金融风险度量地VaR模型 在MATLAB中地使用方法

金融风险度量地VaR模型   在MATLAB中地使用方法
金融风险度量地VaR模型   在MATLAB中地使用方法

金融风险度量的VaR模型

摘要:VaR是使投资风险数量化的工具,旨在估计给定金融资产或组合在正常的资产价格波动下未来可能的或潜在的损失;目前常用的VaR计算方法大体归为三类:历史模拟法、蒙特卡洛模拟法以及方差一协方差法;各种方法均存在自身假设条件或固有的缺陷,在选择计算VaR的方法时,需要在计算效率、所需数据信息、准确性之间进行平衡。VaR作为一种工具主要在风险控制、绩效评价以及金融监管三个方面发挥重要作用。

关键词:VaR 方差一协方差法历史模拟法蒙特卡洛模拟法

一、VAR思想的产生

VaR (Value at Risk)的思想应追溯到马柯威茨(1952)的均值一方差投资组合理论模型n。马柯威茨建议使用方差代替靠自觉判断的偏差来衡量风险,但他的大部分著作都致力于研究期望收益与均值一方差结构中风险之间的平衡,这只

适应于收益率服从正态分布或投资者具有二次效用函数。而给VaR 带来直接思路的是Roy( 1952),他在投资组合选择时构造的“安全第一(safety-first)”模型中,建议基于给定置信水平下的风险衡量选择那些可将损失大于“灾难水平”的概率最小化的投资组合。Baumol( 1963)也提出了一个基于某些概率水平下较低的置信区间的风险衡量指标。20世纪80年代的J.P .摩根银行的Till Goldimann 首次提出了“风险价值”这一术语,他认为价值风险比收益风险更重要,这为以后VaR 的提出铺平了道路。

二、VaR 的定义

在金融市场上,投资者或金融机构所面临的一个重要的风险是市场风险,即金融工具的市场价值在未来发生变化的可能性。一般而言,投资者所关心的主要是资产价格向下变动的风险。 风险一般用资产回报的波动性或标准差衡量,波动性越大,资产未来回报偏离预期的回报的可能性越大。 但是,波动性并未告诉我们,投资者在今后一段时间内,可能遭受的最大化损失是多少。 现代金融机构已经不满足于知道投资组合的波动性或风险,还想进一步知道一旦风险实现,自己可能遭受何等程度的最大损失。由此产生了风险度量工具。

VaR 指的是在正常的市场条件下以及给定的置信度下,某一证券组合或金融

资产在将来特定时间内所可能出现的最大损失,被称为“在险价值”或“风险价

值”。数学定义式是: 。

这个公式的含义是:对于某一资产组合来说,在给定的置信水平下,VaR 提供了最大可能的预期损失,即可以以1-c 的概率来保证这一资产组合的预期损失不会大于VaR 。 由VaR 的定义可知,置信水平越高,资产组合的损失小于其VaR 值的概率越大,VaR 模型对于极端事件的发生进行预测时失败的可能性越()Pr ob 1p VaR c ?<-=-

小。

例:假设一个基金经理希望接下来的10天时间内,以95%概率保证其所管理的基金价值损失不超过100万,那么,VaR询问的问题是:我们有95%的信心在接下来的10个交易日中损失程度将不会超过100万。或者说,在未来的10天之内,基金价值损失超过100万的概率仅为5%。

三、VaR的参数

持有期T,即确定计算在哪一段时间内的持有资产的最大损失值,也就是明确风险管理者关心资产在一天内一周内还是一个月内的风险价值。持有期的选择应依据所持有资产的特点来确定。比如对于一些流动性很强的交易头寸往往需以每日为周期计算风险收益和VaR值,对一些期限较长的头寸如养老基金和其他投资基金则可以以每月为周期。

置信水平。一般来说对置信区间的选择在一定程度上反映了金融机构对风险的不同偏好。选择较大的置信水平意味着其对风险比较厌恶,希望能得到把握性较大的预测结果,希望模型对于极端事件的预测准确性较高。根据各自的风险偏好不同,选择的置信区间也各不相同。作为金融监管部门的巴塞尔委员会则要求采用99%的置信区间。

四、VaR在风险管理中的应用

(一)用于风险控制。

目前己有超过1000家的银行、保险公司、投资基金、养老金基金及非金融公司采用VaR方法作为金融衍生工具风险管理的手段。利用VaR方法进行风险控制,可以使每个交易员或交易单位都能确切地明了他们在进行有多大风险的金融交易,并可以为每个交易员或交易单位设置VaR限额,以防止过度投机行为

的出现。如果执行严格的VaR 管理,一些金融交易的重大亏损也许就可以完全避免。

(二)用于业绩评估。

VaR 提供了对风险的总体测度:用一个数值就可以反映出某个窗口在给定的置信水平下可能遭受的最大损失。在金融投资中,高收益总是伴随着高风险,交易员可能不惜冒巨大的风险去追逐巨额利润。公司出于稳健经营的需要,必须对交易员可能的过度投机行为进行限制。所以,有必要引入考虑风险因素的业绩评价指标,VaR 的使用能限制那些不能增加股东价值的风险业务。

五、VaR 的计算方法

(一)Delta-正态法(方差—协方差法)

这种方法假定: 1.资产价格的变化是风险因子的线性函数。 2.资产价格变化遵循正态分布。

在这些假定下,资产组合 的潜在最大化损失可表示为: 其中,Z 是置信水平对应分布的分位数, 是常数,表示资产组合回报的日波动

性,T 是资产组合的持有期。

参数模型在MATLAB 中的代码如下:

%% Parametric

% 计算 99% 与 95% 水平的风险价值,假设收益率服从正态分布。 % mean(returnsPortfolio)组合收益率(期望收益率)

% std(returnsPortfolio) 组合风险标准差(波动率)

% [.01 .05] 置信度阈值

V 0VaR V Z =σ

% marketValuePortfolio组合资产价值

pVar = portvrisk(mean(returnsPortfolio), std(returnsPortfolio), [.01 .05],...

marketValuePortfolio);

%画图

confidence = -pVar/marketValuePortfolio;

hist2color(returnsPortfolio, confidence(2), 'r', 'b');

displayVar(pVar(1), pVar(2), 'p')

计算结果如下:

Value at Risk method: Parametric

Value at Risk @ 99% = $90,981,251.06

Value at Risk @ 95% = $64,856,171.58

参数法的优缺点:假设投资组合的未来收益率服从正态分布, 这种方法极大

的简化了VAR 的计算。该方法的基本思路是用历史数据求出资产组合收益的方差、标准差、协方差。然后求出在一定置信区间下反映分布偏离程度的临界值, 最后建立与风险损失的联系, 推导VAR 值。“方差—协方差法”法的优点是运算比较简单, 不必大量繁琐的计算。但是它不能反映极端的价格变动, 也不能反映收益率分布的“厚尾”现象。

(二)历史模拟法

历史模拟法是直接利用资产组合在过去一段时期内收益分布的历史数据,并假定历史变化在未来会重现,以确定持有期内给定置信水平下资产组合的最低收益水平,推算资产组合的值。历史模拟法是一种非参数方法,不需要假定市场因子的统计分布,因此,可以较好地处理非正态分布,可以有效地处理非线性的资产或资产组合。

历史模拟法的步骤如下:

1.选取过去N+1天第I项资产的价格作为模拟资料;例如首先找出过去一段时间(假设是101天)的股票收盘价:Si(?1)、Si(?2)…Si(?100)、Si(?101)。

2.将过去彼此相邻的N+1笔价格相减,就可以求得N笔该资产每日的价格损益变化量;例如:Δ1=Si(?1)?Si(?2)、Δ2=Si(?2)?Si(?3)、Δ100=Si(?100)?Si(?101)。

3.步骤2代表的是第I项资产在未来一天损益的可能情况(共有N种可能情形),将变化量转换成报酬率,就可以算出N种的可能报酬率。

4.将步骤3的报酬率由小到大依序排列,并依照不同的置信度找出相对应分位数的临界报酬率。

5.将目前的资产价格Si(0)乘以步骤4的临界报酬率,得到的金额就是使用历史模拟法所估计得到的风险值。

例:今日以60元买入鸿海的股票10张共60万元,我们只可以找到过去101个交易日的历史资料,求在95%置信度下的日风险值为多少?

1.根据过去101日鸿海之每日收盘价资料,可以产生100个报酬率资料。

2.将100个报酬率由小排到大找出倒数第五个报酬率(因为置信水平为95%),在此假设为-4.25%。

3.-

4.25% * 600,000 =-$25,500

4.所以VaR= $25,500,因此明日在95%的机率下,损失不会超过$ 25,500元。

历史模拟法在MATLAB中的代码如下:

%% Historical Simulation programatically

%历史模拟法程序

% 收益率在1% 与5% 的置信水平

confidence = prctile(returnsPortfolio, [1 5]);

% 历史模拟法的可视化

figure;

hist2color(returnsPortfolio, confidence(2), 'r', 'b');

%历史方法99% 与95% 水平的风险价值

hVar = -marketValuePortfolio*confidence;

displayVar(hVar(1), hVar(2), 'hs');

计算结果如下:

Value at Risk method: Historical Simulation

Value at Risk @ 99% = $82,091,887.30

Value at Risk @ 95% = $66,214,101.16

历史模拟法的优缺点:历史模拟法”是借助于计算过去一段时间内的资产组合风险收益的频度分布, 通过找到历史上一段时间内的平均收益, 以及既定置信区间下的最低收益水平, 推算VAR 的值。这种方法实质上比较简单, 容易理解。在银行已经保存大量的历史数据的情况下, 多数时候不必要再估计任何参数。但是, 历史模拟法对于历史数据的要求比较高, 为了得到比较精确的结果, 就要求选取较长的测量区间, 以便获得更多的历史数据, 可是一旦所选取的区间过长, 历史数据对当前VAR 值的借鉴意义就减少了。

(三)蒙特卡罗(Monte Carlo)模拟法

蒙特卡罗模拟的资产收益率或市场因素收益率不是取历史观察值,而是用计算机模拟出来的。利用一个模型,输入随机变量集,产生从今天到VaR水平期所有风险因子变化的完整路径。每一模拟路径给出了重估整个资产组合价值所需的所有市场数据。

蒙特卡罗模拟法在MATLAB中的代码如下:

%% Monte Carlo using portsim

%蒙特卡罗方法

%根据组合中股票价格与股票数量,计算组合资产价值与权重

[marketValuePortfolio, weightsPortfolio] = getPortfolioWeights(...

CSI300HistPrices, positionsPortfolio);

numObs = 1; % 样本个数

numSim = 10000; % 模拟次数

% 预期期望与方差

expReturn = mean(returnsSecurity);

expCov = cov(returnsSecurity);

%rng Control the random number generator

%随机生成数种子设置,数值越大越好

rng(12345)

%生成资产收益率矩阵

simulatedAssetReturns=portsim(expReturn,expCov,numObs,1,numS im, 'Exact');

% 计算每个随机序列的收益率(预期收益率、预期协方差矩阵、样本个数、收益率间隔、模拟次数)

simulatedAssetReturns = exp(squeeze(simulatedAssetReturns))-1;

% 模拟次数numSim = 10000个投资组合收益率

mVals = weightsPortfolio*simulatedAssetReturns;

% 计算99%与95%分位数的收益率

mVar = -prctile(mVals*marketValuePortfolio, [1 5]);

% 可视化模拟组合

plotMonteCarlo(mVals)

% 风险价值

displayVar(mVar(1), mVar(2), 'mcp')

计算结果为:

Value at Risk method: Monte Carlo Simulation (portsim)

%置信度为99%的Var值

Value at Risk @ 99% = $91,176,882.64

%置信度为95%的Var值

Value at Risk @ 95% = $64,618,603.59

蒙特卡罗模拟法的优缺点:“蒙特卡罗模拟法”基于历史数据或既定分布假

定下的参数特征, 借助随机产生的方法模拟出大量的资产组合收益的数值, 再从中推出VAR 值。“蒙特卡罗模拟法”是一种动态的模型, 具有其优势。首先是这种方法具有综合性, 计算结果更符合实际情况。而且此方法不仅可用于对市场风险的度量, 还可用于衡量信用风险。此外, 这种方法计算比较精确, 是目前公认的最为有效的计算VAR 的方法。其缺点是可能伴随着模型风险。

三种方法计算结果比较如下:

交通流中的nasch模型及matlab代码元胞自动机

元胞自动机NaSch模型及其MATLAB代码 作业要求 根据前面的介绍,对NaSch模型编程并进行数值模拟: ●模型参数取值:Lroad=1000,p=0.3,Vmax=5。 ●边界条件:周期性边界。 ●数据统计:扔掉前50000个时间步,对后50000个时间步进行统计,需给出的 结果。 ●基本图(流量-密度关系):需整个密度范围内的。 ●时空图(横坐标为空间,纵坐标为时间,密度和文献中时空图保持一致, 画 500个时间步即可)。 ●指出NaSch模型的创新之处,找出NaSch模型的不足,并给出自己的改进思 路。 ●流量计算方法: 密度=车辆数/路长; 流量flux=density×V_ave。 在道路的某处设置虚拟探测计算统计时间T内通过的车辆数N; 流量flux=N/T。 ●在计算过程中可都使用无量纲的变量。 1、NaSch模型的介绍 作为对184号规则的推广,Nagel和Schreckberg在1992年提出了一个模拟车辆交通的元胞自动机模型,即NaSch模型(也有人称它为NaSch模型)。 ●时间、空间和车辆速度都被整数离散化。

● 道路被划分为等距离的离散的格子,即元胞。 ● 每个元胞或者是空的,或者被一辆车所占据。 ● 车辆的速度可以在(0~Vmax )之间取值。 2、NaSch 模型运行规则 在时刻t 到时刻t+1的过程中按照下面的规则进行更新: (1)加速:),1min(max v v v n n +→ 规则(1)反映了司机倾向于以尽可能大的速度行驶的特点。 (2)减速:),min(n n n d v v → 规则(2)确保车辆不会与前车发生碰撞。 (3)随机慢化: 以随机概率p 进行慢化,令:)0, 1-min(n n v v → 规则(3)引入随机慢化来体现驾驶员的行为差异,这样既可以反映随机加速行为, 又可以反映减速过程中的过度反应行为。这一规则也是堵塞自发产生的至关重要因素。 (4)位置更新:n n n v x v +→ ,车辆按照更新后的速度向前运动。 其中n v ,n x 分别表示第n 辆车位置和速度;l (l ≥1)为车辆长度; 11--=+n n n x x d 表示n 车和前车n+1之间空的元胞数;p 表示随机慢化概率;max v 为最大速度。 3、NaSch 模型实例 根据题目要求,模型参数取值:L=1000,p=0.3,Vmax=5,用matlab 软件进行编程,扔掉前11000个时间步,统计了之后500个时间步数据,得到如下基本图和时空图。 3.1程序简介 初始化:在路段上,随机分配200个车辆,且随机速度为1-5之间。 图3.1.1是程序的运行图,图3.1.2中,白色表示有车,黑色是元胞。

云模型matlab程序

1.绘制云图 Ex=18 En=2 He=0.2 hold on for i=1:1000 Enn=randn(1)*He+En; x(i)=randn(1)*Enn+Ex; y(i)=exp(-(x(i)-Ex)^2/(2*Enn^2)); plot(x(i),y(i),'*') end Ex=48.7 En=9.1 He=0.39 hold on for i=1:1000 Enn=randn(1)*He+En; x(i)=randn(1)*Enn+Ex; y(i)=exp(-(x(i)-Ex)^2/(2*Enn^2)); plot(x(i),y(i),'*')

end 2.求期望、熵及超熵 X1=[51.93 52.51 54.70 43.14 43.85 44.48 44.61 52.08]; Y1=[0.91169241573 0.921875 0.96032303371 0.75737359551 0.76983848315 0.7808988764 0.78318117978 0.9143258427]; m=8; Ex=mean(X1) En1=zeros(1,m); for i=1:m En1(1,i)=abs(X1(1,i)-Ex)/sqrt(-2*log(Y1(1,i))); end En=mean(En1); He=0; for i=1:m He=He+(En1(1,i)-En)^2; end En=mean(En1) He=sqrt(He/(m-1)) 3.平顶山so2环境: X1=[0.013 0.04 0.054 0.065 0.07 0.067 0.058 0.055 0.045]; Y1=[0.175675676 0.540540541 0.72972973 0.878378378

金融风险度量的传统方法

第五章 金融风险度量的传统方法 第一节 金融风险度量的传统方法 一、用价差率来衡量风险 价差率是用来测算单个证券投资风险最简单的方法,其计算公式如下: 价差率=2╳(最高价-最低价)/(最高价+最低价)╳100% 上式中的最高价、最低价是指该证券在相应各期限(如年)的最高价和最低价,价差率法的实质是直接将证券的可能波动幅度作为衡量风险的指标。 用价差率来衡量证券的波动幅度和风险,计算简单方便,意义清晰直观;价差率越大,意味着股票的风险越大,反之,则股票的风险越小。而且,可以根据具体情况和需要,采取不同的期限,如年、月、周等来计算价差率。不过,由于用价差率来测量风险时所包含的内容过于狭窄,其精确度和适用范围非常有限。 二、灵敏度分析与β系数法 灵敏度(Sentivity)是收益的方差与产生这一方差的某一随机变量(如利率、汇率等)的方差之比,它是两个方差的比值。设以V 表示收益,χ表示影响收益的市场随机变量,S 表示收益V 对χ的灵敏度,则: V S χ ?=? 或者以两方差的百分比的比值表示为: //V V S χχ ?=? 如某一债券价格对利率的敏感度为5,则它意味着1%的利率方差将产生5%的债券收益方差。若债券价值为10000,则其价值变动的方差为500。 如果某投资组合的收益或价值受到几个市场随机变量的影响,那么该投资组合的风险就需要由这几个灵敏度组成的灵敏度变量来描绘。例如,某证券投资组合的市场价值依赖于各有关货币的利率、汇率、证券价格指数。这时,需将投资组合价值对这些变量的灵敏度都计算出来,但不能将它们直接相加。因为那样意味着各随机变量将在同一时间以给定的幅度变动,从而会夸大风险。

DEA的Matlab程序(数据包络分析)

模型((P C2R)的MATLAB程序 clear X=[]; %用户输入多指标输入矩阵X Y=[]; %用户输入多指标输出矩阵Y n=size(X',1); m=size(X,1); s=size(Y,1); A=[-X' Y']; b=zeros(n, 1); LB=zeros(m+s,1); UB=[]; for i=1:n; f= [zeros(1,m) -Y(:,i)']; Aeq=[X(:,i)' zeros(1,s)]; beq=1; w(:,i)=LINPROG(f,A,b,Aeq,beq,LB,UB); %解线性规划,得DMU;的最佳权向量w; E(i, i)=Y(:,i)'*w(m+1:m+s,i); %求出DMU i的相对效率值E ii end w %输出最佳权向量 E %输出相对效率值E ii Omega=w(1:m,:) %输出投入权向量。 mu=w(m+1:m+s,:) %输出产出权向量。 模型(D C2R)的MATLAB程序 clear X=[]; %用户输入多指标输入矩阵X Y=[]; %用户输入多指标输出矩阵Y n=size(X',1); m=size(X,1); s=size(Y,1); epsilon=10^-10; %定义非阿基米德无穷小 =10-10 f=[zeros(1,n) -epsilon*ones(1,m+s) 1]; %目标函数的系数矩阵: 的系数为0,s-,s+的系数为- e, 的系数为1; A=zeros(1,n+m+s+1); b=0; %<=约束; LB=zeros(n+m+s+1,1); UB=[]; %变量约束; LB(n+m+s+1)= -Inf; %-Inf表示下限为负无穷大。 for i=1:n; Aeq=[X eye(m) zeros(m,s) -X(:,i) Y zeros(s,m) -eye(s) zeros(s,1)]; beq=[zeros(m, 1 ) Y(:,i)]; w(:,i)=LINPROG (f,A,b,Aeq,beq,LB,UB); %解线性规划,得DMU的最佳权向量w; end w %输出最佳权向量 lambda=w(1:n,:) %输出 s_minus=w(n+1:n+m,:) %输出s- s_plus=w(n+m+1:n+m+s,:) %输出s+ theta=w(n+m+s+1,:) %输出

实验一 用MATLAB处理系统数学模型

实验一用MATLAB处理系统数学模型 一、实验原理 表述线性定常系统的数学模型主要有微分方程、传递函数、动态结构图等.求拉氏变换可用函数laplace(ft,t,s),求拉式反变换可用函数illaplace(Fs,s,t);有关多项式计算的函数主要有roots(p),ploy(r),conv(p,q),ployval(n,s);求解微分方程可采用指令 s=dslove(‘a_1’,’a_2’,’···,’a_n’);建立传递函数时,将传递函数的分子、分母多项式的系数写成两个向量,然后用tf()函数来给出,还可以建立零、极点形式的传递函数,采用的函数为zpk(z,p,k);可用函数sys=series(sys1,sys2)来实现串联,用 sys=parallel(sys1,sys2)来实现并联,可用函数sys=feedback(sys1,sys2,sign)来实现系统的反馈连接,其中sign用来定义反馈形式,如果为正反馈,则sign=+1,如果为负反馈,则sign=-1。 二、实验目的 通过MATLAB软件对微分方程、传递函数和动态结构图等进行处理,观察并分析实验结果。 三、实验环境 MATLAB2012b 四、实验步骤 1、拉氏变换 syms s t; ft=t^2+2*t+2; st=laplace(ft,t,s) 2、拉式反变换 syms s t; Fs=(s+6)/(s^2+4*s+3)/(s+2); ft=ilaplace(Fs,s,t) 3、多项式求根 p=[1 3 0 4]; r=roots(p) p=poly(r) 4、多项式相乘 p=[ 3 2 1 ];q=[ 1 4];

金融风险度量方法选择及适用性分析

金融风险度量方法选择及适用性分析 在很长时期内风险价值模型(Value at Risk,以下简称VaR)都作为首选来度量风险,然而其理论和应用都存在缺陷。VaR并没有考虑潜在的尾部风险,而且不满足一致性风险度量的公理条件,即VaR不是一个理想的风险度量。本文从理论上分析了VaR模型存在的缺陷,并介绍其他风险度量模型,研究其特性,最后在此基础上提出金融风险度量选择的依据。 关键词:风险价值一致性风险度量期望短缺谱风险度量扭曲风险度量 回顾金融风险管理理论的发展史,20世纪70年代是现代金融风险管理发展的重要年代。布雷顿森林体系破产之后,利率、汇率等市场风险问题在金融机构的风险管理中日益凸显。而1973年4月,芝加哥期权交易所(CBOE)的正式运营以及著名的布莱克-舒尔茨期权定价模型的发表标志着现代金融风险管理时代的到来。20世纪90年代,以金融工程为代表的现代金融风险管理技术发展迅速,市场风险和信用风险的量化管理也得到了很大的发展。然而长期资本管理公司(LTCM)的破产为金融工程的应用提出了警示。金融工程的发展使得大量的数理统计模型在金融风险管理中获得应用,这其中包括著名的VaR模型。 我国金融市场是一个发展中的新兴市场,金融风险管理的手段还比较落后,主要以定性分析为主,重在事后分析和评估,缺少事前风险防范和控制。随着我国的金融改革的发展和金融市场的进一步开放,金融监管的原则与风险管理的技术必须符合国际惯例要求。 VaR模型的产生及其局限性 风险管理的基础和核心是对风险的定量分析和评估,即风险度量。传统的风险度量方法如Beta、Delta、久期和凸性等仅适用于特定的金融工具或领域,难以全面反映风险覆盖情况。在这一背景下,1993年G30小组首先提出风险价值(Value at Risk)的概念,VaR模型旨在估计给定投资工具或组合在未来资产价格波动下可能的潜在损失。这一指标最大的优点是能够测量由不同市场因子导致的风险,以及不同市场的总风险,能够较为准确地测量不同风险因子及其相互作用而产生的损失,能够适应金融市场发展的动态性、复杂性和全球化的趋势。 然而,VaR度量的是正常市场情况下的市场风险,在现实中,金融市场出现剧烈波动的极端市场情形大量存在,即VaR并没有考虑潜在的极端市场情形。对VaR实践的评估以及对风险度量的进一步研究指出VaR并非一个一致性风险度量,其不满足次可加性的公理条件,从而无法进行风险分散。 正是由于VaR还存在着理论与应用上的缺陷,推动了风险度量的进一步发展。在VaR的基础上许多研究者提出了风险度量的其他方法。Acerbi and Tasche (2002)提出期望尾部损失ES(Expected Shortfall,以下简称ES),Wang(1996)提出扭曲风险度量的概念,Acerbi(2002,2004)将经济学的风险偏好理论引入风险度量中,提出了谱风险度量,从而使风险管理的实践者有了更多的选择。 基于分位数回归的风险度量 (一)风险价值VaR VaR的含义是“风险中的价值”,JP Morgan将VaR看作既定头寸冲消或重估前可能发生的市场价值的最大损失的估计值。而VaR比较权威的定义由Jorion (1997)提出,将其定义为给定置信水平下,风险资产在持有期内可能遭受的最

云模型简介及个人理解matlab程序

云模型简介及个人理解m a t l a b程序 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

随着不确定性研究的深入,越来越多的科学家相信,不确定性是这个世界的魅力所在,只有不确定性本身才是确定的。在众多的不确定性中,和是最基本的。针对和在处理不确定性方面的不足,1995年我国工程院院士教授在概率论和模糊数学的基础上提出了云的概念,并研究了模糊性和随机性及两者之间的关联性。自李德毅院士等人提出云模型至今,云模型已成功的应用到、、、智能控制、等众多领域. 设是一个普通集合。 , 称为论域。关于论域中的模糊集合,是指对于任意元素都存在一个有稳定倾向的随机数,叫做对的隶属度。如果论域中的元素是简单有序的,则可以看作是基础变量,隶属度在上的分布叫做隶属云;如果论域中的元素不是简单有序的,而根据某个法则,可将映射到另一个有序的论域上,中的一个且只有一个和对应,则为基础变量,隶属度在上的分布叫做隶属云[1] 。 数字特征

云模型表示自然语言中的基元——语言值,用云的数字特征——期望Ex,熵En和超熵He表示语言值的数学性质 [3] 。 期望 Ex:云滴在论域空间分布的期望,是最能够代表定性概念的点,是这个概念量化的最典型样本。 熵 En:“熵”这一概念最初是作为描述热力学的一个状态参量,此后又被引入统计物理学、信息论、复杂系统等,用以度量不确定的程度。在云模型中,熵代表定性概念的可度量粒度,熵越大,通常概念越宏观,也是定性概念不确定性的度量,由概念的随机性和模糊性共同决定。一方面, En是定性概念随机性的度量,反映了能够代表这个定性概念的云滴的离散程度;另一方面,又是定性概念亦此亦彼性的度量,反映了在论域空间可被概念接受的云滴的取值范围。用同一个数字特征来反映随机性和模糊性,也必然反映他们之间的关联性。 超熵 He:熵的不确定性度量,即熵的熵,由熵的随机性和模糊性共同决定。反映了每个数值隶属这个语言值程度的凝聚性,即云滴的凝聚程度。超熵越大,云的离散程度越大,隶属度的随机性也随之增大,云的厚度也越大。

用matlab实现碰撞模型程序代码

用m a t l a b实现碰撞模型程序代码 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

c l c; clear; fill([6,7,7,6],[5,5,0,0],[0,0.5,0]);%右边竖条的填充 holdon;%保持当前图形及轴系的所有特性 fill([2,6,6,2],[3,3,0,0],[0,0.5,0]);%左边竖条的填充 holdon;%保持当前图形及轴系的所有特性 t1=0:pi/60:pi; plot(4-2*sin(t1-pi/2),5-2*cos(t1-pi/2));%绘制中间的凹弧图形gridon;%添加网格线 axis([0,9,0,9]);%定义坐标轴的比例% axis('off');%关闭所有轴标注,标记,背景 fill([1,2,2,1],[5,5,0,0],[0,0.5,0]);%中间长方形的填充 holdon;%保持当前图形及轴系的所有特性 title('碰撞');%定义图题 x0=6; y0=5; head1=line(x0,y0,'color','r','linestyle','.','erasemode','xor','marke rsize',30); head2=line(x0,y0,'color','r','linestyle','.','erasemode','xor','marke rsize',50);%设置小球颜色,大小,线条的擦拭方式 t=0;%设置小球的初始值 dt=0.001;%设置运动周期 t1=0;%设置大球的初始值 dt1=0.001; while1%条件表达式 t=t+dt; x1=9-1*t; y1=5; x3=6; y3=5; ift>0 x2=6; y2=5;%设置小球的运动轨迹 end ift>2.8 t=t+dt; a=sin(t-3); x1=6.1; y1=5.1; x3=4-2*sin(1.5*a); y3=5-2*cos(1.5*a);%设置大球的运动轨迹 end

金融风险度量方法研究

龙源期刊网 https://www.360docs.net/doc/a216502124.html, 金融风险度量方法研究 作者:蒋彦平 来源:《现代经济信息》2013年第15期 摘要:随着经济全球化进程的逐渐发展,金融市场在这一背景之下,大大小小不同的波动更加容易出现。其中金融波动对金融市场的稳定性造成了一定的影响,导致金融风险的存在也日益严重。在美国经济危机爆发,对全球经济造成了严重的影响之后,更加提升了人们对金融风险的重视。那么为了能够对金融风险进行有效的预防,就必须要找到一个科学合理的风险度量方法。下面本文就对金融风险度量方法进行详细的分析。 关键词:金融;风险;度量方法 中图分类号:F832.3 文献标识码:A 文章编号:1001-828X(2013)08-0-01 金融风险的出现不但会对金融机构的正常运行产生一定的影响,甚至还会导致连锁反应的出现,从而造成全球经济动荡。各金融机构为了能够对金融风险进行有效的控制,均加强了对其科学合理风险度量方法的研究,以此确保可以对金融风险进行准确的评估,提高金融风险控制力度[1]。其中由于各金融风险之间也具有一定的差异性,因此其度量方法也有所不同,下 面本文就对目前金融市场,最常用的三种进行探讨。 一、金融风险方差度量方法 在Markowitz1952年所发表的《资产选择》中,首次对金融理论进行了定量化的研究,那么Markowitz也就成为了第一个对金融市场风险,采用数量方法进行度量的人。其中他的资产组合理论是在规范分析的基础上,对人们在进行资产选择时,怎样才能够对金融风险进行有效避免,从而获取最大化的经济效益的方法进行的探讨。其中一开始市场风险的原型就是在资产组合理论中出现的,Markowitz曾把它称为是一种具备不确定性的资产收益。Markowitz对于 这一资产收益不确定性的度量,采用的是统计学中的方差或者标准差,那么这一方法也就成为了金融风险度量中的最早方法,金融风险大小也就第一次被Markowitz采用具体的数量进行的刻画。方差这一金融风险度量方法不但具有概念明确、统计性好以及容易理解的优点,同时在收益率对正态分布假设条件服从的条件下,可以把组合方差分别称为多个单个的资产收益率方差和协议差。金融风险的方差度量方法,具有良好的适用性和简便性,因此到目前为止,其不但在金融风险度量中使用范围最广,使用最广泛,同时也是之中影响最大的度量方法[2]。但 随着人们对金融风险本质认识的深入,这一度量方法所展示出来的弊端也越来越多,其中方差方法本身的定义就和风险的原始含义具有偏差,对于真实风险的大小不能够进行度量,其虽然可以帮助投资者规避一定的风险,但是也具有使其失去更多收益机会的可能。另外方差方法的假设具有一定的严格性,具有比较繁重的计算任务,因此也就迫使人们不断的对新的金融风险度量方法进行探寻,以能够对方差方法中所具有的弊端进行消除,从而提高金融风险度量的科学性、合理性和准确性[3]。

飞机碰撞模型

飞机碰撞模型 摘要 第六架在边长为160km的正方形区域内以的飞行角从坐标为(0,0)的点出发,在飞行过程中不与其它五架飞机发生碰撞,即在该区域内与其它任意飞机的距离大于8km,就要不断调整该飞机的飞行角度,使其任意时刻与其他飞机的距离大于8km,利用空间中点的距离定义,计算任意时刻该飞机与其他飞机的距离,找到调整角度的最小值为。 1、问题重述 在约10000km高空的某边长160km的正方形区域内,有5架飞机均以800km/h的速度作水平飞行,不碰撞的标准为在该区域内任意两架飞机的距离大于8km。现有5架飞机在区域内飞行且它们不会碰撞,其初始坐标和飞行方向由下表给出: 现有第6架飞机要进入该区域,坐标为(0,0),飞行角为,如果其与内部的5架飞机发生碰撞,就需要调整其飞行角度,请建立优化模型,确定其与内部5架飞机不碰撞的最小调整角。 2、基本假设 1、五架飞机在规定正方形区域飞行中不随意改变路线; 2、飞机在飞行中不考虑其他未知因素; 3、符号说明 :正方形区域的边长; :第i架飞机飞行的方向角度; :第六架飞机飞行过程中的调整角度; :第架、第架飞机的距离; :第架飞机在区域内飞行的路线长度; :第架飞机的飞行速度; :第架飞机在区域内的飞行时间; :第i架飞机的横坐标; :第i架飞机的纵坐标; 4、模型的建立与求解 1、模型的建立 先根据五架飞机起始点与终点坐标,在规定的网格区域内画出它们的飞行路线,再根据给出的区域长度与各架飞机飞行速度,计算出各架飞机在区域内的飞行时间, 再根据计算得出的时间,得出时刻各架飞机的坐标,求出在该时刻第六架飞机与其他五架飞机的距离 即 当<8时,此时就需要调整第六架飞机的飞行角度,使其与另外五架飞机

云模型简介及个人理解matlab程序文件

随着不确定性研究的深入,越来越多的科学家相信,不确定性是这个世界的魅力所在,只有不确定性本身才是确定的。在众多的不确定性中,随机性和模糊性是最基本的。针对概率论和模糊数学在处理不确定性方面的不足,1995年我国工程院院士李德毅教授在概率论和模糊数学的基础上提出了云的概念,并研究了模糊性和随机性及两者之间的关联性。自李德毅院士等人提出云模型至今,云模型已成功的应用到自然语言处理、数据挖掘、 设是一个普通集合。 , 称为论域。关于论域中的模糊集合,是指对于任意元素都存在一个有稳定倾向的随机数,叫做对的隶属度。如果论域中的元素是简单有序的,则可以看作是基础变量,隶属度在上的分布叫做隶属云;如果论域中的元素不是简单有序的,而根据某个法则,可将映射到另一个有序的论域上,中的一个且只有一个和对应,则为基础变量,隶属度在上的分布叫做隶属云[1] 。 数字特征 云模型表示自然语言中的基元——语言值,用云的数字特征

——期望Ex,熵En和超熵He表示语言值的数学性质[3] 。 期望 Ex:云滴在论域空间分布的期望,是最能够代表定性概念的点,是这个概念量化的最典型样本。 熵 En:“熵”这一概念最初是作为描述热力学的一个状态参量,此后又被引入统计物理学、信息论、复杂系统等,用以度量不确定的程度。在云模型中,熵代表定性概念的可度量粒度,熵越大,通常概念越宏观,也是定性概念不确定性的度量,由概念的随机性和模糊性共同决定。一方面, En是定性概念随机性的度量,反映了能够代表这个定性概念的云滴的离散程度;另一方面,又是定性概念亦此亦彼性的度量,反映了在论域空间可被概念接受的云滴的取值范围。用同一个数字特征来反映随机性和模糊性,也必然反映他们之间的关联性。 超熵 He:熵的不确定性度量,即熵的熵,由熵的随机性和模糊性共同决定。反映了每个数值隶属这个语言值程度的凝聚性,即云滴的凝聚程度。超熵越大,云的离散程度越大,隶属度的随机性也随之增大,云的厚度也越大。 1.绘制云图 Ex=18

用matlab实现碰撞模型程序代码

clc; clear; fill([6,7,7,6],[5,5,0,0],[0,0.5,0]);%右边竖条的填充 hold on; %保持当前图形及轴系的所有特性 fill([2,6,6,2],[3,3,0,0],[0,0.5,0]);%左边竖条的填充 hold on;% 保持当前图形及轴系的所有特性 t1=0:pi/60:pi; plot(4-2*sin(t1-pi/2),5-2*cos(t1-pi/2));%绘制中间的凹弧图形 grid on;%添加网格线 axis([0,9,0,9]);%定义坐标轴的比例% axis('off');%关闭所有轴标注,标记,背景 fill([1,2,2,1],[5,5,0,0],[0,0.5,0]);%中间长方形的填充 hold on;% 保持当前图形及轴系的所有特性 title('碰撞');%定义图题 x0=6; y0=5; head1=line(x0,y0,'color','r','linestyle','.','erasemode','xor','markersize',30); head2=line(x0,y0,'color','r','linestyle','.','erasemode','xor','markersize',50); %设置小球颜色,大小,线条的擦拭方式 t=0;%设置小球的初始值 dt=0.001;%设置运动周期 t1=0;%设置大球的初始值 dt1=0.001; while 1%条件表达式 t=t+dt; x1=9-1*t; y1=5; x3=6; y3=5; if t>0 x2=6; y2=5;%设置小球的运动轨迹 end if t>2.8 t=t+dt; a=sin(t-3); x1=6.1; y1=5.1; x3=4-2*sin(1.5*a); y3=5-2*cos(1.5*a);%设置大球的运动轨迹

基于MATLAB的地震正演模型实现[1]

基于MATLAB的地震正演模型实现 贾跃玮 (中国地质大学(北京) 北京100083) 摘 要 人工合成地震正演模型是进行三维模型计算的基础。针对地震勘探的原理,本文运用MATLAB强大数学计算和图像可视化功能,对一个三层介质模型制作了人工合成地震记录。文章首先说明了地震记录形成的物理机制,然后介绍了地质模型的构造及参数选择,最后针对该具体地质模型制作了合成地震记录。 关键词 地震;MATLAB;正演 0引 言 地震勘探就是利用地下介质弹性和密度的差异,通过观测和分析大地对人工激发地震波的响应,推断地下岩层的性质和形态的地球物理方法。地震勘探是钻探前勘测石油与天然气资源的重要手段,在煤田和工程地质勘查、区域地质研究和地壳研究等方面,也得到广泛应用。 人工合成二维地震模型记录是各种复杂地震模型正演计算的基础,是对地震勘探经典理论的忠实实现。在实际工作中,针对具体地质构造进行二维地震模拟能够有效帮助地球物理工作者在地震剖面上识别各种地质现象。MATLAB环境集编程、画图于一体,特别适合人工合成地震记录的快速实现。因此,我们在MATLAB环境下设计了一个三层地质模型,并对该模型模拟了地震记录,旨在可视化地观察地震波场记录特征并验证地震褶积模型。 1地震记录形成的物理机制 在地震记录上看到的波形是地震子波叠加的结果,从地下许多反射界面发生反射时形成的地震子波,振幅大小决定于反射界面反射系数的绝对值,极性的正负决定于反射系数的正负,到达时间的先后取决于界面深度和覆盖层的波速。若地震子波波形用S(t)表示,反射系数是双程垂直反射旅行时t的函数,用R(t)表示,地震记录f(t)形成的物理过程在数学上就可表示为:f(t)=S(t)3R(t)=∫0T S(τ)R(t-τ)dτ 地震子波和反射系数资料常常不易取得,因此计算时常做这样一些假设: (1)地质模型的建立是来自大量观察实际地质结构的经验性归纳总结。 (2)为了模型建立和计算过程中突出理论数值,去除了一些干扰因素,对一切衰减、噪声都不进行考虑。 (3)地层在横向上均匀,纵向上是由大量具有不同弹性性质的薄层构成。 (4)地震子波以平面波形式垂直入射到界面,各薄层的反射子波与地震子波形状相同,只是振幅及极性不同。 (5)所有波的转换、吸收及绕射等能量损失都不考虑。 基于以上这些假设条件进行地震记录合就必须已知地震子波以及地层的反射系数,而反射系数又主要由地层的波阻抗反映,所以必须首先获取地层的速度和密度资料。 速度资料可通过连续速度测井获得,密度资料可从密度测井获得,得不到密度资料时,可近似假定密度不变,以速度曲线代替波阻抗曲线来计算反射系数。加德纳根据实际资料提出了一个由速度推算密度的经验公式: ρ=0.23V0.25 (速度单位:英尺/秒) 或 ρ=0.31V0.25 (速度单位:米/秒)

金融风险的概率调整度量方法及应用

财政金融投资 [收稿日期]2005-05-24 [作者简介]石媛昌(1974-),女,安徽合肥人,中国农业大学理学院讲师,首都经济贸易大学博士研究生,研究方向是金 融工程;韩立岩(1955-),男,北京人,北京航空航天大学经管学院博士生导师,教授,研究方向是金融工程。 金融风险的概率调整度量方法及应用 石媛昌1,韩立岩2 (1.中国农业大学理学院,北京100083;2.北京航空航天大学经济管理学院,北京100083) [摘 要]基于概率调整的金融风险度量方法是从保险业中针对保险风险发展起来的一种方法。它通过对风险的真实概率分布进行修正,来给予高风险事件更大的权重,也就是说,投资者通过调整对右侧尾部风险的主观认识来表明自己对风险的回避程度,最终得到对风险的评价。文章在Choquet 积分这一框架下对VaR 和T CE 风险度量的概率调整表示方法以及一些新的风险度量方法进行了归纳和总结,并通过理论和数值分析对这些不同风险度量的特征和相互关系进行了研究。 [关键词]风险度量; 概率调整函数; VaR ; G ARCH [中图分类号]F830 [文献标识码]A [文章编号]1007-9556(2005)04-0096-03 Measurement of Financial Risk :a Probability -readjustment -based Method SHI Y uan -chang 1,HAN Li -yan 2 (1.School of Science ,China Agricultural University ,Beijing 100083; 2.School of Economic Management ,Beijing University of Aeronautics and Astronautics ,Beijing 100083,China ) Abstract :In the framew ork of Choquet integral ,the paper makes a summary of the probability readjustment method applied to the risk measurement and other new measuring methods.I t als o studies the features and interrelation of these methods through theoretical and numerical analysis. K ey Words :risk measurement ;probability readjustment function ;VaR ;G ARCH 一、引言 对风险进行恰当而又准确的度量是进行风险管理和风险控制的前提条件。风险价值(VaR )是当前流行的一种风险度量方法(J.P.M organ (Risk Met 2rics [1]))。VaR 就是指在一定的置信水平下在某一 特定时期内给定的投资组合可能遭受的最大损失。VaR 把资产或投资组合的风险归纳起来用单一的指 标来衡量,是一种易于理解和使用的风险度量。但是,VaR 仍然有许多不尽如人意的地方。Artzner 等人[2][3]提出了风险度量的公理化基础,他们指出,一种合理的风险度量应该满足四个性质:单调性、次可加性、正齐次性和平移不变性,并把满足上述四个性质的风险度量称为一致风险度量。VaR 不是一致风险度量,因为它不满足次可加性,即两种资产组合的VaR 比这两种资产各自的VaR 的和还要大[3],这意 味着资产组合的分散化会使风险增加,也就是说, VaR 对于分散化投资的风险的描述是不恰当的。这使得Artzner 等人建议使用尾部条件期望(T ail C ondi 2tional Expectation ,T CE )作为VaR 的替代品。本文借鉴Wang (1996,1997)[4][5]提出的保险风险定价领域 的一种基于概率调整的风险度量方法,把金融风险 作为调整后概率的期望进行讨论,利用调整概率的Choquet 积分来定义风险度量。在Choquet 积分的框架下,按不同的概率调整方法对风险度量进行分类,介绍了VaR 和T CE 的概率调整函数,以及机会比例(Proportional Hazards ,PH )变换、对偶幂(Dual P ower ,DP )变换等新的风险度量方法,最后,对这些不同的风险度量进行了实证分析,并考察和比较了不同风险度量的特征。 二、基于概率调整的风险度量 设P 为σ代数F 上的概率测度,g :[0,1]→[0,1]为增函数,且有g (0)=0,g (1)=1。则μ=goP ? 69?

基于云模型的粒计算方法研究

第6章从云模型理解模糊集合的争论与发展

第1章基于云模型的粒计算方法应用 云模型是一个定性定量转换的双向认知模型,正向高斯云和逆向高斯云算法实现了一个基本概念与数据集合之间的转换关系;本文基于云模型和高斯变换提出的高斯云变换方法给出了一个通用的认知工具,不仅将数据集合转换为不同粒度的概念,而且可以实现不同粒度概念之间的柔性切换,构建泛概念树,解决了粒计算中的变粒度问题,有着广阔的应用前景。 视觉是人类最重要的感觉,人类所感知的外界信息至少有80%以上都来自于视觉[130]。图像分割[131]是一种最基本的计算机视觉技术,是图像分析与理解的基础,一直以来都受到人们的广泛关注。目前图像的分割算法有很多,包括大大小小的改进算法在内不下千种,但大致可以归纳为两类[132]。第一类是采用自顶向下的方式,从数学模型的选择入手,依靠先验知识假定图像中的部分属性特征符合某一模型,例如马尔科夫随机场、引力场等,利用模型描述图像的邻域相关关系,将图像低层的原始属性转换到高层的模型特征空间,进而建模优化求解所采用模型的参数,通常是一个复杂度非常高的非线性能量优化问题。在特征空间对图像建模,其描述具有结构性、分割结果也一般具有语义特征,但是由于对数据的未知性、缺乏足够先验知识的指导,导致模型的参数选择存在一定的困难。第二类是采用自底向上的方式,从底层原始数据入手,针对图像灰度、颜色等属性采用数据聚类的方法进行图像分割,聚类所采用的理论方法通常包括高斯变换、模糊集、粗糙集等;或者预先假设图像的统计特性符合一定的分类准则,通过优化准则产生分割结果,例如Otsu方法的最大方差准则[133][134]、Kapur方法的最大熵准则[135][136]等。这类方法虽然缺乏语义信息表达,但是直接在数据空间建模,方法更具普适性和鲁棒性。 随着计算机视觉研究的深入,简单的图像分割已经不能满足个性化的需求,有时候人们恰恰兴趣的是图像中亦此亦彼的那些不确定性区域,基于云模型的粒计算方法是一种不确定性计算方法,发现图像中存在的不确定性区域是它的一个重要能力。如何模拟人类自然视觉中的认知能力进行图像分割一直以来都是一个难点问题,而基于高斯云变换的可变粒计算正是用来模拟人类认知中的可变粒计算过程,因此可以利用高斯云变换对自然视觉认知能力中选择性注意能力进行形式化。武汉大学秦昆教授等曾基于云综合、云分解等云运算实现图像分割,正如第5章中的分析结果,基于内涵的概念计算方法随着层次的提升,概念脱离原始数据会增加误分率,甚至失效,而且无法实现自适应地概念数量和粒度优化。

金融风险度量地VaR模型 在MATLAB中地使用方法

金融风险度量的VaR模型

摘要:VaR是使投资风险数量化的工具,旨在估计给定金融资产或组合在正常的资产价格波动下未来可能的或潜在的损失;目前常用的VaR计算方法大体归为三类:历史模拟法、蒙特卡洛模拟法以及方差一协方差法;各种方法均存在自身假设条件或固有的缺陷,在选择计算VaR的方法时,需要在计算效率、所需数据信息、准确性之间进行平衡。VaR作为一种工具主要在风险控制、绩效评价以及金融监管三个方面发挥重要作用。 关键词:VaR 方差一协方差法历史模拟法蒙特卡洛模拟法 一、VAR思想的产生 VaR (Value at Risk)的思想应追溯到马柯威茨(1952)的均值一方差投资组合理论模型n。马柯威茨建议使用方差代替靠自觉判断的偏差来衡量风险,但他的大部分著作都致力于研究期望收益与均值一方差结构中风险之间的平衡,这只

适应于收益率服从正态分布或投资者具有二次效用函数。而给VaR 带来直接思路的是Roy( 1952),他在投资组合选择时构造的“安全第一(safety-first)”模型中,建议基于给定置信水平下的风险衡量选择那些可将损失大于“灾难水平”的概率最小化的投资组合。Baumol( 1963)也提出了一个基于某些概率水平下较低的置信区间的风险衡量指标。20世纪80年代的J.P .摩根银行的Till Goldimann 首次提出了“风险价值”这一术语,他认为价值风险比收益风险更重要,这为以后VaR 的提出铺平了道路。 二、VaR 的定义 在金融市场上,投资者或金融机构所面临的一个重要的风险是市场风险,即金融工具的市场价值在未来发生变化的可能性。一般而言,投资者所关心的主要是资产价格向下变动的风险。 风险一般用资产回报的波动性或标准差衡量,波动性越大,资产未来回报偏离预期的回报的可能性越大。 但是,波动性并未告诉我们,投资者在今后一段时间内,可能遭受的最大化损失是多少。 现代金融机构已经不满足于知道投资组合的波动性或风险,还想进一步知道一旦风险实现,自己可能遭受何等程度的最大损失。由此产生了风险度量工具。 VaR 指的是在正常的市场条件下以及给定的置信度下,某一证券组合或金融 资产在将来特定时间内所可能出现的最大损失,被称为“在险价值”或“风险价 值”。数学定义式是: 。 这个公式的含义是:对于某一资产组合来说,在给定的置信水平下,VaR 提供了最大可能的预期损失,即可以以1-c 的概率来保证这一资产组合的预期损失不会大于VaR 。 由VaR 的定义可知,置信水平越高,资产组合的损失小于其VaR 值的概率越大,VaR 模型对于极端事件的发生进行预测时失败的可能性越()Pr ob 1p VaR c ?<-=-

完全弹性碰撞matlab

Matlab设计实验 课题名称:完全弹性碰撞 一.设计背景: 完全弹性碰撞(Perfect Elastic Collision):在理想情况下,完全弹性碰撞的物理过程满足动量守恒和能量守恒。如果两个碰撞小球的质量相等,联立动量守恒和能量守恒方程时可解得:两个小球碰撞后交换速度。如果被碰撞的小球原来静止,则碰撞后该小球具有了与碰撞小球一样大小的速度,而碰撞小球则停止。多个小球碰撞时可以进行类似的分析。 二.设计意义 真实情况下,由于小球间的碰撞并非理想的弹性碰撞,还会有能量的损失,所以最后小球还是要停下来。 所以该设计主要用于研究能量守恒中的某些问题。还有就是用于实验演示。三.程序设计 该程序主要设置了三个不同颜色的小球,在真空环境下(理想环境下)的碰撞实验演示。 该程序可以通过改变各种参数,研究各种情况下的实验数据。 程序: pole=1.8;%定义摆线的长度 xmax=2;%定义横坐标长度 ymax=2;%定义纵坐标长度 basew=2.3;%定义图中方框的宽度 baseh=2.3;%定义图中方框的高度 instant=0.2;%定义摆线间距 %三视图的初始设置 %第一幅图

figure('name','理想情况下能量守恒定律 1','position',[500,340,440,320]);%定义第一幅图的标题和位置 fill([xmax,xmax,-xmax,-xmax,xmax,xmax-0.05,xmax-0.05,- xmax+0.05,-xmax+0.05,xmax-0.05],[ymax,-ymax,- ymax,ymax,ymax,ymax-0.05,-ymax+0.05,-ymax+0.05,ymax- 0.05,ymax-0.05],[0,1,1]); %填充底座背景 hold on;%保持当前图形及坐标所有特性 fill([xmax-0.05,xmax-0.05,-xmax+0.05,-xmax+0.05],[ymax- 0.5 ,ymax-0.55,ymax-0.55,ymax-0.5],'g');%填充方框内横杆背景 hold on;%保持当前图形及坐标所有特性 text(-0.25,1.7,'1');text(0,1.7,'2');text(0.25,1.7,'3');%在坐标处标识 说明文字 text( -1.0,1.7,'a');text( -1.0,-1.7,'b');%在坐标处标识说明文字 text(1.0,1.7,'真空容器');text(-1.8,1.7,'主视图');%在坐标处标识说明文 字 axis([-basew,basew,-baseh,baseh]);%定义背景坐标范围在x(-2.3~2.3) Y(-2.3~2.3)之间 %axis('off');%覆盖坐标刻度并填充背景 theta0=7 *pi/6;%摆线1的初始角度 x0=pole*cos(theta0);%摆线1末端x坐标 y0=pole*sin(theta0)+1.5;%摆线1末端y坐标 body1=line([-instant,x0-instant],[1.5,y0],'color','r','linestyle','- ','erasemode','xor');%设置摆线1 head1=line(x0- instant,y0,'color','r','linestyle','.','erasemode','xor','markersize',40);%设置第一个小球颜色,大小 theta1=3*pi/2;%摆线2,3的角度 x1=pole*cos(theta1);%摆线2,3末端x坐标 y1=pole*sin(theta1)+1.5;%摆线2,3末端y坐标 body=line([-0.001,x1],[1.5,y1],'color','k','linestyle','- ','erasemode','xor');%设置摆线2

相关文档
最新文档