基于自动相关监视技术的目标获取及跟踪

基于自动相关监视技术的目标获取及跟踪
基于自动相关监视技术的目标获取及跟踪

基于ADS-B技术的目标获取及跟踪

Target capturing and tracking based on ADS-B technique

0引言

广播式自动相关监视ADS-B(Automatic Dependent Surveillance-Broadcast)是国际民航组织确定的未来主要监视技术,它是一种基于全球卫星定位系统和利用空地、空空数据链通信完成交通监视和信息传递的空管监视新技术[1]。利用该技术,目标(航行器、地面车辆等)可以面向所有用户自动周期性地广播监视数据,提供呼号、位置、高度、速度、航向、爬升/下降率等丰富的信息,其它的目标、地面站、网关都可以通过数据链接收此数据,并应用于各种用途(如空中交通监视服务、未来空-空监视服务等)。与传统的雷达系统监视技术相比较,ADS-B具有数据更新率快、精度高、监视信息丰富、建设维护成本低、使用寿命长等明显优势。

中国民航高度重视新航行技术的应用与实施,不断加强ADS-B技术研究与应用,在技术政策与规章标准制定、机载设备加改装,地面设备研制生产、技术验证与试验运行等方面开展了大量工作,为ADS-B地空监视(ADS-B OUT[2])的实施奠定了基础。加快推广应用ADS-B也是我国由民航大国向民航强国迈进,建设新一代航空运输系统的重要任务之一。中国民航结合自身监视的现状和未来航空业发展的需求,确定了我国运输航空ADS-B采用1090MHz扩展电文(1090 ES)数据链技术,并制定了ADS-B发展规划、应用原则和总体策略,同时也提出了中国民航ADS-B地面站点建设实施路线。

1090 ES ADS-B地面站接收和处理1090MHz扩展电文信息,在产生欧控监视数据交换标准文档ASTERIX Category 021[2]报告前后,需要完成目标位置信息的初始化和合理性检查,即对信息解码产生的目标位置进行检查、校验和判断。这个处理过程实质上就是目标的获取和跟踪。

1地面站基本功能

在解释这个目标处理过程之前,有必要先介绍一下1090 ES地面站(接收)设备的基本功能:地面站是ADS-B系统的重要组成部分,其通过RF天线接收由航行器和场面车辆所广播出来的信息,并对这些信息进行提取和解码,经处理后产生标准的数据报告传给用户。1090 ES地面站(接收)设备的原理框图如下图1所示。

图1 1090 ES地面站(接收)设备的原理框图

1090 ES接收:接收并解码1090MHz扩展电文信息,将这些信息发往后级模块完成信息的处理和输出。

报告产生:完成信息的处理,组织输出报告的数据项。通过配置,ADS-B地面站可以同时向多个用户系统提供不同的服务,为了确保与现有监视数据处理系统和工具的兼容,采用标准的ASTERIX Category 021报文作为其目标报告输出格式。此外,ADS-B服务还可以包括周期性地输出地面站状态报告(ASTERIX Category 023[3])和ASTERIX版本报告。

协调世界时(UTC)时钟同步:使地面站内部时钟与UTC同步。UTC时间用于表示时间的适用性,并为输出报告标记时间戳和用于其它用途。

内部自检(BITE):地面站周期性地完成设备内部自检工作,并将自检结果报地面站管理和状态报告模块。

地面站管理和状态报告:用户可通过管理接口,获取地面站各子系统的状态信息,并实现控制和配置地面站的功能。

2目标的获取

目标的获取阶段从地面站接收到目标的第一个信息,或者是目标的位置数据已过期后,重新开始接收到的第一个信息开始。一般情况下,在这个阶段由于目标还没有被校验,ADS-B 地面站并不会输出目标的ASTERIX Category 021报告,典型的做法是在正确接收到2个奇偶信息对后确定获取目标,并输出报告[4]。

但是,通过修改配置,也可以允许输出未经校验的目标的Category 021报告,在V0.23以后的版本,Category 021报告都会指示出该目标是未经校验的。

2.1距离检查

目标获取的第一步就是对目标最初的位置进行距离检查,判断其是否位于地面站可靠的接收区域内,这个可靠的区域一般是指地面站的最大作用范围,它会受到天线增益和地形的影响。在距离检查期间,由于尚未进行目标校验,所以地面站不会输出目标报告,如果需要输出这些报告用于监视等功能,也可以通过修改配置来实现。距离检查可以有多种方式,图2是其中的一个例子。

图2 距离检查流程

从上图2中可以看出,通过接收符合要求的奇偶位置信息对来判断空中或地面位置,信息对需要符合要求如下:奇偶空中位置信息对,信息间时间间隔应少于10秒;奇偶地面位置信息对,如果两个信息中的一个解码后的地速大于25海里/小时或未知,则两个信息的时间间隔小于10秒,如果两个信息的地速都≤25海里/小时,则时间间隔为50秒。

2.2CPR校验

压缩位置报告CPR(Compact Position Reporting)[5]实际上是一种位置数据的压缩算法。通过该算法,目标的位置数据被编进ADS-B扩展电文中,地面站再使用该算法对扩展电文进行解码。

在距离检查时,由CPR编码的位置信息经解码后可能会产生可靠的但是却是错误的位置信息,这个错误的位置信息会影响后续的解码。地面站应该通过接收到的信息去校验第一个位置报告是否合理。校验的方法有很多,图3是其中一个例子。

图3 CPR校验流程

备注:

1)新的位置信息应在用于距离检查的奇偶位置信息后120秒内接收到。

2)奇偶位置信息对的要求:奇偶空中位置信息对,配对信息间的时间间隔应少于10秒;

奇偶地面位置信息对,如果两个信息中的一个解码后的地速大于25海里/小时或未知,则配对的两个信息的时间间隔小于10秒,如果两个信息的地速都≤25海里/小时,则时间间隔为50秒。

3)通过配置,允许输出未经校验的目标的报告,可以用于监视等应用。

4)用本地解码和全球解码的结果进行比较。

3目标跟踪

目标跟踪也叫目标数据维护,就是地面站实时核对目标位置的合理性。

首先,对于通过距离检查和CPR校验的目标,ADS-B地面站会使用本地且明确的CPR 解码方式来处理新的位置信息。如果在30秒内,解码新的空中位置信息产生的位置变化超过6海里,也就是没有处于它应该存在的范围内,那么这个新的位置在本地解码中就没有通过合理性测试。此时,地面站将不会输出Category 021报告,但是通过修改配置,该报告还是可以输出的,在Category 021 V0.23以后的版本,Category 021报告都会指示出该报告是不可信的。没有通过合理性测试的新的位置将不会用于下一个本地解码的基准位置,地面站会按两个具有相同地址码的目标分别进行处理,而这个没有通过测试的位置会作为一个新的目标位置进行建立。

当一个目标的状态从地面向空中转变时,对于目标产生的第一个空中位置信息,建议采用不同的位置跳变距离来限制,这个限制值可以采用2.5海里。本地解码合理性测试中规定的位置跳变的距离限制值可以通过配置进行修改。

4目标终止

如果一个目标在120秒内没有位置更新,地面站就将终止该目标,在目标跟踪过程中没有通过合理性测试的位置不能计入已有目标的位置更新,而120秒以后收到的位置信息会作为新的目标重新进行目标的获取过程。

整个目标获取、跟踪、终止的处理流程及关系见图4。

图4 目标位置信息的处理流程

5结束语

地面站处理的报文信息还包括速度信息、航空器识别信息、目标状态信息、航空器运行状态信息等等,目标的获取和跟踪仅仅是ADS-B扩展电文中目标位置信息报文处理过程中的一部分,它主要是完成目标位置的检查、校验和判断过程,是产生目标位置报告的重要的初始化和处理过程。

参考文献:

[1]顾春平. 空中交通管制新技术监视新技术简介[J]. 现代雷达, 2010, 32(9):1-7.

[2]SUR.ET1.ST05.2000-STD-12-01,EUROCONTROL STANDARD DOCUMENT FOR

SURVEILLANCE DATA EXCHANGE Part 12: Category 021 ADS-B Reports [S].

[3]SUR.ET1.ST05.2000-STD-16-01,EUROCONTROL STANDARD DOCUMENT FOR

SURVEILLANCE DA TA EXCHANGE Part 16: Category 023 CNS/ATM Ground Station and Service Status Reports [S].

[4]ED-129,TECHNICAL SPECIFICATION FOR A 1090 MHz EXTENDED SQUITTER

ADS-B GROUND STATION [S].

[5]RTCA DO-260A,Minimum operational performance standards for 1090 MHz extended

squitter automatic dependent surveillance-broadcast (ADS-B) and traffic information services-broadcast (TIS-B) [S].

视频目标跟踪报告

专业硕士研究生实践训练环节视频运动目标检测与跟踪 学院:信息科学与工程学院 专业: 姓名: 学号: 授课老师: 日期:2017

目录 1 课程设计的目的和意义 (1) 1.1 课程设计的目的 (1) 1.2 课程设计的意义 (1) 2 系统简介及说明 (2) 3 设计内容和理论依据 (2) 3.1 基于Mean Shift的跟踪算法 (3) 3.1.1 RGB颜色直方图 (3) 3.1.2 基于颜色和纹理特征的Mean Shift跟踪算法 (3) 3.2 基于颜色特征的粒子滤波跟踪算法 (4) 3.2.1 贝叶斯重要性采样 (4) 3.2.2 序列重要性采样 (5) 3.2.3 粒子退化现象和重采样 (6) 3.2.4 基本粒子滤波算法 (6) 4 流程图 (7) 4.1 Mean Shift跟踪算法流程图 (7) 4.2 粒子滤波跟踪算法流程图 (7) 5 实验结果及分析讨论 (8) 5.1 基于Mean Shift的跟踪算法仿真结果 (8) 5.2 基于颜色特征的粒子滤波算法仿真结果 (9) 6 思考题 (10) 7 课程设计总结 (10) 8 参考文献 (10)

1 课程设计的目的和意义 1.1 课程设计的目的 随着计算机技术的飞速发展、信息智能化时代的到来,安防、交通、军事等领域对于智能视频监控系统的需求量逐渐增大。视频运动目标跟踪是计算机视觉领域的一个研究热点,它融合了人工智能、图像处理、模式识别以及计算机领域的其他先进知识和技术。在军事视觉制导、安全监测、交通管理、医疗诊断以及气象分析等许多方面都有广泛应用。同时,随着视频摄像机的普及化,视频跟踪有着广泛的应用前景,对城市安全起到了防范作用,并且和我们的生活息息相关。 从目前国内外研究的成果来看,对于运动目标的跟踪算法和技术主要是针对于特定环境提出的特定方案,大多数的跟踪系统不能适应于场景比较复杂且运动目标多变的场景。并且在视频图像中目标的遮挡、光照对颜色的影响、柔性刚体的轮廓变化等将严重影响目标的检测与跟踪。因此如何实现一个具有鲁棒性、实时性的视觉跟踪系统仍然是视觉跟踪技术的主要研究方向。 Mean Shift算法的主要优点体现在:计算简单、便于实现;对目标跟踪中出现的变形和旋转、部分遮挡等外界影响,具有较强的鲁棒性。缺点在于:算法不能适应光线变化等外界环境的影响;当目标尺度发生变化时,算法性能受到较大的影响。粒子滤波适用于非线性、非高斯系统,在诸如机动目标跟踪、状态监视、故障检测及计算机视觉等领域有其独到优势,并得到了广泛研究。但粒子滤波算法本身还不够成熟,存在粒子匮乏、收敛性等问题。因为跟踪机动目标需要对目标的运动特性有一定了解,因此,目标跟踪的难点之一在于目标模型的建立及其与跟踪方法的匹配上,这是提高跟踪性能的关键。 1.2 课程设计的意义 图像处理(image processing),用计算机对图像进行分析,以达到所需结果的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。常见的处理有图像数字化、图像编码、图像增强、图像复原、图像分割和图像分析等。图像处理一般指数字图像处理。虽然某些处理也可以用光学方法或模拟技术实现,但它们远不及数字图像处理那样灵活和方便,因而数字图像处理成为图像处理的主要方面。 随着计算机的发展,数字图像处理已成为电子信息、通信、计算机、自动化、信号处理等专业的重要课程。数字图像处理课程设计是在学习完数字图像处理的相关理论后,进行的综合性训练课程。其目的是进一步巩固数字图像的基本概念、理论、分析方法和实现方法。 1

动态视频目标检测和跟踪技术(入门)

动态视频目标检测和跟踪技术 传统电视监控技术只能达到“千里眼”的作用,把远程的目标图像(原始数据)传送到监控中心,由监控人员根据目视到的视频图像对现场情况做出判断。智能化视频监控的目的是将视频原始数据转化为足够量的可供监控人员决策的“有用信息”,让监控人员及时全面地了解所发生的事件:“什么地方”,“什么时间”,“什么人”,“在做什么”。将“原始数据”转化为“有用信息”的技术中,目标检测与跟踪技术的目的是要解决“什么地方”和“什么时间”的问题。目标识别主要解决“什么人”或“什么东西”的问题。行为模式分析主要解决“在做什么”的问题。动态视频目标检测技术是智能化视频分析的基础。 本文将目前几种常用的动态视频目标检测方法简介如下: 背景减除背景减除(Background Subtraction)方法是目前运动检测中最常用的一种方法,它是利用当前图像与背景图像的差分来检测出运动目标的一种技术。它一般能够提供相对来说比较全面的运动目标的特征数据,但对于动态场景的变化,如光线照射情况和外来无关事件的干扰等也特别敏感。实际上,背景的建模是背景减除方法的技术关键。最简单的背景模型是时间平均图像,即利用同一场景在一个时段的平均图像作为该场景的背景模型。由于该模型是固定的,一旦建立之后,对于该场景图像所发生的任何变化都比较敏感,比如阳光照射方向,影子,树叶随风摇动等。大部分的研究人员目前都致力于开发更加实用的背景模型,以期减少动态场景变化对于运动目标检测效果的影响。 时间差分时间差分(Temporal Difference 又称相邻帧差)方法充分利用了视频图像的特征,从连续得到的视频流中提取所需要的动态目标信息。在一般情况下采集的视频图像,若仔细对比相邻两帧,可以发现其中大部分的背景像素均保持不变。只有在有前景移动目标的部分相邻帧的像素差异比较大。时间差分方法就是利用相邻帧图像的相减来提取出前景移动目标的信息的。让我们来考虑安装固定摄像头所获取的视频。我们介绍利用连续的图像序列中两个或三个相邻帧之间的时间差分,并且用阈值来提取出视频图像中的运动目标的方法。我们采用三帧差分的方法,即当某一个像素在连续三帧视频图像上均有相

目标跟踪的研究背景意义方法及现状

目标跟踪的研究背景意义方法及现状 1目标跟踪的研究背景及意义 (1) 1.1电视监控 (2) 1.2视频压缩编码 (2) 1.3智能交通系统 (2) 1.4人机交互 (3) 2研究现状及研究面临的问题 (3) 2.1研究现状 (3) 2.2研究面临的难题 (4) 3目标跟踪的主要方法 (4) 3.1基于检测的方法 (5) 3.2基于识别的方法 (5) 1目标跟踪的研究背景及意义 感觉是人类与外界联系的窗口和交流的桥梁,它的主要任务是识别周边物体,判断与这些物体之间的联系,使人类的思维与周围世界建立某种对应的关系。而视觉系统是人类感觉的最主要来源,是获取外界信息的最主要途径,它是一种高清晰度的媒介,为人类提供着丰富的外界资源信息。据统计,大约有80%的外界信息是通过眼睛被人接收的。然而,由于人类的精力毕竟是有限的,人类的视野也是有限的,所以人类的视觉在各种领域的应用都受到很大限制甚至是低效的。 因而,随着数字计算机技术的飞速发展,让计算机能够处理视觉信息、完善人类视觉上的诸多短板就成了一项非常诱人的研究课题,也因此推动了计算机视觉这一学科的产生和发展。计算机视觉是融合了图像处理、计算机图形学、模式识别、人工智能、人工神经网络、计算机、心理学、物理学和数学等领域的一门交叉性很强的学科。计算机视觉研究的目的是使计算机感知环境中的物体的几何信息,包括它的形状、位置、姿态、运动等,并对其进行描述、存储、识别与理解,因此成为当今最热门的课题之一。 运动目标跟踪属于视频分析的内容,而视频分析则融合了计算机视觉研究领域的中层和高层处理阶段,即对图像序列进行处理,从而研究运动目标的规律,或者为系统的决策报警提供语义和非语义的信息支持,包括运动检测、目标分类、目标跟踪、行为理解、事件检测等。视频目标跟踪方法的研究和应用作为计算机视觉领域的一个重要分支,正日益广泛地应用到科学技术、国防建设、航空航天、医药卫生以及国民经济的各个领域,因而研究目标跟踪技术有着重大的实用价值

用opencv实现对视频中动态目标的追踪

用openCV实现对视频中动态目标的追踪 第一步,是要建立一个编程环境,然后加载opencv的库路径等等。具体步骤在 https://www.360docs.net/doc/a11687005.html,/ 的“安装”中有详细介绍。 第二步,建立一个MFC的对话框程序,做两个按钮,一个“打开视频文件”,一个“运动跟踪处理”。 具体操作: 1 建立MFC对话框程序的框架:File ->New -> MFC AppWizard(exe),选取工程路径,并取工程名“VideoProcesssing”-> Next -> 选择Dialog based后,点Finish,点OK. 2 添加按钮:直接Delete掉界面默认的两个“确定”“取消”按钮。然后添加两个button,分别名为“打开视频”,“运动跟踪处理”,其ID分别设为IDC_OPEN_VIDEO,IDC_TRACKING. 3 添加消息响应函数:双击按钮“打开视频”,自动生成响应函数名OnOpenVideo,点Ok。然后添加如下代码: CFileDialog dlg(true,"*.avi",NULL,NULL,"*.avi|*.avi||"); if (dlg.DoModal()==IDOK) { strAviFilePath = dlg.GetPathName(); }else { return; } 同样,双击“运动跟踪处理”,选择默认的响应函数名,然后添加代码: //声明IplImage指针 IplImage* pFrame = NULL; IplImage* pFrImg = NULL; IplImage* pBkImg = NULL; CvMat* pFrameMat = NULL; CvMat* pFrMat = NULL; CvMat* pBkMat = NULL; CvCapture* pCapture = NULL; int nFrmNum = 0; //打开AVI视频文件 if(strAviFilePath=="") //判断文件路径是否为空 { MessageBox("请先选择AVI视频文件!"); return; }else { if(!(pCapture = cvCaptureFromFile(strAviFilePath))) { MessageBox("打开AVI视频文件失败!"); return;

【CN109919979A】一种视频实时目标跟踪的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910174796.5 (22)申请日 2019.03.08 (71)申请人 广州二元科技有限公司 地址 510000 广东省广州市南沙区银锋一 街1号银锋广场1栋1608房 (72)发明人 容李庆 关毅 袁亚荣  (74)专利代理机构 广州凯东知识产权代理有限 公司 44259 代理人 罗丹 (51)Int.Cl. G06T 7/246(2017.01) G06K 9/00(2006.01) G06K 9/32(2006.01) (54)发明名称 一种视频实时目标跟踪的方法 (57)摘要 本发明涉及一种视频实时目标跟踪的方法, 采用目标检测与目标跟踪相结合的技术,极大地 降低视频实时目标检测的计算量,由于无需对每 一帧视频图像进行遍历检测,因此极大地提高了 视频实时目标检测的计算效率,可以达到实时视 频的帧率。本发明提供的视频实时目标跟踪的方 法使用神经网络对目标检测器检测出来的目标 框在下一帧图像中的位置进行跟踪回归,极大地 降低了视频实时目标检测的计算量,无需对每一 帧图像都采用检测器检测目标,采用检测与跟踪 相结合的技术应用于视频实时目标检测中,无需 对输入图像进行复杂的降噪等处理,对目标检测 器也无特殊需求,可以大大提升检测的速率,本 发明适用性广,可以在低端的嵌入式设备中保证 足够的计算效率。权利要求书1页 说明书2页 附图1页CN 109919979 A 2019.06.21 C N 109919979 A

权 利 要 求 书1/1页CN 109919979 A 1.一种视频实时目标跟踪的方法,其特征在于包括以下步骤: 1)、通过硬件设备摄像头采集实时的视频作为输入,或者直接输入包含多帧的视频文件; 2)、分解视频,以单帧为单位对视频进行分解; 3)、将不同的数字图像矩阵格式转化为目标检测器支持的数字图像矩阵格式; 4)、输入1帧数字图像矩阵到目标检测器中,检测器通过计算后返回的检测结果以数组的方式进行保存,数组的长度是检测到的目标数量大小; 5)、根据当前输入帧获得的目标检测框作为下一帧图像的目标基础框,采用神经网络对当前帧目标框在下一帧图像的位置进行回归计算,得到下一帧图像的目标检测框信息,如果下一帧检测框信息不为空,则在接下来的帧图像中循环执行当前步骤;若下一帧目标框信息为空,则跳转到步骤4对接下来的帧图像重新调用目标检测器进行目标检测直到视频帧处理结束。 2.根据权利要求1所述的一种视频实时目标跟踪的方法,其特征在于: 所述步骤3)在步骤1)输入视频的时候进行统一的转换。 2

基于动态图像序列的运动目标跟踪

浙江工程学院学报,第19卷,第3期,2002年9月 Journal of Zhejiang Institute of Science and T echnology Vol .19,No .3,Sep 12002 文章编号:100924741(2002)0320165206 收稿日期:2002201222 基金项目:国家自然科学基金资助项目(60103016),浙江省自然科学基金资助项目(601019),浙江省教育厅科研资助项目(2000036) 作者简介:周志宇(1974—  ),男,浙江诸暨人,在职硕士研究生,从事计算机视觉的研究。基于动态图像序列的运动目标跟踪 周志宇,汪亚明,黄文清 (浙江工程学院计算机视觉与模式识别研究中心,浙江杭州 310033) 摘要:介绍了运动目标跟踪中基于特征、32D 、变形模型和区域的4种跟踪方法,着重分析了变形模型 中Snake 的跳跃模型跟踪方法和基于区域的几个有代表性的跟踪方法,说明了其在智能交通监控中的应用, 并给出了区域跟踪的实验结果。 关键词:动态图像序列;运动目标;变形模型;区域跟踪 中图分类号:TP391141 文献标识码:A 0 前 言 基于动态图像序列的运动目标跟踪技术在军事、国防、工业过程控制、医学研究、交通监控、飞机导航等领域有着广泛的应用前景。运动目标跟踪的目的就是通过对序列图像进行分析研究,计算出运动目标在连续帧图像中的位移,给出运动目标速度等运动参数,从而对缓解城市交通拥挤、堵塞现象提供依据。利用图像捕捉并跟踪我们感兴趣的运动目标,形成运动目标的序列图像由于比静止目标的一帧图像提供了更多的有用信息,使得可以利用序列图像检测出在单帧图像中很难检测出的目标。在复杂背景下对运动目标的跟踪以达到特定的目的,可靠性和精度是跟踪过程中的两个重要指标,为此,人们提出了许多方法来解决跟踪问题,但归纳起来,主要有基于特征、32D 、变形模型和区域的4种跟踪方法。 1 运动目标的跟踪方法 111 基于特征的跟踪方法用于目标的跟踪的个体特征有许许多多,不管是刚体运动目标,还是非刚体运动目标,在序列图像中相邻的两帧图像,由于图像序列间的采样时间间隔很小,可以认为这些个体特征在运动形式上具有平滑性,因此可以用直线 [1]、曲线[2]、参照点[3]等个体特征来跟踪运动目标。Liu [1]等人介绍了灰度图像中一种边缘直线匹配的算法。在边缘直线的提取中,首先,用图像边缘聚焦技术处理图像数据,消除不必要的图像噪声,形成了一个边缘,然后从边缘中分割出直线,并从中提取直线。用一种以直线的几何关系和灰度图像的信息为基础的匹配函数描述了两幅图像边缘直线的相似性,在连续帧图像中采用直线匹配的方法进行了运动参数的估计。 基于特征的跟踪方法有其显著的优点:a )由于使用的符号模型运动方式简单,运动具有平滑性,因此跟踪目标的算法就简单了;b )这种方法已经假设特征符号运动是相互独立的运动,因此在运动分析时

第一章 目标跟踪基本原理与机动目标模型1

第一章目标跟踪基本原理与机动目标模型1.1 引言目标跟踪问题作为科学技术发展的一个方面,设计的主要目的是可靠而精确的跟踪目标,其历史可以追溯到第二次世界大战前夕,即1937 年世界上出现第一部跟踪雷达站SCR-28 的时候、之后各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。传统的跟踪系统是一对一系统,即一个探测器仅连续地瞄准和跟踪一个目标。随着科学技术的进步和现代战略战术的发展,人们发现提出新的目标跟踪概念和体制是完全可能的,在过去20 多年中,多目标跟踪的理论和方法已经获得很大发展,并已成为当今国际上十分活跃的热门研究领域之一,有些成果也已付诸于工程实际。简单地说,目标跟踪问题可以划分为下列四类:一个探测器跟踪一个目标(OTO)一个探测器跟踪多个目标(OTM)多个探测器跟踪一个目标(MTO)多个探测器跟踪多个目标(MTM)1.2 目标跟踪的基本原理1.2.1 单机动目标跟踪基本原理发展现代边扫描边跟踪(TWS)系统的目的是,仅在一个探测器条件下同时跟踪多个目标。然而,为达此目的,边扫描边跟踪系统必须首先很好地跟踪单个目标。一般地说,常速直线运动目标的跟踪与估计问题较为简单,而且易于处理。困难的情况表现在被跟踪目标发生机动,即目标速度的大小和方向发生变化的场合。图 1.1 为单机动目标跟踪基本原理框图。图中目标动态特性由包含位置、速度和加速度的状态向量X 表示,量测(观测)量Y 被假定为含有量测噪声V 的状态向量1的线性组合(HX+V);残差(新息)向量 d 为量测(Y)与状态预测量H X k k 之差。我们约定,用大写字母XY 表示向量,小写字母xy表示向量的分量。一般情况下,单机动目标跟踪为一自适应滤波过程。首先由量测(观测)量(Y)和状态预1测量H X k 构成残差(新息)向量d,然后根据d 的变化进行机动检测或者机k动辨识.其次按照某一准则或逻辑调整滤波增益与协方差矩阵或者实时辨识出目标机动特性,最后由滤波算法得到目标的状态估计值和预测值,从而完成单机动目标跟踪功能。图 1.1 单机动目标跟踪基本原理框图1.2.2 单机动目标跟踪基本要素单机动目标跟踪基本要素主要包括量测数据形成与处理,机动目标模型,机动检测与机动辨识,滤波与预测以及跟踪坐标系和滤波状态变量的选取。现分别简述之。1.2.2.1 量测数据形成与处理量测数据通常指来自探测器输出报告的所有观测量的集合。这些观测量一般包括目标运动参数,如位置和速度,目标属性,目标类型,数目或形成以及获取量测量的时间序列等。在单机动目标跟踪技术中,量测数据主要指目标运动学参数。量测数据既可以等周期获取,也可以变周期获取。在实际问题中常常遇到等速,为了提高目标状态率数据采集。量测数据大多含有噪声和杂波(多目标检测情况)估计精度,通常采用数据预处理技术以提高信噪比。目前常用的方法有数据压缩,包括等权和变权预处理以及量测资料中野值的剔除方法等技术。1.2.2.2 机动目标模型众所周知,估计理论特别是卡尔曼滤波理论要求建立数学模型来描述与估计问题有关的物理现象。这种数学模型应把某一时刻的状态变量表为前一状态变量的函数。所定义的状态变量应为能够全面反应系统动态特性的一组维数最少的变量。一般地,状态变量与系统的能量有关,譬如在目标运动模型中,状态变量中所包含的位置元素与势能有关,速度元素与动能有关。在目标模型构造过程中,考虑到缺乏有关目标运动的精确数据以及存在着许多不可预测的现象,如周围环境的变化及驾驶员主观操作等,只是需要引入状态噪声的概念。当目标作匀速直线运动时,加速度常常被看作是具有随机特性的扰动输入(状态噪声),并假设其服从零均值白色高斯分布,这时,卡尔曼滤波可直接使用。当目标发生诸如转弯或逃避等机动现象时,上述假设则不尽合理,机动加速度变成为非零均值时间相关的有色噪声。此时,为满足滤波需要常常采用白化噪声和状态增广方法。机动目标模型除了考虑加速度非零均值时间相关噪声假设外,还要考虑加速度的分布特性。客观上,要求加速度函数应尽可能的描述目标机动的实际情况。从目前的机动目标模型来看,所有建模方法均考虑了目标发生机动的可能性,并建立了一种适合任何情况和任何类型目标的机动模型,我们称这种模型为全局统计模型,其典型代表是传统的Singer 模型。然而,根据全局统计模型思想,每一种具体战术情况下的每

目标跟踪相关研究综述

Artificial Intelligence and Robotics Research 人工智能与机器人研究, 2015, 4(3), 17-22 Published Online August 2015 in Hans. https://www.360docs.net/doc/a11687005.html,/journal/airr https://www.360docs.net/doc/a11687005.html,/10.12677/airr.2015.43003 A Survey on Object Tracking Jialong Xu Aviation Military Affairs Deputy Office of PLA Navy in Nanjing Zone, Nanjing Jiangsu Email: pugongying_0532@https://www.360docs.net/doc/a11687005.html, Received: Aug. 1st, 2015; accepted: Aug. 17th, 2015; published: Aug. 20th, 2015 Copyright ? 2015 by author and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/a11687005.html,/licenses/by/4.0/ Abstract Object tracking is a process to locate an interested object in a series of image, so as to reconstruct the moving object’s track. This paper presents a summary of related works and analyzes the cha-racteristics of the algorithm. At last, some future directions are suggested. Keywords Object Tracking, Track Alignment, Object Detection 目标跟踪相关研究综述 徐佳龙 海军驻南京地区航空军事代表室,江苏南京 Email: pugongying_0532@https://www.360docs.net/doc/a11687005.html, 收稿日期:2015年8月1日;录用日期:2015年8月17日;发布日期:2015年8月20日 摘要 目标跟踪就是在视频序列的每幅图像中找到所感兴趣的运动目标的位置,建立起运动目标在各幅图像中的联系。本文分类总结了目标跟踪的相关工作,并进行了分析和展望。

图像目标跟踪技术

图像目标跟踪技术 ?作者:王鑫,徐立中著 ?出版社:人民邮电出版社 ?出版时间:2012-12-1 ?版次:1页数:178字数:221000 ?印刷时间:2012-12-1开本:16开纸张:胶版纸 ?印次:1I S B N:9787115288974包装:平装 内容推荐 《图像目标跟踪技术》系统阐述了图像目标跟踪的有关概念、原理和方法,共分9章,第1章介绍图像目标跟踪的意义、应用及分类,第2章介绍非线性优化序贯拟蒙特卡洛滤波,第3章介绍融合背景信息的序贯拟蒙特卡洛滤波目标跟踪,第4章讨论基于概率图模型的粒子滤波多目标跟踪,第5章介绍基于序贯拟蒙特卡洛滤波的多摄像机目标跟踪,第6章介绍基于信息融合技术的目标跟踪,第7章讨论受机械参数影响的多摄像机深度估计,第8章介绍基于自适应多信息融合的均值漂移红外目标跟踪,第9章介绍融合均值漂移和粒子滤波优点的实时目标跟踪。本书是图像目标跟踪方面的专著,反映作者近年来在这一领域的主要研究成果。《图像目标跟踪技术》内容新颖,理论联系实际,可作为大专院校及科研院所图像处理、计算机视觉和视频处理等领域的高年级本科生、研究生的教学和参考用书,也可供相关领域的教师、科研人员及工程技术人员作参考。 目录 第1章绪论 1.1 图像目标跟踪的意义和应用 1.2 单摄像机目标跟踪 1.2.1 目标表示模型 1.2.2 目标动态模型 1.2.3 目标状态估计模型 1.3 多摄像机目标跟踪 1.3.1 目标匹配 1.3.2 摄像机标定及拓扑关系估计 1.3.3 数据关联 1.4 红外图像中目标的跟踪 1.5 智能视频监控系统 1.5.1 智能视频监控的背景和意义 1.5.2 智能视频监控系统 参考文献 第2章非线性优化序贯拟蒙特卡洛滤波 2.1 引言 2.2 基于贝叶斯框架的跟踪问题描述 2.2.1 贝叶斯滤波的蒙特卡洛实现 2.2.2 贝叶斯滤波的拟蒙特卡洛实现 2.3 非线性优化序贯拟蒙特卡洛滤波 2.3.1 信赖域方法 2.3.2 基于信赖域的序贯拟蒙特卡洛滤波算法 2.4 实验与分析 2.4.1 非线性动态模型 2.4.2 二维点目标跟踪中的应用

目标跟踪算法的研究毕业论文

目录 摘要 (1) ABSTRACT (2) 第一章绪论 (4) 1.1课题研究背景和意义 (4) 1.2国外研究现状 (5) 1.3本文的具体结构安排 (7) 第二章运动目标检测 (8) 2.1检测算法及概述 (8) 2.1.1连续帧间差分法 (9) 2.1.2背景去除法 (11) 2.1.3光流法 (13) 第三章运动目标跟踪方法 (16) 3.1引言 (16) 3.2运动目标跟踪方法 (16) 3.2.1基于特征匹配的跟踪方法 (16) 3.2.2基于区域匹配的跟踪方法 (17) 3.2.3基于模型匹配的跟踪方法 (18) 3.3运动目标搜索算法 (18) 3.3.1绝对平衡搜索法 (18) 3.4绝对平衡搜索法实验结果 (19) 3.4.1归一化互相关搜索法 (21)

3.5归一化互相关搜索法实验结果及分析 (22) 第四章模板更新与轨迹预测 (26) 4.1模板更新简述及策略 (26) 4.2轨迹预测 (28) 4.2.1线性预测 (29) 4.2.2平方预测器 (30) 4.3实验结果及分析: (31) 致 (36) 参考文献 (37) 毕业设计小结 (38)

摘要 图像序列目标跟踪是计算机视觉中的经典问题,它是指在一组图像序列中,根据所需目标模型,实时确定图像中目标所在位置的过程。它最初吸引了军方的关注,逐渐被应用于电视制导炸弹、火控系统等军用备中。序列图像运动目标跟踪是通过对传感器拍摄到的图像序列进行分析,计算出目标在每帧图像上的位置。它是计算机视觉系统的核心,是一项融合了图像处理、模式识别、人工只能和自动控制等领域先进成果的高技术课题,在航天、监控、生物医学和机器人技术等多种领域都有广泛应用。因此,非常有必要研究运动目标的跟踪。 本论文就图像的单目标跟踪问题,本文重点研究了帧间差分法和背景去除法等目标检测方法,研究了模板相关匹配跟踪算法主要是:最小均方误差函数(MES),最小平均绝对差值函数(MAD)和最大匹配像素统计(MPC)的跟踪算法。在跟踪过程中,由于跟踪设备与目标的相对运动, 视野中的目标可能出现大小、形状、姿态等变化, 加上外界环境中的各种干扰, 所要跟踪的目标和目标所在的场景都发生了变化, 有可能丢失跟踪目标。为了保证跟踪的稳定性和正确性, 需要对模板图像进行自适应更新。由于目标运动有一定得规律,可以采取轨迹预测以提高跟踪精度,本文采用了线性预测法。 对比分析了相关匹配算法的跟踪精度和跟踪速度;对比不采用模板更新和模板跟新的跟踪进度和差别,实验表明,跟踪算法加上轨迹预测及模板跟新在很大程度上提高了跟踪帧数,提高了跟踪精度,具有一定的抗噪声性能。

雷达机动目标跟踪技术研究精编

雷达机动目标跟踪技术 研究精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

1 绪论 课题背景及目的 目标跟踪问题实际上就是目标状态的跟踪滤波问题,即根据传感器已获得的目标量测数据对目标状态进行精确的估计[1]。它是军事和民用领域中一个基本问题,可靠而精确地跟踪目标是目标跟踪系统设计的主要目的。在国防领域,目标跟踪可用于反弹道导弹的防御、空防预警、战场区域监视、精确制导和低空突防等。在民用领域,则用于航空和地面交通管制、机器人的道路规划和障碍躲避、无人驾驶车的跟踪行驶、电子医学等。作为科学技术发展的一个方面,目标跟踪问题可以追溯到第二次世界大战的前夕,即1937年世界上出现第一部跟踪雷达站SCR-28的时候。之后,许多科学家和工程师一直努力于该项课题的研究,各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。 运动目标的机动会使跟踪系统的性能恶化,对机动目标进行跟踪是人们多年来一直关注的问题。随着现代航空航天技术的飞速发展,机动目标在空间飞行的速度、角度、加速度等参数不断变化,使得目标的位置具有很强的相关性,因此,提高对这类目标的跟踪性能便成为越来越重要的问题,迫切需要研究更为优越的跟踪滤波方法。机动目标的跟踪研究,已成为当今电子战的研

究热点之一。今天,精密跟踪雷达不仅广泛应用于各类武器控制和各类实验靶场,而且还广泛应用于各种空间探测、跟踪和识别领域,以及最先进的武器控制系统。 跟踪模型和匹配滤波是机动目标跟踪的两个关键部分,机动目标的精确跟踪在过去和现在都是一个难题,最根本原因在于跟踪滤波采用的目标动力学模型和机动目标实际动力学模型不匹配,导致跟踪滤波器发散,跟踪性能严重下降。本文将机动目标作为研究对象,从目标的运动建模和匹配滤波算法入手,提出或修正跟踪算法,从而实现对机动目标的精确跟踪。 机动目标跟踪技术及其发展状况 目标机动是指运动当中的目标,其运动方式在不断地发生变化,从一种形式变化为另一种形式,目标的运动可能从匀速到变速,也可能送直线到转弯,它的运动方式并不会从一而终。通俗地说,就是“目标速度的大小和方向发生变化”。 一般情况下,机动目标跟踪方法概括来讲可以分为以下两类:具有机动检测的跟踪算法和无需机动检测的自适应跟踪算法。机动目标的跟踪需要综合运用统计决策、滤波算法以及其它的数学方法,将传感器所接受到的信号数据进行处理,得到目标的位置、速度、加速度等估计信息。图给出了机动目标跟踪的基本原理图。

视频目标跟踪算法综述_蔡荣太

1引言 目标跟踪可分为主动跟踪和被动跟踪。视频目标跟踪属于被动跟踪。与无线电跟踪测量相比,视频目标跟踪测量具有精度高、隐蔽性好和直观性强的优点。这些优点使得视频目标跟踪测量在靶场光电测量、天文观测设备、武器控制系统、激光通信系统、交通监控、场景分析、人群分析、行人计数、步态识别、动作识别等领域得到了广泛的应用[1-2]。 根据被跟踪目标信息使用情况的不同,可将视觉跟踪算法分为基于对比度分析的目标跟踪、基于匹配的目标跟踪和基于运动检测的目标跟踪。基于对比度分析的跟踪算法主要利用目标和背景的对比度差异,实现目标的检测和跟踪。基于匹配的跟踪主要通过前后帧之间的特征匹配实现目标的定位。基于运动检测的跟踪主要根据目标运动和背景运动之间的差异实现目标的检测和跟踪。前两类方法都是对单帧图像进行处理,基于匹配的跟踪方法需要在帧与帧之间传递目标信息,对比度跟踪不需要在帧与帧之间传递目标信息。基于运动检测的跟踪需要对多帧图像进行处理。除此之外,还有一些算法不易归类到以上3类,如工程中的弹转机跟踪算法、多目标跟踪算法或其他一些综合算法。2基于对比度分析的目标跟踪算法基于对比度分析的目标跟踪算法利用目标与背景在对比度上的差异来提取、识别和跟踪目标。这类算法按照跟踪参考点的不同可以分为边缘跟踪、形心跟踪和质心跟踪等。这类算法不适合复杂背景中的目标跟踪,但在空中背景下的目标跟踪中非常有效。边缘跟踪的优点是脱靶量计算简单、响应快,在某些场合(如要求跟踪目标的左上角或右下角等)有其独到之处。缺点是跟踪点易受干扰,跟踪随机误差大。重心跟踪算法计算简便,精度较高,但容易受到目标的剧烈运动或目标被遮挡的影响。重心的计算不需要清楚的轮廓,在均匀背景下可以对整个跟踪窗口进行计算,不影响测量精度。重心跟踪特别适合背景均匀、对比度小的弱小目标跟踪等一些特殊场合。图像二值化之后,按重心公式计算出的是目标图像的形心。一般来说形心与重心略有差别[1-2]。 3基于匹配的目标跟踪算法 3.1特征匹配 特征是目标可区别与其他事物的属性,具有可区分性、可靠性、独立性和稀疏性。基于匹配的目标跟踪算法需要提取目标的特征,并在每一帧中寻找该特征。寻找的 文章编号:1002-8692(2010)12-0135-04 视频目标跟踪算法综述* 蔡荣太1,吴元昊2,王明佳2,吴庆祥1 (1.福建师范大学物理与光电信息科技学院,福建福州350108; 2.中国科学院长春光学精密机械与物理研究所,吉林长春130033) 【摘要】介绍了视频目标跟踪算法及其研究进展,包括基于对比度分析的目标跟踪算法、基于匹配的目标跟踪算法和基于运动检测的目标跟踪算法。重点分析了目标跟踪中特征匹配、贝叶斯滤波、概率图模型和核方法的主要内容及最新进展。此外,还介绍了多特征跟踪、利用上下文信息的目标跟踪和多目标跟踪算法及其进展。 【关键词】目标跟踪;特征匹配;贝叶斯滤波;概率图模型;均值漂移;粒子滤波 【中图分类号】TP391.41;TN911.73【文献标识码】A Survey of Visual Object Tracking Algorithms CAI Rong-tai1,WU Yuan-hao2,WANG Ming-jia2,WU Qing-xiang1 (1.School of Physics,Optics,Electronic Science and Technology,Fujian Normal University,Fuzhou350108,China; 2.Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Science,Changchun130033,China)【Abstract】The field of visual object tracking algorithms are introduced,including visual tracking based on contrast analysis,visual tracking based on feature matching and visual tracking based on moving detection.Feature matching,Bayesian filtering,probabilistic graphical models,kernel tracking and their recent developments are analyzed.The development of multiple cues based tracking,contexts based tracking and multi-target tracking are also discussed. 【Key words】visual tracking;feature matching;Bayesian filtering;probabilistic graphical models;mean shift;particle filter ·论文·*国家“863”计划项目(2006AA703405F);福建省自然科学基金项目(2009J05141);福建省教育厅科技计划项目(JA09040)

目标检测、跟踪与识别技术与现代战争

《图像检测、跟踪与识别技术》论文 论文题目: 图像检测、跟踪与识别技术与现代战争 专业:探测制导与控制技术 学号:35152129 姓名:刘孝孝

目标检测、跟踪与识别技术与现代战争 【摘要】本文讨论目标检测、跟踪与识别技术在现代战争各个领域中的应用,总结目标识别技术的发展方向,提出目标识别技术工程化实现方法,同时本文介绍了国外目标识别的现状及发展趋势,提出了现代战争应采用综合识别系统解决目标识别问题的建议。 关键词目标检测;目标跟踪;目标识别;雷达;人工神经网络;精确制导 1.引言 随着现代科学技术的飞速发展及其在军事领域内日益广泛的应用,传统的作战思想、作战方式已发生根本性的变化。从第一次海湾战争到科索沃战争,特别是刚刚结束的海湾战争,空中精确打击和空地一体化作战已经成为最重要的作战形式。集指挥、控制、通信、计算机、情报、监视侦察于一体的C ISR 已成为取得战场主动权,赢得最后胜利的关键因素。目标识别技术是雷达智能化、信息化的重要技术支撑手段。在现代化战争中,目标识别技术在预警探测、精确制导、战场指挥和侦察、敌我识别等军事领域都有广泛的应用前景,已受到了世界各国的关注。 现代战争中取得战场制信息权的关键之一是目标属性识别。现代战争的作战环境十分复杂,作战双方都在采用相应的伪装、隐蔽、欺骗和干扰等手段和技术,进行识别和反识别斗争。因此仅仅依靠一种或少数几种识别手段很难准确地进行目标识别,必须利用多个和多类传感器所收集到的多种目标属性信息,综合出准确的目标属性,进行目标检测,跟踪后进行识别。 2.目标检测、跟踪与识别技术在现代战争中的应用 2.1 目标检测、跟踪与识别技术在预警探测上的应用 目标检测、跟踪与识别技术对于弹道导弹的预警工作有重要的作用。弹道导弹一般携带多个弹头,其中可能包含核弹头或大规模杀伤的弹头以及常规弹头,预警雷达必须具备对目标进行分类和识别真假弹头的能力,将核弹头或大规模杀伤的弹头分离出来,为弹道导弹防御(BMD)系统进行目标攻击和火力分配提供依据。早期的BMD系统假设只有一个核弹头,多弹头分导技术的出现,使问题转化为雷达的多目标识别问题,加上电子对抗技术的广泛使用,给目标识别技术带来很大困难。另外,预警雷达还要对空中目标或低空目标进行探测,对来袭目标群进行分类识别。利用星载雷达以及远程光学望远镜等观测设备,可以对外空目标进行探测,对外空来袭目标进行分类和识别,达到早期预警的工作。 2.2 目标检测、跟踪与识别技术在精确制导上的应用 精确制导方式很多,包括主动式、半主动式和被动式寻的制导方式,通过设在精确制导武器

本科毕业设计__基于视频的目标跟踪及人群密度估计方法研究开题报告

上海交通大学 2012 级硕士学位论文开题报告登记表 学号姓名导师李建勋学科控制科学与工程学院(系、所) 电子信息与电气工程学院 学位论文题目稳健对地目标跟踪方法研究 研究课题来源国家自然科学基金、航天创新基金、中航613横向项目 课题的意义以及研究的主要内容 运动目标跟踪是视觉图像处理中的一个非常热门的话题,在多个领域有着广泛的应用。运动目标跟踪的应用领域和环境主要有:对大型公共场所进行智能化视频监控、基于视频的人机交互、交通流量监测、医疗诊断等。 本文从计算机视觉角度研究对地目标跟踪方法。由于视觉跟踪系统能在比较复杂的背景下,提取与分离市场内的目标、确定目标位置、估计目标运动趋势、实现对目标的实时跟踪,且具有跟踪精度高、跟踪状态平稳、抗干扰能力强、分辨率高和成本低等特点,在军事上很受重视。在民用领域,对地目标跟踪也有着广泛的应用:对大型公共场所进行智能化视频监控。例如在机场、商场、地铁站等场所进行智能化监控,其主要目的都是为了保障公众财产和信息安全。在人群监测、交通管理上实现智能化有非比寻常的意义。 以以上应用为背景,本文的对地目标跟踪技术包含以下几个主要技术模块:单目标跟踪技术、多目标跟踪技术、密集目标跟踪技术。分出这几个模块是为了应对不同的应用场景,或是在同一场景需要各模块的协同合作。例如地铁站的人群流量具有明显时段特征,早晚上下班高峰人流极大,而其他时段人流量明显减少,这就需要对不同时段采用不同的跟踪方法以达到最好的效果。在上下班高峰期,采用密集目标跟踪技术,而在其他时段,采用多目标跟踪技术,而在有特殊需要的时候,例如跟踪特定犯罪嫌疑人时,可采用单目标跟踪技术。 本文研究的主要内容具体有: ①粒子滤波基本方法研究,这是单目标跟踪方法的框架。在图像跟踪应用中,目标状态的后验概率分布往往是非线性非高斯多模态的,粒子滤波方法对于系统模型没有特殊要求,且能够保持状态的多模态分布,在跟踪领域得到了很大的发展。但常规粒子滤波跟踪算法存在计算量大、采样效率低等问题。 ②粒子群最优化思想研究,改进常规粒子滤波采样效率低的问题,提高采样效率。针对常规粒子滤波跟踪算法存在计算量大、采样效率低等问题,引入粒子群优化思想对目标状态后验分布进行最优搜索,找到后验分布的高似然区,并依据此高似然区来进行重采样。 ③变结构多模型的设计,以更好的表征目标的运动模型。几乎所有的方法对目标的运动状态都假定为平滑的,或者将运动限制在恒速或恒加速运动状态。而实际情况并非如此,例如机动目标的运动状态就很难用单一模型来表征。本文引入变结构多模型方法为目标建立变结构多运动模型。变结构多模型方法能够很好的表征目标的运动模型却又不增加过多的计算量,因此相比单一运动模型能够更好的估计目标的运动。

Matlab图像处理图像景物动态跟踪

《图像处理技术》大作业1 作业题目 基于图像的动态景物的监测与跟踪 2 作业数据 (1)短视频背景相同,一个目标运动; (2)短视频(或5张图片),背景相同,多个目标运动; (3)验证数据自己提供(彩色、灰度图像不限); 3 作业完成目标 动态目标的定位与跟踪,并用方框提示并给出运动轨迹 能正确检测运动目标; 多个目标的识别率; 4 程序设计 1、界面设计:

2、“打开”按钮功能设计: 打开图片组的第一张图片并在左边显示: [name,path]=uigetfile('*.jpg;*.bmp;*.png;*.tif;*.gif','Open Image'); file=[path,name]; %读取第一张图片路径 axes(handles.image1); %选择在左窗口显示 x=imread(file); %读取第一张图片 handles.img=x; guidata(hObject,handles); imshow(x); %显示第一张图片 global F; %全局变量F F=name(1:end-5); %F为文件名编号前的字符 global N; %全局变量N N=7; %N为图片组中图片总数量 3、“播放”按钮功能设计: 读取图片组中所有的图片,并按一定间隔时间显示,形成动画效果: global F; global N; axes(handles.image1); %选择在左窗口显示 for i=1:N %循环读出图片,形成动画效果 f=int2str(i); I=strcat(F,f,'.jpg');%联接文件名 a=imread(I); %读取图片 imshow(a); %显示图片 axis off %关闭坐标轴 pause(0.8); %每显示一张图片暂停0.8秒 end 4、“目标追踪”按钮功能设计: 读取图片,将图片转成二值图像,利用两张二值图像的异或求得目标,在目标图像中求得目标的边框与质心,利用求得的边框画出目标的位置,利用存储的质心画出目标移动轨迹: global F; global N; x=handles.img; axes(handles.image2); %选择在右窗口显示 s=size(x); %获取图片大小 A=uint8(zeros(s(1),s(2),1,N)); s=size(A); %获取图片组数组的大小

相关文档
最新文档