机械安全系数的确定

机械安全系数的确定
机械安全系数的确定

各类机械设计安全系数

进行土木、机械等工程设计时,为了防止因材料的缺点、工作的偏差、外力的突增等因素所引起的后果,工程的受力部分实际上能够担负的力必须大于其容许担负的力,二者之比叫做安全系数,即极限应力与许用应力之比。也指做某事的安全、可靠程度。在机械设计中,零件或构件所用材料的失效应力与设计应力的比值。大多数结构钢和铝合金等塑性材料的应力-应变曲线有明显的屈服,故规定由塑性材料制成的零件或构件的失效应力为屈服极限,这称为屈服准则。铸铁和高强钢等脆性材料的应力-应变曲线没有明显的屈服,故规定由脆性材料制成的零件或构件的失效应力为强度极限,这称为断裂准则。在疲劳强度设计中,失效应力采用疲劳极限,安全系数在很大程度上根据设计经验来确定.

机械制图——直线的投影

教学时数: 2学时 课题:§3-4 直线的投影 教学目标: 1、掌握直线的三面投影作法; 2、掌握直线在三投影面体系中的投影特性; 3、能画出投影面平行线、垂直线的投影图。 教学重点: 1、直线的三面投影图作法; 2、直线在三投影面体系中的投影特性。 教学难点: 投影面平行线、垂直线的投影图 教学方法: 讲授法与演示法相结合。 教具: 挂图、示教板 教学步骤: (复习提问) 1、点的投影规律是什么? 2、已知B(20,18,15)求作B点的三面投影图和直观图。 (引入新课) 直线的投影应包括无限长直线的投影和直线线段的投影,我们主要讨论直线线段的投影。

(讲授新课) §3-4 直线的投影 一、直线 在绘制直线的投影图时,只要作出直线上任意两点的投影,再将两点的同面投影连接起来,即得到直线的三面投影。 二、直线的投影特性 1、直线倾斜于投影面:投影具有收缩性,投影变短线。 2、直线平行于投影面:投影具有真实性,投影实长现。 3、直线垂直于投影面:投影具有积聚性,投影聚一点。 三、直线在三投影面体系中的投影特性 (1)一般位置直线:对于三个投影面均处于倾斜位置; (2)投影面平行线:平行于一个投影面,而与另外两投影面倾斜。 (3)投影面垂直线:垂直于一个投影面,而平行于另外两投影面。 1、一般位置直线 投影特性:

(1)在三个投影面上的投影均是倾斜直线; (2)投影长度均小于实长。 2、投影面平行线 (1)三种位置 正平线:平行于V面的直线; 水平线:平行于H面的直线; 侧平线:平行于W面的直线。 (2)投影特性: ①在所平行的投影面上的投影为一段反映实长的斜线; ②在其他两个投影面上的投影分别平行于相应的投影轴,长度 缩短。 3、投影面垂直线 (1)三种位置 正垂线:垂直于V面的直线; 铅垂线:垂直于H面的直线; 侧垂线:垂直于W面的直线。 (2)投影特性: ①在所垂直的投影面上的投影积聚为一点; ②在其他两个投影面上的投影分别平行于相应的投影轴,且反 映实长。 (巩固练习) 直线在三投影面体系中的投影特性。

机械设计基础公式计算例题

一、计算图所示振动式输送机的自由度。 解:原动构件1绕A 轴转动、通过相互铰接的运动构件2、3、4带动滑块5作往复直线移动。构件2、3和4在C 处构成复合铰链。此机构共有5个运动构件、6个转动副、1个移动副,即n =5,l p =7,h p =0。则该机构的自由度为 3-2) 3-3) 同理,当设a >d 时,亦可得出 得c d ≤b d ≤a d ≤ 分析以上诸式,即可得出铰链四杆机构有曲柄的条件为:

(1)连架杆和机架中必有一杆是最短杆。 (2)最短杆与最长杆长度之和不大于其他两杆长度之和。 上述两个条件必须同时满足,否则机构中便不可能存在曲柄,因而只能是双摇杆机构。 通常可用以下方法来判别铰链四杆机构的基本类型: 四、从动件位移s与凸轮转角?之间的关系可用图表示,它称为位移曲线(也称? S曲线) -位移曲线直观地表示了从动件的位移变化规律,它是凸轮轮廓设计的依据 凸轮与从动件的运动关系 五、凸轮等速运动规律

???? ? ?? ?? == ====00 0dt dv a h S h v v ? ?ω?常数从动件等速运动的运动参数表达式为 等速运动规律运动曲线 等速运动位移曲线的修正 ,两轮的中心距α=630mm ,主动带轮转速1n 1 450 r/min ,能传递的最大功率P=10kW 。试求:V 带中各应力,并画出各应力1σ、σ2、σb1、σb2及σc 的分布图。 附:V 带的弹性模量E=130~200MPa ;V 带的质量q=0.8kg/m ;带与带轮间的当量摩擦系数fv=0.51;B 型带的截面积A=138mm2;B 型带的高度h=10.5mm 。

机械设计转动惯量计算公式-参考模板

1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2 MD J = 对于钢材:3 410 32-??=g L rD J π ) (1078.0264s cm kgf L D ???-M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22? ?? ??? =n v J π g w 2s 2 ? ?? ??=π (kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 122 221??? ??? ??????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 2 g w R J = (kgf·cm·s 2) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)

6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 ???? ??++=2221g w 1R J i J J t J 1,J 2-分别为Ⅰ轴, Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2); R-齿轮z 分度圆半径(cm); w-工件及工作台重量(kgf)。 马达力矩计算 (1) 快速空载时所需力矩: 0f amax M M M M ++= (2) 最大切削负载时所需力矩: t 0f t a M M M M M +++= (3) 快速进给时所需力矩: 0f M M M += 式中M amax —空载启动时折算到马达轴上的加速力矩(kgf·m); M f —折算到马达轴上的摩擦力矩(kgf·m); M 0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf·m); M at —切削时折算到马达轴上的加速力矩(kgf·m); M t —折算到马达轴上的切削负载力矩(kgf·m)。 在采用滚动丝杠螺母传动时,M a 、M f 、M 0、M t 的计算公式如下: (4) 加速力矩: 2a 106.9M -?= T n J r (kgf·m) s T 17 1= J r —折算到马达轴上的总惯量; T —系统时间常数(s); n —马达转速( r/min ); 当 n = n max 时,计算M amax n = n t 时,计算M at n t —切削时的转速( r / min )

机械设计第九版公式大全

? 第五章 螺纹连接和螺旋传动 受拉螺栓连接 1、受轴向力F Σ 每个螺栓所受轴向工作载荷:z F F /∑= z :螺栓数目; F :每个螺栓所受工作载荷 2、受横向力F Σ 每个螺栓预紧力:fiz F K F s ∑> f :接合面摩擦系数;i :接合面对数;s K :防滑系数; z :螺栓数目 3、受旋转力矩T 每个螺栓所受预紧力:∑=≥ n i i s r f T K F 10 s K :防滑系数; f :摩擦系数; — 4、受翻转力矩M 螺栓受最大工作载荷:∑=≥ z i i L ML F 1 2max max m ax L :最远螺栓距离 受剪螺栓连接 5、受横向力F Σ(铰制孔用螺栓) 每个螺栓所受工作剪力:z F F /∑= z :螺栓数目; 6、受旋转力矩T (铰制孔用螺栓) 受力最大螺栓所受工作剪力:∑=≥ z i i r Tr F 1 2 max max m ax r :最远螺栓距离 螺栓连接强度计算 { 松螺栓连接:[]σπσ≤= 4 2 1d F 只受预紧力的紧螺栓连接:[]σπσ≤= 4 3.1210 d F 受预紧力和轴向工作载荷的紧螺栓连接: 受轴向静载荷:[]σπσ ≤= 4 3.1212 d F 受轴向动载荷:[]p m b b a d F C C C σπσ≤?+= 21 2 受剪力的铰制孔用螺栓连接剪力: 螺栓的剪切强度条件:[]σπτ ≤= 4 /20d F 螺栓与孔壁挤压强度:[]p p L d F σσ≤= min 螺纹连接的许用应力 许用拉应力: []S S σσ= 许用切应力: []τ στS S =

机械制图教案直线的投影

《机械制图与计算机绘图》教案 第 1 页

教学 手段 教学容师生互动 回顾举例举例本节课容较多较难,多用图片示例,直观进行讲解。 一.概述 (5分钟) 回顾点的投影,用一般直线投影概括介绍本节容。 二.各种位置直线(25分钟) 1.投影面平行线 2. 投影面垂直线 本节课容既多又难多 放投影演示,不可忽 略学生反应。 第 2 页 颠倒课本顺 序,先讲特 殊直线,再 讲一般直 线,由浅入 深。

教学手段 教 学 容 师生互动 举例 举例 3.一般位置直线及倾角 三.直线上点的投影(15分钟) 提问 第 3 页 将一般位置直线与倾角合并讲解。有助于理解。 直线的三面投影均小于实长,且倾斜于投影轴,其与投影轴 的夹角并不反映空间线段与三个投影面倾角的大小.

手段 教学容师生互动 习题习题第二课时 1.习题1. 2.4(10分钟) 四.两直线相对位置(35分钟) 1.平行两直线(5分钟) 2.相交两直线(5分钟) 讲解习题 讲完本小节知识后立 即讲解习题。 第 4 页

手段 教学容师生互动 习题 若空间两直线相交,则其同面投影必相交,且交点的投影 必符合空间一点的投影特性。 3.交叉两直线(5分钟) “交点”是两直线上的一对重影点的投影,用其可帮助判断 两直线的空间位置。 4.习题1.2.8(5分钟) 讲解习题 第 5 页 此题较为简 单,为使学 生巩固知 识。

手段 教 学 容 师生互动 习题 5.习题 1.2..9(7分钟) 6.习题1.2.11(8分钟) 讲解习题 讲解习题 第 6 页 若时间不充裕,可仅做一习题,由学生独立完成。

《机械设计》第九版-公式大全

第五章 螺纹连接和螺旋传动 受拉螺栓连接 1、受轴向力F Σ 每个螺栓所受轴向工作载荷:z F F /∑= z :螺栓数目; F :每个螺栓所受工作载荷 2、受横向力F Σ 每个螺栓预紧力:fiz F K F s ∑> f :接合面摩擦系数;i :接合面对数;s K :防滑系数; z :螺栓数目 3、受旋转力矩T 每个螺栓所受预紧力:∑=≥ n i i s r f T K F 10 s K :防滑系数; f :摩擦系数; 4、受翻转力矩M 螺栓受最大工作载荷:∑=≥ z i i L ML F 1 2max max m ax L :最远螺栓距离 受剪螺栓连接 5、受横向力F Σ(铰制孔用螺栓) 每个螺栓所受工作剪力:z F F /∑= z :螺栓数目; 6、受旋转力矩T (铰制孔用螺栓) 受力最大螺栓所受工作剪力:∑=≥ z i i r Tr F 1 2 max max m ax r :最远螺栓距离 螺栓连接强度计算 松螺栓连接:[]σπσ ≤= 4 21d F 只受预紧力的紧螺栓连接:[]σπσ≤= 4 3.1210 d F 受预紧力和轴向工作载荷的紧螺栓连接: 受轴向静载荷:[]σπσ ≤= 4 3.12 12 d F 受轴向动载荷:[]p m b b a d F C C C σπσ≤?+= 21 2 受剪力的铰制孔用螺栓连接剪力: 螺栓的剪切强度条件:[]σπτ ≤= 4 /20 d F 螺栓与孔壁挤压强度:[]p p L d F σσ≤= min 螺纹连接的许用应力 许用拉应力: []S S σσ= 许用切应力: []τ στS S =

直线的投影机械制图作业练习题

直线的投影机械制图作业 练习题 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、填空 1.当空间的两点位于同一条投射线上时,它们在该投射线所垂直的投影面上的投影重合为一点,称这样的两点为对该投影面的____________。 2.直线AB的V、W面投影均反映实长,该直线为_______。 二、选择题 1.直线AB的V投影平行于OX轴,下列直线中符合该投影特征的为( )。 A.水平线 B.正平线 C.侧平线 D.铅垂线 2.直线AB的V、H面投影均反映实长,该直线为( )。 A.水平线 B.正垂线 C.侧平线 D.侧垂线 3.直线AB的正面投影反映为一点,该直线为( )。 A.水平线 B.正平线 C.铅垂线 D.正垂线 4.根据右图,判断点K 是否在AB 直线上,_______。 A. 是 B. 否 C. 无法确定 三、综合题 1. 在图1中,根据已知直线AB的水平投影ab、正面投影a’b’和点C的水平投 影c、正面投影c’,请补齐直线AB和C点的第三投影,并判断点C 是否在AB 直线上。 图1 图2

2. 在右上图2中,已知直线AB和C点的正面投影、水平投影,过C点作一条水平线CD与AB相交,请将直线CD的正面投影和水平投影补画出来。 3.判断下列各对直线的相对位置(平行、相交、交叉),将答案填入空格处。 答:答: 4.判断下列各对直线的相对位置(平行、相交、交叉),将答案填入空格处。 5.已知C 点在直线AB 上,请根据C点的水平投影c , 求正面投影c’、侧面投影c”。

6.首先,补画俯视图、左视图中遗漏的线段。 然后,将立体图中A点、B点、C点这三点,在主视图、俯视图、左视图上相应的正面投影、水平投影、侧面投影标示出来。 最后,在空格处将AB、BC、CA线段的名称填写。

《机械设计》公式-参考模板

符号参数名称公式备注 ψ螺纹升角S导程P螺距 d2中径d大径d1小径ηφv当量摩擦角 自锁条件 横向载荷(摩擦力起作用,注意结合面数量:不考虑螺母与工件之间的数量) F∑——横向总载荷 f——摩擦系数 i——结合面数 z——螺栓数目 Ks——防滑系数 受转矩的螺栓组连接(预紧力产生的摩擦力矩) 采用铰制孔螺栓时,变形与距离成正比 受轴向载荷的螺栓组连接 工作载荷F不是总拉力,还要考虑F0(预紧力) 受倾覆力矩的螺栓组连接

b是倾覆力矩方向 松螺栓连接 紧螺栓连接(1.3倍) 预紧力+工作拉力 F2总拉力 F0预紧力 F1残余预紧力(1、余谐音)F工作拉力

承受工作剪力的紧螺栓连接(挤压+剪切)挤压强度条件 剪切强度条件

符号参数名称公式1 备注普通平键连接的强度条件 T——N?m k=0.5h l——键的工作长度,A圆B平C半圆 d——轴的直径 [σp]——许用挤压应力,多用于校核静连接 导向平键连接和滑键连接 [p]——许用应力,多用于校核动连接 半圆键 k——查表 l=L 花键 静连接 动连接 ψ——载荷分配不均系数,与齿数多少有关,一般取ψ=0.7~0.8,齿数多取小h——花键齿侧面的工作高度,矩形花键 渐开线花键 α=30°:h=m α=45°:h=0.8m dm——矩形花键 渐开线花键 dm=di

带传动 符号参数名称公式1 公式2 备注F1 紧边拉力 F2 松边拉力 F0 初拉力 Fe 有效拉力 可以用来校核是 否打滑f应用fv α用弧度 f与α同向,都是大好 α1包角 α2包角 σ1紧边拉应力σ1=F1/A σ2紧边拉应力σ2=F2/A σb1弯曲应力 σb2弯曲应力 σc离心拉应力全长都有,一致 σmax瞬时最大应力处 Ld0 带长 a0 初选中心距

机械设计基础公式计算例题

机械设计基础公式计算 例题 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

一、计算图所示振动式输送机的自由度。 解:原动构件1绕A 轴转动、通过相互铰接的运动构件2、3、4带动滑块5作往复直线移动。构件2、3和4在C 处构成复合铰链。此机构共有5个运动构件、6个转动副、1个移动副,即n =5,l p =7,h p =0。则该机构的自由度为 F =h l p p n --23=07253-?-?=1 二、在图所示的铰链四杆机构中,设分别以a 、b 、c 、d 表示机构中各构件的长度,且设a <d 。如果构件AB 为曲柄,则AB 能绕轴A 相对机架作整周转动。为此构件AB 能占据与构件AD 拉直共线和重叠共线的两个位置B A '及B A ''。由图可见,为了使构件AB 能够转至位置B A ',显然各构件的长度关系应满足 c b d a +≤+ (3-1) 为了使构件AB 能够转至位置B A '',各构件的长度关系应满足 c a d b +-≤)(或b a d c +-≤)( 即c d b a +≤+ (3-2) 或b d c a +≤+ (3-3) 将式(3-1)、(3-2)、(3-3)分别两两相加,则得 同理,当设a >d 时,亦可得出 得c d ≤b d ≤a d ≤ 分析以上诸式,即可得出铰链四杆机构有曲柄的条件为: (1)连架杆和机架中必有一杆是最短杆。 (2)最短杆与最长杆长度之和不大于其他两杆长度之和。

上述两个条件必须同时满足,否则机构中便不可能存在曲柄,因而只能是双摇杆机构。 通常可用以下方法来判别铰链四杆机构的基本类型: (1)若机构满足杆长之和条件,则: ① 以最短杆为机架时,可得双曲柄机构。 ② 以最短杆的邻边为机架时,可得曲柄摇杆机构。 ③ 以最短杆的对边为机架时,可得双摇杆机构。 (2)若机构不满足杆长之和条件则只能获得双摇杆机构。 三、 k = 12v v =121221t C C t C C =21t t =21??= θ θ-?+?180180 即k = θ θ-?+?180180 θ=11 180+-?k k 式中k 称为急回机构的行程速度变化系数。 四、从动件位移s 与凸轮转角?之间的关系可用图表示,它称为位移曲线(也称 ?-S 曲线)位移曲线直观地表示了从动件的位移变化规律,它是凸轮轮廓设 计的依据 凸轮与从动件的运动关系 五、凸轮等速运动规律 ???? ? ? ? ?? == ====00 0dt dv a h S h v v ? ?ω?常数从动件等速运动的运动参数表达式为 等速运动规律运动曲线 等速运动位移曲线的修正 六、凸轮等加等减速运动规律(抛物线运动规律)

机械设计常用计算公式 集(一)

运动学篇 一、直线运动: 基本公式:(距离、速度、加速度和时间之间的关系) 1)路程=初速度x时间+加速度x时间^2/2 2)平均速度=路程/时间; 3)末速度-初速度=2x加速度x路程; 4)加速度=(末速度-初速度)/时间 5)中间时刻速度=(初速度+末速度)/2 6)力与运动之间的联系:牛顿第二定律:F=ma,[合外力(N)=物体质量(kg)x加速度(m/s^2)] (注:重力加速度g=9.8m/s^2或g=9.8N/kg) 二、旋转运动:(旋转运动与直线运动类似,注:弧度是没有单位的) 单位对比: 圆的弧长计算公式: 弧长s=rθ=圆弧的半径x圆弧角度(角位移) 周长=C=2πr=πd,即:圆的周长=2x3.14x圆弧的半径=3.14x圆弧的直径 旋转运动中角位移、弧度(rad)和公转(r)之间的关系。

1)1r(公转)=2π(弧度)=360°(角位移) 2)1rad=360°/(2π)=57.3° 3)1°=2π/360°=0.01745rad 4)1rad=0.16r 5)1°=0.003r 6)1r/min=1x2x3.14=6.28rad/min 7)1r/min=1x360°=360°/min 三、旋转运动与直线运动的联系: 1)弧长计算公式(s=rθ):弧长=圆弧的半径x圆心角(圆弧角度或角位移) 2)角速度(角速度是角度(角位移)的时间变化率)(ω=θ/t):角速度=圆弧角度/时间 注:结合上式可推倒出角速度与圆周速度(即:s/t也称切线速度)之间的关系。S 3)圆周速度=角速度x半径,(即:v=ωr) 注:角度度ω的单位一般为rad/s,实际应用中,旋转速度的单位大多表示为r/min (每分钟多少转)。可通过下式换算: 1rad/s=1x60/(2x3.14)r/min 例如:电机的转速为100rad/s的速度运行,我们将角速度ω=100rad/s换算成r/min 单位,则为: ω=100rad/s=100x60/(2π)=955r/min 4)rad/s和r/min的联系公式: 转速n(r/min)= ω(rad/s)x60/(2π),即:转速(r/min)=角速度(rad/s) x60/(2π); 5)角速度ω与转速n之间的关系(使用时须注意单位统一):ω=2πn,(即:带单位时为角速度(rad/s)=2x3.14x转速(r/min)/60) 6)直线(切线)速度、转速和2πr(圆的周长)之间的关系(使用时需注意单位):

机械设计基础公式汇总

机械设计基础公式汇总 机械设计基础公式大家了解吗?以下是XX为大家整理好的机械设计基础公式汇总,一起来学习吧. 零件:独立的制造单元 构件:独立的运动单元体 机构:用来传递运动和力的、有一个构件为机架的、用构件间能够相对运动的连接方式组成的构件系统 机器:是执行机械运动的装置,用来变换或传递能量、物料、信息 机械:机器和机构的总称 机构运动简图:用简单的线条和符号来代表构件和运动副,并按一定比例确定各运动副的相对位置,这种表示机构中各构件间相对运动关系的简单图形称为机构运动简图 运动副:由两个构件直接接触而组成的可动的连接运动副元素:把两构件上能够参加接触而构成的运动副表面 运动副的自由度和约束数的关系f=6-s 运动链:构件通过运动副的连接而构成的可相对运动系统 高副:两构件通过点线接触而构成的运动副 低副:两构件通过面接触而构成的运动副 平面运动副的最大约束数为2,最小约束数为1;引入一个约束的运动副为高副,引入两个约束的运动副为平面低副 平面自由度计算公式:F=3n-2PL-PH 机构可动的条件:机构的自由度大于零 机构具有确定运动的条件:机构的原动件的数目应等于机构的自由度数目

虚约束:对机构不起限制作用的约束 局部自由度:与输出机构运动无关的自由度 复合铰链:两个以上构件同时在一处用转动副相连接速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点。若绝对速度为零,则该瞬心称为绝对瞬心 相对速度瞬心与绝对速度瞬心的相同点:互作平面相对运动的两构件上瞬时相对速度为零的点;不同点:后者绝对速度为零,前者不是 三心定理:三个彼此作平面运动的构件的三个瞬心必位于同一直线上 机构的瞬心数:N=K(K-1)/2 机械自锁:有些机械中,有些机械按其结构情况分析是可以运动的,但由于摩擦的存在却会出现无论如何增大驱动力也无法使其运动 曲柄:作整周定轴回转的构件; 连杆:作平面运动的构件; 摇杆:作定轴摆动的构件; 连架杆:与机架相联的构件; 周转副:能作360?相对回转的运动副 摆转副:只能作有限角度摆动的运动副。 铰链四杆机构有曲柄的条件: 1.最长杆与最短杆的长度之和应≤其他两杆长度之和,称为杆长条件。 2.连架杆或机架之一为最短杆。 当满足杆长条件时,其最短杆参与构成的转动副都是整转副。 铰链四杆机构的三种基本形式:

机械设计课程设计-电动机的选择计算

第三章电动机的选择计算 合理的选择电动机是正确使用的先决条件。选择恰当,电动机就能安全、经济、可靠地运行;选择得不合适,轻者造成浪费,重者烧毁电动机。选择电动机的内容包括很多,例如电压、频率、功率、转速、启动转矩、防护形式、结构形式等,但是结合农村具体情况,需要选择的通常只是功率、转速、防护形式等几项比较重要的内容,因此在这里介绍一下电动机的选择方法及使用。 3.1电动机选择步骤 电动机的选择一般遵循以下三个步骤: 3.1.1 型号的选择 电动机的型号很多,通常选用异步电动机。从类型上可分为鼠笼式与绕线式异步电动机两种。常用鼠笼式的有J、J2、JO、JO2、JO3系列的小型异步电动机和JS、JSQ系列中型异步电动机。绕线式的有JR、JR O2系列小型绕线式异步电动机和JRQ系列中型绕线式异步电动机。 从电动机的防护形式上又可分为以下几种: 1.防护式。这种电动机的外壳有通风孔,能防止水滴、铁屑等物从上面或垂直方向成45o以内掉进电动机内部,但是灰尘潮气还是能侵入电动机内部,它的通风性能比较好,价格也比较便宜,在干燥、灰尘不多的地方可以采用。“J”系列电动机就属于这种防护形式。 2.封闭式。这种电动机的转子,定子绕组等都装在一个封闭的机壳内,能防止灰尘、铁屑或其它杂物侵入电动机内部,但它的密封不很严密,所以还不能在水中工作,“JO”系列电动机属于这种防护形式。在农村尘土飞扬、水花四溅的地方(如农副业加工机械和水泵)广泛地使用这种电动机。 3.密封式。这种电动机的整个机体都严密的密封起来,可以浸没在水里工作,农村的电动潜水泵就需要这种电动机。 实际上,农村用来带动水泵、机磨、脱粒机、扎花机和粉碎机等农业机械的小型电动机大多选用JO、JO2系列电动机。 在特殊场合可选用一些特殊用途的电动机。如JBS系列小型三相防爆异步电动机,JQS 系列井用潜水泵三相异步电动机以及DM2系列深井泵用三相异步电动机。 3.1.2 功率的选择 一般机械都注明应配套使用的电动机功率,更换或配套时十分方便,有的农业机械注明本机的机械功率,可把电动机功率选得比它大10%即可(指直接传动)。一些自制简易农机具,我们可以凭经验粗选一台电动机进行试验,用测得的电功率来选择电动机功率。

机械设计常用设计公式

1-05 常用設計公式 1. 彈簧基本計算公式 a. 壓縮、拉伸螺旋彈簧之計算公式。( 圓形斷面 ) (彈簧指數與初張力之關係): b. 扭力彈簧之計算公式。( 圓形斷面 )

c. 符號代號: d:線材直徑G:橫彈性係數D:平均直徑 E:縱彈性係數 n:有效卷數 P:荷重 d. 彈簧的設計項目 1. 輸入所需長度L (mm) 2. 輸入線徑d (mm) 3. 輸入所需張力P (kg) 4. 輸入有效圈數Na=Nt (mm) 5. 輸入外徑D1 (mm) 6. 輸入內徑D2 (mm) 7. 容許張力正負誤差(kg) 8. 橫向彈性係數G (kg/mm) 9. 彈簧常數k (kg/mm) 10. 預估伸長彈簧初張力Pi (kg) 11. (預估初張力之扭轉應力kg/mm^2) 12. 容許最大伸長量max (mm) 13. 自由長度L0 (mm) 14. 預估伸長總長度(mm) 15. 彈簧距(mm) 16. 容許最小伸長量min (mm) 17. 彈簧指數之限制: c = D/d (c > 4) 18. 有效圈數Na (mm) (Na > 3) 19. check 內徑,外徑,線徑20. 總伸長量不超過Li (自由長+ 簧距) 21. check 設計長度是否符合(max); check 設計長度是否符合(min) 22. 材料

2. 皮帶傳動基本設計公式 a. 計算功率: P c=K A·P P→傳動的功率,KW K A→工作情況系數 b. 確定帶型號: (公司一般選用多槽皮帶; 例: 190J8) c. 小帶輪節圓直徑: d1為了提高帶的壽命, 在結構允許的情況下盡量選大些的尺寸. d. 大帶輪節圓直徑: d2=n1/n2·d1(mm) e. 帶速: v=(π·d1·n1) ╱60x1000 為充分發揮傳動能力, 帶速約在20m/s最佳 f. 初定中心距: a0在0.7 (d1+ d2) 與2 (d1+ d2) 之間; 或根據結構要求定(mm) g. 初算帶長度: L0約等於2a0+π/2(d1+ d2)+ (d2- d1)2╱4 a0 選用規格中基準帶長度L p (mm) h. 實際中心距: a約等於a0+ (L p- L0)╱2 (mm) 安裝時所需最小中心距: a min= a- 0.015L p 張緊或補償所需最大中心距: a max= a+ 0.03L p i. 小帶輪包角: α1=180?-(d2- d1)╱a·60?要小於等於120? 小帶輪包角較小時可增大或用張緊輪 j. 單根帶所能傳遞的功率: P0 根據截型、v和d1選取 P0是當α1 =180?, 在特定長度下三角帶所能傳遞的功率k. 單根帶傳遞功率的增量: ΔP=K b·n1(1- 1/K t) K b→小帶輪包角系數K t→長度系數 V帶傳動的主要失效形式 1. 帶在帶輪上打滑, 不能正常工作 2. 帶因疲勞而產生脫层, 撕裂和拉斷 3. 帶兩側面過度摩損 3. 其它常用公式 扭力: T= F x R T= (716.2 x HP)/N T=(974 x KW)/N 馬力: HP= (T x N)/716.2 HP=(F x V)/75 動力: KW= (T x N)/974 KW=(F x V)/102 速度: V= (πx D x N)/60 飛輪效: GD2=364(F x V2x N2)

机械设计基础公式计算例题

机械设计基础公式计算 例题 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一、计算图所示振动式输送机的自由度。 解:原动构件1绕A 轴转动、通过相互铰接的运动构件2、3、4带动滑块5作往复直线移动。构件2、3和4在C 处构成复合铰链。此机构共有5个运动构件、6个转动副、1个移动副,即n =5,l p =7,h p =0。则该机构的 自由度为 F =h l p p n --23=07253-?-?=1 二、在图所示的铰链四杆机构中,设分别以a 、b 、c 、d 表示机构中各构件的长度,且设a <d 。如果构件 AB 为曲柄,则AB 能绕轴A 相对机架作整周转动。为此构件AB 能占据与构件AD 拉直共线和重叠共线的两个位置B A '及B A ''。由图可见,为了使构件AB 能够转至位置B A ',显然各构件的长度关系应满足 c b d a +≤+ (3-1) 为了使构件AB 能够转至位置B A '',各构件的长度关系应满足 c a d b +-≤)(或b a d c +-≤)( 即c d b a +≤+ (3-2) 或b d c a +≤+ (3-3) 将式(3-1)、(3-2)、(3-3)分别两两相加,则得 同理,当设a >d 时,亦可得出 得c d ≤b d ≤a d ≤ 分析以上诸式,即可得出铰链四杆机构有曲柄的条件为: (1)连架杆和机架中必有一杆是最短杆。 (2)最短杆与最长杆长度之和不大于其他两杆长度之和。 上述两个条件必须同时满足,否则机构中便不可能存在曲柄,因而只能是双摇杆机构。 通常可用以下方法来判别铰链四杆机构的基本类型: (1)若机构满足杆长之和条件,则: ① 以最短杆为机架时,可得双曲柄机构。 ② 以最短杆的邻边为机架时,可得曲柄摇杆机构。 ③ 以最短杆的对边为机架时,可得双摇杆机构。 (2)若机构不满足杆长之和条件则只能获得双摇杆机构。 三、 k = 12v v =121221t C C t C C =21t t =21??= θ θ-?+?180180 即k = θ θ-?+?180180 θ=11 180+-?k k 式中k 称为急回机构的行程速度变化系数。 四、从动件位移s 与凸轮转角?之间的关系可用图表示,它称为位移曲线(也称?-S 曲线)位移曲线直观地表示了 从动件的位移变化规律,它是凸轮轮廓设计的依据 凸轮与从动件的运动关系 五、凸轮等速运动规律

机械设计基础公式计算例题精编WORD版

机械设计基础公式计算 例题精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

一、计算图所示振动式输送机的自由度。 解:原动构件1绕A 轴转动、通过相互铰接的运动构件2、3、4带动滑块5作往复直线移动。构件2、3和4在C 处构成复合铰链。此机构共有5个运动构件、6个转动副、1个移动副,即n =5,l p =7,h p =0。则该机构的自由度为 F =h l p p n --23=07253-?-?=1 二、在图所示的铰链四杆机构中,设分别以a 、b 、c 、d 表示机构中各构件的长度,且设a <d 。如果构件AB 为曲柄,则AB 能绕轴A 相对机架作整周转动。为此构件AB 能占据与构件AD 拉直共线和重叠共线的两个位置B A '及B A ''。由图可见,为了使构件AB 能够转至位置B A ',显然各构件的长度关系应满足 c b d a +≤+ (3-1) 为了使构件AB 能够转至位置B A '',各构件的长度关系应满足 c a d b +-≤)(或b a d c +-≤)( 即c d b a +≤+ (3-2) 或b d c a +≤+ (3-3) 将式(3-1)、(3-2)、(3-3)分别两两相加,则得 同理,当设a >d 时,亦可得出 得c d ≤b d ≤a d ≤

分析以上诸式,即可得出铰链四杆机构有曲柄的条件为: (1)连架杆和机架中必有一杆是最短杆。 (2)最短杆与最长杆长度之和不大于其他两杆长度之和。 上述两个条件必须同时满足,否则机构中便不可能存在曲柄,因而只能是双摇杆机构。 通常可用以下方法来判别铰链四杆机构的基本类型: (1)若机构满足杆长之和条件,则: ① 以最短杆为机架时,可得双曲柄机构。 ② 以最短杆的邻边为机架时,可得曲柄摇杆机构。 ③ 以最短杆的对边为机架时,可得双摇杆机构。 (2)若机构不满足杆长之和条件则只能获得双摇杆机构。 三、 k = 12v v =1 21221t C C t C C =21t t =21??=θθ-?+?180180 即k = θ θ-?+?180180 θ=11 180+-?k k 式中k 称为急回机构的行程速度变化系数。 四、从动件位移s 与凸轮转角?之间的关系可用图表示,它称为位移曲线(也称?-S 曲线) 位移曲线直观地表示了从动件的位移变化规律,它是凸轮轮廓设计的依据 凸轮与从动件的运动关系

机械式转向器的设计与计算

第四节机械式转向器的设计与计算 一、转向系计算载荷的确定 为了保证行驶安全,组成转向系的各零件应有. 足够的强度。欲验算转向系零件的强度,需首先确定作用在各零件上的力。影响这些力的主要因素有转向轴的负荷、路面阻力和轮胎 气压等。为转动转向轮要克服的阻力,包括转向轮绕主销转动的阻力、车轮稳定阻力、轮胎 变形阻力和转向系中的内摩擦阻力等。 精确地计算出这些力是困难的。为此推荐用足够精确的半经验公式来计算汽车在沥青或 式中,f为轮胎和路面间的滑动摩擦因数,一般取0.7; G l为转向轴负荷(N); p为轮 胎气压(MP a)。 作用在转向盘上的手力为 l 2L i M R F h L 2 D sw i 式中, L 1为转向摇臂 长; L 2为转向节臂长; D sw为转向盘直径;i为转向器角传动比; 为转向器正效率。 对给定的汽车,用式(7-10)计算出来的作用力是最大值。因此,可以用此值作为计算载 荷。然而,对于前轴负荷大的重型货车,用上式计算的力往往超过驾驶员生理上的可能,在 此情况下对转向器和动力转向器动力缸以前零件的计算载荷,应取驾驶员作用在转向盘轮缘 上的最大瞬时力,此力为700No 二、齿轮齿条式转向器的设计 齿轮齿条式转向器的齿轮多数采用斜齿圆柱齿轮。齿轮模数取值范围多在2?3mm之间。 主动小齿轮齿数多数在5?7个齿范围变化,压力角取20o,齿轮螺旋角取值范围多为9o?1 5o o齿条齿数应根据转向轮达到最大偏转角时,相应的齿条移动行程应达到的值来确定。变速比的齿条压力角,对现有结构在12o?350范围内变化。此外,设计时应验算 齿轮的抗弯强度和接触强度。 主动小齿轮选用16MnCr5或15CrNi6材料制造,而齿条常采用45钢制造。为减轻质量,壳体用铝合金压铸。 三、循环球式转向器设计 (一)主要尺寸参数的选择 1、螺杆、钢球、螺母传动副 (1)钢球中心距D、螺杆外径D1、螺母内径D2 尺寸D D 1、 D2如图7-19所示。钢球中心距是基本尺寸,螺杆外径D1、螺母内径D2及钢球直径d对确定钢球中心距D的大 小有影响,而D又对转向器结构尺寸和强度有影响。在保证足够的强度条件下,尽可能将 D 值取小些。选取D值的规律是随着扇齿模数的增大,钢球中心距D也相应增加(表7—1)o 者混凝土路面上的原地转向阻力矩M R( N ?mm) (7-10)

机械设计常用计算公式集

一、直线运动 基本公式:(距离、速度、加速度和时间之间的关系) 1)路程=初速度 x 时间+21*2 加速度时间 2)平均速度=路程/时间; 3)末速度-初速度=2x 加速度 x 路程; 4)加速度=(末速度-初速度)/时间 5)中间时刻速度= 1 2 (初速度+末速度) 6)力与运动之间的联系:牛顿第二定律:F=ma ,[合外力(N )=物体质量(kg )x 加 速度(2/m s )] (注:重力加速度 g=9.82/m s 或 g=9.8N/kg ) 二、旋转运动 单位对比: 圆的弧长计算公式: 弧长 s=r θ=圆弧的半径 x 圆弧角度(角位移) 周长=C=2πr=πd ,即:圆的周长=2x3.14x 圆弧的半径=3.14x 圆弧的直径 旋转运动中角位移、弧度(rad )和公转(r )之间的关系。 1)1r (公转)=2π(弧度)=360°(角位移)

2)1rad=360 2π =57.3° 3)1°= 2360 π =0.01745rad 4)1rad=0.16r 5)1°=0.003r 6)1r/min=1x2x3.14=6.28rad/min 7) 1r/min=1x360°=360°/min 三、旋转运动与直线运动的联系: 1)弧长计算公式(s=r θ):弧长=圆弧的半径 x 圆心角(圆弧角度或角位移) 2)角速度(角速度是角度(角位移)的时间变化率)(ω=θ/t ):角速度=圆弧角度/时间 注:结合上式可推倒出角速度与圆周速度(即:s/t 也称切线速度)之间的关系。 3)圆周速度=角速度 x 半径,(即:v=ωr ) 注:角度度ω的单位一般为 rad/s ,实际应用中,旋转速度的单位大多表示为 r/min (每分钟多少转)。可通过下式换算: 1rad/s=1x60/(2x3.14)r/min 例如:电机的转速为 100rad/s 的速度运行,我们将角速度ω=100rad/s 换算成 r/min 单位,则为: ω=100rad/s= 100*60 2π =955r/min 4)rad/s 和 r/min 的联系公式: 转速 n(r/min)= *2/60 rad s ω()π ,即:转速(r/min )= /*60 2rad s π 角速度(); 5)角速度ω与转速 n 之间的关系(使用时须注意单位统一):ω=2πn ,(即:带单

机械设计几个计算公式

轴传递的功率KW P 600轴的转速 r/min n 100系数A 110空心轴系数键槽个数2轴类别系数K 1计算剖面出轴的直径d 213.7063795轴计算截面上的合成弯矩 N.m M 0轴计算截面上的转矩N.m T 68000弯扭矩作用性质差异系数α0.35轴类别系数K 1键槽个数0对称循环许用弯曲应力[σ-1]70计算剖面出轴的直径d 150.3694596考虑键槽影响的直径d 150.3694596计算剖面出轴的直径d 119.3483189 考虑键槽影响的直径d 119.3483189表中未考虑轴向力Fa 引起的压应力 塑性材料 脆性材料所求d 值已经考虑键槽在内21--24 按弯扭合成强度条件计算的计算公式按扭转强度条件计算轴径的计算公式空心轴的内外径之比空心轴A d 3≥312][(1010?+≥σM K d 312][[510?++≥σM M K d

K 1.1194171[τ]/Mpa 12~2020~3030~4040~52A 160~135135~118118~107107~98材料牌号热处理毛坯直径硬度《=100》100~250 正火《=100170~217回火>100~300162~217 调质<=200217~255 <=100241~286 >100~300241~286 <=100229~286 >100~300219~269 40MnB 调质<=200241~286 <=100270~300>100~300240~270 <=100229~286>100~300217~26920Cr <=60渗碳56~62HRC 20CrMnTi 15渗碳56~62HRC QT400-15156~197 QT600-3197~269 1,表中A 值已经将弯矩值考虑在内,当轴上弯矩较小时,[τ]取较大2,当轴径较大或用Q235,35SiMn 时,取较大的A 值40Cr 轴的材料Q235-A 2035γ=d0/d 空心轴K 值的计算 普通碳素钢Q235-A 热轧或锻后空冷4540Cr,35SiMn,38Si MnMo,2Cr13,42Si Mn,20CrMnTi 表21~23 几种常用轴材料的[τ]值合金钢0.732 45铸铁38SiMnMo 调质40CrNi 调质调质渗碳淬火 回火35SiMn (42SiMn)调质优质碳 素钢K n P A 312 2] [)(?+σαT M 122][] )(?++σαT M

相关文档
最新文档