有关函数f(x)=(ax+b)+(cx+d)的不等式及最值问题解题策略

有关函数f(x)=(ax+b)+(cx+d)的不等式及最值问题解题策略
有关函数f(x)=(ax+b)+(cx+d)的不等式及最值问题解题策略

高考有关函数())0(,≠+±+=ac d cx b ax x f 的解题策略

广西大学附属中学 潘承猛

关于函数())0(,≠+±+=ac d cx b ax x f 的不等式问题及最值问题是高考全国卷选做题中常见题型.解不等式常用的方法是“画数轴法”、“零点分段法”、“函数图象法”;求最值常用的方法是“绝对值三角不等式法”、“零点分段法”、“函数图象法”.若c a =,应优先“画数轴法”和“绝对值三角不等式法”解题,若c a ≠,则不便使用.“零点分段法”和“函数图象法”是通法,但“零点分段法”运算量大,错误率高,而“函数图象法”通过数形结合,将不等式问题转化为方程问题,增加直观性,大大降低运算量,从而降低了运算错误率.深挖函数())0(,≠+±+=ac d cx b ax x f 性质,可以更快捷、准确的解这类题.

我们先来讨论函数())0(,≠+±+=ac d cx b ax x f 的图象特征.含绝对值函

数本质上是分段函数,在

c

d

a b ≠的请情况下,其图象由三段构成,并且连在一起不断开.该为了表述方便,从左到右分别叫做第一段、 第二段、 第三段.由于在第三段,绝对值里的两个一次式都大于零,而在第一段,绝对值里的两个一次式都小于零,所以第一段的解析式等于第三段解析式乘以-1,这两段图象为变化趋势刚好相反的射线,利用这一性质可以按照以下三个步骤快速作出它的图象.

第一步:描出图象的两个分段点???? ?

???? ??--a b f a b ,,????

????? ??--c d f c d ,,连接两点

所得线段即为第二段图象.

第二步:在第三段,直接把绝对值符号当成括号,求出第三段函数解析式,根据x 系数画出第三段射线图象.

第三步:利用第一段的解析式等于第三段解析式乘以-1,写出第一段解析式,并画出第一段射线图象.

由此也可以概括出())0(,≠+±+=ac d cx b ax x f 的图象可分为三种类型:

(1)开口向上型:当第三段x 系数为正数时,此时,函数有最小值,

()?

??

?????? ??-??? ??-=c d f a b f x f ,min min ;

(2)开口向下型:当第三段x 系数为负数时,此时,函数有最大值,

()?

??

?????? ??-??? ??-=c d f a b f x f ,max max ;

(3)平行x 轴型:当第三段x 系数为零时,此时,函数既有最大值又最小

值,()????????? ??-??? ??-=c d f a b f x f ,max max ,()???

?????? ??-??? ?

?-=c d f a b f x f ,min min .

以下我们通过例子来看怎样使用这种方法快速解题.

例1:(2018年3卷23题)设函数.

(1)画出的图像; (2)当,,求

的最小值.

解:(1)

因为23

21=??? ??-f ,()31=f

所以 的图像如图所示.

(2) 由(1)知,的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当且时,在成立,因此的最小值为5.

例2:(2016年1卷)已知函数f(x)=|x+1|-|2x-3|. (1)画出y=f(x)的图像.

(2)求不等式|f(x)|>1的解集.

解:(1)f(x)=x 4,x 1,33x 2,1

x ,2

34x,x ,2

?

?-≤-?

?--<

-≥??

因为()11=f ,()31=f 所以 的图像如图所示:

(2)f(x)=x 4,x 1,33x 2,1

x ,2

34x,x ,2

?

?-≤-?

?--<

-≥??

|f(x)|>1,当x≤-1时,|x-4|>1,解得x>5或x<3,∴x≤-1. 当-1

时,|3x-2|>1,解得x>1或x<13

,∴-1

或1

当x≥3

2时,|4-x|>1,解得x>5或x<3,∴32

≤x<3或x>5.

综上,x<13

或15,∴|f(x)|>1的解集为1∞,3??

- ??

?

∪(1,3)∪(5,+∞).

1.(2015年1卷)已知函数错误!未找到引用源。=|x+1|-2|x-a|,a>0. (Ⅰ)当a=1时,求不等式f (x )>1的解集;

(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围. 【解析】:(Ⅰ)当a=1时,不等式f (x )>1化为|x+1|-2|x-1|>1,

等价于11221x x x ≤-??--+->?或111221x x x -<?或11221

x x x ≥??+-+>?,解得2

23x <<,

所以不等式f (x )>1的解集为2

{|2}3

x x <<.

(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-??

=+--≤≤??-++>?,

所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21

(

,0)3

a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22

(1)3

a +.

由题设得22

(1)3

a +>6,解得2a >.所以a 的取值范围为(2,+∞).

2.(2016年3卷)已知函数f(x)=|2x-a|+a . (1)当a=2时,求不等式f(x)≤6的解集.

(2)设函数g(x)=|2x-1|,当x ∈R 时,f(x)+g(x)≥3,求a 的取值范围.

【解析】(1)当a=2时,f(x)= |2x-2| +2,解不等式|2x-2|+2≤6得-1≤x≤3. 因此f(x)≤6的解集为{}x 1x 3-≤≤.

(2)当x ∈R 时,f(x)+g(x)=2x a - +a+12x -≥2x a 12x -+-+a=1a -+a, 所以当x ∈R 时,f(x)+g(x)≥3等价于1a -+a≥3, ① 当a 1时,①等价于 ≤1a 3,无解a -+≥

当a 1时,①等价于 a 1a 3,解得a 2.>-+≥≥所以a 的取值范围是)2,∞.?+? 3.(2016年1卷)已知函数f(x)=|x+1|-|2x-3|. (1)画出y=f(x)的图像.

(2)求不等式|f(x)|>1的解集.

【解析】(1)如图所示:

(2)f(x)=x 4,x 1,33x 2,1

x ,2

34x,x ,2

?

?-≤-?

?--<

-≥??

|f(x)|>1,当x≤-1时,|x-4|>1,解得x>5或x<3,∴x≤-1. 当-1

2

时,|3x-2|>1,解得x>1或x<13

,∴-1

1

当x≥32时,|4-x|>1,解得x>5或x<3,∴3

2

≤x<3或x>5.

综上,x<1

3或15,∴|f(x)|>1的解集为1∞,3??- ??

?∪(1,3)∪(5,+∞).

4.(2017年1卷)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集;

(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.

【解析】:将函数()11g x x x =++-化简可得()2121121x

x g x x x x >??

=-≤≤??-<-?

(1) 当1a =时,作出函数图像可得()()f x g x ≥

的范围在F 和G 点中间,联立2

24y x

y x x =??=-++?

可得点171,171G ??

-- ? ?

??

, 因此可得解集为1711,2??

--????

(2)即()()f x g x ≥在[]1,1-内恒成立,故而可得22422x ax x ax -++≥?-≤恒成立,根据图像可得:函数y ax =必须在12,l l 之间,故而可得11a -≤≤.

5.(2017年3卷)已知函数()||||f x x x =+1--2. (1)求不等式()f x ≥1的解集;

(2)若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围. 【解析】

⑴()|1||2|f x x x =+--可等价为()3,121,123,2--??

=--<

x f x x x x ≤≥.由()1f x ≥可得:

①当1-x ≤时显然不满足题意;②当12x -<<时,211-x ≥,解得1x ≥; ③当2x ≥时,()31=f x ≥恒成立.综上,()1f x ≥的解集为{}|1x x ≥. ⑵不等式()2-+f x x x m ≥等价为()2-+f x x x m ≥,

令()()2

g x f x x x =-+,则()g x m ≥解集非空只需要()max ????g x m ≥.

而()22

23,1

31,123,2?-+--?=-+--<

x x x g x x x x x x x ≤≥.①当1-x ≤时,()()max 13115g x g =-=---=-????;

②当12x -<<时,()2

max

3335312224g x g ????

==-+?-=?? ? ???????

③当2x ≥时,()()2

max 22231g x g ==-++=????.综上,()max

54

g x =????,故54

m ≤. 方法2是零点分段法,是通法。

例如:

方法3是函数图像法,也是通法。 例如:

根据本人教学实践,对于基础中等偏下的同学,图象法是最容易理解,运算最简

单的一种方法。解决这类问题最好的方法是数形结合,即弄清楚

典例

例1:设()212f x x x =-++ (Ⅰ)求不等式()4f x ≥的解集;

(Ⅱ)若不等式()2f x m <-的解集是非空集合,求实数m 的取值范围.

解:(Ⅰ) ()()()()3242131x x f x x x x x -<-??

=-+-≤≤??>?

,图象为:

由44=+-x ,得0=x ;由43=x ,得34

=

x 由图象知不等式()4f x ≥的解集为),3

4

[]0,(+∞-∞Y

(Ⅱ)由图知,()()31min ==f x f

由不等式()2f x m <-的解集是非空集合,得23-

解得,(,1)(5,)m ∈-∞-+∞U

点评:该图象属于“开口向上型”,用图象法的好处是把解不等式问题转化为解方程问题(结合函数图象写出解集),避免了零点分段法中繁琐的求交集、并集,提高了运算的准确率.而第(2)问中用到的最值也可以直接由函数图象得出.而其中所蕴含的数形结合思想、函数与方程思想又是要求学生要熟练掌握的.

例2:已知函数()x x x g 21--=,()522++-=x a x x f .

(Ⅰ)解不等式()4->x g ;

(Ⅱ)若存在R x ∈1,也存在R x ∈2,使得()()21x g x f =成立,求实数a 的取值范围.

解:(Ⅰ)由题意可得10()130111x x g x x x x x +??

=-<

,≤,,,,≥,图象为:

由41-=+x ,得5-=x ;由41-=--x ,得3=x 由图象知,不等式()4g x >-的解集为()3,5-

(Ⅱ)因为存在1x ∈R ,也存在2x ∈R ,使得

12()()

f x

g x =成立,所以,{|()}{|()}y y f x x y y g x x =∈=∈≠?R R I ,,,

又()|2||25||(2)(25)||5|f x x a x x a x a =-++--+=+≥,由(Ⅰ)知,max ()1g x =, 所以|5|1a +≤,解得64a --≤≤,所以,实数a 的取值范围为[64]--,. 点评:该题图象属于“开口向下型”.

例3.设函数()|2||1|f x x x =+-- (Ⅰ)解不等式()1-≥x f ;

(Ⅱ)若关于x 的不等式()+4|12|f x m ≥-有解,求实数m 的取值范围. 解:(Ⅰ)函数()f x 可化为

3,

2()21,213,2x f x x x x -≤-??

=+-<

,图象如下:

由112-=+x ,得1-=x ;由图象知, 不等式()1-≥x f 的解集为[)+∞-,1

(Ⅱ)关于x 的不等式()+4|12|f x m ≥-有解等价于()max ()+4|12|f x m ≥-, 由(Ⅰ)可知max ()3f x =,于是 |12|7m -≤, 解得 [3,4]m ∈-

点评:该题图象属于“平行x 轴型”.有了图象,恒成立问题(或对R x ∈?,都有…)、有解问题(或对R x ∈?0,使得…)怎样转化为最值问题也就一目了然了.

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

抽象函数解题方法与技巧

抽象函数解题方法与技巧 函数的周期性: 1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数; 2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a-b|的周期函数; 3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数; 4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a-b|的周期函数; 5、若函数y=f(x)满足f(a+x)=f(a-x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ; 6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ??+= ???或()1()f x a f x ??+=- ???或,则y=f(x)是周期为2|a|的周期函数; 7、若()()()1 1 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数; 8、若()() ()11 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。 (7、8应掌握具体推导方法,如7) 函数图像的对称性: 1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线2 a b x +=对称; 2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a 对称; 3、若函数y=f(x)满足f(a+x)+f(b-x)=c ,则y=f(x)的图像关于点,2 2a b c +?? ??? 成中心对称图形; 4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a-x,2b-y)=0; 5、形如()0,ax b y c ad bc cx d += ≠≠+的图像是双曲线,由常数分离法 d ad ad a x b b a c c c y d d c c x c x c c ??+-+-+ ???==+????++ ? ???? ?知:对称中心是点,d a c c ??- ???; 6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线2b a x -=对称; 7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。 一、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x , 求f(x) ()()()()()()()1 1 11212112()() 11 f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++

构造函数法解不等式问题(学生版)

专题2.3构造函数法解不等式问题(小题) 在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。 例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。 既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x =,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。构造函数模型总结: 关系式为“加”型: (1)'()()0f x f x +≥构造''[()][()()] x x e f x e f x f x =+(2)'()()0xf x f x +≥构造''[()]()() xf x xf x f x =+(3)'()()0xf x nf x +≥构造''11'[()]()()[()()] n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 的符号进行讨论) 关系式为“减”型

抽象函数+解题技巧

抽象函数与解题策略 上海南洋模范中学 熊晓东 2005年11月19日 (一)抽象函数的定义、特征和一般解题策略 (1)什么是抽象函数? 那些没有给出函数的具体解析式,只给出一些特殊条件或特征的函数称为抽象函数。 (2)抽象函数与一般函数的有什么联系? 抽象函数往往有它所对应的具体的函数模型。例如,)x (f )x (f )x x (f 2121+=+对应的是指数函数2 1 2 1x x x x a a a ?=+;)x (f )x (f )x x (f 2121+=对应的是对数函数 2a 1a 21a x l o g x l o g )x x (l o g +=等等。当然,也有的时候并没有我们比较熟悉的函数模型,而是新定义的一种函数。 抽象函数也可以与我们熟悉的函数,如指数函数、对数函数等一样,有自己的性质,如奇偶性、周期性、单调性等。有自己的特殊点,有自己的对称性,能画出大致图像。 (3)抽象函数的解题策略一般有哪些? 面对抽象函数数学题,我们的解题思路一般不外乎①合理赋值,化抽象为具体;②作恒等变形,找出该函数规律性、特征性特点;③分类讨论,归纳出抽象函数的实质问题。 (二)高考中的抽象函数 (1)抽象函数在高考中的地位 函数是高考数学中非常重要的一部分,根据上海卷命题的要求,每年函数部分的内容将占到整个卷面分值的三分之一左右,2005年高考上海卷中,函数相关的内容将近55分。而抽象函数是函数中考核要求较高,难度较大的内容。2000年开始,不论是全国卷还是上海卷都对学生提出了考查抽象函数的要求。03年上海卷一年中考了两道与抽象函数有关的题目,03、04、05年连续三年上海高考试卷中均有与抽象函数有关的题目。

构造函数证明不等式

构造函数证明不等式 构造函数证明不等式构造函数证明:[2的平方/(2的平方-1)*3的平方/(3的平方-1)*...*n的平方/(n的平方-1)]>e的(4n-4)/6n+3)次方不等式两边取自然对数(严格递增)有: ln(2^2/2^2-1)+ln(3^2/3^2-1)+...+ln(n^2/n^2-1)>(4n-4)/(6n +3) 不等式左边=2ln2-ln1-ln3+2ln3-ln2-ln4+...+2lnn-ln(n-1)-ln(n+1) =ln2-ln1+lnn-ln(n+1)=ln[n^2/(n+1)] 构造函数f(x)=ln[x^2/(x+1)]-(4x-4)/(6x+3) 对f(x)求导,有:f'(x)=[(x+2)/x(x+1)]+[1/(x+1/2)]^2 当x>2时,有f'(x)>0有f(x)在x>2时严格递增从而有 f(n)>=f(2)=ln(4/3)-4/15=0.02>0 即有ln[n^2/(n+1)]>(4n-4)/(6n+3) 原不等式等证 【解】: ∏{n^2/(n^2-1)}[n≥2] > e^((4n-4)/(6n+3)) ∵n^2/(n^2-1)=n^2/(n+1)(n-1) ∴∏{n^2/(n^2-1)}[n≥2] = 2n/(n+1) 原式可化简为:2n/(n+1) > e^((4n-4)/6n+3)) 构建函数:F(n)=2n/(n+1)-e^((4n-4)/(6n+3))

其一阶导数F’(n)={2-4e^((4n-4)/(6n+3))}/(n+1)^2 ∵e^((4n-4)/(6n+3)) ∴F’(n)>0 [n≥2] 而F[2]=4/(2+1)-e^((8-4)/(12+3))=4/3-e^(4/15)>0 所以F(n)>0 [n≥2] 即:2n/(n+1) > e^((4n-4)/6n+3)) 故得证。 一、结合勘根定理,利用判别式“△”的特点构造函数证明不等式例1 若a,b,c∈R,且a≠0,又4a+6b+c>0,a-3b+c求证:9b2>4ac. 证明构造函数f(x),设f(x)=ax2+3bx+c(a≠0), 由f(2)=4a+6b+c>0, f(-1)=a-3b+c根据勘根定理可知:f(x)在区间(-1,2)内必有零点. 又f(x)为二次函数,由勘根定理结合可知: f(x)必有两个不同的零点. 令ax2+3bx+c=0可知△=(3b)2-4ac>0, 所以可得:9b2>4ac.命题得证. 评析本题合理变换思维角度,抓住问题本质,通过构造二次函数,将所要证明的结论转化成判别式“△”的问题,再结合勘根定理和二次函数知识,从而使问题获得解决. 二、结合构造函数的单调性证明不等式 例2 (2005年人教A版《选修4-5不等式选讲》例题改编)已知a,b,c 是实数,求证:

3 用导数证明函数不等式的四种常用方法

用导数证明函数不等式的四种常用方法 本文将介绍用导数证明函数不等式的四种常用方法. 例1 证明不等式:)0)1ln(>+>x x x (. 证明 设)0)(1ln()(>+-=x x x x f ,可得欲证结论即()(0)(0)f x f x >>,所以只需证明函数()f x 是增函数. 而这用导数易证: 1()10(0)1 f x x x '=- >>+ 所以欲证结论成立. 注 欲证函数不等式()()()f x g x x a >>(或()()()f x g x x a ≥≥),只需证明()()0()f x g x x a ->>(或()()0()f x g x x a -≥≥). 设()()()()h x f x g x x a =->(或()()()()h x f x g x x a =-≥),即证()0()h x x a >>(或()0()h x x a ≥≥). 若()0h a =,则即证()()()h x h a x a >>(或()()()h x h a x a ≥≥). 接下来,若能证得函数()h x 是增函数即可,这往往用导数容易解决. 例2 证明不等式:)1ln(+≥x x . 证明 设()ln(1)(1)f x x x x =-+>-,可得欲证结论即()0(1)f x x >>-. 显然,本题不能用例1的单调性法来证,但可以这样证明:即证)1)(1ln()(->+-=x x x x f 的最小值是0,而这用导数易证: 1()1(1)11 x f x x x x '=-=>-++ 所以函数()f x 在(1,0],[0,)-+∞上分别是减函数、增函数,进而可得 min ()(1)0(1)f x f x =-=>- 所以欲证结论成立. 注 欲证函数不等式()()()(,f x g x x I I >≥∈是区间),只需证明()()()0(f x g x x I ->≥∈.

构造函数法证明导数不等式的八种方法(新)

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<< -x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f , 即0)1ln(≤- +x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-++ +=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-++ +x x ∴111) 1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要 证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 2 1)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f =F

抽象函数解题方法与技巧

抽象函数的解题技巧 1.换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x, 求f(x) 解:令u=1+sinx,则sinx=u-1 (0≤u ≤2),则f(u)=-u 2+3u+1 (0≤u ≤2) 故f(x)=-x 2+3x+1 (0≤u ≤2) 2.方程组法 运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。 例2..232|)x (f :|,x )x 1(f 2)x (f ),)x (f ,x ()x (f y ≥=-=求证且为实数即是实数函数设 解:02)x (xf 3 x ,x 1)x (f 2)x 1(f ,x x 12=++=-与已知得得代换用 .232|)x (f |,024)x (9f 02≥∴≥?-≥?得由 例3.f(x).1),x 0(x ,x 1)x 1x ( f )x (f 求且已知≠≠+=-+ 解:(1)1),x 0(x x 1)x 1x (f )x (f ≠≠+=-+且 ,x 1x 1)x 1x 1x 1x (f )x 1x (f :x x 1-x -+=---+-得代换用 :x )1(x -11 (2) .x 1x 2)x 11(f )x 1-x f( 得中的代换再以即-=-+ (3) .x 1x 2)x (f )x -11f( ,x 111)x 111x 11(f )1x 1(f --=+-+=---+-即 1)x 0(x x 2x 21x x )x (f :2)2()3()1(223≠≠---=-+且得由 3.待定系数法 如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。 例4.已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x 2-4x,求f(x). 解:由已知得f(x)是二次多项式,设f(x)=ax 2+bx+c (a ≠0) 代入比较系数得过且过:a=1,b= -2,c= -1,f(x)=x 2-2x-1. 4.赋值法

抽 象 函 数 的 解 题 方 法

解 抽 象 函 数 的 常 用 方 法 抽象函数是指没有给出具体解析式的函数。此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和转化能力,以及对一般和特殊关系的认识,因此备受命题者的青睐,成为高考热点。然而,由于抽象函数本身的抽象性、隐蔽性,大多数学生在解决这类问题时,感到束手无策。 我在多年的教学中,积累了一些解题方法,供大家参考. 一、 利用线性函数模型 在中学数学教材中,大部分抽象函数是以具体函数为背景构造出来的,解题时最根本点是将抽象函数具体化,这种方法虽不能代替具体证明,但却能找到这些抽象函数的解题途径,特别是填空题、选择题,直接用满足条件的特殊函数求解,得出答案即可。常见的抽象函数模型有: 例1、函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且f (1)=2, f (x )在区间[-4,2]上的值域为 。 0a a ≠且

解析:由题设可知,函数f (x )是正比例()y kx k =为常数的抽象函数,由f (1)=2可求得 k=2,∴ f (x )的值域为[-8,4]。 例2、已知函数f (x )对任意,x y R ∈,满足条件()()()2f x y f x f y +=+-,且当x >0时, f (x )>2,f (3)=5,求不等式2(22)3f a a --的解。 分析:由题设条件可猜测:f (x )是y =x +2的抽象函数,且f (x )为单调增函数,如果 这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。 解:设1221,0x x x x -则,∵当x >0时,f (x )>2,∴21()2f x x -,则 , 即,∴f (x )为单调增函数。 ∵, 又∵f (3)=5,∴f (1)=3。∴2(22) (1)f a a f --,∴2221a a --, 解得不等式的解为-1 < a < 3。 例3、定义在R上的函数()y f x =,对任意的12,x x 满足12x x ≠时都有12()()f x f x ≠,且有 ()()()f x y f x f y +=成立。求: (1)f (0); (2)对任意值x ,判断f (x )值的正负。 分析:由题设可猜测f (x )是指数函数()(01)x f x a a a =≠且的抽象函数, 从而猜想f (0)=1且f (x )>0。 解:(1)令y =0代入()()()f x y f x f y +=,则()()(0)f x f x f =, ∴[]()1(0)0f x f -=。若f (x )=0,则对任意12x x ≠,有12()()0f x f x ==,

【高考数学】构造函数法证明导数不等式的八种方法

第 1 页 共 6 页 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

抽象函数的解题方法与技巧窍门

抽象函数的解题方法与技巧 摘要:抽象函数是没有具体的解析式,只给出它的一些特征、性质或一些特殊关系式的函数。因而显得特别抽象。所以解决抽象函数问题需要从函数的本质出发,考虑其定义,性质,加之解决抽象函数问题时常用的技巧——赋值法,换元法等。尽可能使抽象函数变得不再抽象。 关键词:抽象函数;性质;求值;解析式;解题方法;技巧 Problem-solving methods and skills of abstract functions Xue Jie School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract:: abstract function is not analytic type specific, given only the function characteristics, its nature or some special relationship. So it is especially abstract. So to solve the abstract function problems need from the view of function essence, considering its definition, nature, and solve the abstract function problems commonly used techniques -- assignment method, substitution method etc.. As far as possible to make the abstract function is no longer abstract. Keywords: abstract function; property; evaluation; analytic method; problem solving skills; 1.提出问题的背景 抽象函数问题是函数中的一类综合性较强的问题,这类问题通过对函数性质结构的

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法 利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 1、从条件特征入手构造函数证明 【例1】若函数y =)(x f 在R 上可导且满足不等式x )(x f '>-)(x f 恒成立,且常数a ,b 满足a >b , 求证:.a )(a f >b )(b f 【变式1】若函数y =)(x f 在R 上可导且满足不等式)(x f >)(x f ',且1)(-=x f y 为奇函数. 求不等式)(x f 2 x . 求不等式0)2(4)2015()2015(2 >--++f x f x 的解集. 2、移项法构造函数 【例2】已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+- )1ln(1 1 1 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数11 1 )1ln()(-+++=x x x g ,从其导数入手即可证明。 3、作差法构造函数证明 【例3】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2 )(x x g =的图象的下方; 分析:函数)(x f 图象在函数)(x g 的图象的下方)()(x g x f + 都成立. 分析:本题是山东卷的第(II )问,从所证结构出发,只需令 x n =1,则问题转化为:当0>x 时,恒有32)1ln(x x x ->+成立,现构造函数)1ln()(2 3 ++-=x x x x h ,求导即可达到证明。

抽象函数的解题方法与技巧

抽象函数的解题方法与技巧 摘要:抽象函数是没有具体的解析式,只给出它的一些特征、性质或一些特殊关系式的函数。因而显得特别抽象。所以解决抽象函数问题需要从函数的本质出发,考虑其定义,性质,加之解决抽象函数问题时常用的技巧——赋值法,换元法等。尽可能使抽象函数变得不再抽象。 关键词:抽象函数;性质;求值;解析式 ;解题方法;技巧 Problem-solving methods and skills of abstract functions Xue Jie School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract :: abstract function is not analytic type specific, given only the function characteristics, its nature or some special relationship. So it is especially abstract. So to solve the abstract function problems need from the view of function essence, considering its definition, nature, and solve the abstract function problems commonly used techniques -- assignment method, substitution method etc.. As far as possible to make the abstract function is no longer abstract. Keywords : abstract function; property; evaluation; analytic method; problem solving skills; 1. 提出问题的背景 抽象函数问题是函数中的一类综合性较强的问题,这类问题通过对函数性质结构的代数表述,能够综合考查学生对于数学符号语言的理解和接受能力,考查对函数性质的代数推理和论证能力,考查学生的抽象思维和对知识的灵活运用能力,考查学生对于一般和特殊关系的认识,因而成为近几年高考命题的热点。由于抽象函数问题只给出函数所满足的一般性质或运算法则,没有明确的表示形式,因其抽象性和综合型,对学生而言有较大的难度。因此有必要对抽象函数的解题方法和技巧进行归纳总结。 2. 抽象函数的知识点 (1)定义域:函数的定义域指自变量x 的取值范围。所以对抽象函数()x f ,()[]x g f 而言,其定义域均指的是x 的取值范围。对于()[]x g f 和()[]x h f ,其中()x g 和()x h 的地位是等价的,故取值范围是一样的。 (2)值域:函数的值域指函数值的取值范围。那么具有相同对应关系的两个抽象函数 ()[]x g f 和()[]x h f ,它们的值域是相同的。

抽象函数常见解法及意义总结

含有函数记号“ ()f x ”有关问题解法 由于函数概念比较抽象,学生对解有关函数记号 ()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地 掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出 ()f x ,这也是证某些公式或等式常用的方法,此法解培养学生 的灵活性及变形能力。 例1:已知 ( )211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴ 2()1x f x x -= - 2.凑合法:在已知 (())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁, 还能进一步复习代换法。 例2:已知 33 11()f x x x x +=+,求 ()f x 解:∵ 22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1|| x x x x +=+≥ ∴ 23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设 ()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22 222()24ax bx a c x x +++=++比较系数得2()4 1321 ,1,2222 a c a a b c b +=??=?===??=? ∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵ ()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵ ()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0 x x f x x x +≥?=?--

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点。0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0) ()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0 x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则 n na a a f +++=' 212)0(. 得:x x f x x f x f x f f x x x ) ()(lim 0)0()()0(lim lim 00 →→→==--= '.由于x x f sin )(≤. 所以1sin )0(lim =≤ '→x x f x .即1221≤+++n na a a . 4.适用范围 用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的. 二.用可导函数的单调性证明不等式法

抽象函数问题的解题策略

抽象函数问题的解题策略Last revision on 21 December 2020

抽象函数问题的解题策略 一、利用特殊模型 有些抽象函数问题,用常规解法很难解决,但与具体函数“对号入座”后,问题容易迎刃而解.这种方法多用于解填空题、选择题、解答题的解题后的检验,但解答题的解答书写过程一般不能用此法. 例1 若函数f(x)与g(x)在R 上有定义,且f(x-y)=f(x)g(y)-g(x)f(y), f(-2)=f(1)≠0,则g(1)+g(-1)= . 解 因为 f(x-y)=f(x)g(y)-g(x)f(y), 这是两角差的正弦公式模型, 又f(-2)=f(1)≠0, 则可取x x f 3 2sin )(π= 于是 f(-1-1)=f(-1)g(1)-g(-1)f(1) 例2 设函数f(x)是定义在R 上的减函数,且满足f(x+y)=f(x)f(y), f(-3)=8,则不等式f(x)f(x-2)< 的解集为 . 解 因为函数f(x)满足f(x+y)=f(x)f(y),这是指数函数模型, 又 f(-3)=8, 则可取 ∵f(x)f(x-2)< ∴2)21()21(-x x <2561, 即22)21(-x <8)2 1(, ∴ 2x-2 >8, 解不等式,得 x>5, ∴ 不等式的解集为 {x|x >5}. 二、利用函数性质 函数的特征是通过函数的性质反映出来的,抽象函数也不例外,只有充分利用题设条件所表明的函数的性质,灵活进行等价转化,抽象函数问题才能峰回路 转、化难为易. 1. 利用单调性 例3 设f(x)是定义在(0,+∞)上的增函数,满足f(xy)=f(x)+f(y), f(3)=1,解不等式f(x)+f(x-8)≤2. 解 ∵ 函数f(x)满足f(xy)=f(x)+f(y), f(3)=1, ∴ 2=1+1=f(3)+f(3)=f(9), 由f(x)+f(x-8)≤2,得 f[x(x-8)]≤f(9), ∵ 函数f(x)是定义在(0,+∞)上的增函数, 则 ∴ 不等式解集为 {x|80, x-8>0, x(x-8)≤9, 8

不等式的常见证明方法

不等式常见的三种证明方法 渠县中学 刘业毅 一用基本不等式证明 设c b a ,,都是正数。求证:.c b a c ab b ac a bc ++≥++ 证明:.22c b ac a bc b ac a bc =?≥+ .22b c ab a bc c ab a bc =?≥+ .22a c ab b ac c ab b ac =?≥+ ).(2)(2c b a c ab b ac a bc ++≥++ .c b a c ab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。 思维训练:设c b a ,,都是正数。求证: .222c b a c b a a c b ++≥++ 二 放缩法证明不等式 已知,对于任意的n 为正整数,求证: 1+221+321+K +n 21<4 7 分析:通过变形将数列{n 21 }放缩为可求数列。 解:Θ n 21=n n ?1<)1(1-n n =11-n —n 1(n ≥2) ∴1+221+321+K +n 21<1+2 21+231?+341?+K +)1(1-n n =1+ 41+(21—31+31—41+K +11-n —n 1) =45+21—n 1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。 思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>c c +1

三 构造函数法证明 证明不等式3ln 3121112ln <+++++0有不等式x x 11ln - ≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则k k k ->+11ln ,即k k k k 1ln )1ln(11<-+<+,然后叠加不等式即可。 解:设函数x x x x f ln 1)(+-=,则易证0)(≥x f ,即不等式x x 11ln -≥对于x>0恒成立, 令x=k k 1+,则有111ln +>+k k k ,令x=1+k k ,则k k k ->+11ln ,即k k k 11ln <+成立。从而有k k k k 1ln )1ln(11<-+<+。 在不等式k k k 11ln <+中,分别令,3,,2,1n n n k K ++=得到一系列不等式相加为 )13ln()2ln()2ln()1ln(312111++++-+++->+++++n n n n n n n K K 即n n n 312111+++++K >113ln ++n n 2ln 1 22ln =++≥n n 在不等式1 11ln +>+k k k 中,分别令k=n,n+1,K 3n-1,并把所得的不等式相加,得 n n n 312111+++++K <3ln 3ln 3ln )1ln()1ln(ln ==++-++-n n n n n n K 即不等式3ln 3121112ln <+++++

相关文档
最新文档