虹吸雨水计算书

虹吸雨水计算书
虹吸雨水计算书

虹吸雨水计算书

计算原理参考《建筑与小区雨水利用工程技术规范》(GB50400-2006)

一、基本参数:

管材:HDPE 温度:10℃

二、基本计算公式:

1、 暴雨强度公式:

n

b t P C A q )

()

lg 1(167++=

式中:q -- 降雨强度,(L/s ·ha 、L/s ·hm 2、L/s ·104m 2) t -- 降雨历时(min ) P -- 设计重现期(年) A 、b 、C 、n -- 当地降雨参数

2、 雨水设计流量公式:

qF k Q l ψ=

式中:Q -- 雨水设计流量(L/s ) q -- 降雨强度,(L/s ·ha 、L/s ·hm 2、L/s ·104m 2) ψ-- 径流系数。

F -- 汇水面积(hm 2)1 hm 2 = 10000平方米

g

v d l h f 2λ2

=

式中:h f -- 管道沿程阻力损失(m );1米=10kPa λ-- 管道沿程阻力损失系数,按下式计算 l -- 管道长度(m) d -- 管道计算内径(m ) v -- 管内流速(m/s )

g -- 重力加速度(m/s 2) 取 9.81

??

?

??+=λΔλRe 51.27.3lg 21d 式中:△ -- 管壁绝对粗糙度(mm ),由管材生产厂提供 Re -- 雷诺数

5、 局部阻力损失:

∑2

5x

j v T h =

式中:h j --局部阻力损失(mbar )1mbar=100pa=0.1kPa

T -- 局部阻力系数

V x -- 管道某一x 断面处流速(m/s )

6、 总阻力损失

j f h h h +=总

7、管道某一x 断面处的压力:

∑--

-?=2

2

51.98x x x x Z

v h P

式中: P x -- 管道某一x 断面处的压力(mbar )1mbar=100pa=0.1kPa h x -- 雨水斗顶面至计算断面的高度差(m ) v x -- 管道某一x 断面处流速(m/s ) ∑Z x-2 -- 断面处对应最远雨水斗至计算断面的总阻力损失之和(mbar )

8、压力余量计算公式:

∑-

-=?Z v H P r 2

151.98

式中:△P r -- 压力余量(mbar )1mbar=100pa=0.1kPa H--雨水斗顶面与排水管出口的几何高差(m ) V 1 -- 排水管出口的管道流速(m/s )

∑Z -- 最远雨水斗至排水口处的总阻力损失之和(mbar )

3、 流速

2

π4d

Q

v =

式中:V -- 流速(m/s)

Q -- 管段流量(L/s )

d -- 管道的计算内径(m )

4、 沿程阻力损失:

四、计算结果:

管道最大负压值: -81.37 kPa 压力余量:20.3 kPa

第四章 静水压力计算习题及答案

第四章静水压力计算 一、是非题 1O重合。 2、静止液体中同一点各方向的静水压强数值相等。 3、直立平板静水总压力的作用点与平板的形心不重合。 4、静止水体中,某点的真空压强为50kPa,则该点相对压强为-50kPa。 5、水深相同的静止水面一定是等压面。 6、静水压强的大小与受压面的方位无关。 7、恒定总流能量方程只适用于整个水流都是渐变流的情况。 二、选择题 1、根据静水压强的特性,静止液体中同一点各方向的压强 (1)数值相等 (2)数值不等 (3)水平方向数值相等 (4)铅直方向数值最大 m,则该点的相对压强为 2、液体中某点的绝对压强为100kN/2 m (1)1kN/2 m (2)2kN/2 m (3)5kN/2 m (4)10kN/2 m,则该点的相对压强为 3、液体中某点的绝对压强为108kN/2 m (1)1kN/2 m (2)2kN/2 m (3)8kN/2 m (4)10kN/2 4、静止液体中同一点沿各方向上的压强 (1)数值相等 (2)数值不等 (3)仅水平方向数值相等 5、在平衡液体中,质量力与等压面 (1)重合 (2)平行 (3)正交 6、图示容器中有两种液体,密度ρ2 > ρ1 ,则A、B 两测压管中的液面必为 (1)B 管高于A 管 (2)A 管高于B 管 (3)AB 两管同高。

7、盛水容器a 和b 的测压管水面位置如图(a)、(b) 所示,其底部压强分别为pa和pb。若两容器内水深相等,则pa和pb的关系为 (1)pa>pb (2)pa< pb (3)pa=pb (4)无法确定 8 (1)牛顿 (2)千帕 (3)水柱高 (4)工程大气压 三、问答题 1、什么是相对压强和绝对压强? 2、在什么条件下“静止液体内任何一个水平面都是等压面”的说法是正确的? 3、压力中心D和受压平面形心C的位置之间有什么关系?什么情况下D点与C点重合? 4、图示为几个不同形状的盛水容器,它们的底面积AB、水深h均相等。试说明: (1)各容器底面所受的静水总压力是否相等? (2)每个容器底面的静水总压力与地面对容器的反力是否相等?并说明理由(容器的重量不计)。 四、绘图题 1、绘出图中注有字母的各挡水面上的静水压强分布。

雨水回用计算书案例

南京诚园(南区) 雨水综合利用方案说明 南京吉佳新材料科技实业有限公司 二〇一五年四月

一、雨水收集利用的价值 水是生命的起源、是人类生存和社会发展不可或缺物质基础。但随着人口的增长和工业的不断发展,一方面,人们对水的需求量日益加大,另一方面人类的生活和生产活动对水资源的破坏程度越来越严重,由此造成了水资源短缺的局面不断加剧。 我国是世界上严重缺水的83个国家之一,人均水资源占有量仅为世界平均水平的1/4。同时,由于我国水资源的时空分布不均,在水资源保有量相对较大的南方省区同样面临缺水的威胁。 随着社会的发展,人类对资源需求的增长和资源短缺之间的矛盾日益加剧,水的供给与需求矛盾日益突出,进行水资源的合理开发利用已成为全世界所面临的问题。绿色建筑以可持续发展的思想为指导,提倡水的循环利用、雨水与中水处理回用,使水环境系统的综合效率达到最优,降低能耗,做到无废无污染,建成生态平衡的建筑环境。 城市的扩张,将不可避免的造成不透水地面面积的增加、地表雨水径流系数和径流量的提高,从面导致雨水大量流失,需加大排水系统的建设规模和投资资金;同时,由于减少了雨水的地下渗入量,使得地下水得不到充分涵养,对城市的生态环境将产生不利的影响 为应对这一局面,我国从上世纪八十年代起就鼓励水的复用和回用,经过近30年的研究和实践,我国在水的重复使用上已经取得了长足的发展,在技术和工艺上都为城市排水的重复使用积累了丰富的经验。 在上述基础上,各级政府主管部门制定、完善了各种相关和配套规定和标准,倡导和激励污水的处理和回用。 雨水作为一种宝贵的水资源,已得到全世界各国的认可。收集利用的雨水在一定范围内可代替自来水,以缓解城市水资源的短缺,同时能在一定程度上减轻城市污水管网的负荷。而屋面雨水污染程度较轻,处理成本低,更应该是我们收集利用的主要对象。

船舶静水力计算设计书

船舶静水力计算设计书 船舶静水力计算设计书 班级: 姓名: 成绩: 完成日期: 同组名单: 一.船舶静水力计算 1.船型简介(船名、线形特点、其他) 2.程序简要说明(开发单位、近似计算方法、程序语言、使用情况及可信度、其他) 3.列表计算指定纵倾(首、尾吃水)情况下,排水量△,浮心Xb,Zb。并在此基础上(按组)绘制费尔索夫曲线、v i-x i曲线和纵向下水曲线。 (1)绘制费尔索夫曲线的步骤 1) 在邦戎曲线上选取若干尾吃水d Ai,和若干首吃水d Fi。构成一族倾斜水线面。 2) 计算每根倾斜水线下的排水体积▽i 及浮心的坐标x Bi。并以首吃水为横坐标,以尾吃水为参数,绘制▽及x B 的辅助曲线图。 3) 读出排水体积▽(20)和浮心纵坐标 X B (0.0)等值线与各首吃水交点对应的尾吃水 4) 在费尔索夫曲线上绘制上述各等值线。

(2)计算vi–xi曲线。 1) 绘制极限破舱水线 在邦戎曲线上绘出核算水线和安全限界线,并在安全限界线的最低点处画水平的极限破舱水线PP,然后在首尾垂线向下取Z≈1.6D-1.5d,并将其3~4等分,过各分点做限界线的切线,得到一组极限破舱水线。 2) 计算各极限破舱水线下体积▽i 及对舯的体积静矩Mi用邦戎曲线分别计算▽, M, ▽i, M i,并用下式计算 vi = ▽i - ▽ xi = (Mi - M) / vi 将结果绘成vi–xi 曲线。

(3)下水曲线计算 1)尾浮前用邦戎曲线计算船舶浮力和浮心。以滑程X为参数,根据龙骨坡度β确定倾斜水线。尾浮以后船体浮力和浮心的计算: 2)尾浮后以滑程X为参数,按龙骨坡度β确定最高倾斜水线。适当选择几个低尾吃水,分别计算船体排水体积和浮心,做辅助图,用浮力对前支架力矩等于重力对前支架力矩确定实际尾吃水和浮力。 二.稳性校核 1.概述(船名、船舶类型,依据规范,航区) 2.船舶主尺度:Loa,Lpp,Lw,B,D,d,f(梁拱),Pe(功率),V(航速),W(货船载重量),Ab(舭龙骨),其他3.稳性计算书使用说明 经校核本船虽满足稳性要求, 但船长应根据装载、天气、水流等情况谨慎驾驶,确保船舶航运安全。 4.各种核算状态稳性总表 序号项目符号及公式单位满载出港满载到港空载出港空载到港 1 载货量 2 平均吃水 3 排水量 4 全船重心高 5 初稳性高 6 修正后初稳性高 7 规范要求初稳性高 8 舱室进水角 9 30度静稳性臂L30 10 规范要求静稳性臂L30’ 11 最大静倾角

虹吸雨水的优势与技术规定

虹吸雨水的优势与技术规定 “雨虹(rainbow)”虹吸雨水排水系统是利用重力作用,在管道内产生局部真空从而产生虹吸现象。利用虹吸作用,排水系统可以在不需要任何坡度的情况下快速彻底排清屋面积水,广泛适用于任何材质和形状的屋面。 “雨虹(rainbow)”虹吸雨水排水系统是利用重力作用,在管道内产生局部真空从而产生虹吸现象。利用虹吸作用,排水系统可以在不需要任何坡度的情况下快速彻底排清屋面积水,广泛适用于任何材质和形状的屋面。 虹吸雨水系统的七大绝对优势 1、雨水斗在屋面上布点灵活,更能适应现代建筑的艺术造型,很容易满足不规则屋面的雨水排放。 2、单斗大排量,屋面开孔少,减少屋面漏水几率,减轻屋面防水压力。 3、落水管的数量和直径小,满足了现代建筑的美观要求以及大型标志性建筑,各种大跨度屋面及高层建筑群楼的雨水排放。

4、系统安全性高,管道走向可以根据需要设置,在不影响建筑功能及使用空间的同时满足现代大型购物广场,超市,厂房,仓库及各种网架结构金属屋面的雨水排放。 5、在设计流量下,系统中满管流无空气漩涡,排水高效且噪音小,更能完美配合现代影院,剧场,会展中心,旧点图书馆,学校医院的声学要求。 6、管路设计同时满足正负要求,能保证通过高层,超高层建筑全程管路满水试验检验验收,且能避免负压失控确保系统正常运行。 7、由于管路直径小,总长度和系统安装简便所带来的管道成本和安装费用减少,管道安装无特殊要求,使虹吸雨水排水系统得到众多的业主和施工单位青睐。 对于虹吸雨水设计时的技术规定,则按照下列标准执行。 虹吸雨水排水系统必须选用转用虹吸雨水斗,一个计算汇水面积内,宜放置不少于两个虹吸雨水斗,屋面汇水最低处至少应放置一个虹吸雨水斗;虹吸雨水斗的距离不宜大于20m;无天沟的平屋面宜采用YG50型虹吸雨水斗,同一悬吊管上接入的雨水斗应采用同一规格,其进水口应在同一水平面上;虹吸雨水排水系统的悬吊管设计流速不宜小于1m/s,设计流速不宜小于2.2/s,不宜大于10m/s,悬吊管计算负压值不大于80kpa。 同一系统不同支路的节点压差不应大于10kpa;排水管道总水头损失与流出水头之和不得大于雨水系统进、出口的几何高差;虹吸雨水排水系统接入市政重力流系统之前应放大管径,起流速不宜大于2.0m/s,否则需设置消能设施;凡设计虹吸雨水排水工程的建筑屋面均应设置溢流口(外檐沟除外),溢流堰,溢流管系等溢流设施。溢流排水设施不得危害建筑设施。在雨季前后,应及时清理屋面及虹吸雨水斗导流罩上的杂物。

倒虹吸计算书Word版

旧寨倒虹吸计算书 一、基本资料 设计流量:2.35 m3/s 加大流量:2.94 m3/s 进口渠底高程:1488.137m 进口渠宽:2.0m 进口渠道设计水深:1.31m 加大流量水深:1.56m 出口渠底高程:1487.220m 进口渠道设计水深:1.43m 加大流量水深:1.70m 进出口渠道形式:矩形 进口管中心高程:1487.385m 出口管中心高程:1486.69m 管径DN:1.6m 二、设计采用的主要技术规范及书籍 1、《灌溉与排水工程设计规范》GB50288—99; 2、《水电站压力钢管设计规范》SL284—2003 3、《混凝土结构设计规范》SL/T191—96; 4、《水工建筑物抗震设计规范》DL5073—1997; 5、《小型水电站机电设计手册-金属结构》;。 6、《水力计算手册》

7、《倒虹吸管》 三、进口段 1、渐变段尺寸确定 L=C(B1-B2) 或L=C1h; C取1.5~2.5; C1取3~5: h上游渠道水深; 经计算取L=4m; 2、进口沉沙池尺寸确定 (1) 拟定池内水深H; H=h+T T=(1/3~1/4)h; T为进口渠底至沉沙池底的高差;取0.8m; (2) 沉沙池宽B B=Q/(Hv); v池内平均流速0.25~0.5m/s; 经计算取B=3.5m; (3) 沉沙池长L’ L’≥(4~5)h 经计算取L =8m; (4) 通气孔

通气孔最小断面面积按下式计算: P C KQ A △1265 ; A 为通气管最小断面面积m 2;Q 为通气管进风量,近似取钢管内流量,m 3/s ;C 为通气管流量系数;如采用通气阀,C 取0.5;无阀的通气管,C 取0.7;P △为钢管内外允许压力差,其值不大于0.1N/mm 2;K 为安全系数,采用K=2.8。 经计算A=0.0294 m 2;计算管内径为0.194m ,采用D273(δ=6mm)的螺旋钢管。 四、出口段 倒虹吸管出口消力池,池长L 及池深T ,按经验公式: L=(3~4)h T ≥0.5D 0+δ+0.3 经计算取L =6m ,T=1.2m 。 五、管身段 本倒虹吸管采用Q235B 板钢管,经初步布置和拟定后量得钢管长约410m 。根据地形在全线设4座镇墩,初定钢管内径DN1600mm ,壁厚δ为14和16mm 。下面分别对倒虹吸进行水力计算、钢管和镇墩结构计算: (一) 水力计算 倒虹吸的过水能力及总水头损失按《灌溉与排水工程设计规范》附录N 所列公式计算: 1、倒虹吸的过水能力按下式计算

雨水蓄水池容积计算书

按设计规范,雨水储存设施的有效容积不宜小于集水面重现期1—2年的日雨水设计径流总量扣除设计初期径流弃流量。 根据《绿色建筑评价标准》中规定,本设计的场地年径流总量控制率取70%,其对应的设计日降雨量为11.6mm,雨水设计径流总量按下式计算:W=10φc h y F 式中W ——雨水储水池容积,m3 ; φc——雨量径流系数;取0.4 h y——设计日降雨量,mm/d ;取11.6mm F ——汇水面积,hm2,为4.0hm2。 则: W=10×0.44×11.6×4.0=204.16m3 按设计规范,屋面雨水初期弃流可采用2-3mm径流厚度,地面雨水初期弃流可采用3-5 mm径流厚度,初期径流弃流量按下式计算:W i=10×δ×F W i——初期弃流量,m3 ; δ——初期径流厚度;取3mm; F ——汇水面积,h㎡。 则: W i=10×3×4=120m3 则本设计蓄水池的体积为:V=W-W i=84.16m3

根据甲方提供资料,本次项目占地面积69000㎡,绿化率35%,即绿化占地面积约24150㎡,道路及车库面积为31211㎡;雨水收集回用系统提供全部的绿化浇灌用水和30%的冲洗道路及车库用水,计算如下: 查《建筑给排水设计手册》,浇洒道路及绿化用水定额都取为2.5L/㎡.d,则依据下式计算: Q=q×s/1000 式中:Q——日用水量 q——用水定额 则绿化浇灌日用水量: Q1=2.5×24150/1000=60.38m3/d 道路浇洒日用水量: Q1=2.5×31211/1000=78.02m3/d 雨水收集系统存储可回用蓄水天数为3—7天,本设计取3天,则雨水收集模块容积为: W=3×(78.02×0.3+60.38)=251.34m3 清水池容积取日用水量的25%—30%,本设计取25%,则清水池容积为:w=0.25×(60.38+78.02×0.3)=20.85

(整理)倒虹吸管设计计算

倒虹吸管设计计算 一、倒虹吸管总体布置(根据地形和当地需水量情况确定) 1.布置原则;13P 2.布置型式;{地面式(露天或浅埋式)、架空式} 3.管路布置;(斜管式和竖井式) 4.进口段布置;{渐变段、拦污栅、节制闸、连接段﹙进水口、通汽孔﹚、沉沙、冲沙及泄水设施} 5.出口段布置;(设消力池) 二、倒虹吸管的构造 1.管身构造;(钢筋混泥土管、钢管、铸铁管) 2.支承结构;(管座、镇墩、支墩) 三、倒虹吸管的水力计算 1.管道断面尺寸的确定; ①灌溉面积的确定:(根据土地利用参加够调整表查出整理后土地的灌溉面积。) ②补水量的计算: 项目区水田和旱地需水量除去项目区降雨量即为需补给水量。项目区分为水田和旱地,主要农作物为水稻、玉米、油菜,各种农作物所在区需水量不同。根据贵州省《灌溉用水定额》编制分区图:项目区属Ⅰ区,灌溉定额根据贵州省灌溉用水定额编制Ⅰ区水稻净定额为2703m/亩,毛灌溉定额为6443m/亩。

需水量公式 W M A n =??毛需 W 需—— 农业生产总需水量,3 m ; M 毛—— 综合毛灌溉定额,3m ; A —— 灌溉面积,亩; n —— 农作物复种指数,采用综合灌溉定额时,已经考虑了复种指数,可不再计入。 M M η = 净 毛 M 净—— 作物净灌溉定额,3m /亩; η—— 灌溉水利用系数。Ⅰ区渠系水利系数为 0.465; 田间水利用系数为0.95,故灌溉水利用系数为0.465×0.95 得0.44。 ③.流量计算 根据当地全年水田需水量表、旱地需水量表和全年降雨量表查出全年需水量和降雨量的最大值和最小值,计算出最大补水量和最小补水量,以推出其流量。 ④.确定尺寸; o D (圆管) o D —— 管道内径,m;

重力坝稳定及应力计算书..

5.1重力坝剖面设计及原则 5.1.1剖面尺寸的确定 重力坝坝顶高程1152.00m,坝高H=40.00m。为了适应运用和施工的需要,坝顶必须要有一定的宽度。一般地,坝顶宽度取坝高的8%~10%,且不小于2m。若有交通要求或有移动式启闭设施时,应根据实际需要确定。综合考虑以上因素,坝顶宽度m B10 。 考虑坝体利用部分水中增加其抗滑稳定,根据工程实践,上游边坡坡率n=0~0.2,下游边坡坡率m=0~0.8。故上游边坡坡率初步拟定为0.2,下游边坡坡率初步拟定为0.8。上游折坡点位置应结合应力控制标准和发电引水管、泄洪孔等建筑物的进口高程来定,一般折坡点在坝高的1/3~2/3附近,故初拟上游折坡点高程为1138.20m。下游折坡点的位置应根据坝的实用剖面形式、坝顶宽度,结合坝的基本剖面计算得到(最常用的是其基本剖面的顶点位于校核洪水位处),故初拟下游折坡点高程为1148.50m。 5.1.2剖面设计原则 重力坝在水压力及其他荷载的作用下,主要依靠坝体自重产生的抗滑力维持抗滑稳定;同时依靠坝体自重产生压应力来抵消由于水压力引起的拉应力以满足强度要求。 非溢流坝剖面设计的基本原则是:①满足稳定和强度要求,保证大坝安全;②工程量小,造价低;③结构合理,运用方便;④利于施工,方便维修。 遵循以上原则拟订出的剖面,需要经过稳定及强度验算,分析是否满足安全和经济的要求,坝体剖面可以参照以前的工程实例,结合本工程的实际情况,先行拟定,然后根据稳定和应力分析进行必要的修正。重复以上过程直至得到一个经济的剖面。 5.2重力坝挡水坝段荷载计算 5.2.1基本原理与荷载组合 重力坝的荷载主要有:自重、静水压力、扬压力、泥沙压力、浪压力、动水压力、冰压力、地震荷载等。本次设计取单位长度的坝段进行计算。相关荷载组合见表4.5。 表4.5 荷载组合表 组合情况相关 工况 自 重 静水 压力 扬压 力 泥沙 压力 浪压 力 冰压 力 地震 荷载 动水 压力 土压 力 基本正常√√√√√√

虹吸雨水系统知识

虹吸系统组成和材质 虹吸系统由虹吸试雨水斗、尾管、连接管、悬吊管、立管、埋地管、检查口和固定及悬吊系统组成。 虹吸试雨水斗: 雨水斗一般由反旋涡顶盖、格栅片、底座和底座支管组成。额定流量分12L/s、 25L/s、40L/s、60L/s和72L/s等,最常用的为25L/s和40L/s两种额定流量的雨水斗。 虹吸试雨水斗材质可采用铸铁、铝合金、不锈钢、高密度聚乙烯(HDPE)和聚丙烯(PP)等。 管材和管件: 用于虹吸式屋面雨水排水系统的管道,应采用铁管、钢管(镀锌钢管、涂塑钢管)、不锈钢管和高密度聚乙烯(HDPE)管等材料。用于同一系统的管材和管件以及与虹吸式雨水斗的连接管,宜采用相同的材质。这些管材除承受正压外,还应能承受负压。 固定件: 管道安装时应设置固定件。固定件必须能承受满流管道的重量和高速水流所产生的作用力。对高密度聚乙烯(HDPE)管道必须采用二次悬吊系统固定。)系统布置 根据所计算的有关数据,确定雨水斗的数目和分布位置,在图纸上绘制雨水斗位置和管道系统的布置设计,除了在建筑平面图纸上布置雨水斗和管道,还要进行系统的设计。 系统设计应符合有关规范规定并具备以下要求: 1、当连接有多个虹吸式雨水斗时,雨水斗宜与雨水立管做对称布置,以减少管道用量;雨水斗的排水连接管应连接在悬吊横管上,不得直接接在雨水立管的顶部。 2、虹吸式雨水斗应设置在每个汇水区域屋面的最低点或天沟内的最低点。 3、每个汇水区域的雨水斗数目不宜少于2个。 4、2个雨水斗之间的间隔不宜大于20m。 5、设置在裙房屋面上的雨水斗距裙房与塔楼交界处的间隔不应小于1m,且不大于10m。

6、对于汇水面条中大于5000m2的大型屋面,宜设置不少于2组独立的虹吸排水系统。在进行初步的图纸设计时应与设计院相关的设计职员沟通、协调以免与其他专业产 生冲突。 需要留意的是,管道布置根据不同的工程有不同的要求,可能在柱边,也可能有固 定的管道井,严格按要求来布置的。立管位置宜布置在间隔雨水井较近的位置,这 样可以减少埋地管道的长度和相应的施工量。 在虹吸屋面雨水排放系统中,高密度聚乙烯(HDPE)管材具有卓越的理化性能和耐 腐蚀性能,与金属管材相比,HDPE管同样具有一定的强度、钢度、柔韧性、搞冲击性、耐磨性、耐腐蚀性等。国外的使用经验表明,HDPE管连接方便、可靠施工简单 维修少,使用寿命长、经济上风明显,因此,较多的虹吸供给商选择了HDPE管材,并开发了配套组件和特别适合HDPE管固定安装的管道固定系统和固定件。 高密度聚乙烯管材(HDPE)的连接工艺 在虹吸屋面雨水排放系统应用中,HDPE管连接可采用对口热熔连接和电焊管箍连接。尽不可采用粘接口连接。热熔连接多用于预制管段,首先将管道放在专用焊接设备 的夹具上对齐,使两段管道的中心轴线保持在同一直线上,如管口有偏差应调平夹牢,清除管真个杂质,使用管口创刀或管道切割机具创切,管口应垂直于管中心轴线,移动管道对齐应使两段管道管端平整,紧密无间隙,然后用电加热板进行加热,加热时间应控制得当,可根据管道的壁厚和不同季节环境温度的影响适当调整,并 观察管端加热时管口的软化、膨胀情况,当管端软化程度与管壁厚一半相当,管口 膨胀高度相当于管壁厚的1/4时,即可撤除电加热盘,(留意加热时不可对管道加压) 电加热盘撤除后应立即将两管道段靠紧、施加压力,使熔融表面连成一体,此时两 管端表面会外翻,外翻半径到相当于管壁厚一半即可。施加压力应保持到接口自然 冷却,尽不能采用浇水或其它快速冷却方式。电焊管箍连接,此方式多用于预制完 成的管段在排水管道系统中的连接,具体操纵如下:对接的两管道管口应创切平整,对口无间隙或在答应的微小间隙范围内,管道端部表面就清洁无杂质,可使用细砂 布磨刷。套进电热熔套管前须用色笔作记号,记号应标明电热熔套管套进的深度以 确保两段管道紧密连接,套紧后用电熔焊机加进电流焊接。焊接时管道内应干燥, 尽不能有水滴溢出。电热熔焊接过程由电熔焊设备自动控制,但焊接完后应观察电

倒虹吸管水力计算书

倒虹吸管水力计算书 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、示意图: 二、基本设计资料 1.依据规范及参考书目: 武汉大学水利水电学院《水力计算手册》(第二版) 华东水利学院《水工设计手册》(第二版) 中国水利水电出版社《灌区建筑物的水力计算与结构计算》(熊启钧编著)2.计算参数: 计算目标: 已知流量及管径,求水头损失L。 设计流量Q = 20.000 m3/s 倒虹吸管断面形状:圆形;孔口数量:3孔 倒虹吸管孔直径D = 2.000m 管身长度L = 220.00m,斜管段边坡1 : 4.00 弯管中心半径R = 2.00倍管径,管身粗糙系数n = 0.0140 上游渠道流速V1 = 0.700 m/s,下游渠道流速V2 = 0.700 m/s 门槽局部水头损失系数ξ4 = 0.050,管进口局部水头损失系数ξ5 = 0.200 三、计算过程 门槽局部水头损失系数ξ4 = 0.050。 管进口局部水头损失系数ξ5 = 0.200 斜管段边坡1:4.00,相应弯道中心的圆心角为: α = tan-1(1/4.00) = 14.036° 弯道中心半径R=2.00D,每个弯道的局部水头损失为: ξ6 = [0.131+0.1632(H/R)3.5+(α/90)1/2 = {0.131+0.1632×[2.000/(2.00×2.00)]3.5}×(14.036/90)1/2=0.057 管身流速为:V管= Q/*3×π×(D/2)2] = 20.000/[3×3.14×(2.000/2)2] = 2.122 m/s 管出口局部水头损失系数为:

静水力计算

COMPASS 静水力计算 SRH11( Ver. 2010 ) 控 制 号 : 1234567 船 名 : 46 设 计 : 制 造 : 计算人员 : 建模日期 : 2014-10-18 计算日期 : 2014-10-21 中 国 船 级 社

垂线间长...............................................................................................................................................13.000m 型 宽................................................................................................................................................... 4.250m 型 深................................................................................................................................................... 1.913m 设计吃水...............................................................................................................................................0.589m 设计纵倾...............................................................................................................................................0.000m 单 位 定 义 ______________________________________________ 长度单位 : 米 [ m ] 重量单位 : 吨 [ t ] 角度单位 : 度 [deg] 坐 标 轴 定 义 ______________________________________________ X 轴 : 向右为正 Y 轴 : 向首为正 Z 轴 : 向上为正 纵倾 : 尾倾为正 横倾 : 右倾为正 _____________________________________________________________________________________________ 本程序可用于计算船舶的静水力数据。

雨水泵站计算书——潜水轴流泵计算书

雨水泵房计算 一、设计参数 1、设计流量Q设:4m3/s 2、水泵数量:4台 3、单泵流量:Q=Q设/6=1m3/s 4、进水管内底高程:-3.50 5、进水最低水位:-3.5+0.3*2.4=-2.78取-2.8 6、进水最高水位:-3.5+2.4=-1.1 7、河道设计水位:河道水位:水利局提供防洪最高水位 1.80- 2.68米(大沽高程) 8、规划河道底高程-2.700米 泵站出水管管径2-d1500mm 出水管管内底高程h出=-0.650m(河底规划高程-2.700m,实测河底高程-1.980m,实测水位1.04m) 9、泵站地坪高:道路规划标高为 2.70m.T.D,庭院地面定为 2.900m.T.D 二、水泵扬程计算 1、水泵静扬程:2.68-(-2.8)=5.48 2、泵站内部水头损失 (1)、喇叭口局部损失:吸水口Ф=600mm,局部阻力系数ζ=0.5 流速υ1=Q/ЛR2=0.67/(3.14×0.32)=2.37m/s h1=ζυ12/2g=0.5×2.372/(2×9.81)=0.144m

(2)、沿程损失: 流速υ2=Q/ЛR2=0.67/(3.14×0.52)=2.37 m/s 管道坡降i=0.00107υ22/d1.3=0.0117 直管部分长度约L=8m 则沿程损失h2=iL=0.0117×8=0.094m (3)、拍门Ф=700mm 局部阻力系数ζ=1.7 流速υ5= Q/ЛR2=0.67/(3.14×0.32)=1.74m/s H3=ζυ52/2g=1.7×1.742/(2×9.81)=0.263m (6)该部分的总损失 H1= h1+ h2+ h3 =0.144+0.094+0.263=0.501m 3、泵站外部损失计算 水泵出水在泵站外边的流程是;首先通过10米单排d2000的钢筋混凝土管进入出水闸阀井,然后经过1100米单排d2000的钢筋混凝土管排入大沽排污河。 (1)泵站压力出水池到出水蝶阀井的单排d2000钢管,单排长约10米,流量4m3/s。 管道内流速υ=Q/A=4/(3.14×12)=1.274m/s 管道坡降i=0.00107υ22/d1.3=0.001736 直管部分长度约L=10m 则沿程损失h1=iL=0.001736×10=0.017m 局部损失系数:1个进口ζ1=0.5,1个出口ζ2=1.0,该段的局部损

船舶静水力曲线计算

船舶静水力曲线计算 一、船舶静水力曲线计算任务书 1、设计课题 1)800t油船静水力曲线图绘制 2)9000t油船静水力曲线图绘制 3)86.75m简易货船静水力曲线图绘制 4)5200hp拖船静水力曲线图绘制 5)7000t油船静水力曲线图绘制 6)12.5m多功能工作艇静水力曲线图绘制 2、设计任务 船舶静水力曲线的计算是在完成船舶静力学课程的教学任务下,按照静水力曲线计算课程设计的要求,在提供所设计船舶全套型线图纸的前提下,完成静水力曲线的计算和绘制。 3、计算方法 (1)计算机程序计算 (2)手工计算(包括:梯形法、辛氏法、乞氏法等)。 本课程设计计算以梯形法为例,因其原理相同,其余方法在此不做介绍,可参考教材和相关书籍。 4、完成内容 静水力曲线计算书一份及静水力曲线图一张(用A3坐标纸) 二、船舶静水力曲线计算指导书 本静水力曲线计算指导书以内河20t机动驳计算实例为例。 (一)前言 静水力曲线是表达船在静水正浮各种吃水情况下的各浮性及初稳性系数,并作为稳性计算、纵倾计算及其他计算的基础。通过计算可得到船舶的各项性能参数,其主要内容见表1。

表1 静水力曲线图的内容 (二)设计前的准备和已知条件 1、设计前的预习与准备 静水力曲线计算,首先是要熟悉所计算船的主尺度及各船型参数,然后是熟悉各类计算公式,选用计算方法。其次是进行计算,按计算结果绘制曲线图,最后进行检验和修改,完成静水力曲线的计算任务。 2、已知条件 20t内河机动驳型线图一套,梯形法表格一套,见静水力曲线计算书。 (三)设计的主要任务 1、计算公式 A=ι[(y0+y1+······+y n-1+y n)- 1 2 (y0+y n)] 梯形法基本式 A=ι[(y0+y1)+(y1+y2)+······+(y n-1+y n) ] 梯形法变上限积分式 式中:ι—等分坐标间距。注:y1表示各站号的纵坐标值(i=1,···,n) 2、静水力曲线计算表格及算例 在实际的计算中,采用下述表格很方便。表中附20t内河机动驳计算实例,供同学自己推演。

污水及雨水管道怎样计算管道长度

污水及雨水管道怎样计算管道长度 【篇一:2014年管道课设】 2011级环境工程专业 《管道工程》课程设计 设计任务书 一、设计目的 本课程设计就是在经过《管道工程》理论学习后,学生在初步掌握污水排水管道系统与雨水管渠系统的概念、理论、设计计算方法的基础上,而进行的城市排水工程初步设计实践。 通过课程设计,使学生在基本理论、基本知识、基本技能等方面得到一次综合性训练: 1.了解污水排水管道系统设计的方法与步骤; 2.了解雨水管渠系统设计的方法与步骤; 3.学习利用各种资料确定设计方案的方法; 4.熟悉污水排水管道设计计算方法; 5.熟悉雨水管渠设计计算方法; 6.加强工程制图能力。 二、设计任务 1、确定污水排水管道系统的平面布置方案。 2、确定雨水管渠系统的平面布置方案。 3、进行污水排水管道(主干管)的流量计算与水力计算。 4、进行雨水管渠(选其中1~2条)的流量计算与水力计算。 5、进行平面图与纵剖面图的绘制。 6、整理计算书,编制说明书。 三、设计原始资料 1、某市南区规划地形图1张。城市位于河南省。 2、设计人口数: 3、2万人。 3、在规划区东部已建成污水处理厂一座,处理工艺采用二级生化处理+深度 处理,能够完全接纳工业园区的污水处理量。 4、工业废水设计流量按工业产业区0、6l/ (s 、ha);生活污水设计流量按全规 划区平均比流量设计。

5.夏季主导风向为东风,冬季主导风向为西风,年平均气温为15oc,冬季最冷月平均气温为-1oc。 6.该地区冰冻线深度为0、20米。 7.根据水文及气象资料,当地的暴雨强度公式: q=599(1+0、86lgp)/t0、56 设计指导书 一.污水管道系统的设计原则 城市排水管渠系统就是城市的一项重要基础设施,就是城市建设的重要组成部分、同时也就是控制水污染、改善与保护水环境的重要工程措施。在进行城镇排水管渠系统的规划与布置时,通常应遵循以下原则: (1)排水管道系统的规划设计应将合城市总体规划,并应与其它单项工程建设密切配合,相互协调。 (2)合理地确定管网密度,排水管渠尽量分散,避免集中,排水路线尽量短捷。 (3)主干管尽可能布置在较低处(如河岸或水体附近),以便于干管接入。 (4)城镇污水管渠应考虑城市工业废水的接入,满足排入城市下水道水质标准的工业废水直接排入下水道,不满足标准的在厂内进行预处理后排人下水道。 (5)排水管渠应尽量避免穿越不易通过的地带与构筑物;也不宜穿越有待规划与发展的大片空地,以避免影响整块地的功能与价值。 (6)排水管渠系统应与地形地势变化相适应,顺坡排水,尽量使污水重力排除,不设或少设中途提升泵站。 (7)合理比较与选择整个排水系统的控制点及控制点标高,以使整个管网系统埋深与投资合理。 二.雨水管道系统的设计原则 (1)管道定线:根据地形特点,布置雨水管渠,雨水应以最短的距离尽快排入水体。 (2)划分干管与支管的服务面积,进行编号并计算出面积的大小。 (3)确定干管与支管的检查井位置与编号,并计算设计管段长度与管渠总长度。 (4)列表计算各设计管段的设计流量:雨水管道的设计流量为地面径流系数、暴雨强度与集水面积的乘积。其中径流系数数可根据不同的

计算书

1非溢流坝段设计计算 1.1设计校核洪水位的确定 由堰流公式 相应洪水位= 堰顶高程+ H0 H0=1.05H d B=Q/q n=B/b 式中:Q--流量m3/s B--溢流堰孔口宽m H0--堰顶以上作用水头 G--重力加速度9.8m3/s m—流量系数 n—孔口数 H d—堰面曲线定型设计水头 B—溢流孔的净宽 b—孔口净宽 q—单宽流量 --侧收循系数,根据闸墩厚度及墩头形状而定, =1, =0.95,m=0.502,q=60㎡/s,b=5m,堰顶高程=1057.00m 计算成果见表: 表5.2 堰顶高程 1.2坝顶高程的确定 坝顶高程分别按设计和校核两种情况,用以下公式进行计算:

波浪要素按官厅公式计算。公式如下: 1/3 1/121022000.0076gh gD v v v -??= ???...............................① 1/3.75 1/2.15022000.331gL gD v v v -??= ??? ...............................② 2 12z h H h cth L L ππ= ...............................③ 库水位以上的超高h ?: 1c z h h h h ?=++ 式中1h --波浪高度,m z h --波浪中心线超出静水位的高度,m c h --安全超高,m(查规范得,设计情况取0.3m,校核情况取0.2m) o v --计算风速。水库为正常蓄水位和设计洪水位时,宜用相应洪水期多年 平均最大风速的1.5~2.0倍,取19m/s ,校核洪水位时,宜用相应洪水期多年平均最大风速,15 m/s D-风区长度;取800m L--波长;M H--坝前水深 1.2.1.1 设计情况下 gD/v 02=9.8×800/192=21.72,在20—250之间,故h 的累积频率为5%的波高,带入①中, 9.8×h 5%/192=0.0076×19-1/12×(9.81×800/192)1/3 得h 5%=0.55m 查《混凝土重力坝设计规范》表B.6.3得 h 5%/hm=1.95 hm=0.55/1.95=0.282m h 1%/hm=2.42 h 1%=0.282×2.42=0.682m 将各值带入②得

压力流(虹吸式)雨水系统设计计算步骤

一、压力流(虹吸式)雨水系统设计计算步骤 ⑴.计算屋面总的汇水面积; ⑵.计算总汇水面积上的暴雨量; ⑶.确定雨水斗的口径和数量; ⑷.布置雨水斗,组成屋面雨水排水管网系统; ⑸.绘制水力计算草图,标注各管段的长度,雨水斗、悬吊管和埋地干管起端与末端的标高; ⑹.估算计算管路的单位等效长度的阻力损失 ⑺.估算悬吊管的单位管长的阻力损失。 ⑻.初步确定管径。根据最小允许流速Vmin和悬吊管的单位管长的阻力损失Rxo查附录6-5虹吸式雨水管道水力计算表,初步确定悬吊管管径。立管与排出管管径可采用相应的控制流速初选管径,立管管径一般可比悬吊管末端管径小一号。 ⑼.列表进行水力计算求出各管段的沿程水头损失、局部水头损失、位置水头、各节点的压力。 ⑽.校核 ①系统的最大负压值(悬吊管与立管连接处); ②不同支路计算到某一节点的压力差 ③系统出口压力余量。 若不满足,则应对系统中某些管段的管径进行调整,必要时有可能对系统重新布置,然后再次进行水力计算,直至满足为止。 ⑾.按最后结果绘制正式图纸

二、压力流屋面雨水排水系统水力计算要点 水力计算的目的是充分利用系统提供的可利用的水头,减小管径,降低造价;使系统各节点由不同支路计算的压力差限定在一定的范围内,保证系统安全、可靠、正常地工作。 压力流屋面雨水排水系统的水力计算应包括对系统中每一管路的水力学工况作精确的计算。计算结果应包括每一计算管段的管径、计算长度、流量、流速、压力。 (1)压力流屋面雨水排水系统雨水斗至过渡段总水头损失与过渡段流速水头之和小于雨水斗至过渡段的几何高差,其压力余量宜大于-0.01MPa。 (2)雨水斗顶面至悬吊管管中的高差不宜小于1m。 (3)雨水斗顶面至过渡段的高差在立管管径小于DN75时宜大于3m,在立管管径大于等于DN90时宜大于5m。 (4)悬吊管设计流速不宜小于1m/s,使管道有良好的自净功能,立管设计流速宜小于6m/s,以减少水流动时的噪音。系统底部的排出管流速宜小于1.8m/s,减少水流对排水井的冲击,当流速大于1.8m/s 时,出口处应采取消能措施。 (5)压力流屋面雨水排水系统的最大负压值在悬吊管与雨水立管的交叉点。该点的负压值,应根据不同的管材而有不同的限定值。对于使用铸铁管和钢管的排水系统应小于-0.09MPa;对于塑料管道,管径DN50-DN150应小于-0.08MPa;管径DN200-DN300应小于- 0.07MPa。

道路排水计算书

排水管道计算书 一、污水管道 居民生活污水定额和综合生活污水定额应根据当地采用的用水定额,结合建筑内部给排水设施水平和排水系统普及程度等因素确定。可按当地用水定额的80%~90%采用。 本次设计按单位居住用地用水指标来确定污水量,采用参数如下: 单位居住用地用水指标:1.41万m3/(k㎡·d); 用水定额:85%; 单位居住用地排水量: 1.41万m3/(k㎡·d)×85%=1.2万m3/(k㎡·d) =1.389L/104㎡·S 污水管水力计算表

二、雨水管道 a) 雨水设计流量公式 F q Q ?= 式中 Q —雨水设计流量(L/s ); q —设计暴雨强度(L/s ·ha); ?—径流系数,本设计为室外排水,径流系数采用0.65; F —汇水面积(ha )。 b) 设计暴雨强度 ()() 87 .07.16824.011660 .4091++= t gP q 式中 q —设计暴雨强度(L/s ·ha); t —降雨历时(min); P —设计重现期(a )。 c) 设计重现期 雨水管渠设计重现期,应根据汇水地区性质(广场、干道、厂区、居住区)、地形特点和气象特点等因素确定。 本设计采用重现期P=1a 。 d) 雨水管渠设计降雨历时公式 21mt t t += 式中 t —降雨历时(min); 1t —地面集水时间(min),视距离长短、定型坡度和地面铺盖情况而定,一般采用5~15min ,本设计采用1t =15min ; m —折减系数,暗管折减系数m=2,明渠折减系数m=1.2;

2t —管渠内雨水流行时间(min)。 5. 计算单位面积径流量q 0 暴雨强度公式为: ()() 87 .07.16824.011660 .4091++= t gP q 由1=P min 151=t 2=m 65.0=?,得单位面积径流量: () ()87 .0287 .0210) 7.312(2578 .26597.16824.01166.409165.0+= +++? ==t mt t gP q q ? 6. 水力计算见表 雨水管水力计算表

(完整版)XX水库供水隧洞结构计算书.doc

龙洞河水电站有压引水隧洞结构计算书 1工程概况 公明供水调蓄工程供水隧洞是从鹅颈至公明水库连通隧洞L0+387 桩号接往石岩水库的一条供水隧洞,全长 6.397km,桩号为 G0+000~G6+397。根据初步设计报告供水隧洞为 2 级建筑物,设计流量为 10.24m3/s,采用圆型断面,内径为 3.4m。供水隧洞进口底高程为 29.60m,出口底高程为 27.50m,隧洞全段纵坡为 -0.0328%。供水隧洞Ⅱ类围岩 3576m、Ⅲ 类围岩 1836m、Ⅳ类围岩 345m、Ⅴ类围岩 310m。 2设计依据 2.1 规范、规程 《水工隧洞设计规范》( SL279-2002)(以下简称“隧洞规范”) 《水工隧洞设计规范》( DL/T 5195-2004)(电力行业标准,下称“电力隧洞规范”)《水工钢筋混凝土结构设计规范(试行)》(SDJ20-78)(以下简称“砼规” ) 《锚杆喷射混凝土支护技术规范》(GB 50086-2001) 2.2 参考资料 《深圳市公明水库调蓄工程初步设计报告》(深圳市水利规划设计院, 2007.05) 《G-12 隧洞衬砌内力及配筋计算通用程序》 《PC1500 程序集地下结构计算程序使用中的几个问题》(新疆水利厅,张校正) 《取水输水建筑物丛书-隧洞》 《水工设计手册-水电站建筑物》(水利电力出版社, 1989) 《水击理论与水击计算》(清华大学出版社, 1981) 《水力学-下册》(吴持恭,高等教育出版社,1982) 3计算方法 隧洞支护及衬砌结构按新奥法理论进行设计,支护型式采用锚喷支护通过工程类比确 定,喷锚支护类型及其参数参照电力隧洞规范附录 F 表 F.1 选取;衬砌型式采用钢筋混凝 土衬砌。根据隧洞规范 6.1.8 条第 2 点规定,围岩具有一定的抗渗能力、内水外渗可能造 成不良地质段的局部失稳,经处理不会造成危害者,宜提出一般防渗要求,本工程按限制

虹吸排雨水系统设计原理

虹吸排雨水系统设计原理 近几年来,屋面虹吸排雨水系统在国内众多大、中、小型建筑应用像雨后春笋般展现,为不少建筑设计师解除了诸多建筑造型的限制,现代建筑的复杂性,以及建筑界与工程界提出的严格要求,常常使得落后于现代先进建筑科技的传统屋面排水方案不具有可行性,如排水量大,重力排水系统影响建筑造型;室内排雨悬吊管放坡影响室内使用空间,排水管与建筑不协调。同时把屋面排雨水设计带到新的领域。自从UV排水系统在1968年发明以来,第一个UV系统(1968年发明)提供了屋面排水技术的突破,它在雨水斗周围的水深达到一定高度时,可以避免空气通过雨水斗进入排水管内。世界各国越来越多对虹吸排雨水系统的研究。,一些科学家和工程师,如Bernouilli, Prandtl, Darcy, Weisbach, Colebroke等建立起来的设计理论便可以用来进行精确的满管流排水系统的设计,这项技术对于建筑界的贡献立即表现出来。 一、虹吸系统基本原理介绍 原理简介 基本上,屋面雨水排放系统可分为重力流系统与满管流或虹吸系统。 重力流系统 在重力流系统中,水沿着立管的管壁流下。一般情况下,管材断面约1/5-1/3为水,剩余为空气。水平管的流量系数则可能达到1。因此,重力流系统的流量得视其管子所装置的坡度而定。 虹吸系统 在虹吸系统中,所有的管子在指定的降水强度下将达到1的流量系数。管子内的压力也有别于大气压强。通过利用建筑物(雨水斗与排放点的高度差距)所产生的压头,管径设计可达到满管流。因此,概念上,利用较小于传统管径的管道便可更快速地排出相同的水量。

虹吸系统电脑软件利用建筑物所产生的压头 (h1-h2)来平衡管子内的磨擦系数损失以及计算出以最小的管径来排放所设计的水量。捷流系统电脑软件通过分析水平管与立管的剖面以及管子的长度来平衡系统的压力。 正如以上所提及的,管子里的压力有别于大力气强。基本上,系统可接受管子里的压力超出于大气压强。 无论如何,管子内的压力若相当于水的蒸发压力,可能会导致气化作用的产生。为避免气化作用的发生,管子里的压力必需维持在水的蒸发压力以上。也就是说,如果大力气强被制定为0,管内负压力则需高于-8.0m。 重力流系统与系统的比较 重力流雨水系统 特点:气液二相流 1.雨水斗数量多 2.管径大 3.立管数量多 4.水平集水管需要坡度 5.雨水检查井数量多 6.大屋面工程,地面需布置排水沟 7.影响建筑美观 虹吸雨水系统 特点:满管流

相关文档
最新文档