磁导率间接测量方法的研究

磁导率间接测量方法的研究
磁导率间接测量方法的研究

测量磁导率

一、测量磁导率 一.实验目的:测量介质中的磁导率大小 二.实验器材:DH4512型霍尔效应实验仪和测试仪一套,线圈一副(N匝)万用表一个三.实验步骤 1. 测量并计算磁场强度H ○1测量线圈周长L。 ○2线圈通电,测的线圈中的电流为I0,则总的电流为I M=N ?I0 ○3由磁介质安培环路定理的积分形式可知:∮c H ?dl=I故H ?L= N ?I0,H=(N ?I0)/L. 2.测量并计算磁感应强度B——利用霍尔效应实验 ○1实验原理: 霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。如下图1所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X 正向通以电流Is(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动。由于洛仑兹力f L作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。 与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按平均速度,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为: f L=-e B 式中:e 为电子电量,为电子漂移平均速度,B为磁感应强度。 同时,电场作用于电子的力为:f l E

磁导率

磁导率表示物质磁化性能的一个物理量,是物质中磁感应强度B与磁场强度H之比,又成为绝对磁导率。物质的绝对磁导率和真空磁导率(设为μ0=4*3.14*0.0000001H/m)比值称为相对磁导率,也就是我们一般意义上的磁导率。对于顺磁质μr>1,对于抗磁质μr<1,但它们都与1相差很小(例如铜的μr与1之差的绝对值是0.94×10-5)。然而铁磁质的μr可以大至几万。 非铁磁性物质的μ近似等于μ0。而铁磁性物质的磁导率很高,μ>>μ0。铁磁性材料的相对磁导率μr=μ/μ0如铸铁为200~400;硅钢片为7000~10000;镍锌铁氧体为10~1000;镍铁合金为2000;锰锌铁氧体为300~5000;坡莫合金为20000~200000。空气的相对磁导率为1.00000004;铂为1.00026;汞、银、铜、碳(金刚石)、铅等均为抗磁性物质,其相对磁导率都小于1,分别为0.999971、0.999974、0.99990、0.999979、0.999982。 所以,铜虽然具有抗磁性,但相对磁导率也有0.99990;纯铁为顺磁性物质,其相对磁导率会达到400以上。所以用铜裹住铁并不能阻断磁力,而且是远远不能。在某些特殊情况下,铜的抗磁性就会表现出来,如规格很小的烧结钕铁硼磁体D3*0.8电镀镍铜镍后,磁通量会降低7-8%(当然,这个损失还包括倒角和镍层屏蔽导致的磁损)。 直截了当地讲,磁场无处不在,是不能阻断的。只不过各种物质导磁性有所差异,如空气、材料、铜、铝、橡胶、塑料等相对磁导率近似为1,它们对磁不感兴趣;而铁磁性材料如铸铁、铸钢、硅钢片、铁氧体、坡莫合金等材料具有良好的导磁性

平行度检测仪的设计方法

第28卷第4期长春理工大学学报 Vo l 128No 142005年12月 J ou rnal of Changchun Un i versit y of Science and T echnology Dec .2005 收稿日期:2005-08-12 基金项目:振兴东北老工业基地项目(04-02GG156) 作者简介:张立颖,女(1976-),硕士研究生,主要从事光学仪器装调方面的研究。 平行度检测仪的设计方法 张立颖 刘德尚 王文革 (中国科学院长春光学精密机械与物理研究所,长春 130031) 摘 要:国内现有的平行度检测方法和检测设备都是用于检测可见光的平行度。对于激光和红外平行度的精密检测,还没有一个好的检测方法。本文介绍了一种既可以检测可见光又可以检测激光、红外平行度的检测仪,并且论述了设计原理、装调方法以及精度的验证,其检测精度可以达到?2d 。关键词:平行度;激光;红外 中图分类号:TH74512 文献标识码:A 文章编号:1672-9870(2005)04-0033-03 Design of t he L ight Parallelis m Detector Z HANG L i y ing LIU D es hang WANG W enge (Changchun Instit u te o f Op tics ,F i n eM echanics and Phy sics ,Chinese Acade my of Siences ,Changchun 130031)Abst ract :In our nation ,w e have l o ts o f m ethods and equ i p m ents to detect the parallelis m of v isible li g h.t But w e don t 'kno w how to detect the paralle lis m of laser and i n frared ,This paper descri b es briefly the desi g n idea,asse m b l y techn i q ue and ho w to test and verify its accuracy .A t las,t we get the conclu -si o n that the accuracy of the ne w detecto r is less than ?2d ,and the dectctor can be used i n v isi b l e ligh.t K ey w ords :Pa ra lle lis m;Laser ;Infrared 随着激光与红外技术的发展,红外跟踪器和激光测距机已被广泛应用在现代化的光电经纬仪上。 然而令人遗憾是,对于激光、红外系统的平行度的标校却一直没有一个令人满意的方法,无奈人们只能在几十公里外制造一个红外目标,并把这个目标假设为无穷远光源来标校激光、红外系统的平行度,这个方法测量误差大,实现也困难。本文设计的平行度检测仪(以下简称检测仪)从根本上解决了这个难题,它的结构简单、成本低,既可以在实验室使用,又可以直接安装在红外跟踪车上,在外场随时标校激光、红外的平行度,同时它又可兼做红外目标模拟器,因此具有良好的市场前景。 1 检测仪的结构及检测原理 111 检测仪的结构 用于检测激光、红外平行度的检测仪的组成包括,光学部分:(1)衰减片;(2)平面镜组;(3)分光镜;(4)平行光管;(5)红外光源;(6)特 制耙面。机械部分:(1)导轨;(2)可移动支架。用于可见光测量时,只需把红外光源更换为普通光源,将特制耙面更换为普通星点板即可。112 检测仪的检测原理11211 检测仪的光学系统 检测仪的光学系统如图1所示。检测仪由A 、B 两个光路组成。激光经过(光路A )衰减片衰减后,从平面镜2的周围入射到分光镜上,经过平行光管汇聚到特制耙面上,使耙面发热形成红外光源,发射出的光经过平行光管后变成平行光,经过分光镜把光分成两束,一束(光路A )原路返回,一束(光路B)进入红外接收系统。11212 检测仪的工作过程 ①红外光源发射出的光经过特制耙面(此时耙面可以视为一个星点)通过平行光管变成平行光,再经过分光镜进入光路B ,并呈像在红外成像器的光轴中心。 ②激光测距机发出的激光通过光路A 最终汇

直线度测量方法

直线度测量方法 1、光电法测量 光电法测量是以三台测径仪为基础进行检测的,可以用于测量运动中的 线、棒、管的外轮廓的直线度。 布置上图的的设备3台,三台设备同一时刻测量被测工件的位置数据左边和右边两台采集的位置连线,计算出中间设备的在直线度为0时的理论位置,与中间一台所获的的位置数据比较,差值即为被测工件在当前位置的直线偏差如下图所示。

测量单元的测量频率为500-1000HZ,采用电子同步控制单元实现3 台设备的同步采样,可连续检测,根据检测数据模拟出整根线、棒(管)材的直线度,左、右两台的距离可根据具体情况确定安装位置。 2、自准直法 自准直法直线度检测仪可用于圆管外径的直线度检测。平行光仪器是 将和准直望远镜结合为一体的一台仪器。 光源将位于物镜焦平面(物镜焦距二f)的分划板投射至无穷远(准直 光出射),经过平面反射镜返回的准直光经物镜后再次成像于同样位

于物镜焦平面(共焦系统)的光电传感器的探测面上,当反射镜发生了a 角度的偏转后,返回的分划板在光电传感器上的像会产生AS的位移,通过精确测量出AS值,即可准确计算出平面反射镜的偏转角度。 检测内孔直线度时,将平面反射镜伸入孔内,利用胀套保证反射镜与内孔垂直。当内孔有弯曲时反射镜将偏转一定的角度,通过反射镜的偏转角度可以计算出内孔的直线度。 3、PSD芯片激光测量法 激光器安装在激光器座上,激光器座的尾部有4个螺钉可以对激光的 照射角度进行微调。其头部与定心套连接后插入炮管孔内。位置检测单元

的激光位敏传感器安装在传感器座内,传感器座的头部与定心套连接,尾部与推杆连接。通过手动推动推杆可以使位置检测单元在炮管内孔内移动。 激光器定心去 工作时激光器发射1束激光射向激光位敏传感器,传感器内的PSD 芯片监测接收到的激光能量中心位置。定心套用来保证传感器一直处于炮管内孔的中心位置。当炮管在检测位置出现弯曲时,PSD芯片上的激光能量中心坐标值将发生变化。位置检测单元的电源线和数据线通过推杆中心孔与控制柜连接。

激光拉曼光谱的原理和应用及拉曼问答总结(整理完毕)

激光拉曼光谱的原理和应用 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会暗原来的发现透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究 推荐激光拉曼光谱法是以拉曼散射为理论基础的一种光谱分析方法。 激光拉曼光谱法的原理是拉曼散射效应。 拉曼散射:当激发光的光子与作为散射中心的分子相互作用时,大部分光子只是发生改变方向的散射,而光的频率并没有改变,大约有占总散射光的10-10-10-6的散射,不公改变了传播方向,也改变了频率。这种频率变化了的散射就称为拉曼散射。 对于拉曼散射来说,分子由基态E0被激发至振动激发态E1,光子失去的能量与分子得到的能量相等为△E反映了指定能级的变化。因此,与之相对应的光子频率也是具有特征性的,根据光子频率变化就可以判断出分子中所含有的化学键或基团。 这就是拉曼光谱可以作为分子结构的分析工具的理论工具。 拉曼光谱仪的主要部件有: 激光光源、样品室、分光系统、光电检测器、记录仪和计算机。 应用 激光拉曼光谱法的应用有以下几种:在有机化学上的应用,在高聚物上的应用,在生物方面上的应用,在表面和薄膜方面的应用。 有机化学 拉曼光谱在有机化学方面主要是用作结构鉴定的手段,拉曼位移的大小、强度及拉曼峰形状是碇化学键、官能团的重要依据。利用偏振特性,拉曼光谱还可以作为顺反式结构判断的依据。 高聚物 拉曼光谱可以提供关于碳链或环的结构信息。在确定异构体(单休异构、位置异构、几何异构和空间立现异构等)的研究中拉曼光谱可以发挥其独特作用。电活性聚合物如聚毗咯、聚噻吩等的研究常利用拉曼光谱为工具,在高聚物的工业生产方面,如对受挤压线性聚乙烯的形态、高强度纤维中紧束分子的观测,以及聚乙烯磨损碎片结晶度的测量等研究中都彩了拉曼光谱。 生物 拉曼光谱是研究生物大分子的有力手段,由于水的拉曼光谱很弱、谱图又很简单,故拉曼光谱可以在接近自然状态、活性状态下来研究生物大分子的结构及其变化。拉曼光谱在蛋白质

用水平仪测量导轨直线度的方法

用水平仪测量导轨直线度的方法 在机械维修专业中常用到水平仪,它是机床修理、调整、安装最常用的测量仪器之一,主要用于检测机床导轨直线度、工作台平面度等。下面我们来了解水平仪是怎样测量导轨直线度的。 机床工作台的直线移动精度,在很大程度上取决于床身导轨的直线度。但机床导轨一般比较长,往往难以用平尺、检验棒等作为基准测量导轨的直线度,这时可以用水平仪进行测量。其工作原理是:假设在被测导轨上有一条理想水平直线作为测量基准,再把被测导轨分成若干段,然后用水平仪分别测出各段相对于理想水平直线所倾斜的角度值,通过绘制坐标图来确定导轨与水平直线的最大误差格数,最后运用公式(△H=n I L)计算出导轨与水平直线的误差值。具体步骤如下: 1、将水平仪放在导轨中间,调平导轨,防止导轨倾斜,无法准确读出水平仪读数。 2、水平仪放在一定长度L)的平行桥板上,不能直接放置在被测表面上。 3、将导轨分段,每段长度与桥板相适应,依次首尾相接,逐段测量并记录下每段读数及倾斜方向。 4、根据各段读数画出导轨直线度曲线图:以导轨的长度为横坐标,水平仪读数为纵坐标。根据读数依次画出各折线

段,每一段的起点要与前一段的终点重合。 例如C6132 车床的导轨长 1600mm.用精 度为l000mm 的框式水平仪 测量导轨在垂直平面内直线度误差。水平仪桥板长度为200mm,分8段测量。每段读数依次为:+l、+1、+2、0、-1、-l、0、,如图1所示。 按一定比例画出纵横坐标,作出导轨直线度曲线。如图2所示。 5、用两端点连线法或最小区域法确定最大误差读数和误差曲线形状。 两端点连线法:若导轨直线度误差曲线呈单凸或单凹时,作首尾两端点连线I-I,并过曲线最高点或最低点)作Ⅱ-Ⅱ直线与I—I平行。两包容线间取大坐标值即为最人误差值。如图2所示,最大误差在导轨长为600mm处。曲线右端点坐标值为格,按相似三角形解法,导轨600mm处最大误差值为=格。 最小区域 法:如果直线 度误差曲线

磁导率介绍

中文名称:磁导率 英文名称:magnetic permeability 定义:磁介质中磁感应强度与磁场强度之比。分为绝对磁导率和相对 磁导率,是表征磁介质导磁性能的物理量。 磁导率μ等于中B与磁场强度H之比,即μ=B/H 通常使用的是磁介质的相对磁导率μr,其定义为磁导率μ与μ0之比,即μr=μ/μ0 相对磁导率μr与χ的关系是:μr=1+χ 磁导率μ,相对磁导率μr和磁化率xm都是描述磁介质磁性的物理量。 对于μr>1;对于μr<1,但两者的μr都与1相差无几。在大多数情况下,导体的相对磁导率等于1.在中,B与 H 的关系是非线性的磁滞回线,μr不是常量,与H有关,其数值远大于1。 例如,如果空气(非)的磁导率是1,则的磁导率为10,000,即当比较时,以通过磁性材料的是10,000倍。 涉及磁导率的公式:

磁场的能量密度=B^2/2μ 在(SI)中,相对磁导率μr是无量纲的,磁导率μ的单位是/米(H/m)。 常用的真空磁导率 常用参数 (1)初始磁导率μi:是指基本磁化曲线当H→0时的磁导率 (2)最大磁导率μm:在初始段以后,随着H的增大,斜率μ=B/H逐渐增大,到某一强度下(Hm),磁密度达到最大值(Bm),即 (3)饱和磁导率μS:基本磁化曲线饱和段的磁导率,μs值一般很小,深度饱和时,μs=μo。

(4)()磁导率μΔ∶μΔ=△B/△H。ΔB及△H是在(B1,H1)点所取的增量如图1和图2所示。 (5)微分磁导率,μd∶μd=dB /dH,在(B1,H1)点取微分,可得μd。 可知:μ1=B1/H1,μ△=△B /△H,μd=dB1/dH1,三者虽是在同一点上的磁导率,但在数值上是不相等的。 非磁性材料(如铝、木材、玻璃、自由空间)B与H之比为一个常数,用μ。来表示非磁性材料的的磁导率,即μ。=1(在CGS单位制中)或μ。=4πX10o-7(在RMKS中)。 在众多的材料中,如果自由空间(真空)的μo=1,那△么比1略大的材料称为顺磁性材料(如白金、空气等);比1略小的材料,称为反磁性材料(如银、铜、水等)。本章介绍的磁性元件μ1是大有用处的。只有在需要时,才会用铜等反磁性材料做成使磁元件的磁不会辐射到空间中去。 下面给出几个常用的参数式: (1)有效磁导率μro。在用L形成闭合中(漏磁可以忽略),的有效磁导率为:

磁性材料术语解释及计算公式

磁性材料术语解释及计算公式 起始磁导率μi 初始磁导率是磁性材料的磁导率(B/H )在磁化曲线始端的极限值,即 μi = 01μ× H B ?? ()0→?H 式中 μ0为真空磁导率(m H /7104-?π) ?H 为磁场强度的变化率(A/m ) ?B 为磁感应强度的变化率(T ) 有效磁导率μe 在闭合磁路中,如果漏磁可忽略,可以用有效磁导率来表示磁芯的性能。 e μ = Ae Le N L 20?μ 式中 L 为装有磁芯的线圈的电感量(H ) N 为线圈匝数 Le 为有效磁路长度(m ) Ae 为有效截面积 (m 2) 饱和磁通密度Bs (T ) 磁化到饱和状态的磁通密度。见图1。

Hc H 图 1 剩余磁通密度Br(T) 从饱和状态去除磁场后,剩余的磁通密度。见图1。 矫顽力Hc(A/m) 从饱和状态去除磁场后,磁芯继续被反向磁场磁化,直至磁感应强度减为零,此时的磁场强度称为矫顽力。见图1。 损耗因子tanδ 损耗系数是磁滞损耗、涡流损耗和剩余损耗三者之和。 tanδ= tanδh + tanδe + tanδr 式中 tanδh为磁滞损耗系数 tanδe为涡流损耗系数 tanδr为剩余损耗系数 相对损耗因子 tanδ/μi 比损耗因子是损耗系数与与磁导率之比: tanδ/μi(适用于材料) tanδ/μe(适用于磁路中含有气隙的磁芯) 品质因数 Q

品质因数为损耗因子的倒数: Q = 1/ tan δ 温度系数αμ( 1/K) 温度系数为T1和T2范围内变化时,每变化1K 相应的磁导率的相对变化量: αμ= 1 12μμ-μ.12T T 1- 式中 μ1为温度为T1时的磁导率 μ2为温度为T2时的磁导率 相对温度系数αμr(1/K) 温度系数和磁导率之比,即 αμr = 211 2μμ-μ.1 2T T 1- 减落系数 DF 在恒温条件下,完全退磁的磁芯的磁导率随时间的衰减变化,即 DF = 212 121μ1T T log μμ?- (T2>T1) μ1为退磁后T1分钟的磁导率 μ2为退磁后T2分钟的磁导率 居里温度Tc (℃) 在该温度时材料由铁磁性(或亚铁磁)转变为顺磁性,见图2。

磁感应强度和磁导率

磁感应强度B 磁感应强度B可以这样定义,足够小的电流元Idl(I为导线回路中的恒定电流,dl为导线回路中沿电流方向所取的失量线元)在磁场中所受的力最大方向时,所受到的最大力dFmax与Idl的比值: B=dFmax/Idl 恒定磁场中各点的磁感应强度B都具有确定值,它由磁场本身决定,与电流元Idl 大小无关。电流会在其周围产生磁场。一个线圈绕得很紧密的载流螺绕环,总匝数N匝,电流I,利用安培环路定律可以求出螺绕环内离环心O半径r处P点的磁场的磁感应强度B0 B0=μ0NI/2πr 式中:μ0真空磁导率μ0=4πe-7 (N/A^2);N总匝数;I电流,安A。 在SI中,磁感应强度B单位特[斯拉]T,1T=1N/A·m=1Wb/m^2。磁感应强度B的概念比较复杂,有各种定义方法,感兴趣的话可参阅相关参考书1T=10000Gs(高斯) 磁场强度H 磁场强度H与电场中的电位移矢量D相似。 真空中原来的磁场的磁感应强度B0,由于引入磁介质而产生附加磁场,其磁感应强度B’,则磁介质总的磁感应强度B是B0和B’的矢量和,即 B=B0+B’ B与B0的大小比称相对磁导率μr= B/B0 。对于铁磁质磁性很强的材料μr远远大于1。不同的物质对磁场的影响非常大,因此引出了一个辅助矢量——磁场强度H。磁介质内磁场强度H沿闭合路径的环流等于闭合路径包围的所有传导电流的代数和(存在磁介质时的环路安培定理)。 ∮LH·dl=∑LI0i 象电流互感器之类的螺绕环磁场强度H H=NI/2πr r 为到磁环中心的半径。

磁感应强度矢量B与磁场强度矢量H的关系: B=μ0H+μ0M μ0真空磁导率;M磁化强度表示磁介质的磁化程度。试验表明,在各向同性均匀磁介质中,M与H成正比,即 M=χmH 真空中没有介质时,M=0,得出: B0=μ0H M磁化强度表示磁介质的磁化程度,μ0真空磁导率 试验表明,在各向同性均匀磁介质中,B与H成正比,即 B=μ0(1+χm)H=μH 设μr=(1+χm),为相对磁导率 螺绕环中有磁介质的载流螺绕环,磁介质内的磁感应强度B B=μH=μ0μrNI/2πr μr磁介质相对磁导率,μ0真空磁导率。 磁场强度H单位是安/米(A/m)。在磁路设计中H矢量有广泛的应用。在互感器中就是励磁安匝与平均磁路长度的比值H=I·n /L ,一般使用安匝每厘米(A/cm)单位。磁性材料刚开始时O点随着电流nI变大,磁感应强度B也开始缓慢变大,当到a点时电时,B开始急剧变大,当到b点,B增加开始变慢,当到c点H再变大时,B几乎不再变大,我们说材料被磁化到了饱和。达到饱和之后,无论H 怎样增大,材料的磁感应强度也不再增大。此时的磁感应强度称为饱和磁感应强度,用Bs来表示。B-H关系画成曲线,就是材料B-H磁化曲线。饱和磁感应强度是磁性材料的一个重要指标。 在SI中,磁场强度H单位是安[培]每米(A/m)。在磁路设计中H矢量有广泛的应用。 磁导率μ 在各向同性的均匀磁介质中,B与H成正比关系: B=μH

磁芯 磁环的磁导率及计算公式 s

磁芯磁环的磁导率及计算公式洋通电 子 nbs 磁芯磁环的磁导率及计算公式? 2011年02月20日 测量单位 由于历史的原因,在此手册中采用了CGS制单位,国际制(SI)和CGS制之间的转换可简化于下表2: 表2单位转换表 在CGS制自由空间磁导率的幅值为1且无量纲。在SI制自由空间磁导率的幅值为4π×10-7亨/米 3.3、电感 对于每一个磁芯电感(L)可用所列的电感系数(AL)计算: (14) AL:对1000匝的电感系数 mH N:匝数 所以:这里 这里L是nH 电感也可由相对磁导率确定,磁芯的有效参数见图 10: (15) Ae:有效磁芯面积 cm2 :有效磁路长度 cm μ:相对磁导率(无量纲) 对于环形功率磁芯,有效面积和磁芯截面积相同。

根据定义和安培定理,有效磁路长度是线圈的安匝数(NI)和从外径到外径穿过磁芯面积的平均磁场强度之比。有效磁路长度可用安培定理和平均磁场强度给出的公式计算: (16) O.D. :磁芯外径 I.D. :磁芯内径 电感系数是用单层密绕线圈测量的。磁通密度和测试频率保持与实际一样低,通常低于40高斯和10KHz或更低。对于各种磁导率和材料,能用'正常磁导率对磁通密度关系'和'典型磁导率对频率关系'的图形来解释低电平测试的条件。 3.4、磁导率 对于每一个磁芯尺寸的电感系数是建立在相对磁导率的增量上的。在没有直流偏置和低磁通密度时,正常磁导率和增量磁导率是一样的。增量磁导率随直流偏置一起减小的情况以及"增量磁导率对直流偏置"的曲线如图11所示。由"增量磁导率对直流偏置" 曲线看到正常磁导率如同峰值磁导率B。许多设计过程包括选择峰值工作磁通密度去帮助决定磁芯的尺寸。磁材的饱和磁通密度限制了峰值工作磁通密度或被磁材的损耗所限制。在选择磁材、工作磁通密度和决定磁芯的尺寸之后,法拉第定理(下面讨论)用于计算匝数N。最后选择磁导率以满足电感的需要。 L=电感 nH =有效磁路长度 cm Ae=有效磁芯面积 cm2 图11正常和增量磁导率 宽范值的磁导率经常能满足不同的电感需要。 安培定理(也在下面讨论)所给的峰值磁化强度H,是建立在匝数、峰值磁化电流(电感总电流和变压器原方的空载电流)和磁芯磁路长度的基础上的。如图11见到那样,在设计过程开始选择磁导率时,要设置与峰值磁通密度值相应的直流磁磁化强度H。对于铁镍钼(MPP),对于所给的磁磁化强度H,下面图12的选择曲线将给出产生最大电感的磁导率。 图12磁导率选择曲线

直线度测量计算方法

1引言 在工程实际中,评定导轨直线度误差的方法常用两端点连线法和最小条件法。两端点连线法,是将误差曲线首尾相连,再通过曲线的最高和最低点,分别作两条平行于首尾相连的直线,两平行线间沿纵坐标测量的数值,通过数据处理后,即为导轨的直线度误差值;最小条件法,是将误差曲线的“高、高”(或“低、低”)两点相连,过低(高)点作一直线与之相平行,两平行线间沿纵标坐测量的数值,通过数据处理后,即为导轨的直线误差值。 最小条件法是仲裁性评定。两端点连线法不是仲裁性评定,只是在评定时简单方便,所以在生产实际中常采用,但有时会产生较大的误差。本文讨论这两种评定方法之间产生误差的极限值。 2误差曲线在首尾连线的同侧 测量某一型号液压滑台导轨的直线度误差,得到直线度误差曲线,如图1所示。由图可知,该误差曲线在其首尾连线的同侧。下面分别采用最小条件法和两端点连线法,评定该导轨直线度误差值。 (1)最小条件法评定直线度误差 根据最小条件法,图1曲线的首尾分别是低点1和低点2(低点1与坐标原点重合),用直a1a1线相连,如图2所示。通过最高点3作a1a1直线的平行线a2a2。

在a1a1和a2a2两平行线包容的区域,沿y轴测量的数值,经数据处理,即为该导轨的直线度误差值δ最小法。 (2)两端点连线法评定直线度误差 根据两端点连线法,图1曲线的首尾也分别是曲线的两端点1和2,如图3所示。将曲线端点1和端点2,用直线b1b1相连,再通过高点作b1b1的平行线b2b2。在b1b1和b2b2两平行线包容的区域,沿y轴测量的数值,经数据处理,即为该导轨的直线度误差值δ两端点。 (3)求解两种评定方法产生的误差极限 由于是对同一导轨误差曲线求解直线度误差,图2中的“低点1”、“低点2”和“高点3”分别对应图3中的“端点1”、“端点2”和“高点3”,即直线 a1a1与直线b1b1重合,直线a2a2与直线b2b2重合,因此两种评定方法产生的误差值为零

用打表法测量阀体的平面度及平行度.doc

用打表法测量阀体的平面度和平行度的方法 一 实验目的 本实验所用测量方法是工厂里常用的方法,有助于学生对平面度公差、面对面的平行度公差概念的理解,训练学生的动手能力(仅一台三坐标测量机,做不到人人动手操作),训练学生数据处理能力,以及对平面度评定方法的理解。 二 实验仪器 测量平台,作为测量的基准使用,精度要求高。磁力表架和表座、千分表、V 型块、被测零件阀体。 三 操作过程 1 将磁力表架和V 型块放置于测量平台上,将被测零件阀体放置于V 型块上。 2 将千分表安装在磁力表架上,调整磁力表架,使千分表的测头与阀体的被测平面垂直接触,且具有一定的接触力,并保证测量过程中千分表不超量程。 3 固定磁力表座,推动V 型块,并保证其与测量平台稳定接触,使千分表测头与 测量平台 阀体 表架 表座 千分表 V 型块

被测平面上3X3分布的点接触,记录9个数据,如下所示。 四数据处理 1 误差评定准则(见教材) 将测得数据处理成上述三个准则中的任意一种,各点数据中的最大值减去最小值即为平面度误差。而平行度误差评定较简单,在测得原始数据中,用最大值减去最小值即是。 2 平面度数据处理方法(见学习指导) 测得数据不会是三个准则中的任意一种,需要进行处理才行,处理方法按照如下例题所示。 例用打表法测量一块350mmx350mm的平板,各测点的读数值如下图所示。试用最小包容区域法求平面度误差值。 解:此题旨在训练培养大家进行数据处理,求解几何误差的能力。观察检测数据,最大值为20,最小值为-12 ,次小值为-10,决定采用三角形准则求解平面度误差。保留中间的最大值,求出3个相等的最小值,三个最小值位置选定-12、-10、+7,将3个数值相加除3等于-5,即3个数的平均值。利用矩阵变换方法,将3个最小值变为-5,即将第1列的数都加+7,而将第三列的数都加-7,将结果列表后,再将第一行都加-5,而第三行都加+5,再将结果列表,即得下图所示。 经过两次坐标变换后,故平面度误差值为() f=+--= 205μm25μm

激光拉曼光谱技术

激光拉曼光谱技术 摘要:论文综述了激光拉曼光谱的发展历史,拉曼光谱原理,其中有自发拉曼散射,相干反射托克斯拉曼散射光谱和受 激拉曼散射。 关键词:激光拉曼光谱原理自发反斯托克斯受激 正文 1.拉曼光谱的发展历史 印度物理学家拉曼于1928年用水银灯照射苯液体,发 现了新的辐射谱线:在入射光频率ω0的两边出现呈对称分 布的,频率为ω0-ω和ω0+ω的明锐边带,这是属于一种 新的分子辐射,称为拉曼散射,其中ω是介质的元激发频率。拉曼因发现这一新的分子辐射和所取得的许多光散射研究 成果而获得了1930年诺贝尔物理奖。与此同时,前苏联兰 茨堡格和曼德尔斯塔报导在石英晶体中发现了类似的现象, 即由光学声子引起的拉曼散射,称之谓并合散射。 法国罗卡特、卡本斯以及美国伍德证实了拉曼的观察 研究的结果。然而到1940年,拉曼光谱的地位一落千丈。 主要是因为拉曼效应太弱(约为入射光强的10-6),人们难以 观测研究较弱的拉曼散射信号,更谈不上测量研究二级以上 的高阶拉曼散射效应。并要求被测样品的体积必须足够大、无色、无尘埃、无荧光等等。所以到40年代中期,红外技 术的进步和商品化更使拉曼光谱的应用一度衰落。1960年 以后,红宝石激光器的出现,使得拉曼散射的研究进入了一 个全新的时期。由于激光器的单色性好,方向性强,功率密 度高,用它作为激发光源,大大提高了激发效率。成为拉曼 光谱的理想光源。随探测技术的改进和对被测样品要求的 降低,目前在物理、化学、医药、工业等各个领域拉曼光谱

得到了广泛的应用,越来越受研究者的重视。 70年代中期,激光拉曼探针的出现,给微区分析注人活力。80年代以来,美国Spex公司和英国Rr i ns how公司 相继推出,位曼探针共焦激光拉曼光谱仪,由于采用了凹陷 滤波器(notch filter)来过滤掉激发光,使杂散光得到抑制,因而不在需要采用双联单色器甚至三联单色器,而只需要采用单一单色器,使光源的效率大大提高,这样入射光的功率 可以很低,灵敏度得到很大的提高。Di l o公司推出了多测点在线工业用拉曼系统,采用的光纤可达200m,从而使拉曼 光谱的应用范围更加广阔。 2拉曼光谱的原理 2.1自发拉曼散射 泵浦光注入光纤后,其部分能量转为拉曼散射光,当 泵浦光的强度小于阈值时,这时光纤分子的热平衡没有被 破坏,这种拉曼散射叫自发拉曼散射。拉曼散射的产生原 因是光子与分子之间发生了能量交换改变了光子的能量。2.2拉曼散射的产生 光子和样品分子之间的作用可以从能级之间的跃迁来 分析。样品分子处于电子能级和振动能级的基态,入射光子的能量远大于振动能级跃迁所需要的能量,但又不足以将分子激发到电子能级激发态。这样,样品分子吸收光子后到达一种准激发状态,又称为虚能态。样品分子在准激发态时是不稳定的,它将回到电子能级的基态。若分子回到电子能级基态中的振动能级基态,则光子的能量未发生改变,发生瑞 利散射。如果样品分子回到电子能级基态中的较高振动能 级即某些振动激发态,则散射的光子能量小于入射光子的能量,其波长大于入射光。这时散射光谱的瑞利散射谱线较低频率侧将出现一根拉曼散射光的谱线,称为St okes线。如果样品分子在与入射光子作用前的瞬间不是处于电子能级 基态的最低振动能级,而是处于电子能级基态中的某个振动能级激发态,则入射光光子作用使之跃迁到准激发态后,该 分子退激回到电子能级基态的振动能级基态,这样散射光能量大于入射光子能量,其谱线位于瑞利谱线的高频侧,称为

导轨直线度误差检测方法介绍

导轨直线度误差检测方法介绍

一、直经度的定义 限制实际直线对理想直线变动量的一种形状公差。由形状(理想包容形状)、大小(公差值)、方向、位置四个要素组成。用于限制一个平面内的直线形状偏差,限制空间直线在某一方向上的形状偏差,限制空间直线在任一方向上的形状偏差。 几何误差是指零件加工后的实际形状、方向和相互位置与理想形状、方向和相互位置的差异。在形状上的差异称形状误差,在方向上的差异称方向误差,在相互位置上的差异称位置误差。直线度在几何公差中是最基础的部分,按检测关系分直线度属于被测要素中的单一要素——指对要素本身提出形状公差要求的被测要素。 二、导轨直线度误差检测方法 直线度误差的检测方法很多。工件较小时,常以刀口尺、检验平尺作为模拟理想直线,用光隙法或间隙法确定被测实际要素的直线度误差。当工件较大时,则常按国标规定的测量坐标值原则进行测量,取得必要的一组数据,经作图法或计算法得到直线度误差,还有种高效的测量方法就是直接利用太友科技的数据采集仪连接百分表来测量,无需人工读数、作图、分析,采集仪会自动读数数据并进行数据分析,一旦测量结果不合格还会自动产生报警功能。 测量直线度误差常用的仪器有:框式水平仪、合象水平仪、电感式水平仪、自准直仪以及数据采集分析仪等。这类仪器的特点是:测定微小角度的变化,换算为线值误差。本实验用合象水平仪和数据采集分析仪来进行直线度测量。 1、利用合象水平仪测量直线度法 1)合象水平仪的介绍 合象水平仪采用光学放大,并以对称棱镜使双象重合来提高读数精度,利用杠杆和微动螺杆传动机构来提高测量精度和增大测量范围。将合象水平仪置于被测工件表面上,当被测两点相对水平线不等高时,将引起两气泡象不重合,转动度盘,使两气泡重合,度盘转过格数代表被测两点相对水平线的高度差,见图2-3。

电感系数和初始导磁率

电感系数和初始导磁率 AL:电感系数。ui:初始磁导率。 拿一个物体来做比喻,有质量,密度和体积,铁芯有AL,Ui和体积(看成是磁芯大小), 固定的物体一般密度是固定的,体积越大,质量越大;固定的铁芯材质Ui是固定的,体积越大,AL 越大。 ui值决定AL值,可以这样说吗? 不能这么说的绝对。UA/L就是AL。也就是说影响AL的还有截面积和磁路长度,ui只与材料有关.而AL不仅与材料有关.而且与尺寸有关.如R5材质.其UI值为5000.但他的AL可以是2000,3000NH等.而且AL值是可以调的.所以.各磁环供货商可以跟据不同要求做出不同的AL值出来.这是我个人的认识. 一般的CORE制造商都会依照国际标准来制作产品,所以其CORE的AL值和UI值也是参照国际标准而制定的。 AL值是可以用公式来计算的,例一个简单的IRON COIL之L值计算公式为:L=AL×N2,其反过来就是AL=L/N2 而ui值也是有公式可套用的:ui={[L(uh)×Le]/(4N2×Ae)}×103 ui是材料的初始磁导率,是材料固有特性,每种材料都有一个ui值。 AL:磁芯的单匝电感值。单位nH/N^2。 ui=C1*L/(4πN^2) C1:磁芯常数,一般磁芯产品目录上有。N^2,即N的平方 AL=0.4л*μi*Ae/Le 其中μi为初始磁导率Ae为磁芯中柱的横截面积Le为磁路的平均长度 体积大不一定代表AL大.你拿T13*7*5和T16*12*8的AL做比较你就知道了 ui 是初始磁导率,AL 是磁芯的单圈感量,AL值是由磁芯的初始磁导率和其形状尺寸所决定的。大多磁芯厂家的产品目录上都有详细介绍! 简单的例子: AL=K*ui与I=U/R类似==>K系数为假设的某个参数。代表AL值与ui之间的某种关系大家都知道想要提高电流只有提高电压或减小电阻。如果公式这样写呢?R=U/I如果这样写会不会出现原本是10欧的电阻因为电压的改变而导致电阻的弯化呢?相信大家知道R是材料本身的特性。不管如何改变U与I其都不会改<不考虑温升而导致的变化>。

电感设计(包含磁导率的计算)

电感设计杨帆…电源技术应用网 0 引言 磁性元件与其它电气元件不同,使用者很难采购到符合自己要求的电感。相反,具体设计一个磁性元件可以综合考虑成本、体积、重量和制造的困难程度,可以获得一个较满意的结果。设计一个电感首先要选择磁芯材料和形状,然后确定磁芯体积大小,然后再计算线圈的匝数和线圈截面积,接着再估算气隙长度,最后根据实际情况调整设计。 1 磁性材料的选择 在选用磁性材料时,考虑的因素是工作开关频率、磁通密度、磁导率、损耗大小、工作环境及材料的价格。如果开关频率较低,可以考虑选择硅钢带和铁镍合金。硅钢带具有高的饱和磁通密度,而且价格低廉,是低频场合运用最为广泛的磁性材料,它的磁芯损耗取决于带的厚度和硅的含量,硅含量越高,电阻率越大,则损耗越小;铁镍合金具有极高的磁导率,极低的矫顽磁力,但是其电阻率比较低,只能用在低频场合,同时价格也比较高,通常用在工作环境温度高,体积要求严格的军工产品中。如果开关频率较高,可以考虑使用铁氧体和非晶态合金。铁氧体最高频率可以达到1 MHz,而且电阻率高,高频损耗小,但是其饱和磁感应比较低,而且受温度影响大,在常温(25℃)的0.42T到100℃时的0.34T。铁氧体目前有多种材料和磁芯规格,而且价格比其它材料低,是目前开关电源中应用最为广泛的材料。非晶态合金适用于几十到几百kHz的工作频率,比铁氧体有更高的饱和磁感应和相对较高的损耗和温度稳定性,但是价格比较昂贵,而且磁芯的规格也不完善,适用于大功率或者耐受高温和冲击的军用场合。 2 磁芯形状 目前磁芯有罐型、PM、RM、PQ、EE、EC、EP、ETD、RC、UU、和UI各种型号,以及新发展的平面磁芯,如EFD、EPC、LP型等磁芯。

激光拉曼光谱分析.doc

第 11 章激光拉曼光谱分析 第十一章激光拉曼光谱分析 (L aser Raman Spectroscopy, LRS) 教学要求 1.理解拉曼散射的基本原理 2.理解拉曼光谱和红外光谱与分子结构关系的主要差别 3.了解拉曼光谱仪器结构 4.了解激光拉曼光谱的应用 重点:拉曼光谱原理;拉曼光谱与红外光谱的关系 难点:拉曼光谱与红外光谱的关系 课时安排: 1.5 学时 §11-1 拉曼光谱原理 一、拉曼光谱 当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。 在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。 由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分 子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 拉曼光谱和红外光谱一样同属于分子振动光谱 ,可以反映分子的特征结构。但是拉曼散射效应是个非常弱的过程 ,一般其光强仅约为入射光强的 10-10。 1、瑞利散射 虚拟态 当光子与物质的分子发生弹性碰撞时, hυ0hυ0 没有能量交换,光子仅改变运动方向,这种散射称瑞利散射。入射光与散射光的频率相同,如图中 2、3 两种情况。 2、斯托克斯 (Stokes)散射 hυ0h(υ0-υ1) hυ0hυ0hυ0h(υ0+υ1) υ=1 υ=0 图 11-1 瑞利散射、斯托克斯和反斯托克斯散射示意图 当光子与物质的分子发生非弹性碰撞时,可以得到或失去能量,当受激分子

平行度误差平面度误差的测量

任务四平行度误差、平面度误差的测量 【课题名称】 零件的平行度、平面度误差测量 【教学目标与要求】 知识目标 了解平面度误差、平行度误差的检测工具及测量方法。 能力目标 能够正确使用框式水平仪、自准直仪和百分表进行测量,并准确计算误差值。 素质目标 熟悉平面零件形位误差的检测原理、测量工具和使用方法,并能准确计算其误差。 教学要求 能够按照误差要求正确地选择检测工具,并能够掌握测量工具的使用方法,对工件进行准确的测量。 【教学重点】 框式水平仪、自准直仪和百分表的使用,各种形位误差的检测方法。 【难点分析】 平面度测量出9点误差值的调零方法及误差值计算。 【分析学生】 该内容的难度较大,特别是直线度误差值的计算和平面度零位调整比较难以理解,需要多做解释,学生才能够掌握。尤其是零位调整的方法更难懂,一定要把原理讲透。 【教学设计思路】 本次课内容较多,且内容难懂,建议分成4学时,以保证有更多的练习机会,由于实训条件有限,可以分组进行测量,然后按结果来讲述如何计算平行度和平面度的误差值。对于平面度的检测也应先讲测量原理和方法,再给学生实测,最后介绍如何调零位计算误差值,边讲边练再总结提高。本次课教学一定要做好预习工作。 【教学安排】 4学时 先讲后练,以练为主,加强巡视指导。 【教学过程】 一. 复习旧课 在形状和位置误差中,直线度误差在零件中出现比较多,大家是否还能记住这些形位公差的含义呢? 二、导入新课 需要应用什么测量工具来检测零件的直线度、平面度、平行度、呢?对于测量出来的数值又需要进行怎么样的处理才能得出正确的误差值呢?这是本次课程的主要内容。 三、讲授新课 1. 平行度误差的测量 平行度误差是工件的位置误差,一般是指工件两直线之间的平行度偏差值。它影响加工工件的精确度,因此控制平行度误差在允许的范围内就显得更为重要。 平行度误差分线与线和线与面之间的误差两种。 平行度误差的测量主要使用百分表。以一条线或面为基准,将百分表座放在基准上,沿基准来回移动,百分表针的最大值与最小值之差就是平行度误差值。

磁芯各参数详解

一、磁芯初始磁导率 磁感应强度与磁场强度的比值称为磁导率。 初始磁导率高:相同圈数感值大,反之亦然; 初始磁导率高:相同电流下容易饱和,反之亦然; 初始磁导率高:低频特性好,高频差,反之亦然; 初始磁导率高:相同产品价格高,反之亦然; 1、磁导率的测试仪器功能 磁导率的测量是间接测量,测出磁心上绕组线圈的电感量,再用公式计算出磁心材料的磁导率。所以,磁导率的测试仪器就是电感测试仪。在此强调指出,有些简易的电感测试仪器,测试频率不能调,而且测试电压也不能调。例如某些电桥,测试频率为100Hz 或1kHz,测试电压为0.3V,给出的这个0.3V并不是电感线圈两端的电压,而是信号发生器产生的电压。至于被测线圈两端的电压是个未知数。如果用高档的仪器测量电感,例如Agilent 4284A精密LCR测试仪,不但测试频率可调,而且被测电感线圈两端的电压及磁化电流都是可调的。了解测试仪器的这些功能,对磁导率的正确测量是大有帮助的。 2、材料磁导率的测量方法和原理 说起磁导率μ的测量,似乎非常简单,在材料样环上随便绕几匝线圈,测其电感,

找个公式一算就完了。其实不然,对同一只样环,用不同仪器,绕不同匝数,加不同电压或者用不同频率都可能测出差别甚远的磁导率来。造成测试结果差别极大的原因,并非每个测试人员都有精力搞得清楚。本文主要讨论测试匝数及计算公式不同对磁导率测量的影响。 2.1 计算公式的影响 大家知道,测量磁导率μ的方法一般是在样环上绕N匝线圈测其电感L,因为可推得L的表达式为: L=μ0 μN 2A/l (1) 所以,由(1)式导出磁导率的计算公式为: μ=Ll/μ0N 2A(2)式中:l为磁心的磁路长度,A为磁心的横截面积。 对于具有矩形截面的环型磁芯,如果把它的平均磁路长度l=π(D+d)/2就当作磁心的磁路长度l,把截面积A=h(D-d)/2,μ0=4π×10-7都代入(2)式得 二、饱和磁通密度 1.什么是磁通:磁场中垂直通过某一截面的磁感应线总数,称为磁通量(简称磁通) 2.什么是磁通密度:单位面积垂直通过的磁感应线的总数(磁通量)称为磁通密度,磁通密度即磁感应强度。

相关文档
最新文档