淀粉基可降解颗粒是塑料吗

淀粉基可降解颗粒是塑料吗
淀粉基可降解颗粒是塑料吗

有一种材料它利用化学反应对淀粉进行化学改性,减少淀粉的羟基、改变其原有的结构,从而改变淀粉相应的性能,把原淀粉变成热塑性淀粉,它就是淀粉基可降解颗粒。下面就让康多亨生物环保带您简单了解一下吧!

淀粉是地球上产量仅次于纤维素的天然高分子,它来源丰富、可再生、价格低廉,通过改性塑化可用于生产淀粉基塑料。淀粉基塑料作为生物基材料中的一个重要品类,已经成功实现产业化生产和应用。

淀粉基塑料是以淀粉为主要原材料,经过改性塑化后再与其它聚合物共混加工而成的一种塑料产品,属于生物塑料的一种。淀粉基生物塑料可分为生物基塑料和生物降解塑料两大类。

其通过对淀粉的特殊反应处理而制得的具有全生物降解功能的树脂,产品常呈浅白色或浅黄色,有淀粉香味,易被微生物分解,天然抗静电。着色性能好,可在普通片材机上挤出压片或直接加工成各类水杯、餐盒、水果包装盒、沙拉盘、托盘等制品。

更多关于淀粉基可降解颗粒的详情,推荐您选择康多亨。

安徽康多亨生物环保科技有限公司主要从事生物降解材料、全生物降解材料、生物降解颗粒、玉米淀粉、淀粉生物降解材料的研发与生产,是一家致力于新型绿色环保材料领域,集技术研发、规模化生产和市场营销为一体的专业化公司。

公司生产的生物降解材料、全生物降解材料、生物降解颗粒、淀粉生物降解材料,在土壤和自然环境下可按照设计要求完整、快速降解,无毒、无公害、无异味,降解后不会破坏土质结构,真正做到“源于自然,还于自然”,是塑料、纸制包装的较好替代品。

淀粉基生物降解塑料的应用研究进展

淀粉精细化学品 淀粉基生物降解塑料的应用研究进展 班级:2010级高分子材料与工程(2)班 姓名:郭艳艳 学号:P102014327 时间:2012-10-22 淀粉基生物降解塑料的应用研究进展 摘要:本文介绍了淀粉的结构和性能,淀粉基塑料的分类,阐述了其降解机理,重点综述了的生物降解材料的应用情况及研究进展概况,并在使用材料出现的问题的基础上提出淀粉基降解塑料的发展趋势。 关键词:淀粉基,降解塑料,生物降解 以淀粉为原料的塑料是具有广泛应用前景的生物可降解材料,它具有来源丰富,价格低廉,可重复再生,易生物降解以及阻氧性能好等优点, 因此用该材料加工的产品不仅是传统一次性塑料制品的极好替代品,同时也是二十一世纪的新型绿色包装材料,将引发包装行业的一次绿色革命。同时,淀粉基生物降解塑料可缓解普通塑料带来的“白色污染“问题,对于保护人类环境,促进人与自然的和谐统一,推动绿色“GDP”增长具有重要意义,符合国家可持续发展战略。 1 淀粉的结构及性能 淀粉分子式为(C6H10O5)n,结构式: 图1.1 天然淀粉是以内部有结晶结构的小颗粒状态存在的,其分子结构有直链和支链两种。对于不同的植物品种,其淀粉颗粒的形状,大小以及直链淀粉和支链淀粉含量的比例都各不同。淀粉颗粒的粒径大都在15~ 100μm。直链淀粉是由α-1,4葡萄糖苷键连接的线性葡聚糖聚合物,相对分子质量为(20~200)×104 ,而支链淀粉是由α-1,4 和α-1,6 糖苷键连接的具有分支结构的葡聚糖聚合物,相对分子质量为(100~400)×106。 天然淀粉分子间存在氢键,溶解性很差,亲水但并不易溶于水。加热时没有熔融过程,300℃以上分解。然而淀粉可以在一定条件下通过物理过程破坏氢键变成凝胶化淀粉或解体淀粉。这种状态的淀粉结晶结构被破坏,分子变得无序化。有两种途径可以使淀粉失去结晶性:一是使淀粉在含水>90%的条件下加热,至60-70℃时淀粉颗粒首先溶胀,而后达到90℃以上时淀粉颗粒消失而凝胶化。二是在水含量<28%的条件下将淀粉在密封状态下加热,塑炼挤出。这种淀粉和天然淀粉颗粒不同,加热可塑,称为热塑性淀粉,这种淀粉可制备淀粉塑料,同时实验研究表明,直链淀粉更适合制备塑料制品,且机械性能优良。 2 淀粉基塑料的分类 2.1 填充型淀粉基塑料 填充型淀粉塑料又称生物破坏性塑料,其制造工艺是在通用塑料中加入一定量的淀粉和其他少量添加剂,然后加工成型,此类产品淀粉含量都不是很高,淀粉含量不超过30%,这是因为淀粉和塑料树脂的极性相差较大,相互黏结性差,增加淀粉含量会造成拉伸强度和断裂伸

可降解塑料的研究利用现状

可降解塑料的研究利用现状 摘要:本文简介了白色污染的现状、危害及目前处理废旧塑料的方法,重点介绍了可降解塑料的研究现状,并分析了可降解塑料存在问题、发展方向及前景。关键词:可降解塑料白色污染现状前景 1.白色污染的现状、危害及目前处理废旧塑料的方法 塑料自问世以来,以其优异的性能和低廉的成本,在各个领域得到广泛的应用。随着经济的发展,人民生活水平的提高,塑料制品的需求量也日益增加,而塑料带来的“白色污染”也越来越严重。开发降解塑料是治理城乡废弃物对环境污染的一个重要途径。当前各国都急切需要降解塑料及分解材料,因此降解塑料及分解材料将成为一种最具有巨大市场潜力和生态效益的环保新型材料。 1.1“白色污染”的现状 塑料作为一种新型材料,以质轻、防水、耐用、生产技术成熟、成本低的优点,需求量呈逐年增长趋势。仅就中国而言,塑料产量从1975年的1.4万t 激增到2001年的1401万t,预计2005年将达到2500万t。随着塑料产量的不断增加,废弃塑料制品也同比例增多。近年来,在国民经济高速发展的同时,人们的生活方式也由“节俭型”向“消费型”转变,一次性塑料制品的使用量更是大幅增加,以杭州为例,600万人口每月仅一次性塑料包装袋的使用量就达800t。由于最初人们对废旧塑料引起的环境危害缺乏认识,将大量的废旧塑料制品随意抛弃,从而引发了严重的“白色污染”问题。 1.2“白色污染”的危害 1.2.1破坏臭氧层 在生产一次性发泡塑料餐具的过程中,所使用的发泡齐会严重破坏大气臭氧层。. 1.2.2破坏土壤结构 残留在土壤中的不可降解塑料制品会使土壤板结成块,阻碍农作物吸收营养和水分,导致农产品产量下降。 1.2.3危害人体健康

淀粉基可降解一次性餐具市场分析

玉米淀粉基降解制品项目可行性研究报告 1.玉米淀粉基降解餐具产品概述: 1.1诠释含义 玉米淀粉基降解环保餐具,是采用天然玉米淀粉及植物纤维为基料,辅之以生物聚酯、多元醇等物质加工而成,其淀粉含量最高可达80%,在土壤和自然环境下可以自然降解,对环境无污染、无破害。节约了石油等不可再生资源,是目前餐饮市场上普遍使用却饱受争议的“消毒餐具”的理想替代品。 1.2优点 1、可降解:在自然界(光和土壤)中具有可自然降解的特性。 2、强度好:可满足消费者使用需求。 3、不渗漏:密封性能好,不渗漏。 4、无异味:以玉米淀粉为原料,产品带有淡淡的爆米花清香。 5、耐温性:可耐高温150℃、低温-40℃,在微波炉和冰箱中亦可放心 使用。 6、抗油脂性:能够耐受食物中的大量油脂。 1.3优势(淀粉的、降解的、环保的、健康的、低碳的) 1、淀粉的——原料天然:以天然玉米淀粉为原料,可持续供应,使天然资源重复使用,循环不息。 2、降解的——安全可降解:原料为天然高分子化合物,能在自然环境下实现降解。 3、环保的——绿色环保:产品使用后在自然环境中能快速被微生物降解,成为植物养料,真正做到源于自然,还于自然,有效解决白色污染带来的环境破坏。 4、健康的——无毒害性:原料天然,生产过程无菌生产,消毒检验严格,产品降解后不会对土壤及空气产生毒害,无二次污染的危害。

5、低碳的——替代性强:可替代以石油为原料的塑料制品和以木材为原料的纸制品。 1.4玉米淀粉基降解制品工艺流程及生产资料 后见附件一、附件二、附件三 1.5建设项目的目的及意义 二十世纪初时,石油和化学工业的迅速发展,塑料以其良好的热性能和化学的稳定性,作为一类新型的材料,浩浩荡荡地进入了人类社会的生活中,给人类社会的工业生产和生活带来了许多方便,其使用价值也得到了广泛的认可,这是积极的方面,但也给人类社会带来了许多负面的影响,特别是人类生活中一次性使用塑料制品(如:农用地膜、餐盒、各种包装袋、饮料杯、防震材料等)。在完成其使用功能后即被丢弃,而其回收利用率很低,大量废弃塑料只能够采取焚烧、填埋、倾倒的简单方式进行处理,从而对自然环境和生态环境造成了严重的污染和破坏,是形成全球变暖,破坏生态的一大公害。国际上称这新的污染源为“白色污染”。 “白色污染”在生活环境中,多次水灾是由于塑料废弃物堵塞了涵洞造成严重的经济损失;废弃塑料通过焚烧之后释放出大量的二恶因及残留的氯化物、重金属离子等有害物质,台湾的大众称之为世纪毒气,严重地危害着人类和生物的生存和繁衍;通过填埋处理,塑料膜需百年后才能分解,隔断了土壤与植物毛细根系的相依相容性,不但阻断了植物根系对低水份、营养的吸收,同时使得植物的根系扎不下去,造成禾苗“吊死”现象。 基于上述多年以来给生态环境造成的危害,许多国家都纷纷把治理“白色污染”当作国策来抓:美国35个州、欧共体以及日本、韩国、新加坡等发达国家相继制定了法规;中国也于1996年4月1日正式颁布了具有划时代意义的《固体废弃物污染环境管理法》;中国七个部委联合发出《通告》,要求从2000年起至年底之前,彻底清除一次性发泡聚苯乙烯(EPS)餐具的生产、销售和使用,以降解塑料制品替代;台湾从2002年起实施禁用购物用塑料袋及塑料类免洗餐具,欧盟各国从2006年5月1日开始对含塑料类包装货物征收货物总值的7%环保税。 随着国际石油资源的日益紧缺,油价不断高涨,节约石油资源、保护能源是当今国际社会和各国政府的重点关注的热点也是摆在各国政府重要议程而本项目的主要原材料是玉米淀粉,是取之不尽的可循环资源,既节约石油资源,保护生态平衡又提高农副产品付加值增加农民的收入。 综上所述足以证明全世界各国各地区政府对日常生活中一次性塑料制品所造成的危害充分重视。纷纷列入政府的重要议事日程中,彻底清除的决心扰然可

淀粉基生物降解材料

海南大学 毕业论文(设计) 题目:淀粉基生物降解材料 学号:20110402310001 姓名:陈广平 年级:2011 学院:材料与化工学院 专业:高分子材料与工程(塑料)指导教师:赵富春 完成日期:2014 年11 月23 日

淀粉基生物降解材料 摘要 淀粉基生物降解材料是一类很重要的可降解高分子材料。随着08年政府大力发展可降解塑料政策的出台,淀粉基生物降解材料近几年得到了飞速的发展,各类研究成果层出不穷。淀粉与高分子材料复合方法,淀粉的改性方法也多种多样。本文着重介绍淀粉基生物降解材料的一些基本知识:淀粉基生物降解材料的结构与性质、生物降解的定义及原理、降解性能的影响因素、应用与发展…等。 关键词:淀粉生物降解降解性能应用与发展 合成高分子材料具有质轻、强度高、化学稳定性好以及价格低廉等优点,与钢铁、木材、水泥并列成为国民经济的四大支柱[1]。然而,在合成高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量废弃物也与日俱增,给人类赖以生存的环境造成了不可忽视的负面影响[2]。另外,生产合成高分子材料的原料一一石油也总有用尽的一天,因而,寻找新的环境友好型材料,发展非石油基聚合物迫在眉睫,而淀粉基可生物降解材料正是解决这两方面问题的有效途径。 1、淀粉的基本性质 淀粉以葡萄糖为结构单元,分子链呈顺式结构,一般分为直链淀粉和支链淀粉两种。直链淀粉是以ɑ一1, 4-糖苷键连接D一吡喃葡萄糖单元所形成的直链高分子化合物,而支链淀粉是在淀粉链上以ɑ一1, 6-糖苷键连接侧链结构的高分子化合物,分子量通常要比直链淀粉的大很多。通常玉米淀粉中直链淀粉占28%,分子量大约为(0.3×106-3×106),占72% 的支链淀粉分子量则可以达到数亿[3、4] 淀粉是一种多羟基化合物,每个葡萄糖单元上均含有三个羟基。分子链通过

淀粉基生物降解塑料的研究进展

_==J96 2005.v01.26.NO.5食品硪究与开发综述 淀粉基生物降解塑料的研究进展 何小维罗志刚 华南理工大学轻工与食品学院广州510640 摘要:我国淀粉资源丰富、价格低廉,淀粉作为可完全生物降解的天然高分子材料日益受到人们的重视。本文综述了当今淀粉基生物降解塑料的分类、研究方法、发展状况,以及当今淀粉基生物降解塑料发展中存在的一些问题和应用前景。 关键词:淀粉塑料生物降解 RESEARCHPROGRESSABOUTB10DEGRADABLEPLAS’11CSBASEDONS’lARCH HEXiaoweiLUOZhigang CollegeofLightIndustryandFoodScience,SouthChinaUniveIsityofTechnology,Guangzhou,510640Abstract:Starchisveryabundantandche印inourcountry.Asacompletelybiodegradablenatural macromoleculematerial,starchwas given muchattention.Theclassificationandthemethodsofstudy— ingandthedevelopmentofstaI℃hplasticsaresumm赫zedinthis paper.SomepI.oblemstobeconsid- eredarepmposed,theforegmundisalsoforecast.Keywords:starch;plastics;biodegradation 塑料与混凝土、钢铁、木材并称为四大工业材料。自1997年利奥?柏兰克制得第一个以合成材料树脂为基础的塑料——酚醛树脂以来,几十年间,塑料工业得到了飞速的发展。特别是20世纪50年代以来,以聚乙烯、聚丙烯、聚苯乙烯等为原料制成的塑料制品被大量使用,极大地促进了生产力的发展。 塑料制品因其具有重量轻、机械性能良好、耐水、耐化学腐蚀、外形美观、制造及安装方便以及价格低廉等特点,在很大程度上迅速代替了金属、木材、玻璃甚至纸制品,被广泛应用于国民经济各个部门。据统计,全世界每年的塑料产量近1亿t,在三大合成材料中约占其总产量的75%以上,与钢铁的体积产量之比已达到92%。美国自1974年以来,塑料行业一直发展很快,发展速度为其他工业的2倍。1979年美国的塑料产量首次超过了钢铁产量。塑料在美国四大材料中名列第二。我国于20世纪50年代末期开始发展塑料加工工作,当时着重发展日用塑料制品(如塑料鞋、日用塑料薄膜制品),后开始努力发展农用塑料制品,满足水稻育秧和大棚用膜需要,以提高水稻及蔬菜的产量并延长蔬菜供应时间。目前我国农地膜和应用耕地面积已为世界之最。据1996年不完全统计,我国塑料制品总产量已达800万t[1]o 塑料的诞生确实给人们的日常生活带过来很广东省自然科学基金(970468)多方便。然而,随着塑料工业发展到一定的程度,其本身存在的一些隐患也逐渐暴露出来。塑料的化学稳定性使得塑料在自然界中几乎不被降解,塑料垃圾越来越多,弃于环境中的塑料废弃物、残膜急剧增加,几乎到了随处可见、无处不有的程度。以我国的塑料包装为例,其中一次性包装材料如以1/3计,每年就有70多万t的塑料废弃物作为垃圾抛弃[2]。 塑料垃圾不仅影响环境美观,而且污染了水源和土壤,危及禽畜及野生动物,给地球生态环境带来了沉重负担。由于现行塑料主要是以石油基聚合物为基础的,其污染又具有污染范围广、污染物量增长快、处理难、回收利用难、对生态环境危害大等特点。而且,由于其质量轻,总体积十分惊人。有资料表明,在日本海域的漂浮物中,有60%是废弃的发泡聚苯乙烯和乙烯基塑料[3|。以重量计,塑料垃圾的重量也占全球垃圾总量的8%,且在继续增加。 目前对塑料废弃物的处理,主要采用回收、焚烧、掩埋等方法,但效果均不理想。如做填埋处理,不但占用土地,而且由于一般塑料要经200~400年才会降解因而对土壤造成长期危害;做焚烧处理,会产生有害气体,形成对环境的二次污染;做回收处理,则仅可处理25%的塑料垃圾,且因为回收技术跟不上,使得处理费用过高,并且回收产品的性能和使用价值会大大降低[4]。因而,越来越多的人提倡开发和应用降解塑料。

高分子材料基础论文-淀粉基可降解材料

淀粉基可降解材料的研究、应用现状及发展趋势 摘要:本文介绍了淀粉直接填充型塑料、淀粉/合成高分子共混型塑料和全淀粉型塑料的研究现状、降解性能、应用现状。分析了淀粉基可降解塑料的发展前景和现今存在的问题。关键词:淀粉;可降解;填充型;改性 塑料因具有密度小、强度高和化学稳定性好,以及价格低廉等优点,不仅在我们日常生活中被普遍使用,而且已成为材料领域的四大支柱之一[1]。然而塑料的大量使用,产生了许多无法回收的一次性塑料废弃品,造成了日益严重的“白色污染”,如地下水体污染和土壤污染,动植物资源被破坏,严重危害着人类的生存与健康。 淀粉有着再生、廉价、易保存和便于运输的特点,在一定条件下可进行各种反应,派生出众多衍生物。而淀粉良好的可再生利用性和生物降解性使其成为生物降解材料的极好原料。目前淀粉塑料制品成本虽然比一般塑料高10%~30%,但随着生产规模的扩大及其技术进步,用淀粉作为原料来生产生物降解制品以替代部分塑料制品有着很大的发展潜力。 1 淀粉的结构和性能[2] 淀粉是来源丰富、价格便宜的天然高分子物质。它具有强极性的结晶性质,是由葡萄糖单元组成的多糖类碳水化合物,化学结构式为(C6H10O5)n,n为800-3000。淀粉分子在结构上可分为直链淀粉(amylose)和支链淀(amylopectin)两类。直链淀粉通常以单螺旋结构存在,庞大的支链淀粉分子成束状结构,见Fig.1-1及Fig.1-2。 Fig.1-1 直链淀粉

Fig.1-2 支链淀粉 天然淀粉通常大多天然淀粉都是这两种淀粉的混合物,两者的比例因植物的品种和产地而不同。直链淀粉是葡萄糖以α-1,4-糖苷键结合的链状结构,分子量为20-200万左右;支链淀粉中各葡萄糖单元除α-1,4-糖苷键连接外,还存在α-1,6-糖苷键结构,所以带有分支,约20个葡萄糖单位就有一个分支。分子量在107-109左右。以15-100μm的颗粒存在,玉米淀粉颗粒大小中等,直径为5-26μm,形状为圆形和多角形。直链淀粉含量相对较高,达28%,淀粉糊不透明,具有较好的抗剪切能力。玉米淀粉占全部商品淀粉的80%,价格最为低廉。马铃薯淀粉颗粒属于单粒,为椭圆形,平均粒径50微米,是所有商品淀粉中颗粒最大的。它含21%的直链淀粉,其余为支链结构,支链上有5-6个葡萄糖单元,支链之间平行排列并由于氢键形成具有一定强度的散射状结晶“束”,束间分子杂乱无定型。马铃薯淀粉糊高度透明,但抗剪切能力较差。马铃薯淀粉产量占所有淀粉的8-10%,居第二位。 天然淀粉的高分子链间由于存在氢键,分子间作用力较强,因此天然淀粉的溶解性差,不易溶于水,并且加热不熔融,在加热到300℃以后分解,成型性能较差。为改善其加工工艺性能,一般是通过打开淀粉链间的氢键,使淀粉失去结晶性的方法来实现。其操作方法有两种,一种是加热含水量大于90%的淀粉水溶液,淀粉颗粒在60-70℃间开始溶胀,在温度达到90℃以后淀粉颗粒开始崩裂,高分子链间氢键被打开,产生凝胶化;另一种是在密封状态下加热,塑炼挤出含水量小于28%的淀粉。这种过程中淀粉加热后可以塑化,故称之为热塑性淀粉[3]。 2 淀粉基可降解材料的研究现状 淀粉与其它生物降解聚合物相比,具有来源广泛、价格低廉、易生物降解的优点,因而在生物降解材料领域中具有重要的地位。淀粉塑料也称淀粉基塑料(Starch-based Plastics),

淀粉塑料研究进展

得分:_______ 南京林业大学 研究生课程论文2013 ~2014 学年第二学期 课程号:73414 课程名称:生态环境科学 论文题目:热塑性淀粉材料的研究进展与应用 学科专业:材料学 学号:3130161 姓名:王礼建 任课教师:雷文 二○一四年五月

热塑性淀粉材料的研究进展与应用 王礼建 (南京林业大学理学院,江苏南京210037) 摘要:淀粉与其他生物降解聚合物相比,具有来源广泛,价格低廉,易生物降解的优点因而在生物降解塑料领域中具有重要的地位。本文介绍了淀粉的基本性质、塑化和塑化机理,以及增强体在热塑性淀粉中的应用现状和进展,并对市场应用现状和目前淀粉塑料存在的不足等方面进行了相关的分析。 关键字:淀粉塑料;塑化;增强;市场应用 Research progress and application of thermoplastic starch materials WANG Li-jian (College of Science, Nanjing Forestry University, Nanjing 210037, China) Abstract: Starch has an important status in the biodegradable plastics’ area compared with other biodegradable polymer, because it has a lot of advantages such as a wide range of sources, low cost and easy to be broken down. In this thesis, introduces the basic properties of starch, plastic and plasticizing mechanism, as well as reinforcement application status and progress of the thermoplastic starch, and reinforcement application status and progress of the thermoplastic starch. Aspects of the application and the current status of the market and the presence of starch plastics were insufficient correlation analysis. Key words: Starch plastics; plasticizers; enhanced; market applications 1 淀粉的基本性质 淀粉以葡萄糖为结构单元,分子链呈顺式结构,一般分为直链淀粉和支链淀粉两种。直链淀粉是以α-1,4-糖苷键连接D-吡喃葡萄糖单元所形成的直链高分子化合物,而支链淀粉是在淀粉链上以α-1,6-糖苷键连接侧链结构的高分子化合物,分子量通常要比直链淀粉的大很多。通常玉米淀粉中直链淀粉占28%,分子量大约为(0.3~3×106),占72%的支链淀粉分子量则可以达到数亿[1-2]。 淀粉是一种多羟基化合物,每个葡萄糖单元上均含有三个羟基。分子链通过羟基相互作用形成分子间和分子内氢键,因此淀粉具有很强的吸水性。淀粉与水

生物可降解塑料塑料的最新研究现状

生物可降解塑料的研究现状 摘要:生物可降解材料因其具有可降解的特性越来越受到人们的关注。本文主要介绍生物可降解塑料的应用背景,塑料的最新研究及其成果。其中可降解塑料包括淀粉基高分子材料、聚乳酸和PHB。 关键词:生物可降解塑料白色污染淀粉基材料聚乳酸PHB 现代材料包括金属材料、无机非金属材料和高分子材料作为现代文明三大支柱(能然、材料、信息)之一在人类的生产活动中起着越来越重要的作用。[1]传统的高分子塑料在给国民经济带来快速发展,人民生活带来巨大改变的同时也给人类的生存环境带来了巨大的破坏。当今社会“白色污染”的问题变得越来越受关注。这类塑料由于在自然环境下难以降解处理,以致造成了城市环境的视觉污染,同时由于它们不能像草木一样被生物降解,还常常引起动物误食,并造成土壤环境恶化。塑料制品在食品行业中广泛使用,高温下塑料中的增塑剂、稳定剂、抗氧化剂等助剂将渗入到食物中,会对人的肝脏、肾脏及中枢神经系统造成损害。塑料的大量使用必然会带来如何处理废弃塑料的难题。传统的塑料处理方法主要包括直接填埋、焚烧、高温炼油等方法。这些处理方法不仅对环境造成破坏,同时也对人类健康构成巨大威胁。石油、天然气等能然已面临危机,以石油为原料的塑料生产将受到很大的阻力。为了减少废弃塑料对环境的污染和缓解能然危机,多年来人们努力开发生物可降解材料,用以替代普通塑料。生物可降解塑料是指一类由自然界存在的微生物如细菌、霉菌(真菌)和藻类的作用而引起降解的塑料。理想的生物降解塑料是一种具有优良的使用性能、废弃后可被环境微生物完全分解、最终被无机化而成为自然界中碳素循环的一个组成部分的高分子材料。生物降解过程主要分为三个阶段:(1)高分子材料表面被微生物粘附;(2)微生物在高分子表面分泌的酶作用下,通过水解和氧化等反应将高分子断裂成相对分子量较低的小分子化合物;(3)微生物吸收或消化小分子化合物,经过代谢最终形成二氧化碳和水。 一、生物可降解材料的种类 按照原料组成和制造工艺不同可分为以下三种:天然高分子及其改性材料、微生物合成高分子材料和化学合成高分子材料。天然高分子中含量最丰富的资源包括纤维素、甲壳素、木质素、淀粉、各种动植物蛋白质以及多糖类等,他们具有多种官能团,可通过物理或化学的方法改性成为新材料,也可通过物理、化学及生物技术降解成单体或低聚物用作能源及化工原料。微生物合成高分子降解塑料是由生物发酵方法制的一类材料。 二、最新研究成果及其应用 2.1天然高分子及其改性材料 天然合成高分子降解塑料天然高分子大多数可以生物降解,但热学、力学性能差,不能满足工程材料的性能要求。通过对天然高分子改性可以得到能有实用价值的天然高分子降解塑料。其中天然高分子聚合物降解塑料包括淀粉、纤维素、木质素、多糖以及蛋白质等为基材的复合材料。淀粉是植物经光合作用而形成的碳水化合物,由于其来源广泛、价格低廉、降解后仍以二氧化碳和水的形式回归到自然,被认为是完全没有污染的可再生能源,以淀粉基高分子材料的塑料制品已在非食用领域得到了广泛的开发和研究。 淀粉基高分子材料包括淀粉填充塑料和完全淀粉基塑料。其中,淀粉基填充塑料主要是指以淀粉作为填充剂,与PE、PP等通用塑料共混。[2]传统的淀粉填

淀粉基可降解塑料

淀粉基可降解塑料 摘要:介绍了淀粉的结构,性能,降解塑料的概念、特点,以及淀粉基可降解塑料的分类,分析了淀粉基可降解塑料的优势和存在的问题,并对其作了展望。 关键词:淀粉、可降解塑料、研究现状 背景 目前,世界各国竞相开发和应用降解塑料,如美国、日本、德国等都先后制定了限用或禁用非降解塑料的法规,不少国家还制定了降解塑料的研究开发计划和措施,投入了大量的人力和物力,研制各种真正能完全降解的塑料,因而使降解塑料的研制在这些地区得到迅速发展,北美及欧洲每年的增长速度分别为:17%、 59%【1】。完全降解塑料的使用,无疑促进了环境的良性循环。 1白色污染源 随着塑料工业的快速发展,塑料制品被一次性广泛应用,结果给环境带来了严重的污染,即塑料不易分解也不易回收,塑料废弃物成为污染环境的有害垃圾,对土壤、海洋以及空气的污染巨大,导致了破坏生态平衡的后果。 尤其是曾经风靡全球的小小塑料袋,尽管它不是时尚之物,但由于它方便易用,价格低廉,因而几乎无处不在,成了全球最大的白色污染源。 2塑料工业的原材料来源 塑料工业以石油资源为基础,而到二十一世纪上半期,石油和天然气将面临可能枯竭的窘境,有可能塑料工业也面临着原材料短缺的局面。因而,越来越多学者提倡开发和应用完全降解塑料。因为完全降解塑料具有完全降解能力,降解后不会带来有危害的产物,不会对生态环境造成污染,而且完全降解塑料中还包括一种天然高分子降解塑料,这种塑料材料以农副产品为原料来源,而农副产品资源是来源丰富且取之不尽的再生资源。原料主要是由玉米、大豆、土豆、木薯、桔梗制成的淀粉,以及适量的聚乙烯醇、甘油、核心助剂等,生产出“完全生物降解塑料”的粒料,再以粒料直接生产出各种塑料制品,生产过程基本按照塑料企业原来的加工设备生产,不会对原有生产构架形成冲击【2】。 现状 目前主要有3类生物降解技术:(1)可生物降解的合成高分子材料,如聚乳酸(PLA)和聚乙烯醇(PVA)等;(2)可生物降解聚酯塑料,如,聚羟基丁酸酯(PHB和

淀粉塑料研究现状

毕业设计(论文) 淀粉塑料研究现状 Starch plastics Research 班级高聚物111 学生姓名杨振学号 1132403127 指导教师杨昭职称讲师 导师单位材料工程系 论文提交日期 2013年1月7日

淀粉塑料研究现状 杨振 徐工院高聚物111 徐州221400 摘要: 发展淀粉降解塑料有利于节省石油资源、保护环境。国内外这方面的研究较多, 并且在技术的实用性方面也取得了较大进展。目前研究热点集中在3 个方向: 淀粉与其它可生物降解高分子的直接填充; 对淀粉表面修饰使其能与合成高分 子相容; 在淀粉与合成高分子体系中加入增塑剂。虽然淀粉基可生物降解塑料在综合性能上还不能与合成高分子相比, 但由于淀粉的综合优势, 淀粉基可生物 降解塑料的研究和发展极具潜力。 关键词:淀粉降解塑料环境污染淀粉塑料 Starch plastics Research Yang Chen The Xugong Institute polymer 111 Xuzhou 221400 Abstract: Development of starch biodegradable plastic in favor of saving oil resources and protect the environment. More research in this area at home and abroad, and has made great progress in the practical aspects of the technology. Current research focus is concentrated in three directions: starch with other biodegradable polymer directly filled; modified starch surface so that it can be compatible with the synthetic polymer; adding plasticizers in starch and synthetic polymer systems. The starch-based biodegradable plastics in the overall performance can not be compared with the synthetic polymer, but great potential due to the comprehensive advantages of starch, starch based biodegradable plastics research and development. Key Words:Starch Degradable plastics Environmental pollution Starch plastics

可降解淀粉塑料的现状

1引言 日常生活中的塑料是以石油为基本原料,应用化学合成的方法生产出来的。在20世纪,全球深受大量的废旧包装用塑料膜、塑料袋、一次性塑料餐具及农作物使用后污染所苦,称之为“白色污染”,各国为解决“白色污染”所造成的问题,积极寻找新型环保绿色材料,而可生物降解的塑料产品就成了市场需求日增的创新产品之一。 众所皆知,以石化原料为基础的传统塑料,不论在生产过程或高温焚化过程都会释放出大量的二氧化碳,这些经由焚化产生的二氧化碳将逐渐导致全球气候异常与环境暖化。生物可降解生态塑料是以淀粉、木质素或纤维素等可再生资源为原料,透过特殊生物改性技术转化为聚合物的高科技材料,这些生态塑料所使用的原料均是靠吸收二氧化碳而成长的植物,因此即使经过高温燃烧焚化之后,亦不会影响大气中二氧化碳的总量。此外,生态塑料使用完毕后能在自然界中被微生物降解,因此不会对环境造成污染。 近年来为了有效解决“白色污染”的问题,各类相关研究与应用均着重于生物可降解塑料开发,其中又以淀粉基生物可降解塑料的种类和数量最多。使用淀粉开发生物可降解塑料的主要优点在于:(1)优异的生物可分解能力;(2)绿色、环保、无毒害的降解过程;(3)改性热塑淀粉,其机械性能可达到一般泛用塑料制规格;(4)取之自然、用之自然,是自然界的可再生资源。 2常见淀粉改性技术 淀粉结构化学特性上为亲水性天然高分子,其分子结构上的具有大量羟基(-OH基)可与水分子以氢键的方式结合(图1),吸湿性佳,故使用纯淀粉制成的生态塑料并不适合使用于含水或湿度较高的环境。为有效克服淀粉本身具有高亲水性的问题,传统技术主要利用疏水性高分子与淀粉混练,以提高复合材料的耐水性,如疏水性树脂,其由双螺杆押出制备,分别与一般玉米淀粉与高支链玉米淀粉混练而得疏松产品,其结果显示,发泡塑料的水溶性随疏水性树脂添加量增加而降低,可大幅改善其耐水性。然而上述复合材料可能存在淀粉与高分子间界面表面能差异过大或熔融加工黏度不一,而产生相分离、混合不均、物性下降等问题,使淀粉比例也随之下降。因此,近来年专家学者致力于藉由化学性键结来增进淀粉耐水性的方法主要分为交联反应、接枝反应与疏水性官能基接枝取代反应三大类。 图1淀粉与水键结合示意图 (1)交联反应 由淀粉的结构式可发现每一个淀粉单体都有两个以上的官能基可参与交联反应,当这些淀粉上的羟基官能基连结在一起后,可减少淀粉上羟基官能基与水分子以氢键连结的机会,并提升淀粉的耐水特性。与淀粉之交联反应多以醛类交联剂进行改性,反应如图2所示,在酸性环境下,淀粉羟基提供电子对与质子化醛类结合并移去质子,产生半缩醛。淀粉羟基再提供电子对与质子化半缩醛结合并移去质子,产生淀粉与醛类之交联产物。每一双醛分子最多可与四个淀粉羟基产生交联反应。 图2醛类交联剂反应机制 【作者简介】代丽(1979-),女,四川渠县人,助教。轻工科技 LIGHT INDUSTRY SCIENCE AND TECHNOLOGY 化工与材料 2012年9月 第9期(总第166期) 可降解淀粉塑料的研究现状 代丽 (西南科技大学材料科学与工程学院,四川绵阳621010) 【摘要】塑料造成的环境污染是困扰着全世界的难题,而生物可降解塑料是解决此问题的有效途径。主要阐述淀粉基生物可降解塑料的研究现况及应用发展趋势,并依照淀粉的化学特性介绍几种常见于淀粉的改性方法。从淀粉塑料的发展、降解机理、分类等方面阐述其发展趋势与应用前景,并提出未来可降解淀粉塑料的改进及研究方向。 【关键词】淀粉;可降解;淀粉改性;淀粉塑料 【中图分类号】TQ324【文献标识码】A【文章编号】2095-3518(2012)09-41- 03

淀粉基塑料

淀粉是一种天然高分子聚合物,其分子中含有大量羟基(分子结构为Ⅱ和Ⅲ),因此淀粉大分子间相互作用力很强,导致原淀粉难以熔融加工,而且在和其他聚合物共混加工中和其他聚合物的相容性也差。但这些羟基能够发生酯化、醚化、接枝、交联等化学反应。利用这些化学反应对淀粉进行化学改性,减少淀粉的羟基、改变其原有的结构,从而改变淀粉相应的性能,把原淀粉变成热塑淀粉。 1、酯化、酯交换或醚化反应 为了将淀粉的亲水性改为疏水性,使淀粉分子上的羟基与脂肪酸、脂肪酸酯等发生酯化、酯交换反应,生成淀粉酯。其反应式为: 2、交联反应 为了提高淀粉材料的强度和耐热性,将淀粉与具有两个或两个以上官能团的化合物(如多元酸等)进行交联反应,使淀粉发生适度交联。其反应式为: 3、共混改共聚自主创新

目前多数淀粉塑料的制备技术都是将淀粉与其它高分子材料填充共混,这样得到的产品由于相容性差强度不高,使用范围受限。PSM 材料在淀粉改性过程中还将淀粉进行共聚反应,得到淀粉与其它高分子的接枝共聚物,从而改善了淀粉与其他高分子材料的相容性。例如发生如下反应: 通过化学改性,实现了淀粉三改性:亲水性改为疏水性;热敏性改为耐温性;硬脆性改为可塑性。这样改性解决了淀粉改性这一世界性难题,为后续加工奠定了良好的基础。 经过近十年的发展,武汉华丽环保公司已形成年产4万吨生物降解材料规模,拥有国内最先进的全自动化生产线与实验设备,生产多系列、多牌号、多用途的PSM低碳材料,可替代普通石化塑料广泛用于工业、医药、食品、电器等产品的包装和餐饮具、厨具、玩具以及花卉种植等领域。低碳材料行业在不久的将来一定会发展成为包装材料的主导产业甚至是支柱产业.

淀粉基塑料开发与研究进展

淀粉基塑料开发与研究进展 周晓谦1,殷伯良2 1辽宁工程技术大学材料系,(阜新123000) 2辽宁阜新海州露天矿 (阜新123002) E-mail:zxq6558960@https://www.360docs.net/doc/a118366703.html, 摘 要:简单介绍了淀粉基塑料在塑料行业的地位和降解机理,综述了淀粉基塑料的分类及研制开发现状,针对不同类型的淀粉基降解塑料存在的问题提出自己的建议,对于淀粉基塑料的发展进行了展望 关键词: 淀粉,改性,降解塑料,生物降解 1 引言 随着人们环境保护意识的不断提高,对于采用无毒无害的原料进行无害化材料生产、在制品成型和使用中没有环境污染、废弃后易回收和再生利用、对生态环境不会产生负面深远影响的绿色生态塑料的研究方兴未艾。淀粉基塑料作为绿色生态塑料中的一个代表,它的研究取得了较大的发展,目前部分产品已经进入产业化阶段,如美国的Novon International 公司的热塑性淀粉的生产能力已经达到年产5万吨、意大利Novonmont公司的淀粉/PVA、淀粉/PCL的产量达到3万吨等等。 淀粉基塑料是降解塑料中的一种重要类型,它泛指其组成中含有淀粉或其衍生物的塑料,它是当前国际上研制开发最为热门的降解塑料之一[1]。淀粉基塑料主要是在微生物的作用下由高聚物分解为低聚物,低聚物继续分解为各种有机中间体,最后分解为二氧化碳、水和其它低分子化合物,达到减少环境污染的目的,属于生物降解塑料范畴。生物降解塑料在环境中被微生物降解时首先进行生物物理作用,即微生物侵蚀降解塑料中易被降解的成分后,其自身的繁殖增长导致聚合物发生机械性破坏;之后发生生物化学作用,即聚合物在微生物的作用下转化为对环境无害的新物质;最后在酶的催化作用,微生物侵蚀速度加快,聚合物在较短时间内分裂或氧化崩裂。 研究淀粉基塑料的重大意义不仅可以解决白色污染问题,而且由于淀粉的廉价易得,可以为塑料工业开辟出取之不尽的原料资源,因为目前塑料主要是以日趋枯竭的石油资源为基础的,所以淀粉基塑料会有广泛的发展空间。 2 淀粉基塑料分类和开发研制现状 就降解过程而言,淀粉基塑料可分为崩溃型塑料(也称生物破坏性塑料)和完全生物降解塑料两大类。崩溃型塑料是以颗粒状淀粉与聚烯烃结合,除了添加的淀粉能够被微生物,聚烯烃不能被降解,所以它属于不完全生物降解的塑料;完全生物降解塑料是以淀粉及可降解树脂为主要原料制备的塑料,在微生物作用下能够完全降解,完全生物降解塑料是绿色生态塑料的发展方向。淀粉基塑料按照其来源又可以分为淀粉填充型生物降解塑料、以淀粉为基础原料的微生物合成型完全降解塑料、以淀粉为基础原料的化学合成型降解塑料等几种。 - 1 -

生物可降解塑料的应用、研究现状和发展方向汇总

生物可降解塑料的应用、研究现状及发展方向 关键词:可降解塑料,光降解塑料,光和生物降解塑料,水降解塑料, 生物降解塑料 绪论 半个多世纪以来,随着塑料工业技术的迅速发展,当前世界塑料总产量已超过117×108t,其用途已渗透到工业、农业以及人民生活的各个领域并与钢铁、木材、水泥并列成为国民经济的四大支柱材料。但塑料大量使用后随之也带来了大量的固体废弃物,尤其是一次性使用塑料制品如食品包装袋、饮料瓶、农用薄膜等的广泛使用,使大量的固体废弃物留在公共场所和海洋中,或残留在耕地的土层中,严重污染人类的生存环境,成为世界性的公害{1-3}。有资料表明,城市固体废弃物中塑料的质量分数已达10%以上,体积分数则在30%左右,而其中大部分是一次性塑料包装及日用品废弃物,它们对环境的污染、对生态平衡的破坏已引起了社会极大的关注[4]。因此,解决这个问题已成为环境保护方面的当务之急。一般来讲,塑料除了热降解以外,在自然环境中的光降解和生物降解的速度都比较慢,用C14同位素跟踪考察塑料在土壤中的降解,结果表明,塑料的降解速度随着环境条件(降雨量、透气性、温度等)不同而有所差异,但总的而言,降解速度是非常缓慢的,通常认为需要200-400年[5]。为

了解决这个问题,工业发达国家采用过掩埋、焚烧和回收利用等方法来处理废弃塑料,但是,这几种方法都存在无法克服的缺陷。进行填埋处理时占地多,且使填埋地不稳定;又因其发出热量大,当进行焚烧处理时,易损坏焚烧炉,并排出二恶英,有时还可能排放出有害气体,而对于回收利用,往往难以收集或即使强制收集进行回收利用,经济效益甚差甚至无经济效益[6]。 不可降解的大众塑料塑料对地球的危害: (1)两百年才能腐烂。塑料袋埋在地下要经过大约两百年的时间才能腐烂,会严重污染土壤;如果采取焚烧处理方式,则会产生有害烟尘和有毒气体,长期污染环境。 (2)降解塑料难降解。市场上常见的“降解塑料袋”,实际上只是在塑料原料中添加了淀粉,填埋后因为淀粉的发酵、细菌的分解,大块塑料袋会分解成细小甚至肉眼看不见的碎片。这是一种物理降解,并没有从根本上改变塑料产品的化学性质。 (3)影响土壤的正常呼吸。塑料袋本身不是土壤和水体的基本物质之一,强行进入到土壤之后,由于它自身的不透气性,会影响到土壤内部热的传递和微生物的生长,从而改变土壤的特质。这些塑料袋经过长时间的累积,还会影响到农作物吸收养分和水分,导致农作物减产。 (4)易造成动物误食。废弃在地面上和水面上的塑料袋,容易被动物当做食物吞入,塑料袋在动物肠胃里消化不了,易导致动物肌体损伤和死亡因而越来越多的学者提倡开发和应用降解塑料,并将它看作是解决这一世界难题的理想途径。目前,世界发达国家积极发展降解塑料,美国、日本、德国等发达国家都先后制定了限用或禁用非降解塑料的法规。[7] 可降解塑料的出现,不仅扩大了塑料功能,而且在一定程度上可缓解和抑制环境矛盾,对石油资源是一个补充,而且从合成技术上展示了生物技术和合金化技术在塑料材料领域中的威力和前景,它的发展已经成为世界研究开发的热点。

浅析可生物降解泡沫塑料的现状

浅析可生物降解泡沫塑料的现状 【摘要】泡沫塑料是一种使用广泛,性能优异的材料,但是用于泡沫塑料制备的高分子材料一般是不可降解的,而可生物降解泡沫塑料能很好地解决这一问题。本文简明扼要地分析了可生物降解泡沫塑料的主要类型及其研究现状,为下一步发展提供借鉴。 【关键词】可生物降解泡沫塑料 目前,塑料制品的广泛使用在带给人们生活便利的同时,也给人类赖以生存的环境造成了日益严重的污染,其中,泡沫塑料制品所占比例较为突出。如果采用可生物降解材料生产泡沫塑料,在微生物或生物酶的作用下可使制品降解成为“零污染”的二氧化碳和水,即可解决困扰全球的环境污染问题。 可生物降解泡沫塑料的研究主要集中于淀粉类泡沫塑料、纤维素泡沫塑料,以及可生物降解聚酯泡沫塑料,其中,可生物降解聚酯泡沫塑料是研究较为深入的一类。 1 淀粉类泡沫塑料 淀粉是一种来源广泛的可再生资源,价格低廉,但是淀粉结晶性强,加工成型困难,产品的力学性能也较差,而且淀粉是亲水性的,纯淀粉制品对环境湿度的要求较高,因此一般要对淀粉进行改性,以满足应用要求。近年来,在对淀粉进行改性的基础上,淀粉类泡沫塑料大致可以分为淀粉泡沫塑料和淀粉类复合泡沫塑料两大类。 淀粉泡沫塑料:主要包括天然淀粉泡沫塑料和变性淀粉泡沫塑料。天然淀粉主要是小麦淀粉、玉米淀粉、土豆淀粉等,含有不同比例的支链和直链结构。变性淀粉主要是醚化淀粉、酯化淀粉、接枝共聚改性淀粉等。普通淀粉泡沫塑料多为开孔结构,泡孔不均匀,泡体易脆;高直链淀粉泡沫塑料多是闭孔结构,泡孔小而均匀,脆性降低。由乙酸酯淀粉制得的泡沫塑料,耐水、表面光滑,压缩强度、密度均高于聚苯乙烯泡沫塑料,但弹性稍差,加工时易发生部分降解。而由聚乙烯醇和高直链玉米淀粉制备的泡沫塑料在性能上已可取代聚苯乙烯泡沫塑料。 淀粉类复合泡沫塑料:指将淀粉与可生物降解的聚合物共混,制备的泡沫塑料。常用的聚合物有天然聚合物(纤维素等)、可生物降解聚合物(聚酯等)、以及可与淀粉反应的聚合物。体系中常添加纤维以使泡沫塑料具有较高强度,尤其是在温度较低及湿度较高时作用比较明显,纤维搭建的网络结构在淀粉因湿度降低变脆时,起到“桥梁”的作用,连接断裂面;当湿度较高时,增加制品强度。将淀粉与聚乙烯醇共混烘焙制备所得的泡沫塑料,当湿度较低时,醇解度低的聚乙烯醇对泡沫塑料强度的提高较大,湿度较高时,则是醇解度高的较大。同时,泡沫塑料的弯曲强度随聚乙烯醇分子量的增加而提高。

淀粉基可降解泡沫材料的研究进展

龙源期刊网 https://www.360docs.net/doc/a118366703.html, 淀粉基可降解泡沫材料的研究进展 作者:孙迪喻亚格任道欢 来源:《中国科技博览》2013年第16期 [摘要]本文简述了目前淀粉基可降解发泡材料的最新研究进展,综述了国内外淀粉基可降解发泡材料的成型研究进展,并对未来的发展做了展望。 [关键词]淀粉;发泡;发泡成型;生物降解 中图分类号:TS236.9 文献标识码:A 文章编号:1009-914X(2013)16-0273-01 聚苯乙烯,聚丙烯,聚乙烯和聚氯乙烯泡沫塑料的广泛应用已造成严重的白色污染,开发淀粉基可降解泡沫塑料不仅为更好地利用丰富的天然资源开辟了一条新的途径,而且还可以解决白色污染,另外还能缓解生化能源紧缺的危机。本文就国内外淀粉基可降解泡沫塑料的研究进展作一综述,以期为进一步开展绿色缓冲材料的研究提供指导。 1 天然淀粉泡沫塑料 天然淀粉包括玉米淀粉,土豆淀粉,小麦淀粉,蜡质玉米淀粉,高度支化土豆淀粉,木薯淀粉以及西米淀粉等[1,2],一般呈粒状,含有不同比例的直链和支链结构。普通淀粉泡沫塑料大都是开孔结构,泡孔均匀性差,较脆;而高直链淀粉泡沫塑料则形成闭孔结构,泡孔小而且比较均匀,压缩强度较普通淀粉泡沫塑料小,脆性明显降低。 2 变性淀粉泡沫塑料 淀粉是一种强极性的结晶性物质,热塑性差,同时淀粉是亲水性物质,由纯淀粉制备的泡沫塑料不适宜在有水或湿度较大的环境中使用,因而要对淀粉进行改性,以适应生产和应用的要求。改性淀粉包括酯化淀粉,醚化淀粉,接枝共聚改性淀粉,酸水解淀粉,交联淀粉和酶转化淀粉等[3],其中酯化淀粉,醚化淀粉和接枝共聚改性淀粉较为常见。 3 淀粉/合成树脂复合泡沫塑料 3.1 与合成树脂共混 B. Catia 等[4]均各淀粉与聚合物共混挤出,其中包括聚合物A可以与淀粉兼容;B可以与淀粉反应,制得密度为5-13kg/m3,的泡沫塑料。A. Yoshimi等[5]用淀粉与合成树脂PVA和EVOH共混,在非离子表面活性剂,增稠剂及填充材料的存在下,由水发泡制备的淀粉泡沫塑料,具有密度小和表面性能优良等特点。 3.2 与PVA共混

相关文档
最新文档