接带隙半导体,当其粒径减少到纳米量级时,会表现出明显的可见光发光现象,且随着粒径的进一步减少,发光强度逐渐增强,

零维量子点二维纳米片复合材料的制备及其光催化、气敏性能研究

零维量子点/二维纳米片复合材料的制备及其光催化、气敏性能 研究 人类社会发展进程中所产生的水污染和空气污染不但制约了社会经济的可持续发展,而且严重威胁到人类的健康。在污染治理与监控方面,半导体光催化技术和气敏传感器由于其独特的优势得到了研究者的广泛关注。 一方面,利用半导体光催化技术可以将太阳能转化成化学能用于污染物的深度降解;另一方面,半导体气敏传感器能够检测和量化有毒、有害、易燃和易爆气体等用于环境污染的检测与监控。在半导体材料性能改进的方法中,利用零维量子点与二维纳米片复合形成异质结或同质结被证明是构筑高性能半导体材料最有效的方法之一。 因此,本论文合成了多种零维量子点/二维纳米片复合材料来构筑高效光催化剂、气敏传感器并对其机制进行了讨论。主要研究内容如下:1.合成了 TiO2QDs/TiO2纳米片同质结构复合材料,并对其光催化性能及机制进行研究。 通过同质结的构建,加快光生电子空穴的分离及转移的同时抑制了光生电子和空穴的复合,从而显著提升其光催化活性。其中TiO2QDs/TiO2-40同质结构复合材料在30 min内就可以将RhB全部降解,是TiO2纳米片降解速率的大约5倍。 2.合成了CQDs/TiO2纳米片异质结构复合材料,并对其可见光光催化活性及机理进行了研究。在自然光的照射下,复合材料表现出比TiO2纳米片更优异的光催化活性,即使在可见光下(λ≥420 nm)也能实现对RhB的降解。 这得益于CQDs既可以作为电子存储器,分离光生电子和空穴,还可以作为光敏化剂将长波长光转换为TiO2能够吸收的短波长光,从而提高复合材料的光催化活性。3.合成了TiO2QDs/g-C3N4纳米片异质结构复合材料,并对其在可见光下

相关文档
最新文档