应用新展式法求非线性发展方程的精确解

应用新展式法求非线性发展方程的精确解
应用新展式法求非线性发展方程的精确解

https://www.360docs.net/doc/a116090879.html, The exp(??(ξ))-expansion Method applied to Nonlinear Evolution Equations

Mei-mei Zhao??,Chao-Li

School of Mathematics and Statistics,Lanzhou University

Lanzhou,Gansu730000,P.R.of China

Abstract

By using exp(??(ξ))-expansion method,we have obtained more travelling wave solu-tions to the mKdV equation,the Drinefel’d-Sokolov-Wilson equations,the Variant Boussinesq equations and the Coupled Schr¨o dinger-KdV system.The proposed method also can be used for many other nonlinear evolution equations.

Keywords exp(??(ξ))-expansion method,Homogeneous balance,Travelling wave solu-tions,Solitary wave solutions,MKdV equation,Drinefel’d-Sokolov-Wilson equations,Variant Boussinesq equations,Coupled Schr¨o dinger-KdV system.

1Introduction

It is well known that nonlinear evolution equations are involved in many?elds from physics to biology,chemistry,mechanics,etc.As mathematical models of the phenomena,the inves-tigation of exact solutions to nonlinear evolution equations reveals to be very important for the understanding of these physical problems.Understanding this importance,during the past four decades or so,many mathematicians and physicists have being paid special attention to the development of sophisticated methods for constructing exact solutions to nonlinear evo-lution equations.Thus,a number of powerful methods has been presented such as the inverse scattering transform[1],the B¨a cklund and the Darboux transform[2-5],the Hirota[6],the trun-cated painleve expansion[7],the tanh-founction expansion and its various extension[8-10],the Jacobi elliptic function expansion[11,12],the F-expansion[13-16],the sub-ODE method[17-20],the homogeneous balance method[21-23],the sine-cosine method[24,25],the rank anal-ysis method[26],the ansatz method[27-29],the exp-function expansion method[30],Algebro-geometric constructions method[31]and so on.

In the present paper,we shall proposed a new method which is called exp(??(ξ))-expansion method to seek travelling wave solutions of nonliear evolution equations.the ?Corresponding Author.

?E-mail address:yunyun1886358@https://www.360docs.net/doc/a116090879.html,(M.Zhao).

1

main idears of the proposed method are that the travelling wave solutions of a nonliear evo-lution equation can be expressed by a polynomial in exp(??(ξ)),where?(ξ)satis?es ODE (see Eq.(5)in section2),ξ=x?V t,the degree of the polynomial can be determined by con-sidering the homogeneous balance between the highest order derivatives and nonlinear terms appearing in a given nonliear evolution equation,and the coe?cients of the polynomial from the process of using the proposed method.It will be seen that more travelling wave solutions of many nonlinear evolution equations can be obtained by using the exp(??(ξ))-expansion method.

The paper is organized as follows:In section2,we will recall the exp(??(ξ))-expansion method.In section3,we will illustrate the method in detail with the mKdV equation, the Drinefel’d-Sokolov-Wilson equations,the variant Boussinesq equations and the Coupled Schr¨o dinger-KdV system.In section7,the features of the exp(??(ξ))-expansion method will be brie?y summarized.

2Description of the exp(??(ξ))-expansion method

In the following,we will outline the main steps of exp(??(ξ))-expansion method.

Consider a nonlinear equation,say in two independent variable x and t,is given by

P(u,u t,u x,u tt,u xt,u xx,...)=0,(1)

where u=u(x,t)is an unknown function,P is a polynomial in u=u(x,t)and its various partial derivatives,in which the highest order derivatives and nonlinear terms are involved. Step1Combining the independent variable x and t into one variableξ=x?V t,we suppose that

u(x,t)=u(ξ),ξ=x?V t,(2)

the travelling wave variable(2)permits us reducing Eq.(1)to an ODE for u=u(ξ)

P(u,?V u ,u ,V2u ,?V u ,u ,...),(3)

Step2Suppose that the solution of ODE(3)can be expressed by a polynomial in exp(??(ξ)) as follows

u(ξ)=αm(exp(??(ξ)))m+...,(4)

where?(ξ)satis?es the ODE in the form

? (ξ)=exp(??(ξ))+μexp(?(ξ))+λ,(5)

the solutions of ODE(5)are

Whenλ2?4μ>0,μ=0,

?(ξ)=ln(?

2tanh(

λ2?4μ

2

(ξ+C1))?λ

),(6) 2

https://www.360docs.net/doc/a116090879.html,

Whenλ2?4μ>0,μ=0,

?(ξ)=?ln(

λ

exp(λ(ξ+C1))?1

),(7)

Whenλ2?4μ=0,μ=0,λ=0,

?(ξ)=ln(?2(λ(ξ+C1)+2)

λ2(ξ+C1)

),(8)

Whenλ2?4μ=0,μ=0,λ=0,

?(ξ)=ln(ξ+C1),(9) Whenλ2?4μ<0,

?(ξ)=ln(

2tan(

4μ?λ2

2

(ξ+C1))?λ

),(10)

αm,...,V,λandμare constants to be determined later,αm=0,the unwritten part in(4)is also a polynomial in exp(??(ξ)),but the degree of which is generally equal to or less than m?1,the positive integer m can be determined by considering the homogeneous balance between the highest order derivatives and nonliear terms appearing in ODE(3).

Step3By substituting(4)into Eq.(3)and using the ODE(5),collecting all terms with the same order of exp(??(ξ))together,the left hand side of Eq.(3)is converted into another polynomial in exp(??(ξ)).Equating each coe?cient of this polynomial to zero,yields a set of algebraic equations forαm,...,V,λandμ.

Step4Assuming that the constantsαm,...,V,λ,andμcan be obtained by solving the algebraic equations in step3,since the general solutions of ODE(5)have been well known for us,then substitutingαm,...,V,and the general solutions of Eq.(5)into(4).we have more travelling wave solutions of nonliear evolution equation(1).

In the subsequent sections we will illustrate the proposed method in detail with various nonliear evolution equations in mathematical physics.

3MKdV equation

In this section,we consider the MKdV equation in the form

u t?u2u x+δu xxx=0,δ>0,(11) By using the travellingwave variable(2),Eq.(11)is converted into an ODE for u=u(ξ)

?V u ?u2u +δu =0,

integrating it with respect toξonce yields

C?V u?1

3

u3+δu =0,(12) 3

https://www.360docs.net/doc/a116090879.html,

where C is an integration constant that is to be determined later.

Considering the homogeneous balance between u and u 3in Eq.(12)(m +2=3m ?m =

1)we can suppose that solution of Eq.(12)is of the form

u (ξ)=α1exp(??(ξ))+α0,α1=0,

(13)where ?(ξ)satis?es ODE (5).α1,α0,λand μare to be determined later.

By using (13)and (5),it is derived that

u (ξ)=2α1(exp(??(ξ)))3+3α1λ(exp(??(ξ)))2+(α1λ2+2α1μ)exp(??(ξ))+α1λμ,(14)

u 3(ξ)=α31(exp(??(ξ)))3+3α21α0(exp(??(ξ)))2+3α1α20(exp(??(ξ)))+α30.(15)

By substituting (13),(14)and (15)into Eq.(12)and collecting all terms with the same power of exp(?(?(ξ)))together,the left hand side of Eq.(12)is converted into another poly-nomial in exp(?(?(ξ))).Equating the co?cients of this polynomial to zero,yields a set of simultaneous algebraic equations for α1,α0,V ,λ,μand C as follows

C ?V α0?13

α30+δα1λμ=0,?V α1?α1α20

+δα1λ2+2δα1μ=0,?α21

α0+3δα1λ=0,?13

α31+2δα1=0.Solving the algebraic equations above yields

α1=±√6δ,α0=±12λ√6δ,V =?12

δλ2+2δμ,C =0,(16)

λand μare arbitrary constants.

Substituting (16)into (13)yields

u (ξ)=±√6δexp(??(ξ))±12λ√6δ,ξ=x ?(2δμ?12δλ2)t.(17)which is the formulae of a solution of Eq.(12),provided that the integeration constant C in Eq.(12)is taken as that in (16).

Respectively substituting (6)-(10)into the formulae (17),we have ?ve types of travelling wave solutions of the mKdV equation (11)as follows

When λ2?4μ>0,μ=0,

u (ξ)=?2√ λ2?4μtanh(√λ2?4μ2(ξ+C 1))+λ

±λ√2,ξ=x ?(2δμ?12δλ2)t ,C 1is an arbitrary constant.4

https://www.360docs.net/doc/a116090879.html,

Whenλ2?4μ>0,μ=0,

u(ξ)=±

exp(λ(ξ+C1))?1

±

λ

2

,

ξ=x?1

2δλ2t,C1is an arbitrary constant.

Whenλ2?4μ=0,μ=0,λ=0,

u(ξ)=?

6δλ2(ξ+c1)

2(λ(ξ+C1)+2)

±

λ

2

,

ξ=x,C1is an arbitrary constant.

Whenλ2?4μ=0,μ=0,λ=0,

u(ξ)=±

6δξ+C1

,

ξ=x,C1is an arbitrary constant.

Whenλ2?4μ<0,

u(ξ)=±

2

6δμ

4μ?λ2tan(

4μ?λ

2

(ξ+C1))?λ

±

λ

2

,

ξ=x?(2δμ?1

2

δλ2)t,C1is an arbitrary constants.

4Drinefel’d-Sokolov-Wilson equations

In this section we consider the Drinefel’d-Sokolov-Wilson equations in the form

u t+pvv x=0,

v t+qv xxx+ruv x+su x v=0,(18)

Where p,q,r and s are arbitrary constants.And when p=1

2,q=?1.r=s=3,the equations

become the nonlinear Drinfeld-Sokolov System[32]

u t+(v2)x=0,

v t?v xxx+3vu x+3uv x=0,(19) Likewise,let u(x,t)=u(ξ),v(x,t)=v(ξ)andξ=x?V t,then Eq.(18)becomes

?V u +pvv =0,(20)

?V v +qv +ruv +su v=0,(21) Balancing between u with vv in Eq.(20)and that between v with u v in Eq.(21),and suppose that

u(ξ)=α2(exp(??(ξ)))2+α1(exp(??(ξ)))+α0,α2=0,(22)

v(ξ)=β1(exp(??(ξ)))+β0,β1=0,(23)

5

https://www.360docs.net/doc/a116090879.html,

where?(ξ)satis?es the ODE(5),α2,α1,α0,β2,β1,β0,λandμare constants to be determined later.

By using(22),(23)and(5),it is derived that

u =?2α2(exp(??(ξ)))3?(2α2λ+α1)(exp(??(ξ)))2

?(2α2μ+α1λ)(exp(??(ξ)))?α1μ,

v =?β1(exp(??(ξ)))2?β1λ(exp(??(ξ)))?β1μ,

v =?6β1(exp(??(ξ)))4?12β1λ(exp(??(ξ)))3?(7β1λ2+8β1μ)(exp(??(ξ)))2?(8β1λμ+β1λ3)(exp(??(ξ)))?β1λ2μ?2β1μ2,(24) Sustituting(22),(23)and(24)into Eqs.(20)and(21)and collecting all terms with the power of exp(??(ξ))together,it yields

Vα1μ?pβ0β1μ=0,

2Vα2μ+Vα1λ?pβ21μ?pβ0β1λ=0,

2Vα2λ+Vα1?pβ21λ?pβ0β1=0,

2Vα2?pβ21=0,

Vβ1μ?2qβ1μ2?qβ1λ2μ?rα0β1μ?sα1μβ0=0,

Vβ1λ?8qβ1λμ?qβ1λ3?rα1β1μ?rα0β1λ

?2sα2μβ0?sα1λβ0?sα1β1μ=0,

Vβ1?7qβ1λ2?8qβ1μ?rα2β1μ?rα1β1λ?rα0β1

?2sα2λβ0?2sα2β1μ?sα1β1λ?sα1β0=0,

?12qβ1λ?rα2β1λ?rα1β1?2sα2β1λ?2sα2β0?sα1β1=0,

?rα2β1?2sα2β1?6qβ1=0,

Solving the algebraic equations above,we obtain the following results

α2=?

6q

2s+r

,α1=?

6qλ

2s+r

,

α0=?24q2μr+48q2μs+12q2λ2r?12q2sλ2+pβ21r2+4pβ21rs+4pβ21s2

12(2s+r)qr

,

β0=β1λ

2

,V=?

(2s+r)pβ21

12q

,(25)

λ,μandβ0are arbitrary constants. Substituting(25)into(22)and(23),we have

u(ξ)=?

6q

2s+r

(exp(??(ξ)))2?

6qλ

2s+r

(exp(??(ξ)))

?24q2μr+48q2μs+12q2λ2r?12q2sλ2+pβ21r2+4pβ21rs+4pβ21s2

12(2s+r)qr

,(26)

v(ξ)=β1(exp(??(ξ)))+β1λ

2

,V=?

(2s+r)pβ21

12q

,(27) 6

https://www.360docs.net/doc/a116090879.html,

Respectively substituting (6)-(10)into the formula (26)and (27),we have ?ve types of trav-elling wave solutions of the Drinefel’d-Sokolov-Wilson equations (18)as followings

When λ2?4μ>0,μ=0,

u (ξ)=24qμ2

(2s +r )( 2tanh(√λ2?4μ2(ξ+C 1))+λ)2

+12qλμ(2s +r )( λ2?4μtanh(√λ2?4μ2(ξ+C 1))+λ)

?24q 2μr +48q 2μs +12q 2λ2r ?12q 2sλ2+pβ21r 2+4pβ21rs +4pβ21s 212(2s +r )qr

,v (ξ)=?2β1μ λ2?4μtanh(√λ2?4μ2(ξ+C 1))+λ

+β1λ2,where ξ=x +

((2s +r )pβ2112q )t ,

C 1is an constant.When λ2?4μ>0,μ=0,

u (ξ)=?6qλ2(2s +r )(exp(λ(ξ+C 1))?1)2?6qλ2

(2s +r )(exp(λ(ξ+C 1))?1)

?12q 2λ2r ?12q 2sλ2+pβ21r 2+4pβ21rs +4pβ21s 212(2s +r )qr

,v (ξ)=β1λexp(λ(ξ+C 1))?1+β1λ2

,where ξ=x +

((2s +r )pβ2112q )t ,C 1is an constant.When λ2?4μ=0,μ=0,λ=0,

u (ξ)=3qλ3(ξ+C 1)(λ(ξ+C 1)+4)2(2s +r )(λ(ξ+C 1)+2)2

?24q 2μr +48q 2μs +12q 2λ2r ?12q 2sλ2+pβ21r 2+4pβ21rs +4pβ21s 212(2s +r )qr

,v (ξ)=?β1λ2(ξ+c 1)2(λ(ξ+C 1)+2)+β1λ2

,where ξ=x +((2s +r )pβ2112q )t ,C 1is an constant.

When λ2?4μ=0,μ=0,λ=0,

u (ξ)=?6q (2s +r )(ξ+C 1)?6qλ(2s +r )(ξ+C 1)

?pβ21(2s +r )12qr ,v (ξ)=β1ξ+C 17

https://www.360docs.net/doc/a116090879.html,

where ξ=x +

((2s +r )pβ2112q )t ,C 1is an constant.

When λ2?4μ<0,u (ξ)=?24qμ2

(2s +r )( 4μ?λ2tan(√4μ?λ2(ξ+C 1))?λ)2?12qλμ(2s +r )( 4μ?λ2tan(√4μ?λ22(ξ+C 1))?λ)

?24q 2μr +48q 2μs +12q 2λ2r ?12q 2sλ2+pβ21r 2+4pβ21rs +4pβ21s 212(2s +r )qr

,,v (ξ)=2β1μ 2tan(√4μ?λ22(ξ+C 1))?λ

+β1λ2,where ξ=x +((2s +r )pβ2112q )t ,C 1is an constant.

5Variant Boussinesq equation

In this section we consider the variant Boussinesq equations in the form

H t +(Hu )x +u xxx =0,

(28)u t +H x +uu x =0,(29)As a model for water waves,u =u (x,t )represents the velocity and H =H (x,t )total depth.Suppose that

H (x,t )=H (ξ),u (x,t )=u (ξ),ξ=x ?V t,(30)

by using (30),Eq.(28)and Eq.(29)are converted into the ODEs for H =H (ξ)and u =u (ξ)as follows

?V H +(Hu ) +u =0,

?V u +H +uu =0,

Integrating the ODEs above with respect to ξonce yields

C 1?V H +Hu +u =0,

(31)C 2?V u +H +12u 2=0,(32)

where C 1and C 2are integration constants that are to be determined later.

Considering the homogeneous balance between u and Hu in Eq.(31)and that between H and u 2in Eq.(32)(m 1+m 2=m 2+2,2m 2=m 1?m 1=2,m 2=1),we suppose that

H (ξ)=α2(exp(??(ξ)))2+α1exp(??(ξ))+α0,α2=0,

(33)u (ξ)=β1exp(??(ξ)+β0,β1=0,(34)8

https://www.360docs.net/doc/a116090879.html,

where?=?(ξ)satis?es ODE(5).α2,α1,α0,β1,β0,λandμare constants to be determined later.

By using(33),(34)and ODE(5),it is derived that

Hu=α2β1(exp(??(ξ)))3+(α1β1+α2β0)(exp(??(ξ)))2+(α1β0+α0β1)exp(??(ξ))+α0β0, u =2β1(exp(??(ξ)))3+3β1λ(exp(??(ξ)))2+(2β1μ+β1λ2)+β1λμ,

u2=β21(exp(??(ξ)))2+2β1β0exp(??(ξ))+β20,(35) By substituting(33),(34)and(35)into Eqs.(31)-(32)and collecting all terms with the same power of exp(??(ξ))together,the left hand sides of Eqs.(31)-(32)are converted into the polynomials in exp(??(ξ)).Equating the coe?cients of the polynomials to zero,yields a set of simultaneous algebraic equations forα2,α1,α0,β1,β0,λ,μ,V,C1and C2as follows

C1?Vα0+β0α0+β1λμ=0,

?Vα1+β0α1+β1α0+2β1μ+β1λ2=0,

?Vα2+β1α1+β0α2+3β1λ=0,

α2β1+2β1=0,

C2?Vβ0+α0+1

2

β20=0,

?Vβ1+α1+β1β0=0,

α2+1

2

β21=0,

Solving the algebraic equations above yields

α2=?2,α1=?2λ,α0=?2μ,β1=±2,V=β0μλ,C1=0,C2=1

2

β20?β0λ+2μ,(36)

λ,μandβ0are arbitrary constants.

Substituting(36)into(33)and(34),we have the formulae of the solution of Eqs.(31)-(32) as follows

H(ξ)=?2(exp(??(ξ)))2?2λexp(??(ξ))?2μ,(37a)

u(ξ)=±2exp(??(ξ))+β0,ξ=x?(β0?λ)t,(37b) provided that the integration constants C1and C2in Eqs.(31)-(32)are taken as those in(36).

Respectively substituting(6)-(10)into the formulae(37a)and(37b).we have?ve types of travelling wave solutions of the variant Boussinesq equations(28)-(29)as follows

9

https://www.360docs.net/doc/a116090879.html,

When λ2?4μ>0,μ=0,

H (ξ)=?8μ2( λ2?4μtanh(√

λ2?4μ2(ξ+A ))+λ)2

+4λμ 2tanh(√λ2?4μ2(ξ+A ))+λ

?2μ,u (ξ)=?4μ λ2?4μtanh(√λ2?4μ2(ξ+A ))+λ

+β0,ξ=x ?(β0?λ)t ,A is an arbitrary constant.

When λ2?4μ>0,μ=0,

H (ξ)=?2λ2(exp(λ(ξ+A ))?1)2?2λ2exp(λ(ξ+A ))?1

?2μ,u (ξ)=±2λexp(λ(ξ+A ))?1

+β0,ξ=x ?(β0?λ)t ,A is an arbitrary constant.

When λ2?4μ=0,μ=0,λ=0,H (ξ)=?λ4(ξ+A )22(λ(ξ+A )+2)2+λ3(ξ+A )λ(ξ+A )+2

?2μ,u (ξ)=±λ2(ξ+A )λ(ξ+A )+2

+β0,ξ=x ?(β0?λ)t ,A is arbitrary constant.

When λ2?4μ=0,μ=0,λ=0,

H (ξ)=?2(ξ+A )2

,u (ξ)=±2ξ+A +β0,ξ=x ?β0t ,A is an arbitrary constant.

When λ2?4μ<0,

H (ξ)=?8μ2( 4μ?λ2tan(√4μ?λ22(ξ+A ))?λ)2?4λμ 4μ?λ2tan(√

4μ?λ22

(ξ+A ))?λ?2μ,u (ξ)=±4μ 2tan(√4μ?λ22(ξ+A ))?λ

+β0,ξ=x ?(β0?λ)t ,A is an arbitrary constant.10

https://www.360docs.net/doc/a116090879.html,

6Coupled Schr¨o dinger-KdV system

We start with the Coupled Schr¨o dinger-KdV system in the form

iu t=u xx+uv,

v t+6vv x+v xxx=(|u|2)x,(38) The travelling wave variable below

u(x,t)=e iθf(ξ),v(x,t)=v(ξ),θ=x?W t,ξ=x?V t,(39) where V and W will be determined later.Inserting(39)into Eq.(38),we?nd that V=-2, and u,v satisfy the following coupled ordinary di?erential system.

f ?(W+1)f+fv=0,(40)

2v +6vv +v ?(f2) =0,(41) Balancing between f with fv in Eq.(40)and that between v with(f2) in Eq.(41),and suppose that

f(ξ)=α2(exp(??(ξ)))2+α1(exp(??(ξ)))+α0,α2=0,(42)

v(ξ)=β2(exp(??(ξ)))2+β1(exp(??(ξ)))+β0,β2=0,(43) where?(ξ)satis?es ODE(5).α2,α1,α0,β2,β1,β0,λandμare constants to be determined later.By using(42),(43)and ODE(5),it is derived that

f2=α22(exp(??(ξ)))4+2α2α1(exp(??(ξ)))3

+(2α2α0+α21)(exp(??(ξ)))2

+2α1α0(exp(??(ξ)))+α20,

f =6α2(exp(??(ξ)))4+(10α2λ+2α1)(exp(??(ξ)))3

+(4α2λ2+8α2μ+3α1λ)(exp(??(ξ)))2

+(6α2λμ+α1λ2+2α1μ)(exp(??(ξ)))

+2α2μ2+α1λμ,

v =?2β2(exp(??(ξ)))3?(2β2λ

+β1)(exp(??(ξ)))2

?(2β2μ+β1λ)(exp(??(ξ)))

?β1μ,

v =?24β2(exp(??(ξ)))5?(6β1+54β2λ)(exp(??(ξ)))4

?(40β2μ+12β1λ+38β2λ2)(exp(??(ξ)))3

?(7β1λ2+8β1μ+8β2λ3+52β2λμ)(exp(??(ξ)))2

?(β1λ3+8β1λμ+16β2μ2+14β2λ2μ)(exp(??(ξ)))

?2β1μ2?β1λ2μ?6β2λμ2,(44)

11

Substituting(42),(43)and(44)into Eqs.(40)-(41),and collecting all terms with the power of exp(??(ξ))together,it yields

2α0α1μ?β1λ2μ?2β1μ2?6β2λμ2?6β0β1μ?2β1μ=0,

4α0α2λ?4β2λ?7β1λ2?8β1μ?8β2λ3?18β2β1μ

+2α0α1?52β2λμ+6α2α1μ+2α21λ?6β21λ?12β0β2λ

?6β0β1?2β1=0,

6α2α1λ?40β2μ?12β1λ+2α21?6β21?12β22μ

?38β2λ2+4α22μ?12β0β2?18β2β1λ?4β2+4α0α2=0,

6α2α1+4α22λ?54β2λ?12β22λ?18β2β1?6β1=0,

4α22?24β2?12β22=0,

?14β2λ2μ?12β0β2μ?6β0β1λ?6β21μ+2α21μ?β1λ3

?4β2μ?2β1λ?16β2μ2?8β1λμ

+4α0α2μ+2α0α1λ=0,

α1λμ?α0?Wα0+α0β0+2α2μ2=0,

?α1+6α2λμ?Wα1+2α1μ+α1λ2+α1β0+α0β1=0,

α1β1+α0β2+8α2μ+3α1λ?α2+4α2λ2?Wα2+α2β0=0,

α1β2+10α2λ+α2β1+2α1=0,

α2β2+6α2=0,

Solving the algebraic equations above with the aid of Maple,we obtain the following results

α2=6√

,α1=6

λ,α0=6

μ,

β2=?6,β1=?6λ,β0=?32μ+λ2+2

6

,W=

5λ2?20μ?8

6

,

α2=?6√

2,α1=?6

2λ,α0=?6

2μ,

β2=?6,β1=?6λ,β0=?32μ+λ2+2

6

,W=

5λ2?20μ?8

6

,

α2=6√

2,α1=6

2λ,α0=

2(λ2+2μ),

β2=?6,β1=?6λ,β0=?2+16μ+5λ2

6

,W=

20μ?5λ2?8

6

,

α2=?6√

2,α1=?6

2λ,α0=?

2(λ2+2μ),

β2=?6,β1=?6λ,β0=?2+16μ+5λ2

6

,W=

20μ?5λ2?8

6

,(45) 12

Substituting (45)into (42)and (43),we have the formula of the solution of (42)and (43)as

f (ξ)=±6√2(exp(??(ξ)))2±6√2λ(exp(??(ξ)))±6√2μ,

v (ξ)=?6(exp(??(ξ)))2?6λ(exp(??(ξ)))?32μ+λ2+26,(46)

or:

f (ξ)=±6√2(exp(??(ξ)))2±6√2λ(exp(??(ξ)))±√2(λ2+2μ),v (ξ)=?6(exp(??(ξ)))2?6λ(exp(??(ξ)))?2+16μ+5λ2

6

,(47)Respectively substituting (6)-(10)into the formula (46),we have ?ve types of travelling wave solutions of the the Coupled Schrodinger-KdV system as followings

When λ2?4μ>0,μ=0,

u (ξ)=exp(iθ)(±24√2μ2

( λ2?4μtanh(√λ?4μ2(ξ+C 1))+λ)2

?12√2λμ λ2?4μtanh(√λ2?4μ2(ξ+C 1))+λ

±6√),v (ξ)=?24μ2( λ2?4μtanh(

√λ2?4μ2(ξ+C 1))+λ)2+12λμ λ2?4μtanh(

√λ2?4μ2(ξ+C 1))+λ?16μ3?λ26?13,where ξ=x +2t ,θ=x ?5λ2?20μ?86t.When λ2?4μ>0,μ=0,

u (ξ)=exp(iθ)(±6√2λ2(exp(λ(ξ+C 1))?1)±6√2λ2

exp(λ(ξ+C 1))?1

±6√2μ),v (ξ)=?6λ2

(exp(λ(ξ+C 1))?1)?6λ2exp(λ(ξ+C 1))?1?16μ3?λ26?13,where ξ=x +2t ,θ=x ?5λ2

?86t.

When λ2?4μ=0,μ=0,λ=0,

u (ξ)=exp(iθ)(±6√2λ4(ξ+c 1)2(2λ(ξ+C 1)+4)2?6√2λ3(ξ+c 1)(2λ(ξ+C 1)+4)

±6√2μ),v (ξ)=?6λ4(ξ+c 1)2(2λ(ξ+C 1)+4)2+6λ3(ξ+c 1)(2λ(ξ+C 1)+4)?16μ3?λ26?13,13

https://www.360docs.net/doc/a116090879.html,

where ξ=x +2t ,θ=x ?5λ2

?20μ?86t.When λ2?4μ=0,μ=0,λ=0,u (ξ)=exp(iθ)(±6√2(ξ+C 1)2±6√2λ(ξ+C 1)

±6√2μ),v (ξ)=?6(ξ+C 1)2?6λ(ξ+C 1)?16μ3?λ26?13

,where ξ=x +2t ,θ=x +43t.

When λ2?4μ<0,

u (ξ)=exp(iθ)(±24√2μ2

( 4μ?λ2tan(√4μ?λ22(ξ+C 1))?λ)2

±12√2λμ 2tan(√4μ?λ22(ξ+C 1))?λ±6√2μ),

v (ξ)=?24μ2( 4μ?λ2tan(√

4μ?λ2(ξ+C 1))?λ)2

?12λμ 4μ?λ2tan(√4μ?λ22(ξ+C 1))?λ

?16μ3?λ26?13

,where ξ=x +2t ,θ=x ?5λ2?20μ?86t.Respectively substituting (6)-(10)into the formula (47),we have ?ve types of travelling

wave solutions of the the Coupled Schrodinger-KdV system as followings When λ2?4μ>0,μ=0,u (ξ)=exp(iθ)(±24√2μ2( λ2?4μtanh(√λ2?4μ2(ξ+C 1))+λ)2

?12√2μ λ2?4μtanh(√λ2?4μ2(ξ+C 1))+λ

±√2(λ2+2μ)),v (ξ)=?24μ2( λ2?4μtanh(

√λ2?4μ2(ξ+C 1))+λ)2+12λμ λ2?4μtanh(

√λ2?4μ2(ξ+C 1))+λ?8μ3?5λ26?13,where ξ=x +2t ,θ=x ??5λ2+20μ?86t.14

https://www.360docs.net/doc/a116090879.html,

When λ2?4μ>0,μ=0,

u (ξ)=exp(iθ)(±6√2λ2(exp(λ(ξ+C 1))?1)2±6√2λ2

exp(λ(ξ+C 1))?1

±√2(λ2+2μ)),v (ξ)=?6λ2(exp(λ(ξ+C 1))?1)2?6λ2exp(λ(ξ+C 1))?1?8μ3?5λ26?13

,where ξ=x +2t ,θ=x ??5λ2

?86t.When λ2?4μ=0,μ=0,λ=0,

u (ξ)=exp(iθ)(±6√2λ4(ξ+c 1)2(2λ(ξ+C 1)+4)2?6√2λ3(ξ+c 1)(2λ(ξ+C 1)+4)

±√λ2+2μ)),v (ξ)=?6λ4(ξ+c 1)2

(2λ(ξ+C 1)+4)2+6λ3(ξ+c 1)(2λ(ξ+C 1)+4)?8μ3?5λ26?13

,where ξ=x +2t ,θ=x ??5λ2+20μ?86t.When λ2?4μ=0,μ=0,λ=0,u (ξ)=exp(iθ)(±6√2(ξ+C 1)2±6√2λ(ξ+C 1)

±√λ2+2μ)),v (ξ)=?6(ξ+C 1)2?6λ(ξ+C 1)?8μ3?5λ26?13

,where ξ=x +2t ,θ=x +43t.When λ2?4μ<0,

u (ξ)=exp(iθ)(±24√2μ2

( 4μ?λ2tan(√4μ?λ22(ξ+C 1))?λ)2

±12√2λμ 4μ?λ2tan(√4μ?λ22(ξ+C 1))?λ±√2(λ2+2μ)),

v (ξ)=?24μ2( 2tan(√

4μ?λ22(ξ+C 1))?λ)2

?12λμ 4μ?λ2tan(√4μ?λ22(ξ+C 1))?λ

?8μ3?5λ26?13

,where ξ=x +2t ,θ=x ??5λ2+20μ?86t.15

https://www.360docs.net/doc/a116090879.html,

https://www.360docs.net/doc/a116090879.html,

7Conclusions

In this paper,it has been shown that the new exp(??(ξ))-expansion method is a powerful tool for the nonlinear evolution equations.we can obtained new and more travelling wave solutions for the equations above,such as,the mKdV equation,the Drinefel’d-Sokolov-Wilson equations,the variant Boussinesq equations and the Coupled Schr¨o dinger-KdV sys-tem.Otherwise,the general solutions of the ODE have been well known for the researchers. Furthermore,the new method can be used for many other nonlinear evolution equations,for instance the Burgers equation[33],the KdV-Burgers equation[22],the Boussinesq equation[1], the Gardner equation[34],the Sharma-Tasso-Olver equation[35],the approximate long water wave equations[23]and so on.

References

[1]M.J.Ablowitz and P.A.Clarkson,Solitons,Nonlinear Evolution Equations and Inverse

Scattering Transform,Cambridge Univ.Press,Cambridge,1991.

[2]Wadati M,Sanuki H,Konno K,Prog Theor Phys1975;53:49.

[3]Konno K,Wadati M.Prog Theor Phys.,1975;53:1652.

[4]Matveev VA,Salle MA.Darboux transformation and solitons.Berlin,

Heidelberg:Springer-Verlag;1991.

[5]Go CH et al.Soliton theory and its application.Berlin:Springer;1995.

[6]Hirota R.Phys Rev Lett1971;27:1192.

[7] F.Cariello and M.Tabor,Physica D,53(1991):59

[8] E.J.Parkes and B.R.Du?y,https://www.360docs.net/doc/a116090879.html,mun.,98(1996):256

[9] E.G.Fan,Phys.Lett.A,277(2000):212

[10]Z.Y.Yan,Phys.Lett.A,292(2001):100

[11]S.K.Liu,Z.T.Fu,S.D.Liu and Q.Zhao,Phys.Lett.A,289(2001):69

[12]Z.Y.Yan,Chaos,Slitons and Fractals,18(2003):299

[13]M.L.Wang and Y.B.Zhou,Phys.Lett.A,318(2003):84

[14]Y.B.Zhou,M.L.Wang,T.D.Miao,Phys.Lett.A,323(2004):77

[15]M.L.Wang and X.Z.Li,Phys.Lett.A,343(2005):48

[16]M.L.Wang and X.Z.Li,Chaos,Solitons and Fractals,24(2005):1257

[17]J.L.Zhang,M.L.Wang and X.Z.Li,Phys.Lett.A,357(2006):188

[18]M.L.Wang,X.Z.Li and J.L.Zhang,Chaos,Solitons and Fractals,31(2007):594

[19]X.Z.Li and M.L.Wang,Phys.Lett.A,361(2007):115

[20]M.L.Wang,X.Z.Li and J.L.Zhang,Phys.Lett.A.,363(2007):96

[21]M.L.Wang,Phys.Lett.A,199(1995):169

[22]M.L.Wang,Phys.Lett.A,213(1996):279

[23]M.L.Wang,Y.B.Zhou and Z.B.Li,Phys.Lett.A,216(1996):67

[24] A.M.Wazwaz,https://www.360docs.net/doc/a116090879.html,put.,150(2004):365

[25] A.M.Wazwaz,Comput.Math.Appl.,47(2004):583

16

https://www.360docs.net/doc/a116090879.html,

[26]X.Feng,Int.J.Theo.Phys.,39(2000):207

[27]J.L.Hu,Phys.Lett.A,286(2001):175

[28]J.L.Hu,Phys.Lett.A,287(2001):81

[29]J.L.Hu,Phys.Lett.A,322(2004):211

[30]J.H.He,X.H.Wu,Chaos,Solitons and Fractals,30(2006):700

[31]X.G.Geng,H.H.Dai,and C.W.Cao,J.M.Phys.,10(2003)44

[32] A.M.Wazwaz,Commun Non Sci Numer Simul11(2006)311

[33]G.B.Whitham,Linear and Nonlinear Waves,New York,Academic,1973

[34]Z.T.Fu,S.D.Liu and S.K.Liu,Phys.Lett.A,326(2004):364

[35]V.V.Gudkov,J.Math.Phys.,38(1997):4794

Author Brief Introduction

Mei-mei Zhao:a graduate major in maths at Lanzhou University

Chao Li:a graduate major in maths at Lanzhou University

17

MATLAB代码 解线性方程组的迭代法

解线性方程组的迭代法 1.rs里查森迭代法求线性方程组Ax=b的解 function[x,n]=rs(A,b,x0,eps,M) if(nargin==3) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值elseif(nargin==4) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-A)*x0+b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 2.crs里查森参数迭代法求线性方程组Ax=b的解 function[x,n]=crs(A,b,x0,w,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1; %迭代过程 while(tol>eps) x=(I-w*A)*x0+w*b; n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x;

if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 3.grs里查森迭代法求线性方程组Ax=b的解 function[x,n]=grs(A,b,x0,W,eps,M) if(nargin==4) eps=1.0e-6;%eps表示迭代精度 M=10000;%M表示迭代步数的限制值 elseif(nargin==5) M=10000; end I=eye(size(A)); n=0; x=x0; tol=1;%前后两次迭代结果误差 %迭代过程 while(tol>eps) x=(I-W*A)*x0+W*b;%迭代公式 n=n+1;%n为最终求出解时的迭代步数tol=norm(x-x0); x0=x; if(n>=M) disp('Warning:迭代次数太多,可能不收敛!'); return; end end 4.jacobi雅可比迭代法求线性方程组Ax=b的解 function[x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200; elseif nargin<3 error return elseif nargin==5 M=varargin{1}; end D=diag(diag(A));%求A的对角矩阵 L=-tril(A,-1);%求A的下三角阵

C++实现 牛顿迭代 解非线性方程组

C++实现牛顿迭代解非线性方程组(二元二次为例) 求解{0=x*x-2*x-y+0.5; 0=x*x+4*y*y-4; }的方程 #include #include #define N 2 // 非线性方程组中方程个数、未知量个数#define Epsilon 0.0001 // 差向量1范数的上限 #define Max 100 // 最大迭代次数 using namespace std; const int N2=2*N; int main() { void ff(float xx[N],float yy[N]); //计算向量函数的因变量向量yy[N] void ffjacobian(float xx[N],float yy[N][N]); //计算雅克比矩阵yy[N][N] void inv_jacobian(float yy[N][N],float inv[N][N]); //计算雅克比矩阵的逆矩阵inv void newdundiedai(float x0[N], float inv[N][N],float y0[N],float x1[N]); //由近似解向量x0 计算近似解向量x1 float x0[N]={2.0,0.25},y0[N],jacobian[N][N],invjacobian[N][N],x1[N],errornorm; int i,j,iter=0; //如果取消对x0的初始化,撤销下面两行的注释符,就可以由键盘x读入初始近似解向量for( i=0;i>x0[i]; cout<<"初始近似解向量:"<

常微分方程的解线性方程组的迭代法

实验五 解线性方程组的迭代法 【实验内容】 对1、设线性方程组 ?? ? ? ?? ? ? ?? ? ? ?? ? ? ??-=???????????????? ?????????????????? ? ?--------------------------211938134632312513682438100412029137264 2212341791110161035243120 536217758683233761624491131512 013012312240010563568 0000121324 10987654321x x x x x x x x x x ()T x 2,1,1,3,0,2,1,0,1,1*--= 2、设对称正定系数阵线性方程组 ?? ? ????? ??? ? ? ??---=????????????? ??????????????? ??---------------------4515229 23206019243360021411035204111443343104221812334161 2065381141402312122 00240424 87654321x x x x x x x x ()T x 2,0,1,1,2,0,1,1*--= 3、三对角形线性方程组

?? ? ?? ? ????? ??? ? ? ??----=???????????????? ?????????????????? ??------------------5541412621357410000000014100000000141000000001410000000014100000000141000000001410000000014100000000 14100000000 1410987654321x x x x x x x x x x ()T x 1,1,0,3,2,1,0,3,1,2*---= 试分别选用Jacobi 迭代法,Gauss-Seidol 迭代法和SOR 方法计算其解。 【实验方法或步骤】 1、体会迭代法求解线性方程组,并能与消去法加以比较; 2、分别对不同精度要求,如54310,10,10---=ε由迭代次数体会该迭代法的收敛快慢; 3、对方程组2,3使用SOR 方法时,选取松弛因子ω=0.8,0.9,1,1.1,1.2等,试看对算法收敛性的影响,并能找出你所选用的松弛因子的最佳者; 4、给出各种算法的设计程序和计算结果。 程序: 用雅可比方法求的程序: function [x,n]=jacobi(A,b,x0,eps,varargin) if nargin==3 eps=1.0e-6; M=200;

线性方程组的迭代法及程序实现

线性方程组的迭代法及程序实现 学校代码:11517 学号:200810111217 HENAN INSTITUTE OF ENGINEERING 毕业论文 题目线性方程组的迭代法及程序实现 学生姓名 专业班级 学号 系 (部)数理科学系 指导教师职称 完成时间 2012年5月20日河南工程学院 毕业设计(论文)任务书 题目:线性方程组的迭代法及程序实现专业:信息与计算科学学号 : 姓名一、主要内容: 通过本课题的研究,学会如何运用有限元方法来解决线性代数方程组问题,特别是Gaussie-Seidel迭代法和Jacobi迭代法来求解线性方程组。进一步学会迭代方法的数学思想,并对程序代码进行解析与改进,这对于我们以后学习和研究实际问题具有重要的意义。本课题运用所学的数学专业知识来研究,有助于我们进一步掌握大学数学方面的知识,特别是迭代方法。通过这个课题的研究,我进一步掌握了迭代方法的思想,以及程序的解析与改进,对于今后类似实际问题的解决具有重要的意义。

二、基本要求: 学会编写规范论文,独立自主完成。 运用所学知识发现问题并分析、解决。 3.通过对相关资料的收集、整理,最终形成一篇具有自己观点的学术论文,以期能对线性方程组迭代法的研究发展有一定的实践指导意义。 4.在毕业论文工作中强化英语、计算机应用能力。 完成期限: 2012年月指导教师签名:专业负责人签名: 年月日 目录 中文摘要....................................................................................Ⅰ英文摘要 (Ⅱ) 1 综述 1 2 经典迭代法概述 3 2.1 Jacobi迭代法 3 2.2 Gauss?Seidel迭代法 4 2.3 SOR(successive over relaxation)迭代法 4 2.4 SSOR迭代法 5 2.5 收敛性分析5 2. 6 数值试验 6 3 matlab实现的两个例题8 3.1 例1 迭代法的收敛速度8 3.2 例 2 SOR迭代法松弛因子的选取 12致谢16参考文献17附录19

数值分析5-用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组

作业六:分别编写用Jacobi迭代法和Gauss-Seidel迭代法求解线性方程组Ax=B的标准程序,并求下列方程组的解。 可取初始向量 X(0) =(0,0,0)’; 迭代终止条件||x(k+1)-x(k)||<=10e-6 (1) = (2) = Jacobi迭代法: 流程图 开 始 判断b中的最大值 有没有比误差大 给x赋初值 进行迭代 求出x,弱到100次还没到,警告不收 结束

程序 clear;clc; A=[8,-1,1;2,10,01;1,1,-5]; b=[1;4;3]; e=1e-6; x0=[0;0;0]'; n=length(A); x=zeros(n,1); k=0; r=max(abs(b)); while r>e for i=1:n d=A(i,i); if abs(d)100 warning('不收敛'); end end x=x0;

程序结果(1)

(2)

Gauss-Seidel迭代法: 程序 clear;clc; %A=[8,-1,1;2,10,01;1,1,-5]; %b=[1;4;3]; A=[5,2,1;-1,4,2;2,-3,10]; b=[-12;20;3]; m=size(A); if m(1)~=m(2) error('矩阵A不是方阵'); end n=length(b); %初始化 N=0;%迭代次数 L=zeros(n);%分解A=D+L+U,D是对角阵,L是下三角阵,U是上三角阵U=zeros(n); D=zeros(n); G=zeros(n);%G=-inv(D+L)*U d=zeros(n,1);%d=inv(D+L)*b x=zeros(n,1); for i=1:n%初始化L和U for j=1:n if ij U(i,j)=A(i,j); end end end for i=1:n%初始化D D(i,i)=A(i,i); end G=-inv(D+L)*U;%初始化G d=(D+L)\b;%初始化d %迭代开始 x1=x; x2=G*x+d; while norm(x2-x1,inf)>10^(-6)

牛顿迭代法求解非线性方程组的代码

牛顿迭代法求解非线性方程组 非线性方程组如下: 221122121210801080 x x x x x x x ?-++=??+-+=?? 给定初值()00.0T x =,要求求解精度达到0.00001 1.首先建立函数()F X ,方程编程如下,将F.m 保存到工作路径中: function f=F(x) f(1)=x(1)^2-10*x(1)+x(2)^2+8; f(2)=x(1)*x(2)^2+x(1)-10*x(2)+8; f=[f(1),f(2)] ; 2.建立函数()DF X ,用于求方程的jacobi 矩阵,将DF.m 保存到工作路径中: function df=DF(x) df=[2*x(1)-10,2*x(2);x(2)^2+1,2*x(1)*x(2)-10]; %jacobi 矩阵是一阶偏导数以一定方式排列成的矩阵。 3.编程牛顿迭代法解非线性方程组,将newton.m 保存在工作路径中: clear,clc; x=[0,0]'; f=F(x);

df=DF(x); fprintf('%d %.7f %.7f\n',0,x(1),x(2)); N=4; for i=1:N y=df\f'; x=x-y; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',i,x(1),x(2)); if norm(y)<0.0000001 break; else end end ezplot('x^2-10*x+y^2+8',[-6,6,-6,6]); hold on ezplot('x*y^2+x-10*y+8',[-6,6,-6,6]); 运行结果如下: 0 0.0000000 0.0000000 1 0.8000000 0.8800000 2 0.9917872 0.9917117 3 0.9999752 0.9999685

求解线性方程组——超松弛迭代法(c)

求解线性方程组——超松弛迭代法 #include #include using namespace std; float *one_array_malloc(int n); //一维数组分配float **two_array_malloc(int m,int n); //二维数组分配float matrix_category(float* x,int n); int main() { const int MAX=100;//最大迭代次数 int n,i,j,k; float** a; float* x_0; //初始向量 float* x_k; //迭代向量 float precision; //精度 float w; //松弛因子 cout<<"输入精度e:"; cin>>precision; cout<>n; a=two_array_malloc(n,n+1); cout<>a[i][j]; } } x_0=one_array_malloc(n); cout<>x_0[i]; } x_k=one_array_malloc(n);

cout<<"输入松弛因子w (1>w; float temp; //迭代过程 for(k=0;k

Gauss-Seidel迭代法求解线性方程组

Gauss-Seidel迭代法求解线性方程组

一. 问题描述 用Gauss-Seidel 迭代法求解线性方程组 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值。使用了两倍的存储空间,浪费了存储空间。若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量 ) 1(+k i x 时,用最新分量 ) 1(1 +k x , ???+) 1(2 k x ) 1(1 -+k i x 代替旧分量 ) (1 k x , ???) (2 k x ) (1 -k i x ,可以起 到节省存储空间的作用。这样就得到所谓解方程组的Gauss-Seidel 迭代法。 二. 算法设计 将A 分解成U D L A --=,则b x =A 等价于b x =--U)D (L 则Gauss-Seidel 迭代过程 ) ()1()1(k k k Ux Lx b Dx ++=++ 故 ) ()1()(k k Ux b x L D +=-+ 若设1 )(--L D 存在,则 b L D Ux L D x k k 1)(1)1()()(--+-+-= 令 b L D f U L D G 11)()(---=-=,

则Gauss-Seidel 迭代公式的矩阵形式为 f Gx x k k +=+) () 1( 其迭代格式为 T n x x x x ) ()0()0(2)0(1)0(,,,???= (初始向量), ) (1 1 1 1 1 )()1()1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者 ?? ???--=???=???==?+=∑∑-=-+=+++) (1)210i 210(111 1)()1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 三. 程序框图

Newton迭代法求解非线性方程

Newton迭代法求解非 线性方程

一、 Newton 迭代法概述 构造迭代函数的一条重要途径是用近似方程来代替原方程去求根。因此,如果能将非线性方程f (x )=0用线性方程去代替,那么,求近似根问题就很容易解决,而且十分方便。牛顿(Newton)法就是一种将非线性方程线化的一种方法。 设k x 是方程f (x )=0的一个近似根,把如果)(x f 在k x 处作一阶Taylor 展开,即: )x x )(x ('f )x (f )x (f k k k -+≈ (1-1) 于是我们得到如下近似方程: 0)x x )(x ('f )x (f k k k =-+ (1-2) 设0)('≠k x f ,则方程的解为: x ?=x k +f (x k ) f (x k )? (1-3) 取x ~作为原方程的新近似根1+k x ,即令: ) x ('f ) x (f x x k k k 1k -=+, k=0,1,2,… (1-4) 上式称为牛顿迭代格式。用牛顿迭代格式求方程的根的方法就称为牛顿迭代法,简称牛顿法。 牛顿法具有明显的几何意义。方程: )x x )(x ('f )x (f y k k k -+= (1-5) 是曲线)x (f y =上点))x (f ,x (k k 处的切线方程。迭代格式(1-4)就是用切线式(1-5)的零点来代替曲线的零点。正因为如此,牛顿法也称为切线法。 牛顿迭代法对单根至少是二阶局部收敛的,而对于重根是一阶局部收敛的。一般来说,牛顿法对初值0x 的要求较高,初值足够靠近*x 时才能保证收敛。若

要保证初值在较大范围内收敛,则需对)x (f 加一些条件。如果所加的条件不满足,而导致牛顿法不收敛时,则需对牛顿法作一些改时,即可以采用下面的迭代格式: ) x ('f ) x (f x x k k k 1k λ -=+, ?=,2,1,0k (1-6) 上式中,10<λ<,称为下山因子。因此,用这种方法求方程的根,也称为牛顿下山法。 牛顿法对单根收敛速度快,但每迭代一次,除需计算)x (f k 之外,还要计算 )x ('f k 的值。如果)x (f 比较复杂,计算)x ('f k 的工作量就可能比较大。为了避免计算导数值,我们可用差商来代替导数。通常用如下几种方法: 1. 割线法 如果用 1 k k 1k k x x ) x (f )x (f ----代替)x ('f k ,则得到割线法的迭代格式为: )x (f ) x (f )x (f x x x x k 1k k 1 k k k 1k --+---= (1-7) 2. 拟牛顿法 如果用 ) x (f )) x (f x (f )x (f k 1k k k ---代替)x ('f k ,则得到拟牛顿法的迭代格式为: )) x (f x (f )x (f ) x (f x x 1k k k k 2k 1k -+--- = (1-8) 3. Steffenson 法 如果用 ) x (f ) x (f ))x (f x (f k k k k -+代替)x ('f k ,则得到拟牛顿法的迭代格式为: ) x (f ))x (f x (f ) x (f x x k k k k 2k 1 k -+- =+

数值计算_第4章 解线性方程组的迭代法

第4章解线性方程组的迭代法 用迭代法求解线性方程组与第4章非线性方程求根的方法相似,对方程组进行等价变换,构造同解方程组(对可构造各种等价方程组, 如分解,可逆,则由得到),以此构造迭代关系式 (4.1) 任取初始向量,代入迭代式中,经计算得到迭代序列。 若迭代序列收敛,设的极限为,对迭代式两边取极限 即是方程组的解,此时称迭代法收敛,否则称迭代法发散。我们将看到,不同于非线性方程的迭代方法,解线性方程组的迭代收敛与否完全决定于迭代矩阵的性质,与迭代初始值的选取无关。迭代法的优点是占有存储空间少,程序实现简单,尤其适用于大型稀疏矩阵;不尽人意之处是要面对判断迭代是否收敛和收敛速度的问题。 可以证明迭代矩阵的与谱半径是迭代收敛的充分必要条件,其中是矩阵的特征根。事实上,若为方程组的解,则有 再由迭代式可得到

由线性代数定理,的充分必要条件。 因此对迭代法(4.1)的收敛性有以下两个定理成立。 定理4.1迭代法收敛的充要条件是。 定理4.2迭代法收敛的充要条件是迭代矩阵的谱半径 因此,称谱半径小于1的矩阵为收敛矩阵。计算矩阵的谱半径,需要求解矩阵的特征值才能得到,通常这是较为繁重的工作。但是可以通过计算矩阵的范数等方法简化判断收敛的 工作。前面已经提到过,若||A||p矩阵的范数,则总有。因此,若,则必为收敛矩阵。计算矩阵的1范数和范数的方法比较简单,其中 于是,只要迭代矩阵满足或,就可以判断迭代序列 是收敛的。 要注意的是,当或时,可以有,因此不能判断迭代序列发散。

在计算中当相邻两次的向量误差的某种范数小于给定精度时,则停止迭代计算,视为方程组的近似解(有关范数的详细定义请看3.3节。) 4.1雅可比(Jacobi)迭代法 4.1.1 雅可比迭代格式 雅可比迭代计算 元线性方程组 (4.2) 写成矩阵形式为。若将式(4.2)中每个方程的留在方程左边,其余各项移到方程右边;方程两边除以则得到下列同解方程组: 记,构造迭代形式

迭代法解线性方程组

迭代法解线性方程组作业 沈欢00986096 北京大学工学院,北京100871 2011年10月12日 摘要 由所给矩阵生成系数矩阵A和右端项b,分析系数矩阵A,并用Jacobi迭代法、GS迭代法、SOR(逐步松弛迭代法)解方程组Ax=b 1生成系数矩阵A、右端项b,并分析矩阵A 由文件”gr900900c rg.mm”得到了以.mm格式描述的系数矩阵A。A矩阵是900?900的大型稀 疏对称矩阵。于是,在matlaB中,使用”A=zeros(900,900)”语句生成900?900的零矩阵。再 按照.mm文件中的描述,分别对第i行、第j列的元素赋对应的值,就生成了系数矩阵A,并 将A存为.mat文件以便之后应用。 由于右端项是全为1的列向量,所以由语句”b=ones(900,1)”生成。 得到了矩阵A后,求其行列式,使用函数”det(A)”,求得结果为”Inf”,证明行列式太大,matlaB无法显示。由此证明,矩阵A可逆,线性方程组 Ax=b 有唯一解。 接着,判断A矩阵是否是对称矩阵(其实,这步是没有必要的,因为A矩阵本身是对称矩阵,是.mm格式中的矩阵按对称阵生成的)。如果A是对称矩阵,那么 A?A T=0 。于是,令B=A?A T,并对B求∞范数。结果显示: B ∞=0,所以,B是零矩阵,也就是:A是对称矩阵。 然后,求A的三个条件数: Cond(A)= A ? A?1 所求结果是,对应于1范数的条件数为:377.2334;对应于2范数的条件数为:194.5739;对应 于3范数的条件数为:377.2334; 1

从以上结果我们看出,A是可逆矩阵,但是A的条件数很大,所以,Ax=b有唯一解并且矩阵A相对不稳定。所以,我们可以用迭代方法来求解该线性方程组,但是由于A的条件数太大迭代次数一般而言会比较多。 2Jacobi迭代法 Jacobi迭代方法的程序流程图如图所示: 图1:Jacobi迭代方法程序流程图 在上述流程中,取x0=[1,1,...,1]T将精度设为accuracy=10?3,需要误差满足: error= x k+1?x k x k+1

高斯-赛德尔迭代法解线性方程组精选.

数值分析实验五 班级: 10信计二班 学号:59 姓名:王志桃 分数: 一.实验名称 高斯-赛德尔迭代法解线性方程组 二.实验目的 1. 学会利用高斯赛德尔方法解线性方程组 2. 明白迭代法的原理 3. 对于大型稀疏矩阵方程组适用于迭代法比较简单 三.实验内容 利用Gauss-Seidel 迭代法求解下列方程组 ?????=++=-+=+-36123633111420238321 321321x x x x x x x x x , 其中取→=0)0(x 。 四、算法描述 由Jacobi 迭代法中,每一次的迭代只用到前一次的迭代值,若每一次迭代充分利用当前最新的迭代值,即在计算第i 个分量)1(+k i x 时,用最新分量)1(1+k x ,???+)1(2k x )1(1-+k i x 代替旧分量)(1k x ,???)(2k x )(1-k i x ,就得到所谓解方程组的Gauss-Seidel 迭代法。 其迭代格式为 T n x x x x )()0()0(2)0(1)0(,,,???= (初始向量), )(11111)()1( ) 1(∑∑-=-+=++--=i j i i j k j ij k j ij i ii i i x a x a b a x )210i 210(n k ???=???=,,,;,,, 或者写为 ?? ???--=???=???==?+=∑∑-=-+=+++)(1)210i 210(1111)( )1()1()()1(i j i i j k j ij k j ij i ii i i i k i k i x a x a b a x n k k x x x ,,,;,,, 五、 编码 #include #include

基于Matlab的牛顿迭代法解非线性方程组

基于Matlab 实现牛顿迭代法解非线性方程组 已知非线性方程组如下 2211221212 10801080x x x x x x x ?-++=??+-+=?? 给定初值0(0,0)T x =,要求求解精度达到0.00001 首先建立函数F(x),方程组编程如下,将F.m 保存到工作路径中: function f=F(x) f(1)=x(1)^2-10*x(1)+x(2)^2+8; f(2)=x(1)*x(2)^2+x(1)-10*x(2)+8; f=[f(1) f(2)]; 建立函数DF(x),用于求方程组的Jacobi 矩阵,将DF.m 保存到工作路径中: function df=DF(x) df=[2*x(1)-10,2*x(2);x(2)^2+1,2*x(1)*x(2)-10]; 编程牛顿迭代法解非线性方程组,将newton.m 保存到工作路径中: clear; clc x=[0,0]'; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',0,x(1),x(2)); N=4; for i=1:N y=df\f'; x=x-y; f=F(x); df=DF(x); fprintf('%d %.7f %.7f\n',i,x(1),x(2)); if norm(y)<0.0000001 break ; else end end

运行结果如下: 0 0.0000000 0.0000000 1 0.8000000 0.8800000 2 0.9917872 0.9917117 3 0.9999752 0.9999685 4 1.0000000 1.0000000

实验解线性方程组的基本迭代法实验

数值分析实验报告

0 a 12 K a 1,n 1 K a 2,n 1 U O M 则有: 第一步: Jacobi 迭代法 a 1n a 2n M , 则有: A D L U a n 1,n Ax b A A x D b L U (D L U)x b Dx (L U)x b x D (L U)x D b 令 J D (L U) 则称 J 为雅克比迭代矩阵 f D b 由此可得雅克比迭代的迭代格式如下: x (0) , 初始向量 x (k 1) Jx (k) f ,k 0,1,2,L 第二步 Gauss-Seidel 迭代法 Ax b (D L U )x b (D L)x Ux b x (D L) Ux (D L) b A D L U a 11 a 12 L a 1n a 11 A a 21 a 22 L a 2n a 22 M MM MO a n1 a n2 L a nn a 11 得到 D a 22 O a nn 由 a 21 0 M M O a n 1,1 a n 1,2 L 0 a nn a n1 a n2 L a n,n a 21 L M M O a n 1,1 a n 1,2 L a n1 a n2 L a n,n 1 a 12 K a 1,n 1 a 1n 0 K a 2,n 1 a 2n O M M a n 1,n 10

令 G (D L) U ,则称G 为Gauss-Seidel 迭代矩阵 f (D L) b 由此可得 Gauss-Seidel 迭代的迭代格式如下: x (0) , 初始向量 第三步 SOR 迭代法 w0 AD L U 1 ( D 1 wL ((1 w)D wU )) (D 1 wL) ((1 w)D wU ) w w w 令M w 1 (D wL), N 1 ((1 w)D wU )则有:A MN w w Ax b AM L W N M (M N )x b Mx Nx b x M Nx M b N M, 令W f Mb 带入 N 的值可有 L W ((1 w)D wU) (D wL) 1((1 w)D wU) (D wL) f 1 b w 1(D wL) 1b 1 (D wL) w 称 L W 为 SOR 迭代矩阵,由此可得 SOR 迭代的迭代格式如下: x (0) ,初始向量 二、算法程序 Jacobi 迭代法的 M 文件: function [y,n]=Jacobi(A,b,x0,eps) %************************************************* %函数名称 Jacobi 雅克比迭代函数 %参数解释 A 系数矩阵 % b 常数项 % x0 估计解向量 x (k 1) Gx (k) f ,k 0,1,2,L (k 1) f,k 0,1,2,L

应用新展式法求非线性发展方程的精确解

https://www.360docs.net/doc/a116090879.html, The exp(??(ξ))-expansion Method applied to Nonlinear Evolution Equations Mei-mei Zhao??,Chao-Li School of Mathematics and Statistics,Lanzhou University Lanzhou,Gansu730000,P.R.of China Abstract By using exp(??(ξ))-expansion method,we have obtained more travelling wave solu-tions to the mKdV equation,the Drinefel’d-Sokolov-Wilson equations,the Variant Boussinesq equations and the Coupled Schr¨o dinger-KdV system.The proposed method also can be used for many other nonlinear evolution equations. Keywords exp(??(ξ))-expansion method,Homogeneous balance,Travelling wave solu-tions,Solitary wave solutions,MKdV equation,Drinefel’d-Sokolov-Wilson equations,Variant Boussinesq equations,Coupled Schr¨o dinger-KdV system. 1Introduction It is well known that nonlinear evolution equations are involved in many?elds from physics to biology,chemistry,mechanics,etc.As mathematical models of the phenomena,the inves-tigation of exact solutions to nonlinear evolution equations reveals to be very important for the understanding of these physical problems.Understanding this importance,during the past four decades or so,many mathematicians and physicists have being paid special attention to the development of sophisticated methods for constructing exact solutions to nonlinear evo-lution equations.Thus,a number of powerful methods has been presented such as the inverse scattering transform[1],the B¨a cklund and the Darboux transform[2-5],the Hirota[6],the trun-cated painleve expansion[7],the tanh-founction expansion and its various extension[8-10],the Jacobi elliptic function expansion[11,12],the F-expansion[13-16],the sub-ODE method[17-20],the homogeneous balance method[21-23],the sine-cosine method[24,25],the rank anal-ysis method[26],the ansatz method[27-29],the exp-function expansion method[30],Algebro-geometric constructions method[31]and so on. In the present paper,we shall proposed a new method which is called exp(??(ξ))-expansion method to seek travelling wave solutions of nonliear evolution equations.the ?Corresponding Author. ?E-mail address:yunyun1886358@https://www.360docs.net/doc/a116090879.html,(M.Zhao). 1

非线性发展方程及其应用

非线性发展方程及其应用 成果简介 本项目是非线性科学中的一个重要的研究方向,共研究的对象是来源于化学反应、微电子学、生物学等领域中用非线性偏微方程描述的动力学模型。因此,它具有交叉学科的特征。所获得的成果不仅为有关学科提供了定量分析的理论依据,而且也能为研究非线性偏微分方程带来新的研究思路和新的研究课题。 1.首次借助于构造适当的上、下控制函数、利用有界边值问题逼近方法,解决了Belensov-Zhabotinskii化学反应模型波前解的存在性,并给出子最小波速的值;同时还给出了一种求解显示行波解的方法。 2.利用摄动初值问题逼近、相空间的打靶法与变分思想,解决了退化的反应扩散方程行波解的存在性,并给出了最小波速的变分刻划和估计; 3.对带有非线性非局部项和非线性边界条件的抛物型方程和方程组的研究,主要利用上、下解方法。但是,上、下解的构造却有很大的灵活性和很高的技巧。我们首次借助于研究非负矩阵的性质,得到了方程组整体解存在的充分必要条件;首次通过构造在有限时刻爆破的精细上解和解的逐次延拓方法研究了解的整体存在性。同时,我们发表在美国数学会会刊上的一篇论文,还否定了Wolainskii于93年发表在SIAM J. Math. Anal.上的一个工作。发表在JMAA上的两篇论文,成功地解决了在边界上带有非线性强迫外力的非线性对流扩散问题。 4.反应扩散方程研究领域的一个基本问题是:扩散是否会引起爆破?多数人认为扩散不会引起爆破且是一个显而易见的问题,不须证明。但是数学结果

总是要证明的,有一部分人就致力于证明,给出了该结论成立的各式各样的充分条件。我们于96年发表在JMAA上的一篇论文给出了一个反例,说明扩散会引起爆破,彻底澄清了这个问题。 5.当反应扩散方程中反应项较扩散项占优时,利用经典有限元、有限差分或有限箱法离散时,解会出现数值振荡,常用的抑制振荡的方法有:S-G方法,SUPG方法等,但都存在局限性。我们从变分原理出发要求振荡最小,建立了新的离散数值理论; 6.半导体器件的漂移扩散模型是一个特殊形式,由非线性抛物型与椭圆型方程耦合起来的,反应扩散方程组,带有混合形式边界条件,特别是载流子又有不同的产生一复合过程,再加上热效应和磁场影响,难度大。我们建立了基于紧致性原理的正则化的统一框架。 该成果获江苏省科技进步二等奖。 非线性统计模型与非线性诊断方法 成果简介 本系统地研究了近代非线性回归模型的几何理论和渐近推断理论,把微分几何方法应用于非线性回归分析;系统地研究了具有广泛应用价值的指数族非线性模型,建立了该模型的几何结构,在此基础上,研究了这些模型基于统计曲率的渐近推断理论以及统计诊断的非线性方法;这些研究填补了国内空白,在国内外都有一定影响。近10年来共获得 3 项国家自然科学基金,1项 95 重点基金,2 项江苏省自然科学基金;出版专著2本,发表论文50多篇,其中国外14 篇,

解线性方程组的直接法和迭代法

数值分析方法中方程求解的直接法和迭代法 第3章 解线性方程组的直接法 一、 消元法 1. 高斯消元法(加减消元):首先将A 化为上三角阵,再回代求解。 11121121222212n n n n nn n a a a b a a a b a a a b ?? ? ? ? ??? (1)(1)(1)(1)(1)11 121311(2)(2)(2)(2)222322 (3)(3)(3)3333()()000 00 n n n n n nn n a a a a b a a a b a a b a b ?? ? ? ? ? ? ?? ? 步骤如下: 第一步:1 11 1,2,,i a i i n a -? +=第行第行 11121121222212 n n n n nn n a a a b a a a b a a a b ?? ? ? ? ??? 111211(2)(2)(2)2222 (2)(2)(2)2 00n n n nn n a a a b a a b a a b ?? ? ? ? ??? 第二步:(2)2 (2)222,3, ,i a i i n a -?+=第行第行 111211(2)(2)(2)2222 (2)(2)(2)200n n n nn n a a a b a a b a a b ?? ? ? ? ?? ? 111213 11 (2)(2)(2)(2) 222322 (3)(3)(3) 33 33(3)(3)(3) 3 00000n n n n nn n a a a a b a a a b a a b a a b ?? ? ? ? ? ? ?? ? 类似的做下去,我们有: 第k 步:() ()k ,1, ,k ik k kk a i i k n a -?+=+第行第行。 n -1步以后,我们可以得到变换后的矩阵为:

相关文档
最新文档