第五章 反击式水轮机的基本结构(一)

轴流式水轮机转轮算例

题目:ZZ440水轮机转轮的水力设计 方法:奇点分布法 已知参数: ZZ440 —100转轮水力设计 一.确定计算工况 由模型综合特性曲线得到n110=115 (r/min ) ,Q110=820 ( l/s) zz440属于ns=325~875范围,为了使设计的转轮能在预期的最优工况下效 率最高,计算工况与最优工况的关系按下式确定: n1l=(1.2~1.4)n 110 =138~161 (r/min) n= n.,^ H / D1(1.2 ~ 1.4)n110寸百/ D r 721.3 ~ 841.5 ( r/min) 故选定n=750 ( r/min ) 则实际n11= ^D1143.49 V H Q11=(1.35~1.6)Q110=1.4 Q110=1148<1650 (l/s) Q Q11D2JH1.4Q110D W H 6.0 m3/s 二.确定各断面叶栅稠密度l/t 据P213页(-)pj ~ n s关系,当ns=440时,得t 综合考虑一下关系: (二」 t "pi3 取D1=1000mm,取6 个断面R1~R6 依次为255、303、351、399、447、495 水力设计内容: (1) (2) (3) (4) (5) (6) (7) 确定计算工况 确定各断面叶栅稠密度l/t 选定进出口轴面速度Cz沿半径的分布规律,确定各断面的选定 进出口环量r沿半径的分布规律,确定各断面的r 计算各断面进 出口速度三角形,求知、2 第一次近似计算及绘图 第二次近似计算 Cz1、Cz2 1、 n =91%, a om=18mm D1 a。 _ a0m 1m —18 39.13mm 0.46 (0.85~0.95片)Pj K 3(t)n (1.2 ~ 1.25 )n (\ K卩小的打

水轮机调节复习资料

1.配压阀结构型式:通流式和断流式。 2.根据连接范围不同,总线分为片级总线,系统总线,外总线。 3.总线信号线分为数据线,地址线,控制线,电源线和地线,备用线 4.水轮机调速器分类按元件结构不同分为机械液压型电气液压型。按调节规律不同分为PI 和PID ;按反馈位置分为 辅助接力器和中间接力器和电子调节器型;按施行结构的数目分为单调节和双调节;按工作容量可分为大,中,小型。 5.调节设备一般包括调速柜,接力器,油压装置, 6.压油槽根据工作的情况,油的容积可分为保证正常压力所需的容积,工作容积,事故关闭容积,贮备容积。 补充: 1.PID控制算法有哪些:按算法不同分为位置型和增量型。 2. 负荷的类型:根据性质不同分1功率与频率没有直接关系的负载,2成正比的负载,3成平方关系的负载,4成三次方关系的负载,5成更高次方关系的负载; 3. 油压装置的组成:压力油罐,回油箱,带电动机的油泵,补气装置。 4.负载功率与电压关系:1与电压关系甚微的负载,2与电压平方成反比变化的负载,3成正比的负载。 5.接力器按工作原理分:双向作用和差动作用。 6.水轮机调节系统运行工况:1,单机带负荷工况,2空载工况,3并列带负荷工况。 二名词解释: 1.。.转速死区:当机组转速超过N1时调速器关闭导叶,而当机组转速低于N2时调速器才开启导叶,当转速在N1和N2之间时,调速器不动作,称为转速死区。 2. 总线:计算机系统内部各独立模块之间传递各种信息的渠道,它将功能相对独立的模块有机地连接起来,完成模块之间的信息传递和通信。 3.。调节保证计算:在设计阶段就应计算出上述过度过程中最大转速上升值和最大压力上升值,工程上把计算称为调节保证计算。 4. 水击相长:由A端阀门导叶处发出的波到达B端水库后再由B端反射回到A端所需的时间称为水击的相,相长为来回的时间。 5. 直接水击:阀门(导叶)的关闭(开启)时间Ts≤2L/a ,在水库传来的反射波尚未到达时,发生的水击为直接水击。 补充:: 1间接水击::阀门(导叶)的关闭(开启)时间Ts>2L/a ,发生的水击为直接水击。 2双调节:两个调速机构。 3协能关系:在双重调节的水轮机调节系统中,为了使系统稳定,高效,对可以调节的部分进行调节时符合的一定关系。作用:增加水轮机的高效率区的宽度,以适应负荷的变化。 4遮程:套筒孔口高度hs与阀盘高度hv之差的一半。 5频率调节:调速器受给定频率FG控制,直至机组频率等于给定频率 6频率跟踪:将网频作为调速器的频率给定值,直至机组频率与频率给定值一样。 7指令信号:机组并网后希望能迅速增加其出力,这是通过调整调速器的功率给定来实现的,功率给定信号就是指令信号,其时间就是指令信号时间。 8升速时间Tn:甩负荷后机组转速自导叶开始动作到最大转速所经历的时间。 9水轮机调节系统动态特性: 10水轮机调节系统的参数整定: 11.稳定域: 简述题: 2.试述水轮机调节的基本任务和其特点、 基本任务:根据负荷的变化不断调节水轮发电机组的有功功率输出。并维持机组转速频率在规定的范围内。这就是水轮机

水轮机作业答案

1、某水轮机进行效率试验时测得的读数如下:水轮机进口压力表的读数为6.3kg/cm2,装压力表处的钢管直径为6m ,压力钢管中心高程为90 m ,压力表距钢管中心距离为3.5m 。水轮机的流量Q 为270m3/s ,下游尾水位高程为97m ,发电机出力为1.5╳105kW ,发电机的效率97.5%f η=。求该工况下水轮机的效率。 ()()2 2 22122 22 1122111 22212125=02270 9.556229.55==4.65229.8122=4.6590 3.5630097=64.15 1.51097.5%9.81270a n P P V g Q V m s D V m g V P V P H E E Z Z g g m P P αγγππαααγγη≈===???? ? ??????????=-=++-++ ? ? ????+++-++?==??解:将水轮机出口断面取在下游断面,则,=0.905 64.15 2、已知某水电站装有ZZ440-LH-800型水轮机,设计流量Q=490m3/s ,设计水头为21米,额定转速为60rpm ,叶片出口角0227β=,轮毂直径10.5B d D =,容积效率98%v η=,水力效率95.2%h η=。试绘制该工况下水轮机进、出口水流速度三角形,并求进口角。 ()()()11212222212220 20222211221860 25.133/60 6049098% 12.738/111844412.738 25.1330.133/tan tan 2712.738tan 890.133 1 1 2195.2%25.13325.9.8 m m B m u m u s u u u D n U U m s Q V V m s K D d V V U m s V V H U V U V g V ππππβααη??== = =?== = =-???-=-=-===== -?=-,得() 1011110 111111330.1337.928/12.738 tan 587.928 12.738 tan 3725.1337.928 u m u m u V m s V V V U V ααββ?===== ==--,得,得

水轮机自动调节

第一章 发电启动控制的组成及过程 在水力发电过程中,首先将水能通过水轮机转换为旋转的机械能,再经由同步发电机转换为三相交流电能,然后电能通过变电、输电、配电及供电系统送至电力用户消耗。当电力系统有功负荷(电能消耗)发生变化时,必然引起整个系统能量的不平衡,从而引起系统频率发生波动。为了保证电能的频率稳定,必须对水轮发电机组的转速进行控制。水轮机调速器承担着控制机组转速的任务,调速器通过检测机组的转速与给定值比较形成转速偏差,转速偏差信号再经过一定的控制运算形成调节型号,然后通过功率放大操纵导水机构控制水能输入,使水能输入与电力有功负荷相适应。同样,当电力系统电力无功不平衡时,将会引起系统电压发生波动,励磁装置承担着稳定电压的作用,并且励磁系统能够改善并网运行发电机的功角稳定性。 2.水轮机调节系统的组成及各元件的作用 水轮机自动调节系统是由水力系统、水轮发电机组及电力系统所组成的调节对象和调速器组成的。调速器包括了测量元件、比较元件、放大元件、执行元件和反馈元件等。 测量元件(离心飞摆)作用是将机组转速信号转换为相应的机械位移信号。 放大元件(配压阀和接力器构成的液压放大器)作用是把测量元件输出的机械位移量进行功率放大,通过执行元件操作控制笨重的倒水机构。 设置反馈元件的目的是对放大元件进行校正,改变调速器的控制规律,以保证水轮机调节系统动态稳定性。 接力器兼作执行元件,操作水轮机的开度。 比较元件(由弹簧、轴承、滑环等组成)在A点位置保持不变时,人为调整转速给定把手,弹簧力发生变化,离心力必须相应变化,相当于离心飞摆转速或机组转速发生了变化。 4.水轮机调速器是如何分类的? 1.按元件结构分:a机械液压型调速器(元件均是机械的)b电气液压型调速器(模拟电气液压型;数字电气液压型又名微机调速器) 2.按系统结构分:a辅助接力器型调速器(跨越反馈)b中间接力器型调速器(逐级反馈)c调节器型调速器(随动系统) 3.按控制策略分:PI调节型,PID调节型,智能控制型 4.按执行机构数目分:单调节调速器,双调节调速器

水轮机的基本结构及其主要部件的作用

水轮机的基本结构及其主要部件的作用 水轮机总体由引水、导水、工作和排水四大部分组成。 1、水轮机的引水部件: 主要指蜗壳及座环等,水流由蜗壳引进,经过座环后才进入导水机构。蜗壳的作用是使进入导叶以前的水流形成一定的旋转,并轴对称地、均匀地将水流引入导水机构;座环的作用是:承受整个机组及其上部混凝土的重量以及水轮机的轴向水推力;以最小的水力损失将水流引入导水机构;机组安装时以它为基准。所以,座环既是承重件,又是过流件,也是基准件。因此,要求座环必须有足够的强度、刚度和良好的水力性能。 2、水轮机的导水机构: 导水机构主要由操纵机构(推拉杆、接力器及其锁锭装置)、导叶传动机构(包括控制环、拐臂、连杆和连接板等)、执行机构(导叶及其轴套等)和支撑机构(顶盖、底环等)四大部分组成。其作用使进入转轮前的水流形成旋转,并可改变水流的入射角度,当发电机负荷发生变化时,用它来调节流量,正常与事故停机时,用它来截断水流。 导水机构的操纵机构 导水机构的操纵机构的作用是:在压力油的作用下,克服导叶的水力矩及传动机构的摩擦力矩,形成对导叶在各种开度下的操作力矩。导水机构的操纵机构分为直缸式和环形接力器两大类。 调速环或接力器锁锭装置 锁锭装置的作用是:当导叶全关闭后,锁锭投入,可阻止接力器活塞向开侧移动;一旦关侧油压消失,又可防止导叶被水冲开。 导水机构的传动机构 导水机构的传动机构的作用:是将操纵机构的操作力矩传递给导叶轴并使之发生转动。其型式主要有叉头式和耳柄式两种。太站为耳柄式,长站为叉头式。正常运行时应着重检查控制环、拐臂、连杆和连接板之间的连接销有无串出或脱落。剪断销及引线是否完好。 导水机构的执行机构

水轮机特性曲线

保证出力与额定出力之间有什么关系,他们之间的区别是什么?分别怎样计算? 保证出力指的是机组在各个运行水头稳定运行的出力范围。有最大保证出力,也有最小保证出力。各种机型的保证出力是不一样的。比如混流式的保证出力定义是:在最小到最大水头范围内水轮机出力是45~100%。那么最大保证出力就是某水头时的100%,最小出力为最大出力的45%。保证出力受能量性能(效率),气蚀等诸多因素的影响。例如,某水轮机出力在设计水头下为8333kw,那么,在这个水头下最大出力就8333kw,最小出力就是8333X45%=3750kw.。以上最大最小出力在行业规范中有具体的规定。额定出力是指机组在最优工况点的出力(既选择的运转特性曲线上效率最大点的水头和流量)。设计出力指的是在设计点的出力(设计水头,设计流量,设计效率)。 出力计算公式:N=9.81QHη(千瓦) 其中:9.81是水的比重常数 Q—通过水轮机的流量(立方米/秒) H—水轮机的工作水头(米) η—水轮机的工作效率(%) 水轮机的线型特性曲线可用转速特性曲线、工作特性曲线及水头特性曲线三种不同形式表示。线型特性曲线具有简单、直观等特点,所以常用来比较不同型式水轮机的特性。 一、转速特性曲线 转速特性曲线表示水轮机在导水叶开度、叶片转角和水头为某常数时,其他参数与转速之间的关系。在水轮机的模型试验中,常规的做法是保持一定的水头,通过改变轴上的负荷(力矩)来改变转速,达到调节工况的目的。故整理模型试验的数据时,以转速特性曲线最为方便,水轮机的其他特性曲线,实际上都是从转速特性曲线换算而得。 如图下图所示。由水轮机转速特性曲线可以看出水轮机在不同转速时的流量、出力与效率,还可以看出水轮机在某开度时的最高效率、最大出力及水轮机的飞逸转速。

轴流式水轮机的结构

第二节 轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1— 1— 1— 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢轴;6—转 轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数 。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保

ZZ560轴流式水轮机结构设计_毕业设计设计说明书

2013届热能与动力工程专业毕业设计(论文) 毕业设计(论文) 题目ZZ560轴流式水轮机 结构设计 专业热能与动力工程 1

摘要 葛洲坝电站是我国代表性的低水头大流量、径流式水电站,兼具发电、改善航道等综合效益。本次设计主要是通过查阅相关设计手册,对葛洲坝电站型号为ZZ560-LH-1130的轴流转桨式水轮机结构进行设计,主要内容包括水轮机总体结构设计、导水机构及其传动系统设计,水轮机部分零部件,例如主轴,导叶等零件的设计。 通过使用CAD绘图,本次设计过程更加便捷,设计成果更加精确。关键词:葛洲坝水电站,轴流式水轮机,转轮设计,结构设计, ABSTRACT

2013届热能与动力工程专业毕业设计(论文) Gezhouba Dam power plant is China's representative low head and largeDischarge,runoff hydropower stations,power generation,wita comprehensive benefits improve navigation etc.This design is mainly through access to relevant design manual,design of the Kaplan turbine structure of Gezhouba Dam power plant model for ZZ560-LH-1130,The main contents include design of water mechanism and its transmission system overall structure design of hydraulic turbine,guide,some parts of hydraulic turbine,such as the spindle,the design of guide vane and other parts. Using the CAD,the process of design is more convenient and the result is more accurate. KEY WORDS:GeZhouBa hydropower station,Kaplan turbine, station,runner,Structural design. 3

水轮机调节作业及参考答案

作业一: 1.简述水轮机调节的基本任务、实现水轮机调节的方法和途径。 答:水轮机调节的基本任务:保证频率在规定范围内,根据电力系统负荷的变化不断调节水轮发电机的有功输出,维持转速在规定范围内。调节途径: 改变喷针开度,使水轮机的动力矩和发电机阻力矩平衡,使转速和频率保持在规定范围。实现水轮机调节的途径就是改变水轮机导叶的开度。 2.水轮机调速器从不同的角度有不同的分类方法。调速器按元件结构的不同可分为哪几种? 按执行机构的数目可分为哪几种?按调节规律、按工作容量、按反馈的位置又可分为哪几种? 答:(1)按元件结构分为机械液压和电气液压,其中,电气液压又分为模拟电气液压和数字电气液压(2)按系统结构分为辅助接力器型、中间接力器型和调节型(3)按照控制策略分为PI(比例+积分)调节型,PID(比例+积分+微分)调节型和智能控制型(4)按执行机构数目分为单调节调速器和双调节调速器(5)按工作容量分为大型、中型、小型、特小型。 3.调速器型式解释: (1)T-100 机械液压式单调节调速器工作容量为100N.M (2)TT-300机械液压式特小型单调节调速器工作容量为300N.M (3)YT-600机械液压式中小型单调节调速器工作容量为600N.M (4)WST-1000-4.0微积式特小型双调节调速器额定工作率为4,工作容量为1000N.M 作业二: 1.电液调速器由哪几个部分组成?测频回路的作用是什么?有哪几种型式的测频回 路?人工失灵区的意义何在? 答:电液调速器由三部分组成:传感器,主调速器(505),TM-25LP执行机构。测频回路:利用电容元件C和电感元件L组成的谐振回路,相当机械调速器中飞摆的作用。送至信号综合回路达到控制水轮机、实现机组自动调节的目的。测频回路四种型式:A:永磁机----LC 测频回路,B:发电机残压----脉冲频率测量回路,C:齿盘磁头----脉冲频率测量回路,D:发电机残压----数字测频电路。 人工失灵区的意义:可以实现当系统频差在该段范围内该机组基本上不参加调节,从而起着固定负荷的作用,即人为地造成失灵区。以利于机组稳定的承担基本负荷,也有利于电力系统的运行。但当系统频率偏差较大,即超过该段范围时,则机组仍保持原来静特性的斜率,使机组有效的参加调解。 2.电液调速器中,连接电气部分和机械液压部分的关键元件是什么?它的作用是什 么? 答:电液转换器。作用:将电气部分输出的综合电气信号,转换成具有一定操作力和位移量的机械位移信号,或转换成为具有一定压力的流量信号。 作业三: 1.和模拟电调相比,微机调速器的优点何在?

水轮机自动调节复习资料

1.频率波动过大有什么后果?电力系统对频率指标有哪些规定? 频率偏差过大:将会导致以电动机为动力的机床、纺织机械等运转不稳定,造成次品或废品 发生。更重要的是频率偏差过大也会影响发电机组及电网自身的稳定运行, 甚至造成电网解列或崩溃。 电力系统规定:我国电力系统标称频率50HZ ,正常频率偏差允许HZ 2.0±,当系统容量较 小时,偏差值可放宽至HZ 5.0±。 2.什么是调节系统和随动系统? 调节系统:由调节对象和调节器两部分组成,是一种闭环或反馈控制系统,按照给定值与被 调节量信号偏差工作的,其给定值或者保持常量,或者随时间缓慢变化。 随动系统:(伺服系统)是另一类闭环或反馈系统,其负荷变化往往不是主要输入量(扰动)。 与调节系统不同,随动系统的给定值带有随机性,经常处于变化过程中,系统的 输出量以一定精度跟随给定值变化。 3.试画出自动调节方框图,说明水轮机调节系统的工作过程。 机组的转速信号(被调节参数)送至测量元 件,测量元件把频率信号转换为唯一的电压 信号后与给定信号比较,确定频率偏差及偏 差的方向,根据偏差情况按一定调节规律发 出调节命令。命令被放大并送至执行元件去 推动导水机构,反馈元件又把导叶开度变化 的信息返回加法器,同时也形成一定的调节 规律。调节规律可以再前向通道中形成,也 可以再反馈通道中形成。 4.与其它调节系统相比,水轮机调节系统的有哪些特点? ○1单位水体包含做功能量较小,引用流量很大,笨重的导水机构,在调速器中需设多级液压 放大元件○ 2水流惯性产生的水击作用,调速器中要设置较强作用的反馈元件,以延缓导叶动作速度,保证系统稳定性○ 3双重调节机构增加了调速器结构的复杂性○4在系统中担任调峰调频和事故备用任务,调速器应具有较高的控制性能和自动化水平。 5.水轮机调速器按元件结构及系统结构是如何分类的? 按元件结构分:a 机械液压型调速器(元件均是机械的)b 电气液压型调速器(元件均是模拟电气的)c 微机液压型调速器(元件均是数字的) 按系统结构分:a 辅助接力器型调速器(跨越反馈)b 中间接力器型调速器(逐级反馈)c 调节器型调速器(随动系统) 6.什么是配压阀工作中间位置和死区?画出接力器速度特性曲线,接力器反应时间是如何 定义的?并写出表达式。 几何中间位置:配压阀阀盘与阀套孔口正好处于对称位置时,称此为配压阀的几何中间位置 工作中间位置:配压阀阀芯在S 1位置时满足接力器平衡方程((p I -p II )A=R ),称此时S 1为 配压阀的工作中间位置(能够保证接力器静止不动的主配压阀阀芯位置) 配压阀死区:配压阀阀芯在S 11=λA p T R W 0+到12S =λA p T R W 0-之间变化时接力器静止不动, 这一变化范围S 11-12s 就称为配压阀死区。

轴流式水轮机基本结构

轴流式水轮机基本结构 轴流式水轮机与混流式水轮一 样属于反击式水轮机,二者结构上 最明显的差别是转轮,其次是导叶 高度。根据转轮叶片在运行中能否 调节,轴流式水轮机又分为轴流定 桨式和轴流转桨式两种型式。轴流 式水轮机用于开发较低水头 (3m~55m),较大流量的水能资源。 它的比转速大于混流式水轮机,属 于高比转速水轮机。在低水头条件 下,轴流式水轮机与混流式水轮机 相比较具有较明显的优点,当它们 使用水头和出力相同时,轴流式水 轮机由于过流能力大(图5-13), 可以采用较小的转轮直径和较高的 转速,从而缩小了机组尺寸,降低了 投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的功率。但在相对高水头条件下,轴流式水轮机除了空化系数较大,厂房要有较大开挖量外,飞逸转速和轴向水推力较混流式水轮机高。 轴流转桨式水轮机,由于桨叶和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,是一种值得广泛使用的优良机型。 限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量和单位转速都比较大,转轮中水流的相对流速比相同直径 的混流式转轮中的高,所以它具有较大的空化系数。在相同水头下,轴流式水轮机由于桨叶数少,桨叶单位面积上所承受的压差较混流式叶片的大,桨叶正背面的平均压差较混流式的大,所以它的空化性能较混流式叶片的差。因此,在同样水头条件下,轴流式水轮机比混 流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机桨叶数较少(3~8片),桨叶呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加桨叶数和桨叶的厚度,为了能够方便地布置下桨叶和转动机构,转 轮的轮毂比,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单 位流量下降。当达到某一水头时,轴流式水轮机的单位流量甚至比混流式水轮机的还要小。这种情况也限制了轴流式水轮机应用水头的提高。 但是,随着科学技术的发展,通过改进转轮的设计方法,选择更加合理的流道几何参数和桨叶的型线,使得桨叶背面的压力分布更加均匀,降低桨叶正面和背面的平均压差,从而达到

水轮机调节考试复习章节知识点分类、河海大学 沈祖义主编 第三版

第一章水轮机调节基本概念 1、分析基本要求:稳定性、准确性、快速性 2、水轮机调节任务\作用:调频、调功(根据电力系统负荷的变化不断调节水轮发电机的有功功率输出,维持机组转速(频率)在规定范围内) 3、特点:(操作力大、影响因素大多、动作过程复杂、功能多、结构类型多)1调速器需设置多级液压放大元件,而液压放大元件的非线性及时间滞后有可能使水轮机调节系统调节品质恶化2,水击作用与导水机构的调节作用相反,将严重的影响水轮机调节系统的调节品质3对于双重调节机构,调速器中需要增加一套调节和执行机构,从而增加调速器的复杂性4要求调速器具有越来越多的自动操作和自动控制功能,使得水轮机调速器成为水电站中一个十分重要的综合自动装置,总之,水轮机调节系统相对来说不易稳定,结构复杂,要求具有较强的功能 4、调节途径:改变导叶的开度(或喷针开度),使水轮机的动力矩和发电机阻力矩平衡,使转速和频率保持在规定范围。 5、电力系统的频率稳定主要取决于:有功功率的平衡 6、J dw/dt=Mt-Mg (J转动惯量、水轮机动力矩、发电机阻力矩) 7、调速器分类:(1)按元件结构分为:机械液压和电气液压(模拟电气液压、数字电气液压)(2)按系统结构\反馈位置分为:辅助接力器型、中间接力器型、电子调节器型(3)按照控制策略\调节规律分为:PI(比例+积分)调节型、PID(比例+积分+微分)调节型、智能控制型(4)按执行机构数目分为:单调节调速器、双调节调速器(5)按工作容量分为:大型、中型、小型、特小型 8、调速器型号:①②③④━⑤⑥━⑦1—大型无代号;中小型(与油压装置组合在一起)代号Y;特小型(通流式结构)代号T;2—机械液压无代号;电气液压代号D;微机调速器W;3—单调节无代号;双调节代号S;4—调速器基本代号T;5—调速器工作容量(N·m );或主配压阀直径(mm);6—改型标记,经改型的用A、B等标明;7—调速器额定工作油压,大于2.5MPa的才标注,单位MPa 9、数学模型:微分方程、传递函数、动态结构图、方框(块)图、状态方程 第二章水调系统工作原理 1、单调节系统组成:离心飞摆(测速元件)、引导阀(对应的液压放大装置:放大元件)、辅助接力器、主配压阀、主接力器、缓冲器(反馈元件)、调差机构 2、带动离心飞摆转动的两种电源:1、来自与主机同轴的永磁发电机2、来自发电机端电压互感器 3、局部反馈、全局反馈(软反馈\暂态反馈、硬反馈\永态反馈) 4、双调节系统关键部位:协联块 5、双调节:两个调速机构 6、ep调差率es最大功率调差率bp永态转差率bs最大行程永态转差率最大非线性度≤5% 转速死区ix 不准确度ia≤1.5% 第三章机械液压型调速器 1、转速死区ix(指在某一规定的转速范围内,飞摆无法测量出来的最大转速范围与额定转速之比的百分数):当机组转速超过N1时调速器关闭导叶,而当机组转速低于N2时调速器才开启导叶,当转速在N1和N2之间时,调速器不动作,称为转速死区(作用:静态特性非线性度,动态系统的不准确度) 2、转速调整机构作用:当机组单机运行时,改变机组转速;并网运行,改变机组出力 3、调差机构作用:形成有差静特性 4、调节系统具有有差静特性作用:保证并列运行时机组间分配负荷;如果没有,负荷分配

轴流式水轮机的结构

轴流式水轮机的结构 一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。 图2-15 轴流式水轮机 1—1— 1—转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶

图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数σ。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比 1D dh d h =,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单位流量11Q 下降。当达到某一水头时,轴流式水轮机的单位流量甚至比混流式水轮机的还要小。这种情况也限制了混流式水轮机应用水头的提高。但随着科学技术的发展,相信轴流式水轮机的应用水头会进一步提高。 二、转轮体

轴流式水轮机的结构

一、概述 轴流式水轮机与混流式水轮一样属于反击式水轮机,由于水流进入转轮和离开转轮均是轴向的,故称为轴流式水轮机。轴流式水轮机又分为轴流定桨式和轴流转桨式两种。轴流式水轮机用于开发较低水头,较大流量的水利资源。它的比转速大于混流式水轮机,属于高比转速水轮机。在低水头条件下,轴流式水轮机与混流式水轮机相比较具有较明显的优点,当它们使用水头和出力相同时,轴流式水轮机由于过流能力大(图2-15),可以采用较小的转轮直径和较高的转速,从而缩小了机组尺寸,降低了投资。当两者具有相同的直径并使用在同一水头时,轴流式水轮机能发出更多的效率。 特别是轴流转桨式水轮机,由于转轮叶片和导叶随着工况的变化形成最优的协联关系,提高了水轮机的平均效率,扩大了运行范围,获得了稳定的运行特性,更是值得广泛使用的一种机型。

1—1— 1— 转轮接力器活塞;2—转轮体;3—转臂;4—叶片;5—叶片枢 轴;6—转轮室 图2-16所示是轴流转桨式水轮机的结构图。它的工作过程和混流式水轮机基本相同。水流经压力水管、蜗壳、座环、导叶、转轮、尾水管到下游。与混流式水轮机所不同的是负荷变化时,它不但调节导叶转动,同时还调节转轮叶片,使其与导叶转动保持某种协联关系,以保持水轮机在高效区运行。 轴流式水轮机转轮位于转轮室内,轴流式水轮机转轮主要由转轮体、叶片、泄水锥等部件组成。轴流转桨式水轮机转轮还有一套叶片操作机构和密封装置。 转轮体上部与主轴连接,下部连接泄水锥,在转轮体的四周放置悬臂式叶片。在转桨式水轮机的转轮体内部装有叶片转动机构,在叶片与转轮体之间安装着转轮密封装置,用来止油和止水。 轴流式水轮机广泛应用于平原河流上的低水头电站,应用水头范围为3~55m ,目前最大应用水头不超过70m 。限制轴流式水轮机最大应用水头的原因是空化和强度两方面的条件。由于轴流式水轮机的过流能力大。单位流量11Q 和单位转速11n 都比较大,转轮中水流的相对流速比相同直径的混流式转轮中的高,所以它具有较大的空化系数σ。在相同水头下,轴流式水轮机转轮由于叶片数少,叶片单位面积上所承受的压差较混流式的大,叶片正背面的平均压差较混流式的大,所以它的空化性能较混流式的差。因此,在同样水头条件下,轴流式水轮机比混流式水轮机具有更小的吸出高度和更深的开挖量。随着应用水头的增加,将会使电站的投资大量增加,从而限制了轴流式水轮机的最大应用水头。另一方面是由于轴流式水轮机叶片数较少,叶片呈悬臂形式,所以强度条件较差。当使用水头增高时,为了保证足够的强度,就必须增加叶片数和叶片的厚度,为了能够方便地布置下叶片和转动机构,转轮的轮毂比 1D dh d h =,亦要随之增大,这些措施将减少转轮流道的过流断面面积,使得单位流量11Q 下降。当达到某一水头时,

5 第五章 水轮机的工作原理、特性及选择3

?五、水轮机的选择 ?水轮机选型设计是水电站设计中的一项重要工作,也是本课程的重点内容之一 ?水轮机选型设计的原则 ?水轮机选型设计要求提供的基本资料 ?最大工作水头、最小工作水头、加权平均水头 ?水电站引用流量 ?水电站装机容量

?水轮机选型设计的主要内容 ?水轮机台数确定 ?水轮机型号与装置形式选定 ?水轮机直径、额定转速、最大允许吸出高度的确定?绘制水轮机运转综合特性曲线 ?机组台数的选择 ?与水轮机类型的关系 ?与水电站在电力系统中担任负荷类型的关系 ?与供电可靠性的关系 ?与水电站造价的关系 ?综合考虑确定机组台数

?水轮机型号选择 ?利用水轮机系列型谱图表选型 ?图5-20:中小型反击式水轮机使用范围图以及表5-4:8个转轮型谱参数 ?表5-5:水斗式水轮机型谱资料 ?表5-6:500kW以下水轮机型谱资料 ?采用套用机组和通用机型选型 ?《小型水电站机电设计手册》(水力机械)

?反击式水轮机主要参数选择 ?用系列水轮机应用范围图选择直径、转速和吸出高度 (图5-21:HL220;图5-22:HL260;图5-23:ZD760) ?用主要综合特性曲线选择直径、转速和吸出高度 ?选择转轮标称直径 ?计算效率修正值 ?选择水轮机转速 ?计算水轮机的额定出力 ?绘制方块图,确定水轮机的工作范围 ?计算吸出高度,确定水轮机安装高程 ?水轮机选择方案的分析比较

?水斗式水轮机主要参数的选择?系列水轮机应用范围图方法 ?公式计算方法

第六章、水轮机的调速设备 ?一、水轮机调节的任务 ?调速器 ?电能质量频率基本稳定的要求即为机组转速基本稳定的要求 ?实际机组转动部件的动力矩与阻力矩是变化的,两者之差一般 不等于零,导致角加速度不等于零,从而转速变化 ?由于电力负荷变化,从而阻力矩变化,要使角加速度为零,则 必须改变动力矩。反击式水轮机通过调节导叶开度即调节过流 量来改变;冲击式水轮机通过调节喷针(针阀)来改变。 水电站HYDROPOWER ENGINEERING

轴流式水轮机转轮算例

题目: ZZ440水轮机转轮的水力设计 方法: 奇点分布法 取D1=1000mm ,取6个断面R1~R6依次为 水力设计内容: (1) 确定计算工况 (2) 确定各断面叶栅稠密度l /t (3) 选定进出口轴面速度Cz 沿半径的分布规律,确定各断面的Cz1、Cz2 (4) 选定进出口环量Γ沿半径的分布规律,确定各断面的Γ1、Γ2 (5) 计算各断面进出口速度三角形,求W ∞、β∞ (6) 第一次近似计算及绘图 (7) 第二次近似计算 ZZ440—100转轮水力设计 一.确定计算工况 由模型综合特性曲线得到n 110=115(r/min ),Q110=820(l/s ),η=91%, a om =18mm zz440属于ns=325~875范围,为了使设计的转轮能在预期的最优工况下效率最高,计算工况与最优工况的关系按下式确定: n 11=(1.2~1.4)n 110 =138~161(r/min ) n=5.841~3.721/)4.1~2.1(/1110111==D H n D H n (r/min ) 故选定n=750(r/min ) 则实际n11= 49.1431 =H nD Q11=(1.35~1.6)Q110=1.4 Q110=1148<1650(l/s ) ===H D 110Q 4.1H D 11Q Q 22 6.0s m /3 mm a D D a m m 13.391846 .010110=?== 二.确定各断面叶栅稠密度l /t 据P 213页s pj n t l ~)(关系,当ns=440时,得3.1≈pj t l )( 综合考虑一下关系: pj pj n t l t l t l )()()()95.0~85.0(K 1== pj pj b t l t l t l )()()()2.1~1.1(K 2== n n b t l t l t l )()()()25.1~2.1(K 3== 分别选取K1=0.95,K2=1.15,K3=1.21得各断面叶栅稠密度l/t 如下表:

绘制水轮机运转综合特性曲线

第三节 绘制水轮机运转综合特性曲线 一、绘制等效率线和5%出力限制线 1、绘制等效率曲线η=f (H ,N ) (1)列表计算。在最小水头到最大水头的范围内,一般取3~5个水头列表进行计算,通常包括max av min H H 和、、r H H 。对本设计,在水轮机的工作水头范围以内取五个水头H 1=H max =101m,H 2=94m,H 3=88m,H 4=H r =H av =82m,H 5=H min =78,对本设计,由于是混流式水轮机,表格的形式如表8所示。 计算时首先求出与各水头相应的n 11M 值,然后在模型主要综合特性曲线上作n 11M 等于常数的水平线,取n 11M 线与ηM=常数线的交点,依次在表8中记入ηM 、Q ′1、η和N 值。 表8 HL180水轮机运转综合特性曲线计算表 转轮型号: HL180 ;D 1= 3.80 (m ); n= 166.7 r/min ;Δn 11<0.03n 110M ,可 忽略; H max = 101 (m ); H r = 82 (m ); H min = 78 (m ); Δη= 0.023 。 H (m ) H 1=Hmax=101 H 2=94 n 11=n D 1/H 1/2 63.03 65.34 n 11M =n 11-Δn 11 63.03 65.34 工作特性曲线计算 ηM (%) Η (%) Q ′1 (m 3 /s ) N (MW ) ηM (%) Η (%) Q ′1 (m 3 /s ) N (MW ) 78 78.023 1.007 112.97 78 78.023 1.014 102.14 80 80.023 0.988 113.68 80 80.023 0.993 102.59 82 82.023 0.962 113.46 82 82.023 0.970 102.72 84 84.023 0.938 113.32 84 84.023 0.945 102.51 86 86.023 0.91 112.56 86 86.023 0.920 102.17 88 88.023 0.876 110.87 88 88.023 0.883 100.34 90 90.023 0.828 107.18 90 90.023 0.835 97.04 91 91.023 0.793 103.79 91 91.023 0.802 94.24 91 91.023 0.605 79.18 91 91.023 0.615 72.27 90 90.023 0.576 74.56 90 90.023 0.582 67.64 88 88.023 0.532 67.33 88 88.023 0.543 61.71 86 86.023 0.494 61.10 86 86.023 0.501 55.64 84 84.023 0.460 55.57 84 84.023 0.463 50.22 82 82.023 0.430 50.71 82 82.023 0.432 45.75 功率限制线计算 89.22 89.243 0.844 108.30 89.33 89.353 0.849 97.94

轴流式水轮机毕业设计

轴流式水轮机毕业设计任务书、基本资料和指示书 河海大学水电学院动力系 二○○六年三月

轴流式水轮机毕业设计 任务书 一、设计内容 根据原始资料,对指定电站、指定原始参数进行机电部分的初步设计,包括:轴流式水轮机的选型、发电机选型,调保计算及调速设备选择,混流式水轮发电机组的辅助设备系统设计,电气一次部分设计。 二、时间安排(供参考) 1、轴流式水轮机的选型、发电机选型 5.5周 2、调保计算及调速设备选择0.5周 3、辅机系统2周 5、电气部分2周 6、整理成果1周 7、评阅答辩1周 8、机动0.5 周 总计12.5周 三、成果要求 1、设计说明书:说明设计思想,方案比较及最终结果,并附有必要的图表。 2、设计计算书:设计计算过程,计算公式,参数选取的依据,计算结果。 3、图纸:主机成果图、水系统图、气水系统图、电气主结线图,共5-6张(含CAD设计图),规格1号图。 轴流式水轮机毕业设计 基本资料 富春江水电站位于浙江北部钱塘江上游富春江上,造成后接入华东电网向金华等地供电。 富春江水电站坝址选在七里垅峡口,上距新安江水电站约60公里,下距杭州市110余公里,,地理位置优越。 水库为日调节,总库容9.2亿立方米。电站以发电为主,并可改善航运,发展灌溉及养殖事业等综合效益。电站为河床式,公路从左岸进入厂房。 本电站下游特征洪水位如下: 万年一遇洪水位▽15.6 (Q=43100米3/秒)

千年一遇洪水位▽14.6 (Q=29400米3/秒) 本地区年平均气温为16.0℃,实测最高气温为40.5℃,雨日约175天,以五月份为最集中. 本电站建成后将承担峰荷,也承担部分基荷,有调相任务,本电站将在120公里外的金华变电所接入系统(电力系统结线见附图)并向七里垅镇供电2-3万千瓦。

相关文档
最新文档