静电场边值问题与唯一性定理习题解答+(1)

静电场边值问题与唯一性定理习题解答+(1)
静电场边值问题与唯一性定理习题解答+(1)

解的存在唯一性定理证明

解的存在唯一性定理 利用逐次逼近法,来证明微分方程的初值问题的解存在与唯一性定理。 一、【存在、唯一性定理叙述】 如果方程的右端函数在闭矩形区域上满足如下条件: (1)、在上连续; (2)、在上关于变量满足利普希茨条件,即存在常数,使对于上任何一点和有以下不等式:。 则初值问题在区间上存在唯一解, 其中

二、【证明】 逐步迫近法: 微分方程等价于积分方程。 取,定义 可证明的满足积分方程。 通过逐步迫近法可证明解的存在唯一性。 命 题 1:先证积分方程与微分方程等价: 设是微分方程定义于区间上满足初值条件 的解,则是积分方程定义于区间上的连续解。反之亦然。 证: 因是微分方程的解,有 两边从到取定积分,得: 代入初值条件得: 即是积分方程定义于区间上的连续解。 反之,则有 微分得: 且当时有。即是微分方程定义于区间上满足初值条件的解。 现取,代入积分方程的右端,所得函数用表示,则,再将代入积分方程的右端,所得函数用表示,则,以上称为1次近似, 称为2次近似。以此类推得到次近似。 从而构造逐步迫近函数序列为: 命 题 2:对所有,函数序列在上有定义、连续且满足不等式 证:当时, 。显然在上有定义、连续且有 ,即命题2当时成立。 由数学归纳法,设命题2当时成立,则对有: 知在上有定义、连续且有 命题2当时也成立。 由数学归纳法原理得命题2对所有均成立。 命 题 3:函数序列在上一致收敛。

证:只须考虑级数-----(*) 在上一致收敛。 因其部分和为:,因, 设对成立。 则当时有 即对所有,在成立 。 其右端组成正项收敛级数 由魏氏判别法,级数(*)在上一致收敛。即在上一致收敛。命题3得证。 现设 则在上有定义、连续且 命 题 4: 是积分方程在上的连续解。 证: 由利普希茨条件 及在上一致收敛于,知函数序列在上一致收敛于。 于是即 是积分方程在上的连续解。 命题5:设是积分方程在上的另一连续解。则。 证: 现证也是序列在上的一致收敛极限函数。由, , 得: , 。 设,则 。由数学归纳法,对所有,有 。 因此,对所有,在有成立。但当时。故在上的一致收敛于。由极限的唯一性,得。

第22讲唯一性定理第4章介质中的电动力学2§2唯一性定理

第22讲 唯一性定理 第4章 介质中的电动力学(2) §4.2 唯一性定理 在上节中我们说明静电学的基本问题是求出所有边界上满足边值关系或给定边界条件的泊松方程的解。本节我们把这问题确切地表述出来,即需要给出哪一些条件,静电场的解才能唯一地被确定。 静电场的唯一性定理对于解决实际问题有着重要的意义。因为它首先告诉我们,哪些因素可以完全确定静电场,这样在解决实际问题时就有所依据。其次,对于许多实际问题,往往需要根据给定的条件作一定的分析,提出尝试解。如果所提出的尝试解满足唯一性定理所要求的条件,它就是该问题的唯一正确的解。下面我们先提出并证明一般形式的唯一定理,然后再证明有导体存在时的唯一性定理。 1. 静电问题的唯一性定理 下面我们研究可以均匀分区的区域V ,即V 可以分为若干个均匀区域 V i ,每一个区域的电容率为 ε i 。设V 内有给定的电荷分布 ρ(x )。电势 φ 在均匀区域 V i 内满足泊松方程 2i ρ ?ε?=- (4.2---1) 在两区域 V i 和 V j 的分界上满足边值关系 ()()i j i i j j n n ????εε=?? ???=???? (4.2---2) 泊松方程(4.2---1)式和边值关系(4.2---2)式是电势所必须满足的方程,它们属于电场的基本规律。除此之外,要完全确定V 内的电场,还必须给出V 的边界S 上的一些条件。下面提出的唯一性定理具体指出所需给定的边界条件。 唯一性定理: 设区域V 内给定自由电荷分布,在V 的边界上S 上给定 (1)电势φ| s 或

(2)电势的法向导数 ?φ/?n | s , 则V 内的电场唯一确定。也就是说,在V 内存在唯一的解,它在每个均匀区域内满足泊松方程(4.2---1),在两均匀区域分界面上满足边值关系,并在V 的边界S 上满足该给定的φ或?φ/?n 值。 证明 设有两组不同的解 φ' 和 φ'' 满足唯一性条件定理的条件。 令 ,???'''=- (4.2---3) 则由 ▽2φ' = ?ρ/εi ,▽2φ'' = ?ρ/εi ,得 20??= (在每个均匀区V i 内) (4.2---4) 在两均匀区界面上有 i j ??= ()()i i j j n n ?? εε??=?? (4.2---5) 在整个区域V 的边界S 上有 0S S S ???'''=-= (4.2---6a ) 或 S S S n n n ? ??'''???= - ???=0 (4.2---6b ) 考虑第i 个均匀区 V i 的界面 S i 上的积分 i i S d ε??????S 由附录(Ⅰ.7)式,这积分可以变换为体积分 ()i i i i S V d dV ε??ε????=????? ?S 22()i i i i V V dV dV ε??ε?=?+??? 由(4.2---4)式,右边最后一项为零,因此 2 ()i i i i S V d dV ?ε??ε???=???S 对所有分区 V i 求和得 2()i i i i S V i i d dV ε??ε???=?∑∑?? ?S (4.2---7)

电磁场第三版思考题目答案完整版

电磁场第三版思考题目 答案 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

一:1.7什么是矢量场的通量通量的值为正,负或0分别表示什么意义 矢量场F穿出闭合曲面S的通量为: 当大于0时,表示穿出闭合曲面S的通量多于进入的通量,此时闭合曲面S 内必有发出矢量线的源,称为正通量源。 当小于0时,小于 有汇集矢量线的源,称为负通量源。 当等于0时等于、闭合曲面内正通量源和负通量源的代数和为0,或闭合面内无通量源。 1.8什么是散度定理它的意义是什么 矢量分析中的一个重要定理: 称为散度定理。意义:矢量场F的散度在体积V上的体积分等于矢量场F在限定该体积的闭合积分,是矢量的散度的体积与该矢量的闭合曲面积分之间的一个变换关系。 1.9什么是矢量场的环流环流的值为正,负,或0分别表示什么意义 矢量场F沿场中的一条闭合回路C的曲线积分,称为矢量场F沿 的环流。 大于0或小于0,表示场中产生该矢量的源,常称为旋涡源。 等于0,表示场中没有产生该矢量场的源。 1.10什么是斯托克斯定理它的意义是什么该定理能用于闭合曲面吗

在矢量场F所在的空间中,对于任一以曲面C为周界的曲面S,存在如下重要关系 这就是是斯托克斯定理矢量场的旋度在曲面S上的面积分等于矢量场F在限定曲面的闭合曲面积分,是矢量旋度的曲面积分与该矢量沿闭合曲面积分之间的一个变换关系。能用于闭合曲面. 1,11 如果矢量场F能够表示为一个矢量函数的旋度,这个矢量场具有什么特性=0,即F为无散场。 1.12如果矢量场F能够表示为一个标量函数的旋度,这个矢量场具有什么特性=0即为无旋场 1.13 只有直矢量线的矢量场一定是无旋场,这种说法对吗为什么 不对。电力线可弯,但无旋。 1.14 无旋场与无散场的区别是什么 无旋场F的旋度处处为0,即,它是有散度源所产生的,它总可以表示矢量场的梯度,即 =0 无散场的散度处处为0,即,它是有旋涡源所产生的,它总可以表示为某一个旋涡,即。

电磁场与电磁波第四版课后思考题

《电磁场与电磁波理论》思考题 第1章思考题 什么是标量?什么是矢量?什么是矢量的分量? 什么是单位矢量?什么是矢量的单位矢量? 什么是位置矢量或矢径?直角坐标系中场点和源点之间的距离矢量是如何表示的? 什么是右手法则或右手螺旋法则? 若两个矢量相互垂直,则它们的标量积应等于什么?矢量积又如何? 若两个矢量相互平行,则它们的矢量积应等于什么?标量积又如何? 若两个非零矢量的标量积等于零,则两个矢量应垂直还是平行? 若两个非零矢量的矢量积等于零,则两个矢量应垂直还是平行? 直角坐标系中矢量的标量积和矢量积如何计算? 什么是场?什么是标量场?什么是矢量场? 什么是静态场或恒定场?什么是时变场? 什么是等值面?它的特点有那些? 什么是矢量线?它的特点有那些? 哈密顿算子为什么称为矢量微分算子? 标量函数的梯度的定义是什么?物理意义是什么? 什么是通量?什么是环量? 矢量函数的散度的定义是什么?物理意义是什么? 矢量函数的旋度的定义是什么?物理意义是什么? 什么是拉普拉斯算子?标量和矢量的拉普拉斯运算分别是如何定义的? 直角坐标系中梯度、散度、旋度和拉普拉斯算子在的表示式是怎样的?

三个重要的矢量恒等式是怎样的? 什么是无源场?什么是无旋场? 为什么任何一个梯度场必为无旋场?为什么任何一个无旋场必为有位场?为什么任何一个旋度场必为无源场?为什么任何一个无源场必为旋度场?高斯散度定理和斯托克斯定理的表示式和意义是什么? 什么是矢量的唯一性定理? 在无限大空间中是否存在既无源又无旋的场?为什么? 直角坐标系中的长度元、面积元和体积元是如何表示的? 圆柱坐标系中的长度元、面积元和体积元是如何表示的? 球面坐标系中的长度元、面积元和体积元是如何表示的?

存在唯一性定理证明

存在唯一性定理 如(,)f x y 在R 上连续且关于y 满足利普希茨条件,则方程 (,),dy f x y dx =在区间0x x h -≤上存在唯一解00 (),()y x x y ??== ,其中 (,)min ,, max (,) x y R b h a M f x y M ∈? ?== ??? 逐步迫近法 微分方程(,)dy f x y dx =等价于积分方程0 0(,)x x y y f x y dx =+ ? 取00()x y ?= , 定义0 01()(,()), 1,2,x n n x x y f x x dx n ??-=+=? 可证明lim ()() n n x x ??→∞ =的 ()y x ?=满足积分方程。 通过逐步迫近法可证明解的存在唯一性。 命题1 先证积分方程与微分方程等价: 设()y x ?=是微分方程 (,)dy f x y dx =定义于区间00x x x h ≤≤+上满足初值条件 00()x y ?=的解,则()y x ?=是积分方程0 000(,), x x y y f x y dx x x x h =+≤≤+?定义于区 间0 0x x x h ≤≤+上的连续解。反之亦然。

证 因()y x ?=是微分方程 (,)dy f x y dx =的解,有 ()(,())d x f x x dx ??= 两边从0x 到0 x h +取定积分 000()()(,()), x x x x f x x dx x x x h ???-= ≤≤+? 代入初值条件00()x y ?=得 000()(,()),x x x y f x x dx x x x h ??=+ ≤≤+? 即()y x ?=是积分方程0 000(,), x x y y f x y dx x x x h =+ ≤≤+?定义于区间00x x x h ≤≤+上的连续解。 反之,则有 000()(,()), x x x y f x x dx x x x h ??=+ ≤≤+? 微分之 ()(,())d x f x x dx ??= 且当0x x = 时有00 ()x y ?=。即 () y x ?=是微分方程 (,) dy f x y dx =定义于区间 00x x x h ≤≤+上满足初值条件00()x y ?=的解。 现取00()x y ?=,构造逐步迫近函数序列 000001()1,2,()(,()), x n n x x y x x x h n x y f x x dx ???-=??≤≤+=? =+?? ? 命题2 对所有n ,函数序列()n x ?在0 0x x x h ≤≤+上有定义、连续且满足不等 式 0()n x y b ?-≤ 证 当1n =时0 100()(,)x x x y f x y dx ?=+ ?。显然1()x ?在0 0x x x h ≤≤+上有定义、 连续且有 0000()(,)(,)()x x n x x x y f x y dx f x y dx M x x M h b ?-= ≤ ≤-≤≤?? 命题2当1n =时成立。设命题2当n k =时成立,则对1n k =+

Picard存在和唯一性定理

Picard存在和唯一性定理 本节利用逐次逼近法,来证明微分方程 (2.1) 的初值问题 (2.2) 的解的存在与唯一性定理. 定理 2.2(存在与唯一性定理)如果方程(2.1)的右端函数在闭矩形域 上满足如下条件: (1) 在R上连续; (2) 在R上关于变量y满足李普希兹(Lipschitz)条件,即存在常数N,使对于R上任何一对点和有不等式: 则初值问题(2.2)在区间上存在唯一解 其中 在证明定理之前,我们先对定理的条件与结论作些说明: 1. 在实际应用时,李普希兹条件的检验是比较费事的.然而,我们能够用一个较强的, 但却易于验证的条件来代替它.即如果函数在闭矩形域R上关于y的偏导数 存在并有界,.则李普希兹条件成立,事实上,由拉格朗日中值定理有 其中满足,从而.如果在R上连续,它在R上当然就满足李普希兹条件.(这也是当年Cauchy证明的结果) 2.可以证明,如果偏导数在R上存在但是无界,则Lipschitz条件一定不满足,

但是Lipschitz 条件满足,偏导数不一定存在,如(,)||f x y y 。 3.现对定理中的数h 0做些解释.从几何直观上,初值问题(2.2)可能呈现如图2-5所示的情况. 这 时,过点 的积 图 2-5 分曲线 当 或 时,其中 , ,到 达R 的上边界 或下边界 .于是,当 时,曲线 便可能没有定义.由此可见,初值问题(2.2)的解未必在整个区间 上存在. 由于定理假定 在R 上连续,从而存在 于是,如果从点 引两条斜率分别等于M 和-M 的直线,则积分曲线 (如果存在的话)必被限制在图2-6的带阴影的两个区域内,因此,只要我们取 则过点 的积分曲线 (如果存在的话)当x 在区间上变化时,必位于R 之 中. 图 2-6

7相明(电磁场边值关系--唯一性定理)

5ξ电磁场的边值关系 一.引言 当介质分布均匀时,出现了界面,→ D ,→ B 有跃变,界面两侧场值的关系 1.边值关系:描述介质界面两侧的场矢量与界面上电荷,电流的关系 2.麦氏方程组的微分形式要求→ E ,→ D ,→B ,→ H 在介质中连续 麦氏方程组的积分形式在场量不连续时不成立。 故不能用微分形式导出边值关系,而用积分形式讨论边值关系。 ?? ? ? ????? =?=????→ →→→s s v S d B dv S d D 0ρ?导出法向关系 ???? ? ???????+?=????-=??????→→ →→→→→→ →→s s l l S d t D S d j l d H S d t B l d E ?导出切向关系 二.边值关系(法向关系证明从略,切向关系讲一例后推论) 1.→ D 的法向有跃变 ??=?→→v s dv S d D ρ?σ f D D n =-?→ →→)(12 (1) 推论:ε σσρρε0 1 20 )()(1 p f v p f s E E n dv S d E +=-??+=?→ → → → → ?? (2) dv S d P p s ??-=?→→ρ→?n )(1 2 → →-?P P =-σ P (3) 2.→ B 的法向连续 0)(0)(01 1 2 2 1 2 =-??? ??→?=-??=?→ →→→→→→→?H u H u B B n n S d B s 线性各向同性 (4) 3.的→ E 切向连续 →→ → → ?-=???S d B dt d l d E s l 0)(12=-??→→→E E n E E t t 12= (5) 4.的切向跃变→ H

电磁场思考题

第一章 第二章1.什么是矢量场的通量通量的值为正、负或0分别表示什么意义 解答:矢量场F 穿出闭合曲面S 的通量为: dS e F dS F s n s ??==··ψ 当? >s dS F 0·时,表示穿出闭合曲面S 的通量多于进入的通量,此时闭合曲面内必有发出矢量线的源,成为正通量源。 当? ?c dl F 0或?

一阶线性微分方程解的存在唯一性证明

一阶线形微分方程解的存在唯一性定理的证明)()(x q y x p dx dy +=摘要:从分析方法入手,来证明满足初值条件下一阶线形微分方程解的存在唯一性定理的证明.引言:我们学习了能用初等解法的一阶方程的若干类型,但同时知道大量的一阶方程是不能用初等解法求出它的通解,而实际问题中所需要的往往是要求满足某种初始条件的解,因此对初值问题的研究被提到重要地位,自然要问:初值问题的解是否存在?如果存在是否唯一? 首先,我们令f(x,y)=p(x)y+q(x) 这里f(x,y)是在矩形域 R:上的连续函数.b y y a x x ≤-≤-00,函数f(x,y)称为在R 上关于y 满足利普希兹条件,如果存在常数L>0使不等式 对于所有的 都成立,L 称 2121),(),(y y L y x f y x f -≤-R y x y x ∈),(),,(21为利普希兹常数下面我们给出一阶线形微分方程(1)解的存在唯一性)()(x q y x p dx dy +=定理:如果f(x,y)=p(x)y+q(x)在R 上连续且关于y 满足利普希兹条件,则方程(1)存在唯一的解,定义于区间上,连续)(x y ?=h x x ≤-0且满足初始条件: 这里 00)(y x =?),min(M b a h =),(max y x f M =R y x ∈),(我们采用皮卡的逐步逼近法来证明这个定理,为了简单起见,只 就区间来讨论,对于的讨论完全一样.h x x x +≤≤0000x x h x ≤≤-现在简单叙述一下运用逐步逼近法证明定理的主要思想,首路习题到位。在管路敷对设备进行调整使其在正限度内来确保机组高中

静磁场唯一性定理的证明

静磁场唯一性定理的证明 标量场的问题,情况与静电场完全相同。讨论用磁矢量位描述的磁场问题。 设场域内有电流密度J ,讨论在什么边界条件下,旋度旋度方 程 J A μ=???? 的解是唯一的。 证明:反证法。假定在相同边界条件下有两个磁矢量位1A 和2A ,它们 确定了1B 和2B 11A B ??=、 22A B ??= 它们的差值 21A A F -= 应满足 V F ∈=????0 对于恒等式 ()()() ()Q P P Q Q P ?????-?????=????? 运用高斯散度定理有 dS n Q P dV Q P P Q S V ????=?????-???????)()( 令 F Q P ==,代入上式应有 dS F F n dS F F n dS n F F dV F S S S V ????-=????=????=??????)()()()(2 上式若要使体积分为零,必须是 0=??F

这可能是0=F ,即21A A =,或者是 o A A ??±=21 可以采取措施来进行必要处理,以使磁矢量位的解答唯一。可分三种情况讨论 (1) 边界面上给定第一类边界条件o A A =,则边界上有0=F ,面 积分必为零,则21A A =,解答唯一; (2) 边界面上给定A n ???,应有0=???F n ,所以 21A n A n ???=??? 这也能使积分方程的面积分项为零,进而使21A A =解唯一。而条件 A n ???,其大小等于t B ,方向由B n ?确定。可见在S 面上给定了t B ,即n A ?? ——第二类边界条件,或给定了t H ,即n A ?? μ1——仍是第二类边界条件,场域中的A 的解唯一。 (3) 在边界上给定A n ?,有 21A n A n ?=? 也可以使面积分项为零。而A n ?的大小即为t A ,方向由A n ?确 定。即正确给定边界上A n ?,则V 域中A 有唯一解。

一阶线性微分方程解的存在唯一性证明

一阶线形微分方程)()(x q y x p dx dy +=解的存在唯一性定理的证明 摘要:从分析方法入手,来证明满足初值条件下一阶线形微分方程解的存在唯一性定理的证明.引言:我们学习了能用初等解法的一阶方程的若干类型,但同时知道大量的一阶方程是不能用初等解法求出它的通解,而实际问题中所需要的往往是要求满足某种初始条件的解,因此对初值问题的研究被提到重要地位,自然要问:初值问题的解是否存在?如果存在是否唯一? 首先,我们令f(x,y)=p(x)y+q(x) 这里f(x,y)是在矩形域 R:b y y a x x ≤-≤-00,上的连续函数. 函数f(x,y)称为在R 上关于y 满足利普希兹条件,如果存在常数L>0使不等式 2121),(),(y y L y x f y x f -≤- 对于所有的R y x y x ∈),(),,(21 都成立,L 称为 利普希兹常数 下面我们给出一阶线形微分方程)()(x q y x p dx dy +=(1)解的存在唯一性定理: 如果f(x,y)=p(x)y+q(x)在R 上连续且关于y 满足利普希兹 条件,则方程(1)存在唯一的解)(x y ?=,定义于区间h x x ≤-0上,连续且满足初始条件: 00)(y x =? 这里 ), min(M b a h = ),(max y x f M = R y x ∈),( 我们采用皮卡的逐步逼近法来证明这个定理,为了简单起见, 只就区间h x x x +≤≤00来讨论,对于00x x h x ≤≤-的讨论完全一样. 现在简单叙述一下运用逐步逼近法证明定理的主要思想,首

先证明求微分方程的初值问题的解等价于求积分方程 []?++=x x dx x q y x p y y 0)()(0的连续解这里我们用f(x,y)=p(x)y+q(x)来替 代,因此也就等价于求积分方程 ?+=x x dx y x f y y 0 ),(0 的连续解,然后 去证明积分方程的解的存在唯一性. 任取一个连续函数)(0x ? 代入上面的积分方程右端的y 就得 到函数 dx x x f y x x x ))(,()(0 001?+≡?? 显然)(1x ?也是连续解,如果)(1x ?≡)(0x ?那么)(0x ?就是积分方 程的解.否则,我们又把)(1x ?代入积分方程右端的y 得到 dx x x f y x x x ))(,()(0 102?+≡?? 如果 ≡)(2x ?)(1x ?,那么)(1x ?就是积分方程的解,否则我们继 续这个步骤.一般地做函数 dx x x f y x x x n n ))(,()(0 10?-+≡?? (2) 这样就得到连续函数序列 )(0x ? ,)(1x ?…)(x n ?… 如果≡+)(1x n ?)(x n ?那么)(x n ?就是积分方程的解,如果始终不发生这种情况,我们可以证明上面的函数序列有一个极限函数)(x ?即 )()(lim x x n n ??=∞ → 存在因此对(2)取极限就得到 dx x x f y x x x n n n n ))(,(lim )(lim 0 10?-∞→∞ →+=?? =dx x x f y x x n n ))(,(lim 0 10?-∞ →+? =dx x x f y x x ))(,(0 0?+? 即 dx x x f y x x x ))(,()(0 0?+≡??

关于静电场的唯一性定理

关于静电场的唯一性定理 静电场的唯一性定理被称为静电学中的一颗明珠。说说静电场唯一性定理的重大意义。 静电场的唯一性定理是以库仑定律为基础推导出来的一个极为重要和有用的定理,它是静电学中极有品位和令人赞叹的定理。静电场的唯一性定理有许多种表述。其中一种常见的表述是: 若区域V 内给定电介质分布和自由电荷分布()r ρ ,在V 的边界面S 上给定电位S ?或者电位的法向空间变化率S n ???,若区域内有导体存在,如果还给定各导体的电位或者各导体所带的自由电量,则V 内的静电场就唯一地确定了。 静电场的唯一性定理表明,一定的空间区域外界的电荷对该区域内静电场的影响,完全体现在该区域的边界面上。只要一定的空间区域内的电介质的分布和自由电荷的分布给定了,同时该区域边界面上的电位或者电位沿边界面的法线方向的空间变化率的分布给定了,那么不论外界的电荷分布怎样改变,该区域内的静电场都是唯一确定的。因此,静电场的唯一性定理给出了确定静电场的条件,为求电场强度以及设计静电场指明了方向。(镜像法就是建立在唯一性定理的基础之上的。) 更重要的是它具有十分重要的实用价值。无论采用什么方法得到解,只要该解满足泊松方程、边值关系和给定的边界条件,则该解就是唯一的正确解。因此对于许多具有对称性的问题,可以不必用繁杂的数学去求解泊松方程,而是通过提出尝试解,然后验证是否满足泊松方程、边值关系和边界条件。满足即为唯一解,若不满足,可以加以修改。 如果有人精于设计和求解静电场,那么他已经是一个有名望的专家学者了,并且享有丰厚的报酬。因此,虽然静电学是电磁场理论中相对比较简单的一门学问,请同学也不要小看它。一个外行人,有谁会相信上述有名望的专家学者的工作基础就是高中生都明白的库仑定律呢?

唯一性定理

唯一性定理 蒋文佼(080320124)宋宝璋(080320125)夏世宇 (080320126) 李宝平 (080320127) 章文显 (080320129) 常 悦 (080320130) 1、试用唯一性定理证明:封闭导体壳内部的电场不受壳外电荷(包括壳外表面)的影响。 证:导体壳无论是用电势还是用总电量给定,壳的内外一般存在着四部分电荷。 如图所示,壳内外的电荷分布分别为 ρ 和 ρe ,壳内、外表面 1 S 、2S 上各自的面电荷分布为 σ 和 σe 。壳内外的场是这四 部分电荷共同激发的。 根据定理,首先写出壳内空间电势应满足的条件: (一) 2 ρ?ε ?=- ,ρ 为壳内电荷分布。 (二)壳内表面1S 上的边界条件是:2S 上的总电量 1 s dS q σ=-? (1) 其中 V q dV ρ=? 是壳内的总电量,V 是壳内区域的体积。在壳层 内作一高斯面 0S 后(如图中虚线所示),用高斯定理很容易证明(1) 成立。 因此在给定 ρ 布后, 1S 上边界条件也已经给定为 q - , 和导体壳本身是有电势还是用总电量给定无关。 根据唯一性定理,满足(一)、(二)的 ? 就是解。由于(一) e

和(二)与壳外的 ρe 和 σρ 的电势并不唯一,可以差一个常数。当然当壳用电势 0φ 给定时,1S 上的边界条件就是 1 0|S ?φ= 。所以壳内不但电场唯一,而且电势也是唯一。 2.如图,有一电势为0φ的导体球壳,球心有一点电荷q ,球壳内外半径分别为2R 和1R 。试用唯一性定理: (一)判断0 R φ是否球壳外空间的电势分布。 (二)求球壳内空间的电势分布 解:(一)首先必须找出球内外电势应满足的条件,他们是: (a )2 0??= (b )球壳外表面1S 上的边界条件,1 0s ?=φ (c )无穷远边界条件,0R →∞?→ 若R φ 是解,根据唯一性定理,它必须满足以上三个条件。下面来 检验: 2 2 0010R R φ? =φ?= (0),R ≠ 方程已满足。 0,0,R R φ→∞→ 满足(c )。 S1的半径是R1代入 0R φ 后, 00 R φ≠φ 所以它不满足1S 上的边界条 件,它不是球壳外空间的界,下面求正确的解。由上述可知,函数 A R 同时满足方程和无穷远边界条件。A 为待定常数,可由(b )定出。在面1S 上 0,A R φ=

电磁场公式总结

电荷守恒定律:电荷既不能被创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或从物体的

电位差(电压):单位正电荷的电位能差.即:B AB AB AB A W A U Edl q q ===?u r r . 磁介质:在磁场中影响原磁场的物质称为磁介质. 在介质中求电(磁)场感应强度:

电(磁)场能量: 位移电流与传导电流比较 四种电动势的比较:

楞次定律:闭合回路中感应电流的方向,总是使得它所激发的磁场来阻止引起感应电流的磁通量的变化。高斯定理和环路定理: 麦克斯韦方程组:

电场和磁场的本质及内在联系: 静电场问题求解 基础问题 1.场的唯一性定理: ①已知V 内的自由电荷分布 ②V 的边界面上的φ值或n ??/φ值, 则V 内的电势分布,除了附加的常数外,由泊松方程 及在介质分界面上的边值关系 唯一的确定。 两种静电问题的唯一性表述: ⑴给定空间的电荷分布,导体上的电势值及区域边界上的电势或电势梯度值→空间的电势分布和导体上的面电荷 分布(将导体表面作为区域边界的一部分) ⑵给定空间的电荷分布,导体上的总电荷及区域边界上的电势或电势梯度值→空间的电势分布和导体上的面电荷 分布(泊松方程及介质分界面上的边值关系) 2.静电场问题的分类: 分布性问题:场源分布E ?ρ电场分布 电荷 电场 磁场 电流 变化 变化 运动 激发 激发

边值性问题:场域边界上电位或电位法向导数→电位分布和导体上电荷分布 3.求解边值性问题的三种方法: 分离变量法 ①思想:根据泊松方程初步求解φ的表达式,再根据边值条件确定其系数 电像法 ①思想:根据电荷与边值条件的等效转化,用镜像电荷代替导体面(或介质面)上的感应电荷(或极化电荷) 格林函数法 ①思想:将任意边值条件转化为特定边值条件,根据单位点电荷来等价原来边界情况 静电场,恒流场,稳恒磁场的边界问题: 电磁场的认识规律 一.静电场的规律: 1.真空中的静电场; 电场强度E 电场电势V 静电场的力F 静电场的能量 2.介质中的静电场; 电位移矢量D 极化强度P e 0P E χε=u r u r (各向同性介质) 二.稳恒磁场与稳恒电流场 1.真空中的磁场强度B 2.真空中的电流密度J

最新电磁场与电磁波课后问答题整理

1.8什么是散度定理?它的意义是什么? 矢量分析中的一个重要定理:称为散度定理。意义:矢量场F的散度在体积V上的体积分等于矢量场F在限定该体积的闭合积分,是矢量的散度的体积与该矢量的闭合曲面积分之间的一个变换关系。 1.9什么是矢量场的环流?环流的值为正,负,或0分别表示什么意义? 矢量场F沿场中的一条闭合回路C的曲线积分,称为矢量场F沿的环流。环流大于0或环流小于0,表示场中产生该矢量的源,常称为旋涡源。等于0,表示场中没有产生该矢量场的源。 1.10什么是斯托克斯定理?它的意义是什么?该定理能用于闭合曲面吗? 在矢量场F所在的空间中,对于任一以曲面C为周界的曲面S,存在如下重要关系这就是是斯托克斯定理。矢量场的旋度在曲面S上的面积分等于矢量场F在限定曲面的闭合曲面积分,是矢量旋度的曲面积分与该矢量沿闭合曲面积分之间的一个变换关系。能用于闭合曲面. 1.11 如果矢量场F能够表示为一个矢量函数的旋度,这个矢量场具有什么特性? =0,即F为无散场。 1.12如果矢量场F能够表示为一个标量函数的旋度,这个矢量场具有什么特性? =0即为无旋场 1.13 只有直矢量线的矢量场一定是无旋场,这种说法对吗?为什么? 不对。电力线可弯,但无旋。 1.14 无旋场与无散场的区别是什么? 无旋场F的旋度处处为0,即,它是有散度源所产生的,它总可以表示矢量场的梯度,即=0 无散场的散度处处为0,即,它是有旋涡源所产生的,它总可以表示为某一个旋涡即 2.1点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。就可将带电体所带电荷看成集中

电磁场思考题

第一章 1.什么是矢量场的通量?通量的值为正、负或0分别表示什么意义? 解答:矢量场F 穿出闭合曲面S 的通量为: dS e F dS F s n s ??==··ψ 当? >s dS F 0·时,表示穿出闭合曲面S 的通量多于进入的通量,此时闭合曲面内必有发出矢量线的源,成为正通量源。 当? ?c dl F 0或?

阶线性微分方程组第一讲一阶微分方程组及解的存在唯一性定理

第一讲 一阶微分方程组及解的存在惟一性定理(2课时) 一、 目的与要求: 了解高阶微分方程与一阶微分方程组的 等价关系, 理解用向量和矩阵来研 究一阶微分方程组的作用, 了解微分方程组解的存在唯一性定理. 二、重点:一阶微分方程组的向量和矩阵表示及解的存在唯一性定理. 三、难点:向量和矩阵列的收敛性的定义, 二者的范数定义及其相关性质. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 课题引入 在前两章里,我们研究了含有一个未知函数的常微分方程的解法及其解的性质.但是,在很多实际和理论问题中,还要求我们去求解含有多个未知函数的微分方程组,或者研究它们的解的性质. 例如,已知在空间运动的质点(,,)P x y z 的速度与时间t 及该点的坐标的关系为(,,)x y z v v v v

123(,,,)(,,,) (,,,)x y z v f t x y z v f t x y z v f t x y z =??=??=? 且质点在时刻0t 经过点000(,,)x y z ,求该质点的运动轨迹。 因为,x y dx dy v v dt dt ==和z dz v dt =, 所以这个问题其实就是 求一阶微分方程组 123(,,,)(,,,) (,,,)x f t x y z y f t x y z z f t x y z =??=??=? 的满足初始条件 00(),x t x = 00(),y t y = 00()z t z = 的解(),(),()x t y t z t . 另外,在n 阶微分方程 (1.12) ()(1)(,,,,)n n y f x y y y -'= 中,令(1)121,,,n n y y y y y y --'''===就可以把它化成等价的一阶微分方程组

时变电磁场唯一性定理

时变电磁场唯一性定理 下面我们讨论由多种媒质所组成的场域V 。为叙述方便,先引入内边界面和外边界面的概念。内边界面是指边界面两侧区域都是场域的边界面,内边界面位于场域V 内。外边界面是指边界面两侧区域中有一侧属于场域V 而另一侧不属于场域V 的边界面,外边界面是场域最外侧的边界面。内边界面的两侧区域都是未知的待求场域;而外边界面的两侧区域中有一侧是待求场域而另一侧是常量为已知的场域。 唯一性定理 假设: 1)形状不随时间t 变化的场域V 是由m 个线性媒质1V , 2V ,...,m V 所组成,i V 的边界面i Γ是由分片光滑曲面所组成的闭曲面,V 的外表面是Γ,1,2,...,i m =。 2)外部电流源s J 和K 分布在有限区域内,矢量,,,,,s e h e h J K G G F F 和标量ρ是不全为零的有界的已知量。 3)媒质i V 的介电常量0i ε>,磁导率0i μ>,电导率0i γ≥,1,2,...i m =。4) i V 中的电场强度i E 和磁场强度H i 在闭如果区间i i V +Γ上存在连续偏导数,1,2,...,i m =。 在上述条件下,如果由以下初边值(2.79)—(2.90)所确定的场量E 和H 存在,那么它们分别有唯一的有界非零解。 1. 约束方程 ()()()(),(),,s M t M M M t M t t γε?????-+= ??? ?H E J (2.79) ()() (),,0M t M M t t μ???+=?E H (2.80) M V ∈, 0t > 2.初始条件 ()()0,|t e M t M ==E G , M V ∈ (2.81) ()()0,|t h M t M ==H G , M V ∈ (2.82) ()0,|0t M t μ=?=????H , M V ∈ (2.83) ()()0,|t M t M ερ=?=????E , M V ∈ (2.84) 3.内边界面上得边界条件 在内边界面ij Γ上场量应同时满足以下两式: ()()(),,0ij j i p p t p t ???-=??n E E (2.85)

静电场边值问题的唯一性定理

静电场边值问题的唯一性定理 摘要:静电场边值问题及其唯一性定理是一重要知识点,定理的表述和证明都涉及较多的数学知识。由于唯一性定理的概念对于许多问题(如静电屏蔽)的确切理解有很大帮助,所以我们将给此定理一个物理上的论证,期待大家能从中有所受益. 关键词:静电场;边值;唯一性;静电屏蔽 1、问题的提出 实际中提出的静电学问题,大多不是已知电荷分布求电场分布,而是通过一定的电极来控制或实现某种电场分布。这里问题的出发点(已知的前提),除给定各带电体的几何形状、相互位置外,往往是在给定下列条件之一; (1) 每个导体的电势U K ; (2) 每个导体上的总能量Q K ; 其中K=1,2,……为导体的编号。寻求的答案则是在上述条件(称为边界条件)下电场的恒定分布。这类问题称为静电场的边值问题。 这里不谈静电场边值问题如何解决,而我们要问:给定一组边界条件,空间能否存在不同的恒定电场分布?唯一性定理对此的回答是否定的,换句话说,定理宣称:边界条件可将空间里电场的恒定分布唯一地确定下来。 2、几个引理 在证明唯一性定理之前,先作些准备工作——证明几个引理。为简单起见,我们暂把研究的问题限定为一组导体,除此之外的空间里没有电荷。 (1)引理一 在无电荷的空间里电势不可能有极大值和极小值。 用反证法。设电势U 在空间某点P 极大,则在P 点周围的所有邻近点上梯度U ?ρ必 都指向P 点,即场强U E ?-=ρρ的方向都是背离P 点的(见图1-1a 。)这时若我们作一个 很小的闭合面S 把P 点包围起来,穿过S 的电通量为 0) (>?=?S d E S E ρρ? (1) 根据高斯定理,S 面内必然包含正电荷。然而这违背了我们的前提。因此,U 不可能有极大值。 用同样的方法可以证明,U 不可能有极小值(参见图1-1b )。

《电磁场》第三版思考题目答案 (1)

二章: 2.1点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很大的带电小球的极限。当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。就可将带电体所带电荷看成集中在带电体的中心上。即将带电体抽离为一个几何点模型,称为点电荷。 2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有 体电荷,,面电荷,线电荷和点电荷 常用的电流分布模型有体电流模型,面电流模型和线电流模型他们是根据电荷和电流的密度分布来定义的 2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 点电荷的电场强度与距离r 的平方成反比。电偶极子的电场强度与距离r 的立方成反比 2.4 简述ερ =??E 和0E =??所表征的静电场特性 ερ0 =??E ?表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。 0??=??E 表明静电场是无旋场。 2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。 高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和 除以0ε与闭合面外的电荷无关,即dV dS E V S ρε??=?01? 在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。 2.6 简述0=??B 和J B 0μ=??所表征的静磁场特性 0=??B ρ表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的 闭合线,J B ??0μ=??表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 2.7 表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。 安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和0μ倍,即I dl B C 0μ=???

相关文档
最新文档