高等数学基本知识点大全大一复习,考研必备

高等数学基本知识点大全大一复习,考研必备
高等数学基本知识点大全大一复习,考研必备

大一期末复习和考研复习必备

高等数学基本知识点

一、函数与极限

1、集合的概念

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N

⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。

⑶、全体整数组成的集合叫做整数集。记作Z。

⑷、全体有理数组成的集合叫做有理数集。记作Q。

⑸、全体实数组成的集合叫做实数集。记作R。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。

2、函数

⑴、函数的定义:如果当变量x在其变化围任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化围叫做这个函数的定义域。通常x叫做自变量,y叫做函数值(或因变量),变量y的变化围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。

⑵、函数相等

由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。

⑶、域函数的表示方法

a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:笛卡尔直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2

b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。

c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:笛卡尔直角坐标系中,半径为r、圆心在原点的圆用图示法表示为:

3、函数的简单性态

⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。

注:一个函数,如果在其整个定义域有界,则称为有界函数

例题:函数cosx在(-∞,+∞)是有界的.

⑵、函数的单调性:如果函数在区间(a,b)随着x增大而增大,即:对于(a,b)任意两点x1及x2,

当x1<x2时,有,则称函数在区间(a,b)是单调增加的。如果函数在区间

(a,b)随着x增大而减小,即:对于(a,b)任意两点x1及x2,当x1<x2时,有,则称函数

在区间(a,b)是单调减小的。

例题:函数=x2在区间(-∞,0)上是单调减小的,在区间(0,+∞)上是单调增加的。

⑶、函数的奇偶性

如果函数对于定义域的任意x都满足=,则叫做偶函数;如果函数对

于定义域的任意x都满足=-,则叫做奇函数。

注:偶函数的图形关于y轴对称,奇函数的图形关于原点对称。

⑷、函数的周期性

对于函数,若存在一个不为零的数l,使得关系式对于定义域任何x值都成

立,则叫做周期函数,l是的周期。

注:我们说的周期函数的周期是指最小正周期。

例题:函数是以2π为周期的周期函数;函数tgx是以π为周期的周期函数。

4、反函数

⑴、反函数的定义:设有函数,若变量y在函数的值域任取一值y0时,变量x在函数的定义域必有一值x0与之对应,即,那末变量x是变量y的函数.这个函数用来表示,称为函数的反函数.

注:由此定义可知,函数也是函数的反函数。

⑵、反函数的存在定理:若在(a,b)上严格增(减),其值域为R,则它的反函数必然在R 上确定,且严格增(减).

注:严格增(减)即是单调增(减)

例题:y=x2,其定义域为(-∞,+∞),值域为[0,+∞).对于y取定的非负值,可求得x=±.若我们不加条件,由y的值就不能唯一确定x的值,也就是在区间(-∞,+∞)上,函数不是严格增(减),故其没有反

函数。如果我们加上条件,要求x≥0,则对y≥0、x=就是y=x2在要求x≥0时的反函数。即是:函数在此要求下严格增(减).

⑶、反函数的性质:在同一坐标平面,与的图形是关于直线y=x对称的。

例题:函数与函数互为反函数,则它们的图形在同一笛卡尔直角坐标系中是关于直线y=x对称的。如右图所示:

5、复合函数

复合函数的定义:若y是u的函数:,而u又是x的函数:,且的函数值的全部或部分在的定义域,那末,y通过u的联系也是x的函数,我们称后一个函数是由函数

及复合而成的函数,简称复合函数,记作,其中u叫做中间变量。

注:并不是任意两个函数就能复合;复合函数还可以由更多函数构成。

例题:函数与函数是不能复合成一个函数的。

因为对于的定义域(-∞,+∞)中的任何x值所对应的u值(都大于或等于2),使

都没有定义。

6、初等函数

⑴、基本初等函数:我们最常用的有五种基本初等函数,分别是:指数函数、对数函数、幂函数、三角函数及反三角函数。下面我们用表格来把它们总结一下:

函数的记号函数的图形函数的性质指

数函数a):不论x为何值,y总为正数;

b):当x=0时,y=1.

对数函数

a):其图形总位于y轴右侧,并过(1,0)点

b):当a>1时,在区间(0,1)的值为负;在区间(-,+∞)的值为正;在定义域单调增.

a为任意实数

这里只画出部分函数图形的一

部分。

令a=m/n

a):当m为偶数n为奇数时,y是偶函

数;

b):当m,n都是奇数时,y是奇函数;

c):当m奇n偶时,y在(-∞,0)无意

义.

角函数

(正弦函数)

这里只写出了正弦函数

a):正弦函数是以2π为周期的周期

函数

b):正弦函数是奇函数且

反三

角函数

(反正弦函数)

这里只写出了反正弦函数

a):由于此函数为多值函数,因此我

们此函数值限制在[-π/2,π/2]上,

并称其为反正弦函数的主值.

⑵、初等函数:由基本初等函数与常数经过有限次的有理运算及有限次的函数复合所产生并且能用一

个解析式表出的函数称为初等函数.

例题:是初等函数。

7、双曲函数及反双曲函数

⑴、双曲函数:在应用中我们经常遇到的双曲函数是:(用表格来描述)

函数的

名称

函数的表达式函数的图形函数的性质

双曲正

a):其定义域为:(-∞,+∞);

b):是奇函数;

c):在定义域是单调增

双曲余

a):其定义域为:(-∞,+∞);

b):是偶函数;

c):其图像过点(0,1);

双曲正

a):其定义域为:(-∞,+∞);

b):是奇函数;

c):其图形夹在水平直线y=1及

y=-1之间;在定域单调增;

我们再来看一下双曲函数与三角函数的区别:

双曲函数的性质三角函数的性质

shx与thx是奇函数,chx是偶函数sinx与tanx是奇函数,cosx是偶函数

它们都不是周期函数都是周期函数

双曲函数也有和差公式:

⑵、反双曲函数:双曲函数的反函数称为反双曲函数.

a):反双曲正弦函数其定义域为:(-∞,+∞);

b):反双曲余弦函数其定义域为:[1,+∞);

c):反双曲正切函数其定义域为:(-1,+1);

8、数列的极限

我们先来回忆一下初等数学中学习的数列的概念。

⑴、数列:若按照一定的法则,有第一个数a1,第二个数a2,…,依次排列下去,使得任何一个正整数n对应着一个确定的数a n,那末,我们称这列有次序的数a1,a2,…,a n,…为数列.数列中的每一个数叫做数列的项。第n项a n叫做数列的一般项或通项.

注:我们也可以把数列a n看作自变量为正整数n的函数,即:a n=,它的定义域是全体正整数

⑵、极限:极限的概念是际问题的精确解答而产生的。

例:我们可通过作圆的接正多边形,近似求出圆的面积。

⑶、数列的极限:一般地,对于数列来说,若存在任意给定的正数ε(不论其多么小),总存在正整数N,使得对于n>N时的一切不等式都成立,那末就称常数a是数列

的极限,或者称数列收敛于a .

记作:或

注:此定义中的正数ε只有任意给定,不等式才能表达出与a无限接近的意思。且定义中的正整数N与任意给定的正数ε是有关的,它是随着ε的给定而选定的。

⑷、数列的极限的几何解释:在此我们可能不易理解这个概念,下面我们再给出它的一个几何解释,以使我们能理解它。数列极限为a的一个几何解释:将常数a及数列在数轴上用它们的对应点表示出来,再在数轴上作点a的ε邻域即开区间(a-ε,a+ε),如下图所示:

因不等式与不等式等价,故当n>N时,所有的点都落在开区间(a-ε,a+ε),而只有有限个(至多只有N个)在此区间以外。

注:至于如何求数列的极限,我们在以后会学习到,这里我们不作讨论。

⑸、数列的有界性:对于数列,若存在着正数M,使得一切都满足不等式││≤M,则称数列是有界的,若正数M不存在,则可说数列是无界的。

定理:若数列收敛,那末数列一定有界。

注:有界的数列不一定收敛,即:数列有界是数列收敛的必要条件,但不是充分条件。例:数列 1,-1,1,-1,…,(-1)n+1,…是有界的,但它是发散的。

9、函数的极限

前面我们学习了数列的极限,已经知道数列可看作一类特殊的函数,即自变量取1→∞的正整数,若自变量不再限于正整数的顺序,而是连续变化的,就成了函数。下面我们来学习函数的极限.

函数的极值有两种情况:a):自变量无限增大;b):自变量无限接近某一定点x0,如果在这时,函数值无限接近于某一常数A,就叫做函数存在极值。我们已知道函数的极值的情况,那么函数的极限如何呢?

下面我们结合着数列的极限来学习一下函数极限的概念!

⑴、函数的极限(分两种情况)

a):自变量趋向无穷大时函数的极限

定义:设函数,若对于任意给定的正数ε(不论其多么小),总存在着正数X,使得对于适合不等式的一切x,所对应的函数值都满足不等式

那末常数A就叫做函数当x→∞时的极限,记作:

下面我们用表格把函数的极限与数列的极限对比一下:

数列的极限的定义函数的极限的定义

存在数列与常数A,任给一正数ε>0,

总可找到一正整数N,对于n>N的所有都满足

<ε则称数列,当x→∞时收敛于A记:

存在函数与常数A,任给一正数

ε>0,总可找到一正数X,对于适合的

一切x,都满足,函数

当x→∞时的极限为A,记:

b):自变量趋向有限值时函数的极限。我们先来看一个例子.

例:函数,当x→1时函数值的变化趋势如何?函数在x=1处无定义.我们知道对实数来讲,在数轴上任何一个有限的围,都有无穷多个点,为此我们把x→1时函数值的变化趋势用表列出,如下图:

从中我们可以看出x→1时,→2.而且只要x与1有多接近,就与2有多接近.或说:只要与2只差一个微量ε,就一定可以找到一个δ,当<δ时满足<δ定义:设函数在某点x0的某个去心邻域有定义,且存在数A,如果对任意给定的ε(不论其多么小),总存在正数δ,当0<<δ时,<ε则称函数当x→x0时存在极限,且极限为A,记:。

注:在定义中为什么是在去心邻域呢?这是因为我们只讨论x→x0的过程,与x=x0出的情况无关。此定义的核心问题是:对给出的ε,是否存在正数δ,使其在去心邻域的x均满足不等式。

有些时候,我们要用此极限的定义来证明函数的极限为 A,其证明方法是怎样的呢?

a):先任取ε>0;

b):写出不等式<ε;

c):解不等式能否得出去心邻域0<<δ,若能;

d):则对于任给的ε>0,总能找出δ,当0<<δ时,<ε成立,因此

10、函数极限的运算规则

⑴、函数极限的运算规则

若已知x→x0(或x→∞)时,.

则:

推论:

在求函数的极限时,利用上述规则就可把一个复杂的函数化为若干个简单的函数来求极限。

函数极限的存在准则

学习函数极限的存在准则之前,我们先来学习一下左、右的概念。

我们先来看一个例子:

例:符号函数为

对于这个分段函数,x从左趋于0和从右趋于0时函数极限是不相同的.为此我们定义了左、右极限的概念。

定义:如果x仅从左侧(x<x0)趋近x0时,函数与常量A无限接近,则称A为函数当

时的左极限.记:

如果x仅从右侧(x>x0)趋近x0时,函数与常量A无限接近,则称A为函数当时的右极限.记:

注:只有当x→x0时,函数的左、右极限存在且相等,方称在x→x0时有极限函数极限的存在准则

准则一:对于点x0的某一邻域的一切x,x0点本身可以除外(或绝对值大于某一正数的一切x)有≤≤,且,

那末存在,且等于A

注:此准则也就是夹逼准则.

准则二:单调有界的函数必有极限.

注:有极限的函数不一定单调有界

两个重要的极限

一:

注:其中e为无理数,它的值为:e=2.9045...

二:

例题:求

解答:令,则x=-2t,因为x→∞,故t→∞,

注:解此类型的题时,一定要注意代换后的变量的趋向情况,象x→∞时,若用t代换1/x,则t→0.

无穷大量和无穷小量

无穷大量

我们先来看一个例子:

已知函数,当x→0时,可知,我们把这种情况称为趋向无穷大。为

此我们可定义如下:设有函数y=,在x=x0的去心邻域有定义,对于任意给定的正数N(一个任意大的数),总可找到正数δ,当

时,成立,则称函数当时为无穷大量。

记为:(表示为无穷大量,实际它是没有极限的)

同样我们可以给出当x→∞时,无限趋大的定义:设有函数y=,当x充分大时有定义,对于任意给定的正数N(一个任意大的数),总可以找到正数M,当时,成立,则称函

数当x→∞时是无穷大量,记为:

无穷小量

以零为极限的变量称为无穷小量。

定义:设有函数,对于任意给定的正数ε(不论它多么小),总存在正数δ(或正数M),使得对于适合不等式(或)的一切x,所对应的函数值满足不等式,则称函数当(或x→∞)时为无穷小量.

记作:(或)

注意:无穷大量与无穷小量都是一个变化不定的量,不是常量,只有0可作为无穷小量的唯一常量。无穷大量与无穷小量的区别是:前者无界,后者有界,前者发散,后者收敛于0.无穷大量与无穷小量是互为倒数关系的.

关于无穷小量的两个定理

定理一:如果函数在(或x→∞)时有极限A,则差是当(或x→∞)时的无穷小量,反之亦成立。

定理二:无穷小量的有利运算定理

a):有限个无穷小量的代数和仍是无穷小量; b):有限个无穷小量的积仍是无穷小量;c):常数与无穷小量的积也是无穷小量.

无穷小量的比较

通过前面的学习我们已经知道,两个无穷小量的和、差及乘积仍旧是无穷小.那么两个无穷小量的商会是怎样的呢?好!接下来我们就来解决这个问题,这就是我们要学的两个无穷小量的比较。

定义:设α,β都是时的无穷小量,且β在x0的去心领域不为零,

a):如果,则称α是β的高阶无穷小或β是α的低阶无穷小;

b):如果,则称α和β是同阶无穷小;

c):如果,则称α和β是等价无穷小,记作:α∽β(α与β等价)

例:因为,所以当x→0时,x与3x是同阶无穷小;

因为,所以当x→0时,x2是3x的高阶无穷小;

因为,所以当x→0时,sinx与x是等价无穷小。

等价无穷小的性质

设,且存在,则.

注:这个性质表明:求两个无穷小之比的极限时,分子及分母都可用等价无穷小来代替,因此我们可以利用这个性质来简化求极限问题。

例题:求

此题不能将其展开成两个函数差的形式,因为X\(3X)^3的极限为无穷大,极限不存在,不符合等价无穷小的条件存在

解答:

注:

注:从这个例题中我们可以发现,作无穷小变换时,要代换式中的某一项,不能只代换某个因子。

函数的一重要性质——连续性

在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的.这种现象在函数关系上的反映,就是函数的连续性

在定义函数的连续性之前我们先来学习一个概念——增量

设变量x从它的一个初值x1变到终值x2,终值与初值的差x2-x1就叫做变量x的增量,记为:△x即:△x=x2-x1增量△x可正可负.

我们再来看一个例子:函数在点x0的邻域有定义,当自变量x在领域从x0变到x0+△x时,

函数y相应地从变到,其对应的增量为:

这个关系式的几何解释如下图:

现在我们可对连续性的概念这样描述:如果当△x趋向于零时,函数y对应的增量△y也趋向于零,即:

,那末就称函数在点x0处连续。

函数连续性的定义:

设函数在点x0的某个邻域有定义,如果有称函数在点x0处连续,且称x0为函数的的连续点.

下面我们结合着函数左、右极限的概念再来学习一下函数左、右连续的概念:设函数在区间(a,b]有定义,如果左极限存在且等于,即:=,那末我们就称函数

在点b左连续.设函数在区间[a,b)有定义,如果右极限存在且等于,即:

=,那末我们就称函数在点a右连续.

一个函数在开区间(a,b)每点连续,则为在(a,b)连续,若又在a点右连续,b点左连续,则在闭区间[a,b]连续,如果在整个定义域连续,则称为连续函数。

注:一个函数若在定义域某一点左、右都连续,则称函数在此点连续,否则在此点不连续.

注:连续函数图形是一条连续而不间断的曲线。

通过上面的学习我们已经知道函数的连续性了,同时我们可以想到若函数在某一点要是不连续会出现什么情形呢?接着我们就来学习这个问题:函数的间断点

函数的间断点

定义:我们把不满足函数连续性的点称之为间断点.

它包括三种情形:a):在x

0无定义;

b):在x→x0时无极限;

c):在x→x0时有极限但不等于;

下面我们通过例题来学习一下间断点的类型:

例1:正切函数在处没有定义,所以点是函数的间断点,因,我们就称为函数的无穷间断点;

例2:函数在点x=0处没有定义;故当x→0时,函数值在-1与+1之间变动无限多次,我们就称点x=0叫做函数的振荡间断点;

例3:函数当x→0时,左极限,右极限,从这我们可以看出函数左、右极限虽然都存在,但不相等,故函数在点x=0是不存在极限。我们还可以发现在点x=0时,函数值产生跳跃现象,为此我们把这种间断点称为跳跃间断点;我们把上述三种间断点用几何图形表示出来如下:

可去间断点

若x0是函数的间断点,但极限存在,那末x0是函数的第一类间断点。此时函

数不连续原因是:不存在或者是存在但≠。我们令,则可使函数在点x0处连续,故这种间断点x0称为可去间断点。

间断点的分类

我们通常把间断点分成两类:如果x0是函数的间断点,且其左、右极限都存在,我们把x0称为

函数的第一类间断点;不是第一类间断点的任何间断点,称为第二类间断点.

连续函数的性质及初等函数的连续性

连续函数的性质

函数的和、积、商的连续性

我们通过函数在某点连续的定义和极限的四则运算法则,可得出以下结论:

a):有限个在某点连续的函数的和是一个在该点连续的函数;

b):有限个在某点连续的函数的乘积是一个在该点连续的函数;

c):两个在某点连续的函数的商是一个在该点连续的函数(分母在该点不为零);

反函数的连续性

若函数在某区间上单调增(或单调减)且连续,那末它的反函数也在对应的区间上单调增(单调减)且连续

例:函数在闭区间上单调增且连续,故它的反函数在闭区间[-1,1]上也是单调增且连续的。

复合函数的连续性

设函数当x→x0时的极限存在且等于a,即:.而函数在点u=a 连续,那末复合函数当x→x0时的极限也存在且等于.即:

例题:求

解答:

设函数在点x=x0连续,且,而函数在点u=u0连续,那末复合函数在点x=x0也是连续的

初等函数的连续性

通过前面我们所学的概念和性质,我们可得出以下结论:基本初等函数在它们的定义域都是连续的;一切初等函数在其定义域也都是连续的.

闭区间上连续函数的性质

闭区间上的连续函数则是在其连续区间的左端点右连续,右端点左连续.对于闭区间上的连续函数有几条重要的性质,下面我们来学习一下:

最大值最小值定理:在闭区间上连续的函数一定有最大值和最小值。(在此不作证明) 例:函数y=sinx在闭区间[0,2π]上连续,则在点x=π/2处,它的函数值为1,且大于闭区间[0,2π]上其它各点出的函数值;则在点x=3π/2处,它的函数值为-1,且小于闭区间[0,2π]上其它各点出的函数值。

介值定理在闭区间上连续的函数一定取得介于区间两端点的函数值间的任何值。即:,μ在α、β之间,则在[a,b]间一定有一个ξ,使

推论:在闭区间连续的函数必取得介于最大值最小值之间的任何值。

二、导数与微分

导数的概念

导数的定义:设函数在点x0的某一邻域有定义,当自变量x在x0处有增量△x(x+△x也在该邻域)时,相应地函数有增量,若△y与△x之比当△x→0时极限存在,则称这个极限值为在x0处的导数。

函数在点x0处存在导数简称函数在点x0处可导,否则不可导。若函数在区间(a,b)每一点都可导,就称函数在区间(a,b)可导。这时函数对于区间(a,b)的每一个确定的x

值,都对应着一个确定的导数,这就构成一个新的函数,我们就称这个函数为原来函数的导函数。

注:导数也就是差商的极限

左、右导数

前面我们有了左、右极限的概念,导数是差商的极限,因此我们可以给出左、右导数的概念。若极限存在,我们就称它为函数在x=x0处的左导数。若极限存在,我们就称它为函数在x=x0处的右导数。

注:函数在x0处的左右导数存在且相等是函数在x0处的可导的充分必要条件

函数的和、差求导法则

函数的和差求导法则

法则:两个可导函数的和(差)的导数等于这两个函数的导数的和(差).用公式可写为:。其中u、v为可导函数。

函数的积商求导法则

常数与函数的积的求导法则

法则:在求一个常数与一个可导函数的乘积的导数时,常数因子可以提到求导记号外面去。用公式可写成:

函数的积的求导法则

法则:

函数的商的求导法则

法则:

复合函数的求导法则

复合函数的求导规则

规则:两个可导函数复合而成的复合函数的导数等于函数对中间变量的导数乘上中间变量对自变量的导数。用公式表示为:

,其中u为中间变量

反函数求导法则

根据反函数的定义,函数为单调连续函数,则它的反函数,它也是单调连续的.为此我们可给出反函数的求导法则,如下(我们以定理的形式给出):

定理:若是单调连续的,且,则它的反函数在点x可导,且有:

注:通过此定理我们可以发现:反函数的导数等于原函数导数的倒数。注:这里的反函数是以y为自变量的,我们没有对它作记号变换。

即:是对y求导,是对x求导

例题:求的导数.

解答:此函数的反函数为,故则:

例题:求的导数.

解答:此函数的反函数为,故则:

高阶导数

定义:函数的导数仍然是x的函数.我们把的导数叫做函数的二阶导数,记作或,即:或.相应地,把

的导数叫做函数的一阶导数.类似地,二阶导数的导数,叫做三阶导数,三阶导数的导数,叫做四阶导数,…,一般地(n-1)阶导数的导数叫做n阶导数.

分别记作:,,…,或,,…,

二阶及二阶以上的导数统称高阶导数。由此可见,求高阶导数就是多次接连地求导,所以,在求高阶导数时可运用前面所学的求导方法。

例题:求对数函数的n阶导数。

解答:,,,,

一般地,可得

隐函数及其求导法则

我们知道用解析法表示函数,可以有不同的形式.若函数y可以用含自变量x的算式表示,像y=sinx,y=1+3x等,这样的函数叫显函数.前面我们所遇到的函数大多都是显函数.

一般地,如果方程F(x,y)=0中,令x在某一区间任取一值时,相应地总有满足此方程的y值存在,则我们就说方程F(x,y)=0在该区间上确定了x的隐函数y.把一个隐函数化成显函数的形式,叫做隐函数的显化。

隐函数的求导

若已知F(x,y)=0,求时,一般按下列步骤进行求解:

a):若方程F(x,y)=0,能化为的形式,则用前面我们所学的方法进行求导;

b):若方程F(x,y)=0,不能化为的形式,则是方程两边对x进行求导,并把y看成x的函数,用复合函数求导法则进行。

例题:求隐函数,在x=0处的导数

解答:两边对x求导,故,当x=0时,y=0.故

有些函数在求导数时,若对其直接求导有时很不方便,像对某些幂函数进行求导时,有没有一种比较直观的方法呢?下面我们再来学习一种求导的方法:对数求导法

对数求导法

对数求导的法则:根据隐函数求导的方法,对某一函数先取函数的自然对数,然后在求导。

注:此方法特别适用于幂函数的求导问题。

例题:已知x>0,求

此题若对其直接求导比较麻烦,我们可以先对其两边取自然对数,然后再把它看成隐函数进行求导,就比较简便些。如下

解答:先两边取对数:,把其看成隐函数,再两边求导

因为,所以

例题:已知,求

此题可用复合函数求导法则进行求导,但是比较麻烦,下面我们利用对数求导法进行求导

解答:先两边取对数再两边求导

高等数学考研知识点总结

高等数学考研知识点总结 一、考试要求 1、理解函数的概念,掌握函数的表示方法,会建立应用问题的函数关系。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形,了解初等函数的概念。 5、理解(了解)极限的概念,理解(了解)函数左、右极限的概念以及函数极限存在与左、右极限之间的关系。 6、掌握(了解)极限的性质,掌握四则运算法则。 7、掌握(了解)极限存在的两个准则,并会利用它们求极限,掌握(会)利用两个重要极限求极限的方法。 8、理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型 10、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。1

1、掌握(会)用洛必达法则求未定式极限的方法。 二、内容提要 1、函数(1)函数的概念: y=f(x),重点:要求会建立函数关系、(2)复合函数: y=f(u), u=,重点:确定复合关系并会求复合函数的定义域、(3)分段函数: 注意,为分段函数、(4)初等函数:通过有限次的四则运算和复合运算且用一个数学式子表示的函数。(5)函数的特性:单调性、有界性、奇偶性和周期性* 注: 1、可导奇(偶)函数的导函数为偶(奇)函数。特别:若为偶函数且存在,则 2、若为偶函数,则为奇函数;若为奇函数,则为偶函数; 3、可导周期函数的导函数为周期函数。特别:设以为周期且存在,则。 4、若f(x+T)=f(x), 且,则仍为以T为周期的周期函数、 5、设是以为周期的连续函数,则, 6、若为奇函数,则;若为偶函数,则 7、设在内连续且存在,则在内有界。 2、极限 (1) 数列的极限: (2) 函数在一点的极限的定义: (3)

高等数学大一上学期知识要点

高数总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB =g (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论

结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称 ()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为 αβ:. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小. 推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小. 定理2(等价无穷小替换定理) 设 ~,~ααββ'',

且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123L ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。

高数知识点总结

高数重点知识总结 1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(x a y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。 3、无穷小:高阶+低阶=低阶 例如:1lim lim 020==+→→x x x x x x x 4、两个重要极限:()e x e x x x x x x x x =?? ? ??+=+=∞ →→→11lim 1lim )2(1 sin lim )1(1 0 经验公式:当∞→→→)(,0)(,0x g x f x x ,[] ) ()(lim ) (0 )(1lim x g x f x g x x x x e x f →=+→ 例如:()33lim 10 031lim -? ? ? ? ?-→==-→e e x x x x x x 5、可导必定连续,连续未必可导。例如:||x y =连续但不可导。 6、导数的定义:()00 00 ') ()(lim ) (') ()(lim x f x x x f x f x f x x f x x f x x x =--=?-?+→→? 7、复合函数求导: [][])(')(')(x g x g f dx x g df ?= 例如:x x x x x x x y x x y ++=++ = +=2412221 1', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx 例如:y x dx dy ydy xdx y x y yy x y x - =?+- =?=+=+22,),2('0'22,),1(1 22左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若?? ?==) ()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[] ) (')('/)('/)/(/22 t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ??=-?+ 例如:计算 ?31sin

2018考研数学一:高数5大必考点重点分析

2018考研数学一:高数5大必考点重点 分析 考研数学分为数学一、数学二、数学三,这三者的考察也各有差别,2018考生要根据自己所选专业需考的类别来规划复习,下面凯程考研重点来谈谈考研数学一高数的考察点,涉及极限、导数和微分、中值定理及微分方程几个部分。 ?极限 首先是极限。极限在数一中还是占着很大的比重,考试的只要考查方式就是求极限,还有就是一些单调有界定理的使用。我们要充分掌握求不定式极限的种种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;其次就是极限的应用,主要表现为连续,导数等等,对函数的连续性和可导性的探讨也是考试的重点,这要求我们直接从定义切入,充分理解函数连续的定义和掌握判定连续性的方法。 ?导数和微分 虽然导数是由极限定义的,然而真正在考试的过程中,我们求一个函数的导数时,我们并不会直接用定义去求,更多的是直接从求导公式中去求一个函数的导数。导数的考查方式主要还是和其它的知识点相结合,很少直接给你一个函数让你求导数。例如不等式的证明,函数单调性,凹凸性的判断,二元函数的偏微分等等。换句话说,导数是一个基础。 ?中值定理 中值定理一般会两年至少考一次,多是以证明题的方式出现,而且常常和闭区间上的连续函数的性子相结合,以与罗尔定理为重点。 ?积分与不定积分 积分与不定积分是考试的重中之重,尤其是多元函数积分学更是每年的必考题型,平均一年会出两道大题,而且定积分、分段函数的积分、带绝对值的函数的积分等种种积分的求法都是重要的题型。而且求积分的过程中,特别要留意积分的对称性,利用分段积分去掉绝对值把积分求出来。二重积分的计算,固然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。对于曲线积分和曲面积分,考查方式以格林公式和高斯公式的应用为主,大家一定要注意格林公式和高斯公式的使用条件,考试的过程中往往会在这里设置陷阱。这两部分内容相对比较零散,也是难点,需要记忆的公式、定理比较多。 ?微分方程 微分方程中需要熟练掌握变量可分散的方程、齐次微分方程和一阶线性微分方程的求解

(完整版)高数_大一_上学期知识要点

总复习(上) 一、求极限的方法: 1、利用运算法则与基本初等函数的极限; ①、定理 若lim (),lim ()f x A g x B ==, 则 (加减运算) lim[()()]f x g x A B +=+ (乘法运算) lim ()()f x g x AB =g (除法运算) ()0,lim ()f x A B g x B ≠=若 推论1: lim (),lim[()][lim ()]n n n f x A f x f x A === (n 为正整数) 推论2: lim ()[lim ()]cf x c f x = ②结论 结论2: ()f x 是基本初等函数,其定义区间为D ,若0x D ∈,则 0lim ()()x x f x f x →= 2、利用等价无穷小代换及无穷小的性质; ①定义1: 若0 lim ()0x x f x →=或(lim ()0x f x →∞ =) 则称 ()f x 是当0x x → (或x →∞)时的无穷小. 定义2: ,αβ是自变量在同一变化过程中的无穷小: 若lim 1β α =, 则称α与β是等价无穷小, 记为 αβ:. ②性质1:有限个无穷小的和也是无穷小. 性质2: 有界函数与无穷小的乘积是无穷小. 推论1: 常数与无穷小的乘积是无穷小. 推论2: 有限个无穷小的乘积也是无穷小.

定理2(等价无穷小替换定理) 设~,~ααββ'', 且lim βα'' 存在, 则 (因式替换原则) 常用等价无穷小: sin ~,tan ~,arcsin ~,arctan ~,x x x x x x x x ()()2 12 1cos ~,1~,11~,ln 1~,x x x e x x x x x μ μ--+-+ 1~ln ,x a x a -()0→x 3、利用夹逼准则和单调有界收敛准则; ①准则I(夹逼准则)若数列,,n n n x y z (n=1,2,…)满足下列条件: (1)(,,,)n n n y x z n ≤≤=123L ; (2)lim lim n n n n y z a →∞ →∞ ==, 则数列n x 的极限存在, 且lim n n x a →∞ =. ②准则II: 单调有界数列必有极限. 4、利用两个重要极限。 0sin lim 1x x x →= 1 0lim(1)x x x e →+= 1lim(1)x x e x →∞+= 5、利用洛必达法则。 未定式为0,,,0,00∞ ∞∞-∞?∞∞ 类型. ①定理(x a →时的0 型): 设 (1)lim ()lim ()0x a x a f x F x →→==; (2) 在某(,)U a δo 内, ()f x 及()F x 都存在且()0F x ≠;

大学全册高等数学知识点(全)

大学高等数学知识点整理 公式,用法合集 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *0102()(),()x x f x F x x x f x ≤?=?>?; *0 ()(), x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () ()x x t y y t =??=? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()max(,,)n n n n a b c a b c ++→, ()00! n a a n >→

考研数学知识点总结

考研数学考点与题型归类分析总结 1高数部分 1.1高数第一章《函数、极限、连续》 求极限题最常用的解题方向: 1.利用等价无穷小; 2.利用洛必达法则 型和 ∞ ∞ 型直接用洛必达法则 ∞ 0、0∞、∞1型先转化为 型或 ∞ ∞ 型,再使用洛比达法则; 3.利用重要极限,包括1 sin lim = → x x x 、e x x x = + → 1 ) 1( lim、e x x x = + ∞ → ) 1(1 lim; 4.夹逼定理。 1.2高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》 第三章《不定积分》提醒:不定积分?+ =C x F dx x f) ( ) (中的积分常数C容易被忽略,而考试时如果在答案中少写这个C会失一分。所以可以这样加深印象:定积分?dx x f) (的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是?+ =C x F dx x f) ( ) (中的那个C,漏掉了C也就漏掉了这1分。 第四章《定积分及广义积分》解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章: 对于?-a a dx x f) (型定积分,若f(x)是奇函数则有?-a a dx x f) (=0; 若f(x)为偶函数则有?-a a dx x f) (=2?a dx x f ) (; 对于?20)( π dx x f型积分,f(x)一般含三角函数,此时用x t- = 2 π 的代换是常用方法。 所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利用性质0 = ?-a a奇函数、? ?= - a a a0 2偶函数 偶函数。在处理完积分上下限的问题后就使用第三章不定积分的套路化方法求解。这种思路对于证明定积分等式的题目也同样有效。 1.3高数第五章《中值定理的证明技巧》 用以下逻辑公式来作模型:假如有逻辑推导公式A?E、(A B)?C、(C D E)?F,由这样一组逻辑关系可以构造出若干难易程度不等的证明题,其中一个可以是这样的:条件给出A、B、D,求证F。 为了证明F成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。 正方向入手时可能遇到的问题有以下几类:1.已知的逻辑推导公式太多,难以从中找出有用的一个。如对于证明F成立必备逻辑公式中的A?E就可能有A?H、A?(I K)、(A B) ?M等等公式同时存在,

考研高等数学知识点总结

高等数学知识点总结 导数公式: 基本积分表: 三角函数的有理式积分: 222 2 12211cos 12sin u du dx x tg u u u x u u x +==+-=+= , , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 22 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '--='-='? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+= -++-=-+=++-=++=+=+-=? ???????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 22 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 0π π

大一上学期高数知识点电子教案

第二章 导数与微分 一、主要内容小结 1. 定义·定理·公式 (1)导数,左导数,右导数,微分以及导数和微分的几何意义 (2) 定理与运算法则 定理1 )(0x f '存在?='- )(0x f )(0x f +' . 定理2 若)(x f y =在点0x 处可导,则)(x f y =在点x 0处连续;反之不真. 定理3 函数)(x f 在0x 处可微?)(x f 在0x 处可导. 导数与微分的运算法则:设)(,)(x v v x u u ==均可导,则 v u v u '±'='±)(, dv du v u d ±=±)( u v v u uv '+'=')(, vdu udv uv d +=)( )0()(2≠'-'='v v v u u v v u , )0()(2≠-=v v udv vdu v u d (3)基本求导公式 2. 各类函数导数的求法 (1)复合函数微分法 (2)反函数的微分法 (3)由参数方程确定函数的微分法 (4)隐函数微分法 (5)幂指函数微分法 (6)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法. 方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对x 求导). (7)分段函数微分法 3. 高阶导数 (1)定义与基本公式

高阶导数公式:a a a n x n x ln )()(= )0(>a x n x e e =)()( )2sin()(sin )(π?+=n kx k kx n n )2cos()(cos )(π ?+=n kx k kx n n n m n m x n m m m x -+-???-=)1()1()()( !)()(n x n n = n n n x n x )! 1()1()(ln 1)(--=- 莱布尼兹公式: (2)高阶导数的求法 ① 直接法② 间接法 4. 导数的简单应用 (1) 求曲线的切线、法线 (2) 求变化率——相关变化率 二、 例题解析 例2.1 设?? ???=≠?=0,00,1sin )(x x x x x f K , (K 为整数).问: (1)当K 为何值时,)(x f 在0=x 处不可导; (2)当K 为何值时,)(x f 在0=x 处可导,但导函数不连续; (3)当K 为何值时,)(x f 在0=x 处导函数连续? 解 函数)(x f 在x=0点的导数: 0lim →x =--0 )0()(x f x f 0lim →x x f x f )0()(-=0lim →x x x x K 1sin )(? = 0lim →x x x K 1sin )(1?-= ? ??>≤101 K K 当,,当发散 即 ? ??>≤='1,01)0(K K f 不存在, 当1>K 时, )(x f 的导函数为: ?????=≠?-?='--0,00,1cos 1sin )(21x x x x x Kx x f K K

大一高数上复习重点

大一高数上复习重点 Prepared on 24 November 2020

高数高数重点 本章公式: 两个重要极限: 常用的8个等价无穷小公式:当x→0时, sinx~x tanx~x arcsinx~x arctanx~x 1-cosx~1/2*(x^2) (e^x)-1~x ln(1+x)~x [(1+x)^1/n]-1~(1/n)*x 二.导数与微分 熟悉函数的可导性与连续性的关系求高阶导数会运用两边同取对数隐函数的显化会求由参数方程确定的函数的导数

三.微分中值定理与导数的应用:

洛必达法则: 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ① 在着手求极限以前,首先要检查是否满足或型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限 . ② 洛必达法则可连续多次使用,直到求出极限为止. ③ 洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 曲线的凹凸性与拐点: 注意:首先看定义域然后判断函数的单调区间 求极值和最值 利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号) 四.不定积分:(要求:将例题重新做一遍) 对原函数的理解 原函数与不定积分 1 基本积分表基本积分表(共24个基本积分公式) 不定积分的性质

2 第一类换元法(凑微分法) 2 第二类换元法(三角代换无理代换倒代换) 3 分部积分法 f(x)中含有 可考虑用代换

考研数学知识点总结(不看后悔)

考研英语作文万能模板考研英语作文万能模板函数 极限数列的极限特殊——函数的极限一般 极限的本质是通过已知某一个量自变量的变化趋势去研究和探索另外一个量因变量的变化趋势 由极限可以推得的一些性质局部有界性、局部保号性……应当注意到由极限所得到的性质通常都是只在局部范围内成立 在提出极限概念的时候并未涉及到函数在该点的具体情况所以函数在某点的极限与函数在该点的取值并无必然联系连续函数在某点的极限等于函数在该点的取值 连续的本质自变量无限接近因变量无限接近导数的概念 本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限更简单的说法是变化率 微分的概念函数增量的线性主要部分这个说法有两层意思一、微分是一个线性近似二、这个线性近似带来的误差是足够小的实际上任何函数的增量我们都可以线性关系去近似它但是当误差不够小时近似的程度就不够好这时就不能说该函数可微分了不定积分导数的逆运算什么样的函数有不定积分 定积分由具体例子引出本质是先分割、再综合其中分割的作用是把不规则的整体划作规则的许多个小的部分然后再综合最后求极限当极限存在时近似成为精确 什么样的函数有定积分 求不定积分定积分的若干典型方法换元、分部分部积分中考虑放到积分号后面的部分不同类型的函数有不同的优先级别按反对幂三指的顺序来记忆 定积分的几何应用和物理应用高等数学里最重要的数学思想方法微元法 微分和导数的应用判断函数的单调性和凹凸性 微分中值定理可从几何意义去加深理解 泰勒定理本质是用多项式来逼近连续函数。要学好这部分内容需要考虑两个问题一、这些多项式的系数如何求二、即使求出了这些多项式的系数如何去评估这个多项式逼近连续函数的精确程度即还需要求出误差余项当余项随着项数的增多趋向于零时这种近似的精确度就是足够好的考研英语作文万能模板考研英语作文万能模板多元函数的微积分将上册的一元函数微积分的概念拓展到多元函数 最典型的是二元函数 极限二元函数与一元函数要注意的区别二元函数中两点无限接近的方式有无限多种一元函数只能沿直线接近所以二元函数存在的要求更高即自变量无论以任何方式接近于一定点函数值都要有确定的变化趋势 连续二元函数和一元函数一样同样是考虑在某点的极限和在某点的函数值是否相等导数上册中已经说过导数反映的是函数在某点处的变化率变化情况在二元函数中一点处函数的变化情况与从该点出发所选择的方向有关有可能沿不同方向会有不同的变化率这样引出方向导数的概念 沿坐标轴方向的导数若存?诔浦际?通过研究发现方向导数与偏导数存在一定关系可用偏导数和所选定的方向来表示即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况高阶偏导数若连续则求导次序可交换 微分微分是函数增量的线性主要部分这一本质对一元函数或多元函数来说都一样。只不过若是二元函数所选取的线性近似部分应该是两个方向自变量增量的线性组合然后再考虑误差是否是自变量增量的高阶无穷小若是则微分存在 仅仅有偏导数存在不能推出用线性关系近似表示函数增量后带来的误差足够小即偏导数存在不一定有微分存在若偏导数存在且连续则微分一定存在 极限、连续、偏导数和可微的关系在多元函数情形里比一元函数更为复杂 极值若函数在一点取极值且在该点导数偏导数存在则此导数偏导数必为零

考研高等数学知识点总结(优.选)

高等数学知识点 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

2018考研数学:重点整理自己的错题集

2018考研数学:重点整理自己的错题集 2018考研的同学们在复习备考的初期阶段需要准备一个错题本,把自己平时做错的题抄在上面,然后自己解析,逐渐形成自己的复习指导书。下面是在整理错题本时的一些注意要点,希望对考生能够有所帮助。 1.高等数学 极限、导数和不定积分这三个部分是考试中考查的重点,其他部分都是在这三个的基础上进行延伸。 2.线性代数 是初等变换,含有参数的线性方程式解的讨论,还有就是方程的特征值、特征向量,有了他们,线性代数的复习就会很流畅。 3.概率论与数理统计 第一章的概念,其中的条件概念,乘法公式、等三个方面; 第二章是几何分布,这章是该理论的核心,特别是二维联系变量的平均分布密度、条件分布密度,离散型的实际变量的特征和定义; 第三章数据变量的数据特征,主要就是四个概念数学期望、方差、线方差、相关系数。 此外,大家在复习的过程中,应重视自己的错题,因为他们在一定程度上反映出你的知识漏洞。在数学试卷中,客观题部分主要分填空和选择。其中填空6道题,选择8道题,共56分。占据了数学三分之一多的分数。在历年的考试中,这部分题丢分现象比较严重,很多一部分同学在前面的56分可能才得了20多分,如果基本题丢掉30多分,这个时候总分要上去是一件非常不容易的事情。 【填空题】 (1)考查点:填空题比较多的是考查基本运算和基本概念,或者说填空题比较多的是计算。 (2)失分原因:运算的准确率比较差,这种填空题出的计算题题本身不难,方法我们一般同学拿到都知道,但是一算就算错了,结果算错了,填空题只要是答案填错了就只能给0分。 (3)对策:这就要求我们同学平时复习的时候,这种计算题,一些基本的运算题不

大一上学期高数复习要点

大一上学期高数复习要点 同志们,马上就要考试了,考虑到这是你们上大学后的第一个春节,为了不影响阖家团圆的气氛,营造以人文本,积极向上,相互理解的师生关系,减轻大家学习负担,以下帮大家梳理本学期知识脉络,抓住复习重点; 1.主要以教材为主,看教材时,先把教材看完一节就做一节的练习,看完一章后,通过看小结对整一章的内容进行总复习。 2.掌握重点的知识,对于没有要求的部分可以少花时间或放弃,重点掌握要求的内容,大胆放弃老师不做要求的内容。 3.复习自然离不开大量的练习,熟悉公式然后才能熟练任用。结合课后习题要清楚每一道题用了哪些公式。没有用到公式的要死抓定义定理! 一.函数与极限二.导数与微分三.微分中值定理与导数的应用四.不定积分浏览目录了解真正不熟悉的章节然后有针对的复习。 一函数与极限 熟悉差集对偶律(最好掌握证明过程)邻域(去心邻域)函数有界性的表示方法数列极限与函数极限的区别收敛与函数存在极限等价无穷小与无穷大的转换夹逼准则(重新推导证明过程)熟练运用两个重要极限第二准则会运用等价无穷小快速化简计算了解间断点的分类零点定理 本章公式: 两个重要极限: 二.导数与微分 熟悉函数的可导性与连续性的关系求高阶导数会运用两边同取对数隐函数的显化会求由参数方程确定的函数的导数

洛必达法则: 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: ①在着手求极限以前,首先要检查是否满足或型,否则滥用洛必达法则会出错.当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则失效,应从另外途径求极限 . ②洛必达法则可连续多次使用,直到求出极限为止. ③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 曲线的凹凸性与拐点: 注意:首先看定义域然后判断函数的单调区间 求极值和最值 利用公式判断在指定区间内的凹凸性或者用函数的二阶导数判断(注意二阶导数的符号) 四.不定积分:(要求:将例题重新做一遍) 对原函数的理解 原函数与不定积分 1 基本积分表基本积分表(共24个基本积分公式) 不定积分的性质 最后达到的效果是会三算两证(求极限,求导数,求积分)(极限和中值定理的证明),一定会取得满意的成绩!

高等数学考研知识点总结

第八讲 多元函数微分学 一、考试要求 1. 理解多元函数的概念,理解二元函数的几何意义。 2. 了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3. 理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。 4. 理解方向导数与梯度的概念并掌握其计算方法。 5. 掌握多元复合函数一阶、二阶偏导数的求法。 6. 了解隐函数存在定理,会求多元隐函数的偏导数。 7. 了解二元函数的二阶泰勒公式(数一)。 8. 理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 二、 内容提要 1、 多元函数的概念:z=f(x,y), (x,y) D 2、 二元函数的极限定义、连续 3、 偏导数的定义、高阶偏导、全微分 z=f(x,y) = , = 若)(),(),(),(),(000000000ρ+?'+?'=-?+?+=?y y x f x y x f y x f y y x x f z y x 则 4、偏导连续?可微? 可导(偏导) 连续 极限存在 5、 复合函数求导法则 (1)多元与一元复合:设)(),(),(t z z t y y t x x ===在t 可微,),,(z y x f u = 在与t 对应的点(),,(=z y x ))(),(),(t z t y t x 可微,则))(),(),((t z t y t x f u =在t 处可微,且 dt dz z f dt dy y f dt dx x f dt du ??+??+??= (2)多元与多元复合:设),(),,(y x v y x u ?φ==在点),(y x 存在偏导数,),(v u f w =在与),(y x 对应的点),(v u 可微,则)),(),,((y x y x f w ?φ=在点),(y x 存在偏导数,且

考研数学知识点总结

2 0 19 考研数学三知识点总结 考研数学复习一定要打好基础,对于重要知识点一定要强化练习,深刻巩固。整合了考研数学三在高数、线性代数及概率各部分的核心知识点、考察题型及重要度。 2019考研数学三考前必看核心知识点

知识点口诀,掌握解题技巧 1、函数概念五要素,定义关系最核心

分段函数分段点,左右运算要先行。 变限积分是函数,遇到之后先求导。 奇偶函数常遇到,对称性质不可忘。 单调增加与减少,先算导数正与负。 正反函数连续用,最后只留原变量。 一步不行接力棒,最终处理见分晓。 极限为零无穷 小,乘有限仍无穷小。 幂指函数最复杂,指数对数一起上。 、待定极限七类型,分层处理洛必达。 、数列极限洛必达,必须转化连续型。 、数列极限逢绝境,转化积分见光明。 、无穷大比无穷大,最高阶项除上下。 、 n 项相加先合并,不行估计上下界。 、变量替换第一宝,由繁化简常找它。 、递推数列求极限,单调有界要先证, 两边极限一 起上,方程之中把值找。 、函数为零要论证,介值定理定乾坤。 、切线斜率是导数,法线斜率负倒数。 、可导可微互等价,它们都比连续强。 、有理函数要运算,最简分式要先行。 、高次三角要运算,降次处理先开路。 、导数为零欲论证,罗尔定理负重任。 23 、函数之差化导数,拉氏定理显神通。 2、 3、 4、 5、 6、 7、 8、 9、 10 11 12 13 14 15 16 17 18 19 20 21 22

24、导数函数合(组合)为零,辅助函数用罗尔。 25、寻找En无约束,柯西拉氏先后上。 26、寻找En有约束,两个区间用拉氏。 27、端点、驻点、非导点,函数值中定最值。 28、凸凹切线在上下,凸凹转化在拐点。 29、数字不等式难证,函数不等式先行。 30、第一换元经常用,微分公式要背透。 31、第二换元去根号,规范模式可依靠。 32、分部积分难变易,弄清u、v是关键。 33、变限积分双变量,先求偏导后求导。 34、定积分化重积分,广阔天地有作为。 35、微分方程要规范,变换,求导,函数反。 36、多元复合求偏导,锁链公式不可忘。 37、多元隐函求偏导,交叉偏导加负号。 38、多重积分的计算,累次积分是关键。 39、交换积分的顺序,先要化为重积分。 40、无穷级数不神秘,部分和后求极限。 41、正项级数判别法,比较、比值和根值。 42、幕级数求和有招,公式、等比、列方程。 2019考研数学各科核心考点梳理

考研高数精华知识点总结:极限的定义

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 考研高数精华知识点总结:极限的定义 高等数学是考研数学考试中内容最多的一部分,分值所占比例也最高。为此我们为大家整理分享了考研高数精华知识点总结之闭区间连续函数的性质。凯程考研将第一时间满足莘莘学子对考研信息的需求,并及时进行权威发布,敬请关注!

凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 凯程考研: 凯程考研成立于2005年,具有悠久的考研辅导历史,国内首家全日制集训机构考研,一直从事高端全日制辅导,由李海洋教授、张鑫教授、卢营教授、王洋教授、杨武金教授、张释然教授、索玉柱教授、方浩教授等一批高级考研教研队伍组成,为学员全程高质量授课、答疑、测试、督导、报考指导、方法指导、联系导师、复试等全方位的考研服务。 凯程考研的宗旨:让学习成为一种习惯; 凯程考研的价值观:凯旋归来,前程万里; 信念:让每个学员都有好最好的归宿; 使命:完善全新的教育模式,做中国最专业的考研辅导机构; 激情:永不言弃,乐观向上; 敬业:以专业的态度做非凡的事业; 服务:以学员的前途为已任,为学员提供高效、专业的服务,团队合作,为学员服务,为学员引路。 特别说明:凯程学员经验谈视频在凯程官方网站有公布,同学们和家长可以查看。扎扎实实的辅导,真真实实的案例,凯程考研的价值观:凯旋归来,前程万里。 如何选择考研辅导班: 在考研准备的过程中,会遇到不少困难,尤其对于跨专业考生的专业课来说,通过报辅导班来弥补自己复习的不足,可以大大提高复习效率,节省复习时间,大家可以通过以下几个方面来考察辅导班,或许能帮你找到适合你的辅导班。 师资力量:师资力量是考察辅导班的首要因素,考生可以针对辅导名师的辅导年限、辅导经

考研高数各章重点总结

一、一元函数微分学 求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论; 利用洛比达法则求不定式极限; 讨论函数极值,方程的根,证明函数不等式; 利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数; 几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间; 利用导数研究函数性态和描绘函数图形,求曲线渐近线。 二、一元函数积分学 计算题:计算不定积分、定积分及广义积分; 关于变上限积分的题:如求导、求极限等; 有关积分中值定理和积分性质的证明题; 定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等; 综合性试题。 三、函数、极限与连续 求分段函数的复合函数; 求极限或已知极限确定原式中的常数; 讨论函数的连续性,判断间断点的类型; 无穷小阶的比较; 讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。 四、向量代数和空间解析几何

计算题:求向量的数量积,向量积及混合积; 求直线方程,平面方程; 判定平面与直线间平行、垂直的关系,求夹角; 建立旋转面的方程; 与多元函数微分学在几何上的应用或与线性代数相关联的题目。 五、多元函数的微分学 判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续; 求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数; 求二元、三元函数的方向导数和梯度; 求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习; 多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。 六、多元函数的积分学 二重、三重积分在各种坐标下的计算,累次积分交换次序; 第一型曲线积分、曲面积分计算; 第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用; 第二型(对坐标)曲面积分的计算,高斯公式及其应用; 梯度、散度、旋度的综合计算; 重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。数学一考生对这部分内容和题型要引起足够的重视。 七、无穷级数 判定数项级数的收敛、发散、绝对收敛、条件收敛;

高等数学知识点归纳

第一讲: 极限与连续 一. 数列函数: 1. 类型: (1)数列: *()n a f n =; *1()n n a f a += (2)初等函数: (3)分段函数: *010 2()(),()x x f x F x x x f x ≤?=? >?; *0 0()(),x x f x F x x x a ≠?=?=?;* (4)复合(含f )函数: (),()y f u u x ?== (5)隐式(方程): (,)0F x y = (6)参式(数一,二): () () x x t y y t =?? =? (7)变限积分函数: ()(,)x a F x f x t dt = ? (8)级数和函数(数一,三): 0 (),n n n S x a x x ∞ ==∈Ω∑ 2. 特征(几何): (1)单调性与有界性(判别); (()f x 单调000,()(()())x x x f x f x ??--定号) (2)奇偶性与周期性(应用). 3. 反函数与直接函数: 1 1()()()y f x x f y y f x --=?=?= 二. 极限性质: 1. 类型: *lim n n a →∞ ; *lim ()x f x →∞ (含x →±∞); *0 lim ()x x f x →(含0x x ± →) 2. 无穷小与无穷大(注: 无穷量): 3. 未定型: 000,,1,,0,0,0∞ ∞∞-∞?∞∞∞ 4. 性质: *有界性, *保号性, *归并性 三. 常用结论: 11n n →, 1(0)1n a a >→, 1()m a x (,,)n n n n a b c a b c ++→, ()00! n a a n >→ 1(0)x x →→∞, 0lim 1x x x + →=, l i m 0n x x x e →+∞=, ln lim 0n x x x →+∞=, 0 l i m l n 0n x x x + →=, 0,x x e x →-∞?→? +∞→+∞ ?

考研数学(一)知识点汇总

1:数列极限 手册P13 1.01:求极限时候,函数中有阶乘且趋近于无穷大,要用级数法,即证明函数是收敛的(可以用根值,比值),故趋近于无穷大为0. 1.02:已知0x lim ()x f x A ->=,则()f x A α=+,0 x lim 0x α->= 1.1:奇+奇=奇,偶+偶=偶, ()==奇偶奇奇,(奇)偶,偶偶偶 1.2:f(x)为周期函数,0x =(t)dt x F f ?(),不一定是周期函数,但是f (x )如果是奇函数,这个就成立了。且为奇函 数时候。00(t)dt (t)dt x x f f -=?? 1.3:判断函数有无上下界,用绝对值放缩或导数最大最小,文登P3 1.305:奇函数的原函数一定是偶函数。 1.31:()lim ()n f x g x ->∞ =,一般把g (x )给分段 1.4:证明连续:00->0 lim[f(x +)-f(x )]x x ?? 1.5: 22sin(1)(1)sin[(1)]n n n n ππ+=-+-这个让原本不是交错级数的变成了交错级数。 1.6: xlny=xln (y-1+1),于是等价无穷小于x (y-1)前提是y 趋近于1

1.7:20f(x)-g(x),0....o x 37 式出现可以对二者使用迈克劳林,然后消去相同项,注意不能消去()文登P 1.8:测试函数: (1)x 大于0,为1,小于0为-1 (有界不收敛) (2)x=sinn ,y=1/n (x 发散,y 收敛,无穷大时xy=0) (3)x (n )在n 为奇数时为n ,为偶数时为0,y (n )反过来,xy 都是无界,但是xy=0 1.9:文登P26.1.55 P23.1.49 1.91:证连续就是要证,左值=右值=等于该点值,证可导是左导数等于右导数即可。 1.92:看到导数大于小于0的时候,不仅有递增递减,还可以写出导数的极限表达式,然后利用保号性可以通过极限分式下半部的正负性决定上半部的正负性。注意在x0的左右两个领域内,0x x -正负不一,而决定 0()()f x f x -的正负, 模拟卷1.1 1.93:对于一阶导数的方程,由一阶导数方程的24b ac -<0知道一阶导数恒大于0或者恒小于0,知原函数恒增或恒减 模拟卷1.4 1.94:不连续点求导用极限求 模拟卷3.9 2:收敛数列三性质(唯一性,有界性,保号性)手册P14 3:函数极限 手册P15

相关文档
最新文档