GPS测量中的坐标系统及其转换

GPS测量中的坐标系统及其转换
GPS测量中的坐标系统及其转换

测绘

商务-测绘仪器器材商务平台

金币充

值 加入收藏 用户中心 英语词典

测绘书籍 测绘黄页 测绘人才 VIP 注册

首页 测绘新闻 测绘论文 测绘软件 仪器商务 供应信息 产品中心 公司信息 测绘报价 供求招聘 测绘博客 测绘论坛 您现在位于: 首页 → 论文 → GPS 测量中的坐标系统及其转换

在GPS 测量中通常采用两类坐标系统,一类是在空间固定的坐标系统,另一类是与地球体相固联的坐标系统,也称固定坐标系

统。如:WGS-84世界大地坐标系和1980年西安大地坐标系。在实际使用中需要根据坐标系统间的转换参数进行坐标系统的变换,来求出所使用的坐标系统的坐标。这样更有利于表达地面控制点的位置和处理GPS 观测成果,因此在GPS 测量中得到了广泛的应用。 1 坐标系统的介绍

1.1 WGS —84坐标系统

WGS —84坐标系是目前GPS 所采用的坐标系统,是由美国国防部制图局建立,于1987年取代了当时GPS 所采用的坐标系统(WGS —72坐标系统)而成为GPS 目前所使用的坐标系统。

WGS —84坐标系的坐标原点位于地球的质心,Z 轴指向BIHl984.0定义的协议地球极方向,X 轴指向BIHl984.0的起始子午面和赤道的交点,Y 轴与X 轴和Z 轴构成右手系。WGS —84系所采用椭球参数为:a=6378138m ;f=1/298.257223563。

1.2 1954年北京坐标系

1954年北京坐标系是我国目前广泛采用的大地测量坐标系。该坐标系源自于原苏联采用过的1942年普尔科夫坐标系。建国前,我国没有统一的大地坐标系统,建国初期,在苏联专家的建议下,我国根据当时的具体情况,建立起了全国统一的1954年北京坐标系。该坐标采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:a=6378245m ;f=1/298.3。

该椭球并未依据当时我国的天文观测资料进行重新定位。而是由前苏联西伯利亚地区的一等锁,经我国的东北地区传算过来的,该坐标的高程异常是以前苏联1955年大地水准面重新平差的结果为起算值,按我国天文水准路线推算出来的,而高程又是以1956年青岛验潮站的黄海平均海水面为基准。

1.3 1980年西安坐标系

1980年西安坐标系采用了全面描述椭球性质的四个基本参数a 、GM 、J2、ω。四个参数的数值采用的是1975年国际大地测量与地球物理联合会16届大会的推荐值:a=6378140m ;GM=3986005x108m3/s2;J2=1082.63x10-6;ω=7292115X10-11rad/s. 1980年西安坐标系的原点位于我国的中部,陕西西安市的附近。椭球的短轴平行于由地球质心指向我国地极原点JYD1968。0的方向,起始大地子午面平行与我国起始天文子午面。大地点的高程是1956年青岛验潮站的黄海平均海水面为基准。

2 坐标系统的转换

一般情况下,我们使用的是1954年北京坐标系或1980年西安坐标系,而GPS 测定的坐标是WGS-84坐标系坐标,需要进行坐标系转换。对于非测量专业的工作人员来说,虽然GPS 定位操作非常容易,但坐标转换则难以掌握,EXCEL 是比较普及的电子表格软件,能够处理较复杂的数学运算,用它的公式编辑功能,进行GPS 坐标转换,会非常轻松自如。要进行坐标系转换,离不开高斯投影换算,下面分别介绍用EXCEL 进行换算的方法和GPS 坐标转换方法。

2.1 用EXCEL 进行高斯投影换算

从经纬度BL 换算到高斯平面直角坐标XY (高斯投影正算),或从XY 换算成BL (高斯投影反算),一般需要专用计算机软件完成,在目前流行的换算软件中,大都需要一个点一个点地进行,不能成批量地完成,给实际工作中带来了许多不便。但是,通过实验发现,用

EXCEL 可以很直观、方便地完成坐标换算工作,只需要在EXCEL 的相应单元格中输入相应的公式即可。下面以54坐标系为例,介绍具体的计算方法。

完成经纬度BL到平面直角坐标XY的换算。在EXCEL中,选择输入公式的起始单元格,例如:第2行第1列(A2格)为起始单元格,各单元格的格式如下:

单元格;单元格内容;说明

A2;输入中央子午线,以度.分秒形式输入,如115度30分则输入115.30;起算数据L0

B2;=INT(A2)+(INT(A2*100)-INT(A2)*100)/60+(A2*10000-INT(A2*100)*100)/3600;把L0化成度

C2;以度小数形式输入纬度值,如38°14′20″则输入38.1420;起算数据B

D2;以度小数形式输入经度值;起算数据L

E2;=INT(C2)+(INT(C2*100)-INT(C2)*100)/60+(C2*10000-INT(C2*100)*100)/3600;把B化成度

F2;=INT(D2)+(INT(D2*100)-INT(D2)*100)/60+(D2*10000-INT(D2*100)*100)/3600;把L化成度

G2;=F2-B2;L-L0

H2;=G2/57.2957795130823;化作弧度

I2;=TAN(RADIANS(E2));Tan(B)

J2;=COS(RADIANS(E2));COS(B)

K2;=0.006738525415*J2*J2

L2;=I2*I2

M2;=1+K2

N2;=6399698.9018/SQRT(M2)

O2;=H2*H2*J2*J2

P2;=I2*J2

Q2;=P2*P2

R2;=(32005.78006+Q2*(133.92133+Q2*0.7031))

S2;=6367558.49686*E2/57.29577951308-P2*J2*R2+((((L2-58)*L2+61)*

O2/30+(4*K2+5)*M2-L2)*O2/12+1)*N2*I2*O2/2

计算结果X

T2;=((((L2-18)*L2-(58*L2-14)*K2+5)*O2/20+M2-L2)*O2/6+1)*N2*(H2*J2)

计算结果Y

按上面表格中的公式输入到相应单元格后,就可方便地由经纬度求得平面直角坐标。当输入完所有的经纬度后,用鼠标下拉即可得到所有的计算结果。表中的许多单元格公式为中间过程,可以用EXCEL的列隐藏功能把这些没有必要显示的列隐藏起来,表面上形成标准的计算报表,使整个计算表简单明了。从理论上讲,可计算的数据量是无限的,当第一次输入公式后,相当于自己完成了一软件的编制,可另存起来供今后重复使用。

2.2 GPS坐标转换方法

GPS所采用的坐标系是美国国防部1984世界坐标系,简称WGS-84,它是一个协议地球参考系,坐标系原点在地球质心。GPS的测量结果与我国的54系或80系坐标相差几十米至一百多米,随区域不同,差别也不同。由此可见,必须将WGS-84坐标进行坐标系转换才

能供标图使用。坐标系之间的转换一般采用七参数法或三参数法,其中七参数为X平移、Y平移、Z平移、X旋转、Y旋转、Z旋转以及尺度比参数,若忽略旋转参数和尺度比参数则为三参数方法,三参数法为七参数法的特例。这里的X、Y、Z是空间大地直角坐标系坐标,原理是:不把GPS所测定的WGS-84坐标当作WGS-84坐标,而是当作具有一定系统性误差的54系坐标值,然后通过国家已知点纠正,消除该系统误差。下面以WGS-84坐标转换成54系坐标为例,介绍数据处理方法:

首先,在测区附近选择一国家已知点,在该已知点上用GPS测定WGPS-84坐标系经纬度B和L,把此坐标视为有误差的54系坐标,利用54系EXCEL将经纬度BL转换成平面直角坐标X’Y’,然后与已知坐标比较则可计算出偏移量:

△X=X-X’

△Y=Y-Y’

式中的X、Y为国家控制点的已知坐标,X’、Y’为测定坐标,△X和△Y为偏移量。

求得偏移量后,就可以用此偏移量纠正测区内的其他测量点了。把其他GPS测量点的经纬度测量值,转换成平面坐标X’Y’,在此XY坐标值上直接加上偏移值就得到了转换后的54系坐标:

X=X’+△X

Y=Y’+△Y

在上述EXCEL计算表的最后两列,附加上求得的改正数并分别与计算出来的XY相加后,即得到转换结果。就1:1万比例尺成图而言,在一般的县行政区范围内(如40Km×40Km),用此简单的坐标改正法进行转换与较复杂的七参数法没有多大差别。能否满足1:1万比例尺变更调查的要求,主要取决于GPS接收机本身的精度,与转换方法的选择关系不大。当面积较大时,使用该方法可能会使误差增大,这时可考虑分区域转换。

西安80坐标系与北京54坐标系其实是一种椭球参数的转换作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。

那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即 X 平移, Y 平移, Z 平移, X 旋转(WX), Y 旋转(WY), Z 旋转(WZ),尺度变化(DM )。要求得七参数就需要在一个地区需要 3 个以上的已知点。如果区域范围不大,最远点间的距离不大于 30Km(经验值),这可以用三参数,即 X 平移, Y 平移, Z 平移,而将 X 旋转, Y 旋转, Z 旋转,尺度变化面DM 视为 0 。

方法如下(MAPGIS平台中):

第一步:向地方测绘局(或其它地方)找本区域三个公共点坐标对(即54坐标x,y,z和80坐标x,y,z);

第二步:将三个点的坐标对全部转换以弧度为单位。(菜单:投影转换/输入单点投影转换,计算出这三个点的弧度值并记录下来)

第三步:求公共点求操作系数(菜单:投影转换/坐标系转换)。如果求出转换系数后,记录下来。

第四步:编辑坐标转换系数。(菜单:投影转换/编辑坐标转换系数。)最后进行投影变换,“当前投影”输入80坐标系参数,“目的投影”输入54坐标系参数。进行转换时系统会自动调用曾编辑过的坐标转换系数。

3 结论

在使用GPS测量中,外业的观测简单、快捷,内业数据的计算可以通过相应的软件直接得到WGS-84的坐标。为了将其转换为常用的BJ-54或XA-80坐标,常常使测量人员比较棘手。本文论述了用EXCEL进行坐标转换的方法,在小测区面积范围内可以直接使用,在大测区面积范围内分区使用,给测量的计算带来了很大的方便。

参考文献

[1]周忠谟,易杰军,周琪:《GPS卫星测量原理及应用》,测绘出版社,1995

[2]徐绍全等:《GPS卫星测量原理及应用》,武汉测绘科技大学出版社,2004

[3]周建郑:《GPS定位原理与技术》,黄河水利出版社,2005

[4]李连伟:WGS84和BJ54坐标转换问题探讨,《测绘与空间地理信息》。2004。1

[5]孔祥元梅是义:《控制测量学》上,下册。武汉大学出版社

测量相关的坐标体系

测量相关的坐标体系 地固坐标系又称大地坐标系/地球坐标系,是一种固定在地球上,随地球一起转动的非惯性坐标系。根据其原点的位置不同,分为地心坐标系和参心坐标系。 地心坐标系的原点与地球质心重合.GPS卫星定位测量常用的WGS-84坐标 系就是一种地心坐标系,坐标原点为地球质心,其地心空间直角坐标系的Z轴指向BIH (国际时间服务机构)1984.O定义的协议地球极(CTP)方向,X轴指向BIH 1984.0的零子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系统。 参心坐标系的原点与某一地区或国家所采用的参考椭球中心重合,通常与地球质心不重合。我国先后建立的1954年北京坐标系、1980西安坐标系都是参心坐标系。但是随着GNSS技术的发展,很多国家都逐渐开使用地心坐标系. AutoCAD中采用的数学坐标系:世界坐标系(WCS)即参照坐标系。其它所有的坐标系都是相对WCS定义的,WCS是永远不改变的。用户坐标系统(UCS)即 工作中的坐标系,使我们绘图使用最多的坐标系。 (Cass7.0绘图软件采用的坐标系为测量坐标系,正好和数学上的笛卡尔坐标系相反,X轴为南北方向,Y轴为东西方向。 这就是在CAD中查询出的坐标和在Cass中查询出的坐标纵横坐标刚好相反的原因。) 1 、地理坐标 地理坐标是用纬度、经度表示地面点位置的球面坐标。在大地测量学中,对于地理坐标系统中的经纬度有三种提法:天文经纬度、大地经纬度和地心经纬度。 (1)天文坐标系 天文坐标系是以铅垂线为基准、以大地水准面为基准面建立的坐标系,它以天文经纬度(λ,ψ)表示地面点在大地水准面上的位置,其中天文经度λ是观测点天顶子午面与格林尼治天顶子午面间的二面角,地球上定义为本初子午面与观测点之间的二面角;天文纬度ψ定义为铅垂线与赤道平面间的夹角。 (2)大地坐标系 大地坐标系是以椭球面法线为基准线,以参考椭球面为基准面建立的坐标系,它以大地坐标(L,B,h)表示地面点在参考椭球面上的位置,其中大地经度L为参考椭球面上某点的大地子午面与本初子午面间的二面角,大地纬度B为参考椭球面上某点的法线与赤道平面的夹角,北纬为正,南纬为负;为h为大地高,即从观测点沿椭球法线方向到椭球面的距离。我国目前常用坐标系为1954北京坐标系、1980国家大地坐标系以及2000国家大地坐标系(CGCS2000)。 (3)地心坐标系 地心坐标系是地固坐标系的一种,是指以总地球椭球为基准、原点与质心重合的坐标系,它与地球体固连在一起,与地球同步运动。它以(L,B)来表示点的位置,其中L为地心经度,与大地经度一致;B为地心纬度,指参考椭球面上观测点与椭球质心或中心连线与赤道面之间的夹角。心坐标系是在大地体内建立的O-XYZ坐标系。原点O设在大地体的质量中心,用相互垂直的X,Y,Z三个

坐标转换工具说明书-1208

§10.2坐标转换工具 HGO 数据处理软件包提供了坐标转换程序,可以进行地方坐标与WGS-84坐标的相互转换,同时具备参数求解功能。 下面对这个工具进行介绍: 10.2.1概述 首先,介绍一下常见的三种坐标表示方法:经纬度和椭球高(BLH),空间直角坐标(XYZ),平面坐标和水准高程(xyh/NEU)。注意:椭球高是一个几何量,而水准高是一个物理量。 我们通常说的WGS-84坐标是经纬度和椭球这一种,北京54坐标是平面坐标和水准高程这一种,实质是有平面基准和高程基准组成的。 此外,再注意一下坐标转换的严密性问题,在同一个椭球里的纯几何转换都是严密的(BLH<->XYZ),而在不同的基准之间的转换是不严密的。举个例子,在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,因为前者是一个地心坐标系,后者是一个参心坐标系。高程转换是由几何高向物理高转换。因此在每个地方必须用椭球进行局部拟合,通常用7参数模型来拟合。 那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法(或称布尔莎模型),即X平移,Y平移,Z平移,X旋转,Y旋转,Z旋转,尺度变化K。要求得七参数就需要在一个地区需要3个以上的已知点(7个参数至少7个方程可解,所以需要三个点列出9个方程),如果区域范围不大、最远点间的距离不大于30Km(经验值)的情况可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化K视为0,所以三参数只是七参数的一种特例。 七参数模型的实质是用一个局部椭球去拟合地方坐标系的形态;所以转换后获得的地方椭球高就是水准高。当然我们也可以把平面和高程两个方向分别进行拟合。例如平面用四参数模型拟合,高程方向则用二次曲面等模型来拟合。这样分开处理的模式相对七参数模型自由度更高。但是由于四参数模型参数较少,表达能力较弱,通常只用于小区域坐标转换。 综上所述,从实用的角度出发,坐标转换程序提供了两种转换策略供给客户选择使用: 1.七参数模型,一步得到地方平面和水准数据。 2.四参数加高程拟合模型,分两步得到地方平面和水准数据。 由于各厂家的模型和流程定义可能是不一样的,这里就我们公司的转换流程描述如下:七参数的转换过程是这样的:

施工坐标系与测量坐标系之间的相互转换关系

施工坐标系与测量坐标系之间的相互转换 一、用Microsoft Excel 编辑转换 如图(1-1)所示:设Y O X -- 为测量坐标系,y o x -'- 为施工坐标,如果知道了施工坐标系的原点o '的测量坐标为('0X ,'0Y )、定向点I 的测量坐标为(XI,YI ),定向坐标方位角 x -'0α (即纵轴的旋转角,因为0=-X o α为正北方向,则x -'0α=X o -α+α)。则所求P 点由施工坐标P (p p y x ,)换算成为测量坐标P (p p Y X ,)的公式则为: α αsin *cos *0p p p y x X X -+=' ααcos *sin *0p p p y x Y Y ++=' 上面两式在Excel 中编辑公式为: [][]180/()*sin *180/()*cos *0Pi y Pi x X X p p p αα-+=' [][]180/()*cos *180/()*sin *0Pi y Pi x Y Y p p p αα++=' 而如果知道了施工坐标系(第二坐标系)的原点的测量坐标 o '为

('0X 、'0Y )、坐标方位角 x -'0α (即纵轴的旋转角,因为0=-X o α为正北方向,则x -'0α=X o -α+α)。则所求P 点由测量坐标P (p p Y X ,)转换算为施工坐标P (p p y x ,)其公式为: ααsin *)(cos *)(00''-+-=Y Y X X x p p p ααcos *)(sin *)(00''-+--=Y Y X X y p p p 上面两式在Excel 中编辑公式为: [][]180/()*sin *)(180/()*cos *)(00Pi Y Y Pi X X x p p p αα''-+-= [][]180/()*cos *)(180/()*sin *)(00Pi Y Y Pi X X y p p p αα''-+--= 以上各式中施工坐标系原点o ' 的测量坐标('0X ,'0Y )与方位角α ,可在设计资料中查找或用图解法得出。 附: 如(图1-2)直线AB 的坐标方位角 ? ?? ? ??--=-A B A B AB x x y y 1tan α B ( x ,y ) β B B C ( x ,y ) C C A ( x ,y ) A A α A B α A C 图(1-2) 如(图1-2)直线AB 与直线AC 的夹角 β ???? ??---???? ??--=-=--A B A B A C A C A B A C x x y y x x y y 11tan tan ααβ

大地测量坐标系统及其转换

大地测量坐标系统及其转换 雷伟伟 河南理工大学测绘学院 wwlei@https://www.360docs.net/doc/a13519066.html,

基本坐标系 1、大地坐标系 坐标表示形式:(, ,)L B H 大地经度L :地面一点P 地的大地子午面N P S 与起始大地子午面所构成的二面角; 大地纬度B :P 地点对椭球面的法线P P K 地与赤道面所夹的锐角; 大地高H :P 地点沿法线到椭球面的距离。 赤道面 S W 2、空间直角坐标系 坐标表示形式:(,,)X Y Z 以椭球中心O 为坐标原点,起始子午面N G S 与赤道面的交线为X 轴,椭球的短轴为Z 轴(向北为正),在赤道面上与X 轴正交的方向为Y 轴,构成右手直角坐标系O X YZ 。

Y W 3、子午平面坐标系 坐标表示形式:(,,) L x y 设P点的大地经度为L,在过P点的子午面上,以椭圆的中心为原点,建立x、y平 面直角坐标系。则点P的位置用(,,) L x y表示。 x

坐标表示形式:(,,)L u H 设椭球面上的点P 的大地经度为L 。在此子午面,以椭球中心O 为圆心,以椭球长半径a 为半径,做一个辅助圆。过P 点做一纵轴的平行线,交横轴于1P 点,交辅助圆于2P 点,连结2P 、O 点,则21P O P 称为P 点的归化纬度,用u 来表示。P 点的位置用(,)L u 表示。 当P 点不在椭球面上时,则应将P 沿法线投影到椭球面上,得到点0P ,0PP 即为P 点的大地高,0P 点的归化纬度,就是P 点的归化纬度。P 点的位置用(,,)L u H 表示。 x y P u 点在椭球面上时的 P u 点不在椭球面上时的x

大地测量习题

大地测量习题

————————————————————————————————作者:————————————————————————————————日期: ?

第一章绪论1.大地测量学的定义是什么? 答:大地测量学是关于测量和描绘地球形状及其重力场并监测其变化,为人类活动提供关于地球的空间信息。 2.大地测量学的地位和作用有哪些?答:大地测量学是一切测绘科学技术的基础,在国民经济建设和社会发展中发挥着决定性的基础保证作用;在防灾,减灾,救灾及环境监测、评价与保护中发挥着独具风貌的特殊作用; 是发展空间技术和国防建设的重要保障;在当代地球科学研究中的地位显得越来越重要。 3.大地测量学的基本体系和内容是什么? 答:大地测量学的基本体系由三个基本分支构成:几何大地测量学、物理大地测量学及空间大地测量学。基本内容为: 1.确定地球形状及外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水面地形及其变化等;2.研究月球及太阳系行星的形状及重力场;3.建立和维持具有高科技水平的国家和全球的天文大地水平控制网、工程控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要; 4.研究为获得高精度测量成果的仪器和方法等; 5.研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算; 6.研究大规模、高精度和多类别的地面网、空间网及其联合网的数据处理的理论和方法,测量数据库建立及应用等。4.大地测量学的发展经历了哪几个阶段? 答:大地测量学的发展经历了四个阶段:地球圆球阶段、地球椭球阶段、大地水准面阶段和现代大地测量新时期。5.地球椭球阶段取得的主要标志性成果有哪些?答:有:长度单位的建立;最小二乘法的提出;椭球大地测量学的形成,解决了椭球数学性质,椭球面上测量计算,以及将椭球面投影到平面的正形投影方法;弧度测量大规模展开;推算了不同的地球椭球参数。 6.物理大地测量标志性成就有哪些?答:有:克莱罗定理的提出;重力位函数的提出;地壳均衡学说的提出;重力测量有了进展,设计和生产了用于绝对重力测量的可倒摆以及用于相对重力测量的便携式摆仪。极大地推动了重力测量的发展。7.大地测量的展望主要体现在哪几个方面?答:主要体现在:(1)全球卫星定位系统(GPS),激光测卫(SLR)以及甚长基线干涉测量(VLBI), 惯性测量统(INS)是主导本学科发展的主要的空间大地测量技术;(2)用卫星测量、激光测卫及甚长基线干涉测量等空间大地测量技术建立大规模、高精度、多用途的空间大地测量控制网,是确定地球基本参数及其重力场,建立大地基准参考框架,监测地壳形变,保证空间技术及战略武器发展的地面基准等科技任务的基本技术方案;( 3)精化地球重力场模型是大地测量学的重要发展目标。 第二章坐标系统与时间系统 1. 何谓椭球局部定位和地心定位?答:椭球定位是指确定椭球中心的位置,可分为两类:局部定位和地心定位。局部定位要求在一定范围内椭球面与大地水准面有最佳的符合,而对椭球的中心位置无特殊要求;地心定位要求在全球范围内椭球面与大地水准面有最佳的符合,同时要求椭球中心与地球质心一致或最为接近。2.椭球定向的两个条件是什么?答:椭球定向是指确定椭球旋转轴的方向,不论是局部定位还是地心定位,都应满足两个平行条件:①椭球短轴平行于地球自转轴;②大地起始子午面平行于天文起始子午面。这两个平行条件是人为规定的,其目的在于简化大地坐标、大地方位角同天文坐标、天文方位角之间的换算。3.建立地球参心坐标系,需要进行哪几项工作?需满足哪些条件? 答:建立地球参心坐标系,需进行如下几个方面的工作: ①选择或求定椭球的几

各种测量坐标转换

不同坐标系介绍及相互转换关系 一、各坐标系介绍 GIS的坐标系统大致有三种:Plannar Coordinate System(平面坐标系统,或者Custom用户自定义坐标系统)、 Geographic Coordinate System(地理坐标系统)、 Projection Coordinate System(投影坐标系统)。这三者并不是完全独立的,而且各自都有各自的应用特点。如平面坐标系统常常在小范围内不需要投影或坐标变换的情况下使用,地理坐标系统和投影坐标系统是相互联系的,地理坐标系统是投影坐标系统的基础之一。 1、椭球面(Ellipsoid) 地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。采用的3个椭球体参数如下

2、高斯投影坐标系统 (1)高斯-克吕格投影性质 高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。德国数学家、物理学家、天文学家高斯(Carl FriedrichGauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。

大地测量坐标系统及其转换(精)

大地测量坐标系统及其转换 基本坐标系 1、大地坐标系 坐标表示形式:(, ,L B H 大地经度L :地面一点P 地的大地子午面N P S 与起始大地子午面所构成的二面角; 大地纬度B :P 地点对椭球面的法线P P K 地与赤道面所夹的锐角; 大地高 H :P 地点沿法线到椭球面的距离。 赤道面 S W 2、空间直角坐标系

坐标表示形式:(,,X Y Z 以椭球中心O 为坐标原点,起始子午面N G S 与赤道面的交线为X 轴,椭球的短轴为Z 轴(向北为正,在赤道面上与X 轴正交的方向为Y 轴,构成右手直角坐标系O X YZ 。 Y W 3、子午平面坐标系 坐标表示形式:(,, L x y 设P点的大地经度为L,在过P点的子午面上,以椭圆的中心为原点,建立x、y 平

面直角坐标系。则点P的位置用(,, L x y表示。 x 坐标表示形式:(,,L u H 设椭球面上的点P 的大地经度为L 。在此子午面,以椭球中心O 为圆心,以椭球长半径a 为半径,做一个辅助圆。过P 点做一纵轴的平行线,交横轴于1P 点,交辅助圆于2P 点,连结2P 、O 点,则21P O P 称为P 点的归化纬度,用u 来表示。P 点的位置用(,L u 表示。 当P 点不在椭球面上时,则应将P 沿法线投影到椭球面上,得到点0P ,0PP 即为P 点的大地高,0P 点的归化纬度,就是P 点的归化纬度。P 点的位置用(,,L u H 表示。

x y P u 点在椭球面上时的 P u 点不在椭球面上时的x

坐标表示形式:(,, L φρ 设P 点的大地经度为L ,连结O P ,则POx φ∠=,称为球心纬度,OP ρ=,称为P 点的向径。P 点的位置用(,,L φρ表示。 x 6、大地极坐标系 坐标表示形式:(,S A 以椭球面上某点0P 为极点,以0P 的子午线为极轴,从0P 出发,作一族A =常数的大地线和S =常数的大地圆。它们构成相互正交的坐标系曲线,即椭球面上的大地极坐标系,简称地极坐标系。在大地极坐标系中,点的位置用(,S A 来表示。 P A =常数 S =常数 坐标表示形式:1(,,P X Y Z -

北京54坐标系转换工具

北京54坐标系转换工具 利用ARCGIS进行自定义坐标系和投影转换 ARCGIS种通过三参数和其参数进行精确投影转换 注意:投影转换成54坐标系需要下载无偏移卫星图像进行转换,有偏移的转换将导致转换后的卫星图像扭曲,坐标错误,无法配准。 第一步:选择无偏移地图源,下载你所需要的卫星图像。 第二步:选择BIGEMAP软件右边工具栏,选择【投影转换】,如下图所示: 2.1 选择说明: 1. 源文件:选择下载好的卫星图像文件(下载目录中后缀为tiff的文件) 2. 源坐标系:打开的源文件的投影坐标系(自动读取,不需要手动填写) 3. 输出文件:选择转换后你要保持文件的文件路径和文件名 4. 目标坐标系:选择你要转换成的目标坐标系,如下图:

选择上图的更多,如下图所示: 1:选择 -Beijing 1954 2:选择地区3:选择分度带对应的带号(一般默认,也可以手动修改)

选择对应的分度带或者中央子午线(请参看:如何选择分度带?),点击【确定】 5. 重采样算法:投影转换需要将影像的像素重新排列,一次每种算法的效率不一样,一般选择【立方卷积采样】,以达到最好的效果。如下图: 6. 指定变换参数:在不知道的情况下,可以不用填此处信息,如果√上,则如下图:

此参数为【三参数】或者【七参数】,均为国家保密参数,需要到当地的测绘部门或者国土部门,以单位名义签保密协议进行购买,此参数各地都不一样,是严格保密的,请不要随便流通。 第三步:点击【确定】,开始转换,如下图:

第四步:完成后,打开你刚才选择的输出文件夹,里面就是转换后的卫星图像。 第五步:如果你需要套合你手里已经有的矢量文件,请参看:【BIGEMAP无偏移影像叠加配准】

大地测量学基础-第二版 武汉大学出版社 复习

2015级地信班方游游 第一章 大地测量学定义 在一定时间空间的参考系统中,测量和描绘地球以及其他行星体的一门学科。 大地测量学作用 1.在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用。 2.在防灾减灾救灾以及环境监测、评价和保护中发挥着独具风貌的特殊作用 3.是发展空间技术和国防建设的重要保证 4.在当代地球科学研究中地位越来越重要 5.是测绘学科各分支学科的基础科学 现代大地测量学的特点 1.测量范围大 2.从静态发展到动态,从表面深入到地球内部构造及动力过程 3.观测精度高 4.测量周期短 大地测量学基本内容 1.确定地球形状以及外部重力场及其随时间的变化,建立统一的大地测量坐标系,研 究地球形变,测定极移以及海洋水面地形及其变化等 2.研究月球及太阳系行星的形状及重力场 3.建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准为以 及海洋大地控制网,以满足国民经济和国防建设的需要 4.研究为获得高精度测量成果的仪器和方法等 5.研究地球表面向托球迷或平面投影数学变换及有关的大地测量计算 6.研究大规模高精度和多类别的地面网、空间网及其联合网的数据处理的理论和方法, 测量数据库建立及应用等 大地测量学发展简史 1.地球圆球阶段 2.地球椭球阶段 3.大地水准面阶段 4.现代大地测量新时期 大地测量的展望 1.GNSS,SLR,VLBI是主导本学科发展的主要的空间大地测量技术 2.空间大地网是实现本学科科学技术任务的主要技术方案 3.精化地球重力场模型是大地测量学的主要发展目标 4.新一代国家测绘基准建设工程已经启动 第二章

开普勒三大行星运动定律 1.行星轨道是一个椭圆,太阳位于椭圆的一个焦点上。 2.行星运动中,与太阳连线在单位时间内扫过的面积相等 3.行星绕轨道运动周期的平方与轨道长半轴立方之比为常数。 岁差 由于日月等天体影响,地球的旋转轴在空间围绕黄极发生缓慢旋转,是地轴方向相对于空间的长周期运动。 章动 地球旋转轴在岁差的基础上叠加18.6年的短周期圆周运动,振幅为9.21″。 极移 地轴相对于地球本体内部结构的相对位置变化。 国际协议原点CIO 国际上五个ILS站以1900~1905年的平均纬度所确定的平极作为基准点。 时间的计量包括哪两大元素 1.时间原点。 2.度量单位。 计量时间的方法满足的条件(3点) 1.运动是连续的; 2.运动的周期具有足够的稳定性; 3.运动是可观测的。 春分点 当太阳在黄道上从天球南半球向北半球运行时,黄道与天球赤道的交点。 什么是大地测量基准? 用以描述地球形状的参考椭球的参数、参考椭球在空间中的定位及定向、描述这些位置时所采用的单位长度的定义。包括:平面基准、高程基准、重力基准等。 什么是大地测量参考系统与参考框架,两者有何关系? 大地测量系统包括坐标系统、高程/深度基准和重力参考系统。 大地测量参考框架有坐标(参考)框架、高程(参考)框架和重力测量(参考)框架三种。是大地测量参考系统的具体实现。 什么是椭球定位与定向? 椭球定位指确定椭球中心的位置,分为局部定位和地心定位; 椭球定向指确定椭球旋转轴的方向。

坐标转换器使用说明

大地坐标(BLH) 平面直角坐标(XYZ) 四参数:X 平移、Y 平移、旋转角和比例 七参数:X平移,Y平移,Z 平移,X 轴旋转,Y 轴旋转,Z 轴旋转,缩放比例(尺度比) GPS控制网是由相对定位所求的的基线向量而构成的空间基线基线向量网,在GPS控制网的平差中,是以基线向量及协方差为基本观测量。 图3-1表示为HDS2003数据处理软件进行网平差的基本步骤,从图中可以看到,网平差实际上可以分为三个过程: l、前期的准备工作,这部分是用户进行的。即在网平差之前,需要进行坐标系的设置、并输入已知点的经纬度、平面坐标、高程等。 2、网平差的实际进行,这部分是软件自动完成的; 3、对处理结果的质量分析与控制,这部分也是需要用户分析处理的过程。 图3-1 平差过程 坐标系选择 针对不同的平差,要相应选择不同的坐标系,是否输入相应信息。在笔者接触过的项目中,平差时先通过三维无约束平差后,再进行二维约束平差。由于先进行的时三维无约束平差,是在WGS84坐标系统下进行的。 首先更改项目的坐标系统。在菜单“项目”->“坐标系统”或在工具栏“坐标系统”,则弹出“坐标

系统”对话框,选择WGS-84坐标。 图3-2 坐标系统 这里注意的是,在“投影”下见图,中央子午线是114°。很多情况下这里需要进行修改。 图3-3 WGS84投影 软件中自带的“中国-WGS 84”是允许修改的,我们换种方法:就是新建一个坐标文件,其他参数都和“中国-WGS84”一致,仅仅将中央子午线修改下。 在上图中,点击“新建”,得到“COORD GM”对话框,在“文件”->“新建”,如图

图3-4 新建坐标系统 然后在“设置”->“地图投影”,直接修改中央子午线,这里以81°为例,点击确定后,返回“COORD GM”对话框。 图3-5 投影设置 将输入源坐标和输入目标坐标的椭球,均改为WGS84。在“文件”->“保存”,输入名称和国家(中国),退出操作。

1大地测量学习笔记

注册测绘师--大地测量学习笔记 1.大地测量的任务和特点 1)大地测量的任务:建立国家或大范围的精密测量控制网。 例如:国家一等、二等、三等、四等平面大地控制网和高程控制网,A、B、C、D、E卫星定位控制网 2)现代大地测量的特点:长距离、高精度、实时快速、四维(XYZT)、地心。2.大地测量的主要作用 (1)为大规模地形图测制及各种工程测量提供高精度的平面控制和高程控制;(2)为空间科学技术和军事用途提供精确的点位坐标、距离、方位及地球重力资料; (3)为研究地球形状和大小、地壳形变及地震预报等科学问题提供资料; (4)是组织、管理、融合和分析地球海量时空信息的数理基础和时空参考平台。 3.大地测量系统与参考框架 四个系统,三个框架 1)大地测量系统 大地测量系统规定了大地测量的起算基准和尺度标准及其实现方式(包括理论、模型和方法)。 大地测量系统包括坐标系统、高程系统/深度基准和重力参考系统。 (2).大地测量参考框架 大地测量参考框架,就是按大地测量系统的规定的原则,采用大地测量技术,在全球或局域范围内所测定的、固定在地面上的点所构成的大地网(点)或其他实体(静止或运动的物体)。是对大地测量系统的具体实现。 与大地测量系统相对应,大地测量参考框架有坐标(参考)框架、高程(参考)框架和重力测量(参考)框架三种。 4.大地测量常数 大地测量常数是指与地球一起旋转且和地球表面最佳吻合的旋转椭球(即地球椭球)几何和物理参数。 分为基本常数和导出常数。 基本常数唯一定义了大地测量系统。导出常数是由基本常数导出,便于大地测量应用。 (1)大地测量基本常数 地球椭球的几何和物理属性可由四个基本常数完全确定,这四个基本常数就是大地测量基本常数。它们是 赤道半径a; 地心引力常数(包含大气质量)GM; 地球动力学形状因子J2; (地球重力场二阶带球谐系数) 地球自转角速度ω 基本常数就是这个

测量中常用的坐标系统

测量中常用的坐标系统 [来源:本站 | 作者:原创 | 日期:2010年11月26日 | 浏览168次] 字体:[大中小] 1) 球面坐标系统 天文地理坐标系:以大地水准面为基准,以铅垂线为基准线,地面点在基准面上投影位置由天文经度(λ)和天文纬度(φ)确定。 大地坐标系:以参考椭球体面为基准面,以法线为基准线。地面点在椭球面上投影点的位置用大地经度L、大地纬度B表示。 2)空间直角坐标系:以参考椭球体的中心为坐标原 点,指向地球北极的方向为Z轴,首子午面与赤道的交线为X轴,Y轴垂直于xoz平面。 WGS-84坐标系(世界大地坐标系):采用WGS-84椭球,其坐标原点在地心,Z轴指向BIH1984.0定义的协议地球极(CTP)方向,X轴指向BIH1984.0的零子午面和CTP赤道的交点,Y轴与Z、X轴构成右手坐标系。也称全球地心坐标系。GPS卫星定位系统得到的地面点坐标就是WGS-84坐标。 3)高斯平面直角坐标系 地图投影:将球面上图形、数据按一定的数学法则转到平面上的方法。 X= F 1 (L,B) 或 X= F 1 (x, y, z)

Y= F 2 (L,B) Y= F 2 (x, y, z) 地图投影分类:按变形性质分为:等角投影、等积投影和任意投影。其中,等角投影保持角度不变,投影后任意一点各方向的长度比不变,从而在有限范围内使得投影平面上图形与椭球上保持相似。因此,等角投影也成为正形投影。 高斯投影:等角横切椭圆柱投影,又称高斯—克吕格投影。 a) 高斯投影的特点:中央子午线的投影为一条直线,且投影之后的长度无变形;其余子午线的投影均为凹向中央子午线的曲线,且以中央子午线为对称轴,离对称轴越远,其长度变形也就越大;赤道的投影为直线,其余纬线的投影为凸向赤道的曲线,并以赤道为对称轴;经纬线投影后仍保持相互正交的关系,即投影后无角度变形;中央子午线和赤道的投影相互垂直。 b) 分带法:为保证投影精度,限定投影的区域的方法——按经度分带。按投影带不同通常分为 6o带投影:从0o子午线开始,自西向东,每隔经差 6o为一个投影带,将椭球分成60个投影带,带号N 依次编为1~60。6o带可以满足1:25000以上中、小比

CORS坐标转换软件使用说明

坐标转换软件使用说明  1、功能介绍  在南京进行测量的同行一直受到坐标系统和已知控制点的困扰, 所以往往许多测量成果因坐标系统问题得不到承认,浪费了大量的人 力物力。基于此:本公司集全部精干技术力量,研发本款坐标转换软 件,可以说:它是全体测量工作者的福音。  南京CORS因为其免费,应用十分广泛,但是使用南京CORS在 很多情况下,因为已知控制点原因无法实地取得平面坐标而限制了 CORS优势的发挥。本软件可以实现基于南京CORS测量的WGS84 坐标与92南京地方坐标双向自由转换,转换精度与权威部门转换成 果比较(在南京市6800平方公里范围内,包括高淳、溧水、六合、 浦口):平面残差中误差优于±5mm、高程残差中误差均优于±1cm。精度完全具有保障,免去到处寻找控制点带来的人力、财力和时间浪费。按照最新城市规范规定,这种模式可以实现城市E级GPS控制 点的平面测量。  本软件是一款后处理软件,即:内业处理软件,它不能在实地计 算坐标,通过事后(采集)或事前(放样)数据处理,同样可以让你 在野外无忧无障碍开展工作。  适用平台:Windows 32位所有系统平台。  2、外业采集数据转换操作介绍  外业测量数据从RTK手簿中以WGS84坐标格式导出,导出以后 将文件复制到计算机,假设文件名为0513.dat。在电脑中启动软件,

界面如下:  图一:程序启动界面  首先选择转换方向下拉列表框,此时选择“WGS84—>NJ92”,表示将WGS84坐标转向92南京地方坐标,此时软件会出现一个按钮 键读入数据并转换,点击该按钮,在弹出的文件对话框中选择从手簿 导出的外业坐标文件。如:0513.dat,点击打开按钮即可完成转换。如图二:  图二:选择原始数据文件  记得一定要选择你的原始数据文件格式在点击打开按钮。转换完 成以后又会在对话框中再出现一个按钮导出转换成果,点击它即可将

施工坐标系与测量坐标系之间的相互转换关系

施工坐标系与测量坐标系之间的相互转换一、用Microsoft Excel 编辑转换

如图(1-1)所示:设Y O X -- 为测量坐标系,y o x -'- 为施工坐标,如果知道了施工坐标系的原点o '的测量坐标为('0X ,'0Y )、定向点I 的测量坐标为(XI,YI ),定向坐标方位角 x -'0α (即纵轴的旋转角,因为0=-X o α为正北方向,则x -'0α=X o -α+α)。则所求P 点由施工坐标P (p p y x ,)换算成为测量坐标P (p p Y X ,)的公式则为: ααsin *cos *0p p p y x X X -+=' ααcos *sin *0p p p y x Y Y ++=' 上面两式在Excel 中编辑公式为: [][]180/()*sin *180/()*cos *0Pi y Pi x X X p p p αα-+=' [][]180/()*cos *180/()*sin *0Pi y Pi x Y Y p p p αα++=' 而如果知道了施工坐标系(第二坐标系)的原点的测量坐标 o '为('0X 、'0Y )、坐标方位角 x -'0α (即纵轴的旋转角,因为0=-X o α为正北方向,则x -'0α=X o -α+α)。则所求P 点由测量坐标P (p p Y X ,)转换算为施工坐标P (p p y x ,)其公式为: ααsin *)(cos *)(00''-+-=Y Y X X x p p p ααcos *)(sin *)(00''-+--=Y Y X X y p p p 上面两式在Excel 中编辑公式为:

GPS测量常用坐标系统及相互转换

GPS测量常用坐标系统及坐标转换 摘要:本文GPS测量常用坐标系统,以及GPS静态、动态测量中坐标变换的参数和方法。关键词:GPS;坐标系统;坐标转换 GPS(Global Positioning System)即全球定位系统,是由美国建立的一个卫星导航定位系统。它具有全球性、全天候、连续性和实时性的精密三维导航与定位功能,现已广泛用于大地测量、工程测量、航空摄影测量以及地形测量等各个方面。相对于常规测量来说,GPS 测量具有测量精度高、测站间无需通视、观测时间短、仪器操作简便、全天候作业、可提供三维坐标等特点。大大地提高了测量效率和精度。但是由于坐标系统的不同,面临着大量的坐标转换问题。对GPS技术的推广使用造成了一定的障碍。本文就GPS测量常用坐标系统及坐标转换的原理和方法,根据作者的理解介绍如下。 一、GPS测量常用坐标系统及投影 一个完整的坐标系统是由坐标系和基准两方面要素所构成的。坐标系指的是描述空间位置的表达形式,而基准指的是为描述空间位置而定义的一系列点、线、面。在大地测量中的基准一般是指为确定点在空间中的位置,而采用的地球椭球或参考椭球的几何参数和物理参数,及其在空间的定位、定向方式,以及在描述空间位置时所采用的单位长度的定义。大地基准面是利用特定椭球体对特定地区地球表面的逼近,每个国家或地区均有各自的大地基准面,因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面。 1、坐标系统的分类 1.1、空间直角坐标系 空间直角坐标系的坐标系原点位于参考椭球的中心,Z轴指向参考椭球的北极,X轴指向起始子午面与赤道的交点,Y轴位于赤道面上,且按右手系与X轴呈90 夹角。某点在空间中的坐标可用该点在此坐标系的各个坐标轴上的投影来表示。 1.2、空间大地坐标系 空间大地坐标系是采用大地经度(L)、大地纬度(B)和大地高(H)来描述空间位置的。纬度是空间的点与参考椭球面的法线与赤道面的夹角,经度是空间中的点与参考椭球的自转轴所在的面与参考椭球的起始子午面的夹角,大地高是空间点沿参考椭球的法线方向到参考椭球面的距离。 1.3、平面直角坐标系 平面直角坐标系是利用投影变换,将空间坐标(空间直角坐标或空间大地坐标)通过某种数学变换映射到平面上,这种变换又称为投影变换。投影变换的方法有很多,如UTM 投影,在我国采用的是高斯-克吕格投影,也称为高斯投影。 2、高斯-克吕格投影 高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x 轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。高斯-克吕格投影在长度和面积上变形很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大

浅谈GPS测量中的坐标系统及其转换

浅谈GPS测量中的坐标系统及其转换 GPS是一种采用WGS-84的地心地固坐标系统,而我国绝大多数应用都集中在各种参心坐标系统上,因此,只有解决这两种不同的空间坐标系的转换才能更好地发挥GPS的作用。本文通过分析GPS的工作原理及GPS测量中的几种常用坐标系统特点,针对测量过程中实现坐标系统转换方法及关键技术进行分析。 标签:GPS 工程测量坐标系统参数转换 1 GPS的工作原理 GPS全球定位系统由空间卫星群、地面监控系统、测量用户的卫星接收设备三大部分组成。 GPS系统是一种采用距离交会法的卫星导航定位系统。如在需要的位置P 点架设GPS接收机,在某一时刻t同时接收了3颗(A,B,C)以上的GPS卫星所发出的导航电文,通过一系列数据处理和计算可求得该时刻GPS接收机至GPS卫星的距离SAP,SBP,SCP,同样通过接收卫星星历可获得该时刻这些卫星在空间的位置(3维坐标)。从而用距离交会的方法求得P点的3维坐标(XP,VP,ZP),在GPS测量中通常采用两类坐标系统,一类是空间固定的坐标系统(天球坐标系),另一类是与地球体相固联的坐标系统,称地固坐标系统地球坐标系),我们在控制测量中常用地固坐标系统(如:WGS-84世界大地坐标系和1980年西安大地坐标系统)。在实际使用中需要根据坐标系统间的转换参数进行坐标系统的变换,来求出所使用的坐标系统的坐标,这样更有利于表达地面控制点的位置和处理GPS观测成果。 2 GPS测量常用坐标系统的比较 2.1 WGS-84坐标系WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的星历参数就是基于此坐标系统的。WGS-84坐标系统的全称是World Geodieal System一84(世界大地坐标系-84),它是一个地心地固坐标系统。WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS所采用的坐标系统-WGS-72坐标系统而成为GPS的所使用的坐标系统。WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984.0定义的协议地球极方向,X轴指向BIH1984.0的起始子午面和赤道的交点,Y轴与X轴和Z轴构成右手系。采用椭球参数为: a=6 378 137mf=1/298.257 223 563 2.2 1954年北京坐标系1954年北京坐标系是我国目前广泛采用的大地测量坐标系,是一种参心坐标系统。该坐标系源自于前苏联采用过的1942年普尔科夫坐标系。该坐标系采用的参考椭球是克拉索夫斯基椭球,该椭球的参数为:a=6 378 245mf=1/298.3。我国地形图上的平面坐标位置都是以这个数据为基准推算的。

历年长安大学大地测量学与测量工程试题

一、术语解释(每小题2分,共20分) 1正常高:地面点沿正常重力线到似大地水准面的距离。 2 高斯坐标系:利用高斯投影,以中央子午线为纵轴,赤道投影为横轴所构成的平面直角坐标系 3 1985国家高程系:采取青岛水准原点和根据青岛验潮站1952年到1979年的验潮数据确定的黄海平均海水面所定义的高程基准。 4 垂直折光系数:视线通过上疏下密的大气层折射形成曲线的曲率半径与地球曲率半径之比。 5 世界时过格林尼治平均天文台的本初子午线上以平子午夜作为零时开始的平太阳时。 6 天顶距空间方向线与天顶方向间的夹角,取值范围[0,180]。 7 3S技术GPS、GIS、RS的集成及其应用的技术 8 微波遥感遥感器工作波段选择在微波波段范围的遥感 9 数字摄影测量从数字影像中获取物体三维空间数字信息的摄影测量 10 空间信息可视化在空间数据库的支持下,利用图形算法、地图学方法和数据挖掘技术,为通过视觉感受与形象思维而获取新知识的空间数据处理、分析及显示的技术。 二、问答题(每小题10分,共50分) 简述水平角观测误差的主要来源,级减弱(以至消除)其影响的措施 1 (1)仪器误差,包括水平度盘偏心误差、度盘刻划误差、视准轴误差、横轴误差和竖轴误差。均属于系统误差,可采用一定的观测措施或加改正的方法予以减弱。 (2)观测误差,包括对中误差、整平误差、照准误差(均属于系统误差)和读数误差(属于偶然误差),对于系统误差可采取提高仪器安置精度等措施予以减弱,对于偶然误差采取平差计算。 (3)外界环境的影响,可选择有利的气象条件观测。 简述等高线的特征,按三角网法简述自动绘制等高线的算法步骤? 2 等高线特征:(1)同一条等高线的高程都相等;(2)封闭曲线;(3)不相交不重合;(4)与地形线正交;(5)等高线平距与坡度成反比。 算法步骤:(1)构件三角网数字高程模型;(2)寻找等高线通过点;(3)等高线点追踪;(4)等高线光滑。 3 (1)近似表示地球的形状和大小,并且其表面为等位面的旋转椭球; (2)与大地水准面最接近的地球椭球 (3)与某区域或一个国家大地水准面最为密合的地球椭球 (4)确定参考椭球面与大地水准面的相关位置,使参考椭球面在一个国家或地区范围内与大地水准面最佳拟合; (5)单点定位法和多点定位法 4 (1)由整体到局部,先控制后碎部 (2)防止误差积累,保证精度均匀 (3)技术设计、实地选点、标石埋设、控制网观测和计算。 5 (1)将一系列相邻控制点连接成折线形,并测定各转折角和边长,再根据起算数据计算导线点坐标的一种控制测量方法。 (2)优点:布设灵活,通视要求低;缺点:图形强度差 (3)附合导线、闭合导线、支导线、附合导线网、自由导线网

大地坐标与大地空间坐标转换工具

#include "stdafx.h" #include #include #include "resource.h" #include "MainDlg.h" #include #include BOOL WINAPI Main_Proc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { switch(uMsg) { HANDLE_MSG(hWnd, WM_INITDIALOG, Main_OnInitDialog); HANDLE_MSG(hWnd, WM_COMMAND, Main_OnCommand); HANDLE_MSG(hWnd,WM_CLOSE, Main_OnClose); } return FALSE; } BOOL Main_OnInitDialog(HWND hwnd, HWND hwndFocus, LPARAM lParam) { return TRUE; } void Main_OnCommand(HWND hwnd, int id, HWND hwndCtl, UINT codeNotify) { double a=0; double e2=0; switch(id) { case IDC_B1: { a=6378245.0000; e2=0.00669342162297; if(a==0) { MessageBox(hwnd,TEXT("请选择坐标系"),TEXT("警告"),MB_OK); } else{

相关文档
最新文档