485通讯的特性及有效抗干扰方式

485通讯的特性及有效抗干扰方式

485通讯的特性及有效抗干扰方式

1. RS-485 的电气特性:逻辑“1”以两线间的电压差为+(2—6)V 表示;逻辑“0”以两线间的电压差为-(2—6)V 表示。接口信号电平比RS-232-C 降低了,就不易损坏接口电路的芯片,且该电平与TTL 电平兼容,可方便与TTL 电路连接。

2. RS-485 接口是采用平衡驱动器和差分接收器的组合,抗共模干能力增强,即抗噪声干扰性好。

3. RS-485 接口的最大传输距离标准值为4000 英尺,实际上可达3000 米,另外RS-232-C 接口在总线上只允许连接1 个收发器,即单站能力。而RS-485 接口在总线上是允

许连接多达128 个收发器。即具有多站能力,这样用户可以利用单一的RS-485 接口方便地建立起设备网络。因RS-485 接口具有良好的抗噪声干扰性,长的传输距离和多站能力等上述优点就使其成为首选的串行接口。因为

RS485 接口组成的半双工网络,一般只需二根连线,所以RS485 接口均采用屏蔽双绞线传输。RS485 接口连接器采用DB-9 的9 芯插头座,与智能终端

RS485 接口采用DB-9(孔),与键盘连接的键盘接口RS485 采用DB-9(针)。

4. 采用RS485 接口时,传输电缆的长度如何考虑?在使用RS485 接口时,对于特定的传输线经,从发生器到负载其数据信号传输所允许的最大电缆长度是数据信号速率的函数,这个长度数据主要是受信号失真及噪

声等影响所限制。下图所示的最大电缆长度与信号速率的关系曲线是使用

24AWG 铜芯双绞电话电缆(线径为0。51mm),线间旁路电容为

52。5PF/M,终端负载电阻为100 欧时所得出。(曲线引自GB11014-89 附录A)。由图中可知,当数据信号速率降低到90Kbit/S 以下时,假定最大允许的信号损失为6dBV 时,则电缆长度被限制在1200M。实际上,图中的曲线是很保守的,在实用时是完全可以取得比它大的电缆长度。当使用不同线径的电

PLC系统信号的干扰及抗干扰措施

PLC系统信号的干扰及抗干扰措施 可编程控制器PLC具有编程简单、通用性好、功能强、易于扩展等优点。PLC控制系统的可靠性直接影响到企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。PLC中采用了高集成度的微电子器件,可靠性高,但由于使用时工业生产现场的工作环境恶劣,如大功率用电设备的起动或停止引起电网电压的波动形成低频干扰和电磁辐射等恶劣电磁环境,大大降低了PLC控制系统的可靠性。为了确保控制系统稳定工作,提高可靠性,必须对系统采取一定的抗干扰方法和措施。 1 影响PLC控制系统稳定的干扰类型 1.1 空间的辐射干扰 空间的辐射电磁场(EMI)主要由电力网络、电气设备、雷电、高频感应加热设备、大型整流设备等产生,通常称为辐射干扰,其分布极为复杂。其影响主要通过两条途径:一是对PLC 通讯网络的辐射,由通讯线路的感应引入干扰;二是直接对PLC内部的辐射,由电路感应产生干扰。若此时PLC置于其辐射场内,其信号、数据线和电源线即可充当天线接受辐射干扰。此种干扰与现场设备布置及设备所产生的电磁场的大小,特别是与频率有关。 1.2 传导干扰 (1)来自电源的干扰 在工业现场中,开关操作浪涌、大型电力设备的起停、交直流传动装置引起的谐波、电网短路暂态冲击等均能在电网中形成脉冲干扰。PLC的正常供电电源均由电网供电,因而会直接影响到PLC的正常工作。由于电网覆盖范围广,它将受到所有空间的电磁干扰而产生持续的高频谐波干扰。特别在断开电网中的感性负载时产生的瞬时电压峰值是额定值的几十倍,其脉冲功率足以损坏PLC半导体器件,并且含有大量的谐波可以通过半导体线路中的分布电容、绝缘电阻等侵入逻辑电路,引起误动作。 (2)来自信号传输线上的干扰 除了传输有效的信息外,PLC系统连接的各类信号传输线总会有外部干扰信号的侵入。此干扰主要有2种途径:①通过变送器供电电源或共用信号仪表的供电电源串人的电网干扰;②信号线上的外部感应干扰,其中静电放电、脉冲电场及切换电压为主要干扰来源。由信号线引入的干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。若系统隔离性能较差,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动作甚至死机。 1.3 地电位的分布干扰 PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。地电位的分布干扰主要是各个接地点的电位分布不均,不同接地点间存在地电位差,从而引起了地环路电流,该电流可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。由于PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。 1.4 PLC系统内部产生的干扰 产生这种干扰的主要原因是系统内部元器件及电路间的相互电磁辐射。如逻辑电路相互辐射及其对模拟电路的影响;模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。 2 提高抗干扰能力的硬件措施 硬件抗干扰技术是系统设计时应首选的措施,它能有效抑制干扰源,阻断干扰传输通道。 2.1 供电电源

485通信中干扰抑制方法

485通信中干扰抑制方法 RS-485匹配电阻 RS-485就是差分电平通信,在距离较长或速率较高时,线路存在回波干扰,此时要在通信线路首末两端并联120Ω匹配电阻。推荐在通信速率大于19、2Kbps或线路长度大于500米时,才考虑加接匹配电阻。 RS-485接地 RS-485通信双方的地电位差要求小于1V,所以建议将两边RS-485接口的信号地相连,注意信号地不要接大地。 还有,就就是采用隔离措施 变频器应用中的干扰抑制措施 在进线侧加装电抗器,可以抑制变频器产生的谐波对电网的干扰。 输出侧不能加吸收电容,因为会导致变频器过电流时延迟过电流保护动作,只能加电抗器,以改善功率因数。 避免变频器的动力线与信号线平行布线与集束布线,应分散布线。检测器的连接线、控制用信号线要使用双绞屏蔽线。变频器、电机的接地线应接到同一点上。在大量产生噪声的机器上装设浪涌抑制器,加数据线滤波器到信号线上。将检测器的连接线、控制用信号线的屏蔽层用电缆金属夹钳接地。 信号线与动力线使用屏蔽线并分别套入金属管后,效果更好。 容易受干扰的其它设备的信号线,应远离变频器与她的输入输出线。 如何解决中频炉的谐波干扰

中频炉在使用中产生大量的谐波,导致电网中的谐波污染非常严重。谐波使电能传输与利用的效率降低,使电气设备过热,产生振动与噪声,并使其绝缘老化,使用寿命降低,甚至发生故障或烧毁;谐波会引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容补偿设备等设备烧毁。谐波还会引起继电器保护与自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波会对通信设备与电子设备产生严重干扰,因而,改善中频炉电力品质成为应对的主要着力点。 滤除中频炉系统谐波的传统方法就是LC滤波器,LC滤波器就是传统的无源谐波抑制装置,由滤波电容器、电抗器与电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿的需要。这种滤波器出现最早,成本比较低,但同时存在一些较难克服的缺点,比如只能针对单次谐波,容易产生谐波共振,导致设备损毁,随着时间谐振点会漂移,导致谐波滤除效果越来越差。同时,这一方式无法应对瞬变、浪涌与高次谐波,存在节能的漏洞。 谐波抑制的另一个比较新的方法就是采用有源电力滤波器(Active Power Filter--APF)。它就是一种电力电子装置,其基本原理就是从补偿对象中检测出谐波电流,由补偿装置产生一个与该谐波电流大小相等而极性相反的补偿电流,从而使电网电流只含基波分量。这种滤波器能对频率与幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响,因而受到广泛的重视,并且已在日本等国获得广泛应用。但有源电力滤波器成本高昂,价格昂贵,投资回报期长,大多数企业难以承受。 MF-Saver吸收融合了LC技术与APF技术的优点,同时引入TOPSPARK G5的核心技术,扬长避短,创造性地解决了上述技术的不足,以独特的方式为中频炉环保节能提供了更有效的解决方案。

485信号抗干扰问题

485信号抗干扰问题 在各种现场中,485总线应用的非常的广泛,但是485总线比较容易出现故障,现在将485总线容易出现故障的情况并且可以排除这些故障的方法罗列如下: 1.由于485信号使用的是一对非平衡差分信号,意味485网络中的每一个设备都必须通过一个信号回路连接到地,以减少数据线上的噪音,所以数据线最好由双绞线组成,并且在外面加上屏蔽层作为地线,将485网络中485设备连接起来,并且在一个点可靠接地。 2.在工业现场当中,现场情况非常复杂,各个节点之间存在很高的共模电压,485接口使用的是差分传输方式,有抗共模干扰能力,但是当共模电压大于+12V或者小于-9V时,超过485接收器的极限接收电压。接收器就无法工作,甚至可能会烧毁芯片和一起设备。可以在485总线中使用485光隔离中继器,将485信号及电源完全隔离,从而消除共模电压的影响。 3.485总线随着传输距离的延长,会产生回波反射信号,如果485总线的传输距离如果超过100米,建议施工时在485通讯的开始端和结束端120欧姆的终端电阻。 4.485总线中485节点要尽量减少与主干之间的距离,一般建议485总线采用手牵手的总线拓扑结构。星型结构会产生反射信号,影响485通信质量。如果在施工过程中必须要求485节点离485总线主干的距离超过一定距离,使用485中继器可以作出一个485总线的分叉。如果施工过程中要求使用星型拓扑结构,可以使用485集线器可以解决这个问题。 5.影响485总线的负载能力的因素:通讯距离,线材的品质,波特率,转换器供电能力,485设备的防雷保护,485芯片的选择。如果485总线上的485设备比较多的话,建议使用带有电源的485转换器,无源型的485转换器由于时从串口窃电,供电能力不是很足,负载能力不够。选用好的线材,如有可能使用尽可能低的波特率,选择高负载能力的485芯片,都可以提高485总线的负载能力。485设备的防雷保护中的防雷管会吸收电压,导致485总线负载能力降低,去掉防雷保护可以提高485总线负载能力。如果在现场施工中,相关的因素不能改变,建议使用深圳市富永通科技有限公司的485中继器或者485集线器来提供485总线的负载能力。 提高RS-485总线可靠性的几种方法及常见故障处理 在MCU之间中长距离通信的诸多方案中,RS-485因硬件设计简单、控制方便、成本低廉等优点广泛应用于工厂自动化、工业控制、小区监控、水利自动报测等领域。但RS-485总线在抗干扰、自适应、通信效率等方面仍存在缺陷,一些细节的处理不当常会导致通信失败甚至系统瘫痪等故障,因此提高RS-485总线的运行可靠性至关重要。 一、RS-485接口电路的硬件设计 1、总线匹配 总线匹配有两种方法,一种是加匹配电阻,如图1a所示。位于总线两端的差分端口VA与VB之间应跨接120Ω匹配电阻,以减少由于不匹配而引起的反射、吸收噪声,有效地抑制了噪声干扰。但匹配电阻要消耗较大电流,不适用于功耗限制严格的系统。

485通信中干扰抑制方法

485通信中干扰抑制方法? RS-485匹配电阻 RS—485就是差分电平通信,在距离较长或速率较高时,线路存在回波干扰,此时要在通信线路首末两端并联120Ω匹配电阻.推荐在通信速率大于19、2Kbps或线路长度大于500米时,才考虑加接匹配电阻。? RS—485接地?RS—485通信双方得地电位差要求小于1V,所以建议将两边RS-485接口得信号地相连,注意信号地不要接大地。??还有,就就是采用隔离措施? 变频器应用中得干扰抑制措施 在进线侧加装电抗器,可以抑制变频器产生得谐波对电网得干扰。 输出侧不能加吸收电容,因为会导致变频器过电流时延迟过电流保护动作,只能加电抗器,以改善功率因数.?避免变频器得动力线与信号线平行布线与集束布线,应分散布线。检测器得连接线、控制用信号线要使用双绞屏蔽线。变频器、电机得接地线应接到同一点上。在大量产生噪声得机器上装设浪涌抑制器,加数据线滤波器到信号线上。将检测器得连接线、控制用信号线得屏蔽层用电缆金属夹钳接地.?信号线与动力线使用屏蔽线并分别套入金属管后,效果更好。 容易受干扰得其它设备得信号线,应远离变频器与她得输入输出线. 如何解决中频炉得谐波干扰 中频炉在使用中产生大量得谐波,导致电网中得谐波污染非常严重。谐波使电能传输与利用得效率降低,使电气设备过热,产生振动与噪声,并使其绝缘老化,使用寿命降低,甚至发生故障或烧毁;谐波会引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容补偿设备等设备烧毁。谐波还会引起继电器保护与自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波会对通信设备与电子设

备产生严重干扰,因而,改善中频炉电力品质成为应对得主要着力点.??滤除中频炉系统谐波得传统方法就是LC滤波器,LC滤波器就是传统得无源谐波抑制装置,由滤波电容器、电抗器与电阻器适当组合而成,与谐波源并联,除起滤波作用外,还兼顾无功补偿得需要。这种滤波器出现最早,成本比较低,但同时存在一些较难克服得缺点,比如只能针对单次谐波,容易产生谐波共振,导致设备损毁,随着时间谐振点会漂移,导致谐波滤除效果越来越差。同时,这一方式无法应对瞬变、浪涌与高次谐波,存在节能得漏洞。??谐波抑制得另一个比较新得方法就是采用有源电力滤波器(Active PowerFilter-—APF).它就是一种电力电子装置,其基本原理就是从补偿对象中检测出谐波电流,由补偿装置产生一个与该谐波电流大小相等而极性相反得补偿电流,从而使电网电流只含基波分量.这种滤波器能对频率与幅值都变化得谐波进行跟踪补偿,且补偿特性不受电网阻抗得影响,因而受到广泛得重视,并且已在日本等国获得广泛应用。但有源电力滤波器成本高昂,价格昂贵,投资回报期长,大多数企业难以承受。??MF-Saver吸收融合了LC技术与APF技术得优点,同时引入TOPSPARK G5得核心技术,扬长避短,创造性地解决了上述技术得不足,以独特得方式为中频炉环保节能提供了更有效得解决方案。?MF-Saver对谐波得抑制范围不仅包含低次谐波,还包含浪涌、瞬变及高次谐波,实现了全频域覆盖,消除了浪涌、瞬变及高次谐波对中频炉系统得危害与电量得浪费,结合LC技术与APF技术得合理成分,自适应调整内部器件参数,避免谐振点得漂移,大大提高了设备得稳定性与可靠性。同时成本也得到有效控制,以缩短用户得投资回报期.通过对中频炉全频域谐波得有效滤波,同时加强了设备得抗浪涌、瞬变侵害得能力,改善了电力品质,降低了设备损耗,节约了电能,最终实现环保节能得优异效果 PLC不能稳定工作什么原因 摘要:简要分析了PLC控制系统在实际应用中可能受到得干扰类型。从软、硬件等方面提出了针对性得抗干扰措施,并强调了其在工业控制领域应用时必须全面、系

抗干扰的方法

一、抗干扰方法: 为了使高频电路板的设计更合理,抗干扰性能更好,在进行PCB 设计时应从以下几个方面考虑: 1、合理选择层数:利用中间内层平面作为电源和地线层,可以起到屏蔽的作用,有效降低寄生电感、缩短信号线长度、降低信号间的交叉干扰,一般情况下,四层板比两层板的噪声低20dB。 2、走线方式:走线必须按照45°角拐弯,这样可以减小高频信号的发射和相互之间的耦合。 3、走线长度:走线长度越短越好,两根线并行距离越短越好。 4、过孔数量:过孔数量越少越好。 5、层间布线方向:层间布线方向应该取垂直方向,就是顶层为水平方向,底层为垂直方向,这样可以减小信号间的干扰。 6、敷铜:增加接地的敷铜可以减小信号间的干扰。 7、包地:对重要的信号线进行包地处理,可以显著提高该信号的抗干扰能力,当然还可以对干扰源进行包地处理,使其不能干扰其它信号。 8、信号线:信号走线不能环路,需要按照菊花链方式布线。 9、去耦电容:在集成电路的电源端跨接去耦电容。 10、高频扼流。数字地、模拟地等连接公共地线时要接高频扼流器件,一般是中心孔穿有导线的高频铁氧体磁珠。 二、包地法 抗干扰包地: 电路板设计中抗干扰的措施还可以采取包地的办法,即用接地的导线将某一网络包住,采用接地屏蔽的办法来抵抗外界干扰。 网络包地的使用步骤如下: 1.1、选择需要包地的网络或者导线。从主菜单中执行命令Edit/Select/Net (E+S+N),光标将变成十字形状,移动光标一要进行包 地的网络处单击,选中该网络。如果是组件没有定义网络,可以执行主菜单命令Select/Connected Copper 选中要包地的导 线。 1.2、放置包地导线。从主菜单中执行命令Tools/Outline Selected Objects(T+J)。系统自动对已经选中的网络或导线进行包地操 作。 1.3、对包地导线的删除。如果不再需要包地的导线,可以在主菜单中执行命令Edit/Select/Connected Copper 。此时光标将变成 十字形状,移动光标选中要删除的包地导线,按Delect键即可删除不需要的包地导线。

信号抗干扰解决办法

信号抗干扰解决办法 The Standardization Office was revised on the afternoon of December 13, 2020

解决现场的信号干扰问题 时间:2010-04-24 22:30来源:作者:点击: 17次 生产过程监视和控制中要用到多种自动化仪表、计算机及相应执行机构,过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,而且还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备、仪表间互扰成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备、仪表的“地”,也即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备、仪表中的信号有一个共同的参考点,也即共有一个“地”。进一步讲,所有设备、仪表的信号的参考点之间电位为“零”。但是在实际环境中,这一点几乎是不可及的,这里面除了各个设备、仪表“地”之间连线电阻产生的电压降之外,尚有各种设备、仪表在不同环境受到干扰不同,以及导线接点经受风吹雨淋,导致接点质量下降等诸多因素。致使各个“地”之间有差别。以示意图一为例. 图一 PLC与外接仪表示意图 图一中标明有两个现场设备仪表向PLC传送信号以及PLC向两台现场设备仪表发出信号。假定传送的均为0-10VDC信号。理想情况,PLC及两个现场设备“地”电位完全相等。传送过程中又没有干扰,这样从PLC输入来看,接收正确。但正如前所述,两个现场设备通常有“地”电位差,举例来讲,1#设备“地”与PLC“地”同电位,2#设备比它们的“地”电位高,这样1#设备给PLC的信号为0-10V,而2#设备给PLC的为误差就产生了,同时1#,2#设备的“地”线在PLC汇合联接。将电压施加在PLC地线条上,有可能损坏PLC局部“地”线,同时在显示错误数据,由此引起的问题在现场调试中屡有出现。例如某大型建材公司的生产线调试中,使用美国AB-PLC接国内某厂家手操器。AB-PLC的数据采集板有每八个通道,八个通道共用一个12位A/D,经过变换

RS485干扰的问题

RS485布线技术入门(转载) 版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明 https://www.360docs.net/doc/a117914452.html,/logs/4788380.html 1。485总线应采用什么样的通讯线? 必须采用国际上通行的屏蔽双绞线。推荐用的屏蔽双绞线的型号为RVSP2*0.5(二芯屏蔽双绞线,每芯由16股的0.2mm的导线组成)。采用屏蔽双绞线有助于减少和消除两根485通信线之间产生的分布电容以及来自于通讯线周围产生的共模干扰。 工程商大都习惯采用5类网线或超5类网线作为485通信线,这是错误的。这是因为: (1)普通网线没有屏蔽层,不能防止共模干扰。 (2)网线只有0.2mm平方,线径太细,会导致传输距离降低和可挂接的设备减少。 (3)网络线为单股的铜线,相比多芯线而言容易断裂。 2。为什么要接地? 485收发器在规定的共模电压-7V至+12V之间时,才能正常工作。如果超出此范围会影响通讯,严重的会损坏通讯接口。共模干扰会增大上述共模电压。消除共模干扰的有效手段之一是将485通讯线的屏蔽层用作地线,将机具、电脑等网络中的设备地连接在一起,并由一点可靠地接入大地。 3。485通信线应如何走线? 通信线尽量远离高压电线,不要与电源线并行,更不能捆扎在一起。 4。为什么485总线要采用手拉手结构,而不能采用星形结构? 星形结构会产生反射信号,从而影响到485通信。总线到每个终端设备的分支线长度应尽量短,一般不要超出5米。分支线如果没有接终端,会有反射信号,对通讯产生较强的干扰,应将其去掉。 5。485总线上设备到设备之间可以有接点吗? 在同一个网络系统中,使用同一种电缆,尽量减少线路中的接点。接点处确保焊接良好,包扎紧密,避免松动和氧化。保证一条单一的、连续的信号通道作为总线。

RS-485总线抗干扰的一些措施

RS-485总线抗干扰的一些措施 RS-485接口芯片能担当起一种电平转化的角色,把TTL信号、COMS信号等转化为能在485总线上传输的差分信号,把接收到的485差分信号转化为MCU能够识别的TTL或COMS电平,在工业控制、仪器、仪表、多媒体网络、机电一体化产品等诸多领域得到了广泛应用。但在RS485通信中,常常会存在通信距离不远、通信质量差等问题。为提高RS485的通信质量,除了采用终端匹配的总线型结构外,在系统设计中通常要考虑以下几个问题。 1.故障保护 根据RS-485的标准规定,接收器的接收灵敏度为±200mV,这意味着当接收端的差分电压大于等于+200mV时,接收器输出为高电平,小于等于-200mV时输出为低电平,介于±20 0mV之间时,接收器输出为不确定状态。在总线空闲(即传输线上所有节点都为接收状态)以及传输线开路或短路故障时,若不采取特殊措施,接收器可能输出高电平或者低电平。一旦某个节点的接收器产生低电平,就会使串行接收器(UART)找不到起始位,从而引起通信异常。 为解决该问题,很多RS485接口芯片引入了故障保护。例如,上海英联电子的UM3085/U M3088输入灵敏度为-50mV/-200mV,即差分接收器输入电压UA-B≥-50mV时,接收器输出逻辑高电平,如果UA-B≤-200mV,则输出逻辑低电平。当接收器输入端总线短路或总线上所有发送器被禁止时,接收器差分输入端为0V,从而确保总线空闲、短路时接收器输出高电平。 2.防雷电冲击 RS-485接口芯片在使用、焊接或设备的运输途中都有可能受到静电冲击而损坏。在传输线架设于户外的使用场合,接口芯片乃至整个系统还有可能遭受雷电袭击。选用抗静电或抗雷击的芯片可有效避免此类损失。UM3085/UM3088芯片内部集成了ESD保护电路,人体模型ESD保护和机器模型ESD保护分别达到15kV和2kV。此外,英联电子还有一套完善的ESD保护方案(图1),使系统能在更为苛刻的瞬态高压冲击环境中可靠运行。 图1:RS485芯片防雷和防浪涌电压设计。 点击下载清晰大图

信号抗干扰解决办法

解决现场的信号干扰问题 时间:2010-04-24 22:30来源:作者:点击: 17次 生产过程监视和控制中要用到多种自动化仪表、计算机及相应执行机构,过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,而且还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备、仪表间互扰成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备、仪表的“地”,也即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备、仪表中的信号有一个共同的参考点,也即共有一个“地”。进一步讲,所有设备、仪表的信号的参考点之间电位为“零”。但是在实际环境中,这一点几乎是不可及的,这里面除了各个设备、仪表“地”之间连线电阻产生的电压降之外,尚有各种设备、仪表在不同环境受到干扰不同,以及导线接点经受风吹雨淋,导致接点质量下降等诸多因素。致使各个“地”之间有差别。以示意图一为例.

图一PLC与外接仪表示意图 图一中标明有两个现场设备仪表向PLC传送信号以及PLC向两台现场设备仪表发出信号。假定传送的均为0-10VDC信号。理想情况,PLC及两个现场设备“地”电位完全相等。传送过程中又没有干扰,这样从PLC输入来看,接收正确。但正如前所述,两个现场设备通常有“地”电位差,举例来讲,1#设备“地”与PLC“地”同电位,2#设备比它们的“地”电位高0.1V,这样1#设备给PLC的信号为0-10V,而2#设备给PLC的为0.1V-10.1V,误差就产生了,同时1#,2#设备的“地”线在PLC汇合联接。将0.1V电压施加在PLC地线条上,有可能损坏PLC局部“地”线,同时在显示错误数据,由此引起的问题在现场调试中屡有出现。例如某大型建材公司的生产线调试中,使用美国AB-PLC接国内某厂家手操器。AB-PLC的数据采集板有每八个通道,八个通道共用一个12位A/D,经过变换后,由12个光耦实现与主机隔离。它的八个通道输入之间并没有隔离,致使八个通道输入信号每个单独接入采集板均正常,接入两个或多于两个外部信号时,显示数字乱跳,故障无法排除。又如航天某部门测试发动机各点温度,使用K型偶作为传感器,同上述相似,仅测试一点一切正常,但是向主机接入两点或两点以上温度时,显示的温度明显错误。这两种情况在接入隔离器后,均正常。隔离器之所以能起到这个作用,就是它具有使输入/输出在电气上完全隔离的特点。换句话讲,输入/输出之间没有共同“地”,外来信号不管是0-10V,或带着+10V干扰的10V-20V经隔离后均为0-10V,也即隔离后新建立的PLC“地”与外部设备、仪表“地”没关系。正是由于这个原因,也实现输入到PLC主机

监控摄像机抗干扰的办法

监控摄像机抗干扰的办法 监控系统中干扰图像信号的事情时有发生,当闭路电视监控系统( CCTV)在建筑工程中如果施工过程中未采取恰当的防范措施,各种干扰就会通过传输线缆进入闭路电视监控系统,造成视频图像质量下降、系统控制失灵、运行不稳定等现像。 干扰的来源及影响方式 闭路电视监控系统中传输信号的类型主要有两类:一类是模拟视频信号,传输路径由摄像机到矩阵,从矩阵再到显示器或录像机;一类是数字信号包括矩阵与摄像机之间的控制信息传输,矩阵中计算机部分的数字信号。一般设备成为干扰源的可能性很小,因此干扰主要通过信号传输路径进入系统。闭路电视监控系统的信号传输路径是,能通过视频电缆和传输控制信号的双绞线耦合进系统的干扰有:各种高频噪声比如大电感负载启停,接地电位不等引入的工频干扰,平衡传输线路失衡使抑噪能力下降将共频干扰转成了差模干扰,传输线上阻抗不匹配造成信号的反射使信号传输质量下降,静电放电沿传输线进入设备造成接口芯片损伤或损坏。具体表现如下: 由于阻抗不匹配造成的影响在视频图像上表现为重影。在信号传输线上会将在脉冲序列的前后沿形成震荡。震荡的存在使高低电平间的阈值差变小,当震荡的幅值再大或有其他干扰引入时就无法正确分辨出脉冲电平值,导致通信时间变长或通信中断。接地和屏蔽不好会导致传输线抑制外部电磁干扰能力的下降,体现在视频图像就是雪花噪点、网纹干扰以及横纹滚动等;在信号传输线上形成尖峰干扰,造成通信错误。平衡传输线路失衡也会在信号传输线上形成尖峰干扰。静电放电除了会造成设备损坏外,还会影响存储器内的数据,使设备出现些莫名其妙的错误。 抗干扰的方法 从干扰源的分析了解到并没有特别的干扰源,消除或者减少上述干扰的理论探讨也有许多,如何针对闭路电视监控工程解决干扰问题,很少有文献涉及,下面就闭路电视监控工种中常见的干扰及解决方法进行些探讨。 1 数字信号传输中的抗干扰措施 在弱电系统工程中数字信号的传输通常指长线传输,常见的方式有:通过调制、解调方法在电力线或视频线上传输数字信号;通过工业标准的通信网络进行传输,比如RS422、RS845、RS485;自行开发的自动式传输。三者相较,常见的还是RS422、RS485,因此重点讨论RS485数字通信抗干扰方法。 S485总线是采用差分平衡电气接口,具有较强的抗电磁干扰能力,但在实际工程RS485总线并未达到人们期望的效果。问题往往出现在以下几个方面:第一网络拓扑不合理,未按照总线型网络拓扑布线,成为事宜上的星型拓扑;传输线与接收和发送端设备连接不正确,削弱了平衡线的抗干扰能力;第三公用双绞线,未进一步采取抗干扰措施,比如采用屏蔽双绞线。虽然在造成干扰的方式上有所不同但在干扰的表现形式上只有两种:一种是反射增加了信号畸变程度;一种是外部的干扰由于平衡条件被破坏,共模干扰变成了串模信号进入传输线。 关于信号反射。根据电磁理论,减少长线上信号反射的唯一途径是阻抗匹配,若通信网络拓扑为总线型,阻抗匹配比较容易实现,但若是星型网络拓扑,根据工程经验则可按图1方式进行匹配,在发送端串上与传输线特征阻抗相同的电阻RO,在接收端按图所示进行连接,其中R1>R2,R=(R1* R2)/(R1+R2)=R0。在发送R0一般是驱动门输出内阻的5倍以上,可以得到较高的发送电平,接收的

变频器RS485通信中的干扰及其解决办法

变频器RS485通信中的干扰及其解决办法 在工业现场,许多用户都被以下问题困扰过:当PLC与变频器或变频器与变频器之间采用RS485方式进行通信时,经常容易产生通信中断、误码、死机甚至RS485接口被烧坏等故障,而且联网的变频器越多,这种现象越容易发生!由于变频器本身的特点决定了变频器会产生诸多干扰,对于RS485通信口而言,由于各个变频器和PLC使用不同的电源,或本身电路结构的不同使得各个RS485通信口的地电位相差很大,势必造成传送数据时信号失真较为严重,使得通信出错,当共模电压超过-7V或+12V时则会损坏RS485接口! 将每个RS485通信口进行隔离是解决问题的最好办法,即需在每台变频器和PLC的R S485通信口上加装RS485到RS485的隔离器,为了保证加装了隔离器后仍然使用原来的软件,隔离器必须是无延时的、波特率自动适应的数据完全透明传输装置。德阳四星电子的BH-485G隔离器正是为解决以上问题而研制的。 BH-485G隔离器是真正具有数据流向自动切换、数据完全透明传输、无延时的隔离器,波特率为0~250Kbps自适应,供电电源具有5VDC或24VDC两种方式任选(一般变频器上均有24VDC电源输出端子),而且BH-485G具有二对RS485接线端子,避免了会使波形畸变的总线分支问题,接线非常方便。 BH-485G外形为标准导轨安装,带有数据收发指示灯。 加装了BH-485G隔离器后的变频器和PLC组成的RS485通信网络如下图所示:

须将总线二端的BH-485G上的终端电阻设置开关K拨到“R”(接入120欧终端电阻),其它位置的开关拨到“OFF”(不接终端电阻)。 如通信距离超过2公里(9600bps时),可在总线中增加RS485中继器(型号:E48 5GA)或使用CAN-485G超远程隔离驱动器。 BH-485G的详细资料请看网站上的使用说明书。 以上方案已在工程中大量采用,实践证明十分稳定可靠,已解决了RS485通信中的干扰、死机和烧口问题。

信号抗干扰课程报告

《新一代无线通信关键技术》课程报告无线通信抗干扰技术及发展趋势

摘要 无线通信技术特别是个人移动通信蜂窝小区的快速发展,使用户摆脱有线终端的弊端,实现实际的个人移动性。而完善的抗干扰技术,是保证通信有序和畅通的先决条件。在当今日益恶劣的电磁环境中,无线通信时常面临各种干扰,因此对无线通信的抗干扰技术要进行深入的研究。在现代的无线通信系统中,由于所处的电磁环境相当复杂,这种干扰不仅有自然干扰,还有人为干扰。实际上信息化的发展,不仅要求点对点的通信系统具有抗干扰能力,更重要的是整个通信系统和网络要具有综合抗干扰的能力,衰落和干扰是制约无线通信系统性能的主要因素。为了能在任何复杂的电磁环境下完成信息传输,尤其是面对极端恶劣通信环境中微弱信号检测时,无线通信抗干扰技术研究和应用,以及抗干扰技术的综合优化具有重要的现实意义和工程价值,也已逐渐成为无线通信研究领域中的一个热点。 关键词:无线通信,抗干扰,综合抗干扰,研究进展

第一章引言 1.综合抗干扰通信的研究背景 近年来,无线通信技术发展迅猛,各种无线和移动通信设备被广泛应用在各个领域,如工业、医药、传媒、安全、网络、个人通信等,有效提高了信息传递的效率,促进了社会生产力的发展,丰富了人们的日常生活,成为了人类文明不可分割的一部分。 然而,随着无线通信应用范围不断拓展,一些极端通信条件下的无线通信应用已经融入在人们的日常生活中,如卫星导航、卫星通信和深空通信等。这些无线通信系统的发射功率受到限制,信号传播距离远,信道环境恶劣,接收端信号非常微弱,信噪比极低,容易受到自然和人为的干扰。 无线通信各种自然和人为性的干扰信号,包括机器噪声,码间干扰,单音干扰,宽窄带干扰,多址干扰,天线之间的干扰等。各种形式的干扰信号为通信系统带来了巨大的损害,因此为了使信息能安全可靠地传输,必须在无线通信手段中采用各种抗干扰技术。深入研究抗干扰信号处理技术,通信系统、网络级综合抗干扰的内涵、相关要素和体系结构,研究综合抗干扰的基本理论,开发通信系统和网络的综合抗干扰技术,优化通信系统和网络的抗干扰性能,是通信信号处理和研究中的要点和重点。随着抗干扰通信技术的进步和发展,特别是综合抗干扰通信技术的研究、发展与应用,一些迫切需要解决的问题出现在我们面前各种扩频的、非扩频的,时域的、频域的、功率域的抗干扰技术与措施由于它们的抗干扰机理不同,目前尚无统一的抗干扰理论进行定性和定量分析。 一般面对多系统共存通信对高频谱利用率的要求,多天线技术能够利用阵列增益,有效提高抑制信道干扰的能力,从而提高通信系统的数据传输率,增大了系统容量。而基于多天线技术的多入多出(Multiple Input Multiple Output,MIMO),利用编码技术,除阵列增益以外,还能获得分集增益和复用增益,进一步提高了系统的容量和抗干扰能力。为了更加有效地利用频谱资源,研究人员提出了正交频分复用(OFDM) 技术和基于OFDM 的多址接入技术OFDMA。应用中发现,OFDMA信号的缺点也明显,由于信号具有较高峰均比(PAPR)特性,为了保证发射机输出误差向量幅度(EVM)和杂散满足指标要求,需要发射机功放有较大的线性范围,从而导致发射机效率下降,不适宜在手持终端中使用。针对OFDMA的缺点,第三代移动通信长期演进(LTE)上行链路的多址接入方案选择了单载波频分复用(SC-FDMA)技术。与OFDMA技术相比,SC-FDMA有效降低了PAPR,发射机设计时可以选择较为廉价的功放,降低了设备的成本,同时延长了手持终端的可使用时间。 第二章无线通信抗干扰技术研究现状 1.无线传播环境 无线传播环境非常复杂:首先,无线信道对所有无线设备都是开放的,各种电子设备和无线通信系统共存于其中。其次,无线信号传播路径异常复杂,不仅有视距传播中的路径损耗,还会面临各种复杂的地理环境,如丘陵、山地或城市建筑群等。因此,无线信号到达接收端时,经过了信道畸变,并叠加了各种干扰。作为无线通信中的典型应用,卫星导航、卫星通信和深空通信是远距离。远距离通信过程中,无线信号经过路径损耗和多径衰落等影响,达到接收端时已经非常微弱。 伴随着个人移动通信服务的广泛应用,通用移动通信系统获得了迅猛发展。从20 世纪80 年代,“第一代”移动通信系统实现大规模商业应用,到LTE标准的制定,仅仅用了20多年的时间。如此短时间的更新换代,以及投资成本、用户群等因素,“第四代”将和“第三代”、“第二代”长期共存。为了各系统能够有效利用无线频谱资源,ITU-R为这些技术分配了相应的频段。但是,实际的多系统通信环境中,无线通信设备发射机输出信号存在带外

关于使用485的几点心得

485通信注意事项 1、为什么要采用屏蔽线 使用485通信时要求必须采用国际上通行的屏蔽双绞线。我们推荐用的屏蔽双绞线的型号为RVSP2*0.5(二芯屏蔽双绞线,每芯由16股的0.2mm的导线组成)。采用屏蔽双绞线有助于减少和消除两根485通信线之间产生的分布电容以及来自于通讯线周围产生的共模干扰。 工程商大都习惯采用5类网线或超5类网线作为485通信线,这是错误的。这是因为: (1)普通网线没有屏蔽层,不能防止共模干扰。 (2)网线只有0.2mm平方,线径太细,会导致传输距离降低和可挂接的设备减少。 (3)网络线为单股的铜线,相比多芯线而言容易断裂。 2、为什么要接地 485收发器在规定的共模电压-7V至+12V之间时,才能正常工作。如果超出此范围会影响通讯,严重的会损坏通讯接口。共模干扰会增大上述共模电压。消除共模干扰的有效手段之一是将485通讯线的屏蔽层用作地线,将机具、电脑等网络中的设备地连接在一起,并由一点可靠地接入大地。 3、485通信线应如何走线? 通信线尽量远离高压电线,不要与电源线并行,更不能捆扎在一起。 4、为什么485总线要采用手拉手结构,而不能采用星形结构? 星形结构会产生反射信号,从而影响到485通信。总线到每个终端设备的分支线长度应尽量短,一般不要超出5米。分支线如果没有接终端,会有反射信号,对通讯产生较强的干扰,应将其去掉。 5、485总线上设备到设备之间可以有接点吗? 在同一个网络系统中,使用同一种电缆,尽量减少线路中的接点。接点处确保焊接良好,包扎紧密,避免松动和氧化。保证一条单一的、连续的信号通道作为总线。 6、什么叫共模干扰和差模干扰?如何消除通讯线上的干扰? 485通信线由两根双绞的线组成,它是通过两根通信线之间的电压差的方式

RS_485总线抗干扰的研究

第20卷第3期湖 北 工 业 大 学 学 报2005年06月 V ol.20N o.3 Journal of H ubei U niversity of T echnology Jun.2005 [收稿日期]2005-03-05 [作者简介]张道德(1973-),男,湖北黄梅人,湖北工业大学讲师,华中科技大学博士研究生,研究方向:机电一体化,测 试技术,嵌入式系统应用. [文章编号]1003-4684(2005)0620137204 RS 2485总线抗干扰的研究 张道德,张 铮,杨光友 (湖北工业大学机械工程学院,湖北武汉430068) [摘 要]针对RS 2485网络常见的线路反射干扰、网络配置不合理、雷击及静电、共模干扰等故障因素,针对 干扰源研究了可行的解决干扰的方法,有效地提高了RS 2485网络的可靠性. [关键词]RS 2485;网络;抗干扰;可靠性[中图分类号]TP393.02 [文献标识码]:A RS 2485接口电路因硬件设计简单、控制方便、 成本低廉、通信速率高等优点广泛应用于工厂自动化、工业控制、小区监控、水情自动报测等领域.但RS 2485总线在抗干扰、自适应、通信效率等方面仍 存在缺陷,一些细节处理不当常会导致通信失败甚 至系统瘫痪等故障,因此提高RS 2485总线的运行可靠性至关重要.通常导致RS 2485网络系统故障的因素主要有:线路反射干扰、网络配置不合理、雷击及静电、共模干扰等,因此针对不同的故障原因需要研究不同的解决方法来提高RS 2485系统的可靠性. 1 线路反射波及总线匹配 1.1 线路反射波 电信号(电流、电压信号)在沿导线传输过程中, 由于导线的分布电感、电容及电阻存在,各节点的电信号并不能马上建立,而是有一定的滞后,离起点越远,电压波和电流波到达的时间越晚.电压波与电流波在传输过程中会产生一个与入射信号波方向相反的行波,通常称为反射波[1].这种信号反射的原理,与光从一种媒质进入另一种媒质要引起反射是相似的. 信号的多次反射大大延长了信号的传输时间.此外,反射波形的显著特征是出现台阶,降低电路的噪声容限.影响反射波干扰的因素主要有二:其一是传输线的阻抗,合理配置传输线的阻抗,可以抑制反 射波干扰或削弱反射次数;其二是信号频率,信号频 率越高,越容易产生反射波干扰.在信号频率确定的条件下,通常采用阻抗匹配法消除反射波干扰.1.2 总线匹配法 根据反射理论,当传输线的特性R p 与负电阻相等(匹配)时,将不发生反射.可通过图1所示电路测定传输线路的特性阻抗,通过调节可变电阻R ,当R =R p 时,A 门的输出波形畸变最好小,反射波几乎消失,这是的R p 可以认为是该传输线的特性阻抗.因此在电缆的末端跨接一个与电缆的特性阻抗R p 同样大小的终端电阻,使电缆的阻抗连续,可以有效消除反射波的干扰.这种方法也称为总线匹配 . 总线匹配有两种方法,一种是加匹配电阻,如图2(a )所示.位于总线两端的差分端口V A 与V B 之间 应跨接匹配电阻R p ,以减少由于不匹配而引起的反射、吸收噪声,有效地抑制了噪声干扰.通常双绞线特性阻抗大约在100Ω至130Ω之间[2],但匹配电阻要消耗较大电流,不适用于功耗限制严格的系统.另外一种比较省电的匹配方式是RC 匹配(图2(b )).利用一只电容C 隔断直流成分可以节省大部 分功率但匹配质量逊于阻抗匹配,需要在功耗和匹配质量间进行折衷.

西门子变频器对485通信的干扰

西门子变频器对485通信的干扰 终端电阻是为了消除在通信电缆中的信号反射。在通信过程中,有两种原因导致信号反射:阻抗不连续和阻抗不匹配。以下是找到的匹配电阻的问题: A: 我们公司的做法是:在485的任何一个节点上,对A上拉;对B下拉,具体接线就是:(+5V---R1---A---R2---B---R3---GND),其中R1:3.3K,R2:180欧姆,R3:3.3K,取消原来的120欧电阻,这样在总线空闲的时候就保证A比B高出大约200mV的电压,也就是说能保证总线上的数据状态在空闲的时候是稳定的1。这可是我们公司几年的现场经验得来的,效果很好,保证比原来那种方式好多了. B: 确有可取之处,但是请问:在485的任何一个节点上,对A上拉,对B下拉,如果节点多了485驱动能力恐怕支撑不了吧? C: 485通信总线上的匹配电阻究竟应该怎样配才能使通信总线稳定可靠呢?为什么我在总线的首尾各配120欧的电阻,总线仍然不稳定?究竟有那些因素干扰了它? D: 个人经验:485总线的匹配电阻与该总线上的设备有关。主要是总线上设备的输入阻抗和输出阻抗对485总线的特性阻抗影响比较大。所以在匹配485总线的终端电阻时最好使用一个可调电阻来不断的测试。或者使用设备测量出该485总线的特性阻抗,然后加以相应的电阻与之匹配。还有就是使用理论计算也可以计算出给485总线的相应的数据。 E: 485通信总线上的匹配电阻只在末端出现,如果设备较多(接近32个)可以不接匹配电阻;另外485通信总线虽然手册上说可以选用双绞线,但最好还是选用两芯屏蔽线且屏蔽网不得两端接地。我的经验就是这样,且从没发现有干扰! F: 我觉得485通讯总线的匹配电阻的选择,大家可以用这个简单的办法试一下:把一个电位器接在A—B 之间,然后用示波器测A——B之间的波形。什么时候波形最好,就把此时电位器接在A——B两端之间的两脚的电阻值量出来,然后用同样阻值的电阻代替电位器。 G: 总线不稳定不一定是硬件引起的,我建议查找一下,是否存在软件方面的BUG。

通信抗干扰

《通信抗干扰原理》直扩系统信号处理的仿真建模 时间:2014年12月2日 班级:14级战略预警国防生 姓名:杨文 指导教师:王芸

摘要:扩展频谱(Spread Spectrum,SS)通信技术是一种非常重要的抗干扰通信技术,目前已经被广泛运用在军事和民用通信系统中。扩展频谱一般简称为扩频和扩谱,扩谱是一种信号带宽大于传送信息带宽的传输方法。直接序列调制扩展频谱通信系统(direct sequence spread spectrum communication system, DS-SS),简称直接序列系统或直扩系统,是用待传输的信息信号与高速率的伪噪声(伪随机)码波形相乘后,去直接控制载波信号的某个参量,来扩展传输信号的带宽。而在接收端,用相同的扩频码序列进行解扩,把展宽的扩频信号还原成原始的信息。用于频谱扩展的伪随机序列称为扩频码序列。 本次实验通过MATLAB程序仿真来来研究直扩系统的输入输出信号波形。 设计指标:码率:10 信息码长度:100 载波频率:1000 采样点数:10 仿真的模块化构思图 直扩发射机原理框图

直扩接收机原理框图 总体实现依据 直接序列扩频系统是将基带信号d(t)与一个高速的伪码信号c(t)进行时域相乘,得到一个扩频码流,然后对此扩频码流进行载波调制后,送入信道。设基带信号的码元宽度为Td,伪码的码元宽度为Tc,伪码码元通常又称为切普(Chip),由于伪码的速率远远大于基带信号的速率,即Tc<

相关文档
最新文档