稳定性分析答案

稳定性分析答案
稳定性分析答案

稳定性分析

2009-10-14 14:18

1功角的具体含义。

电源电势的相角差,发电机q轴电势与无穷大系统电源电势之间的相角差。

电磁功率的大小与δ密切相关,故称δ为“功角”或“功率角”。电磁功率与功角的关系式被称为“功角特性”或“功率特性”。

功角δ除了表征系统的电磁关系之外,还表明了各发电机转子之间的相对空间位置。

2功角稳定及其分类。

电力系统稳态运行时,系统中所有同步发电机均同步运行,即功角δ是稳定值。系统在受到干扰后,如果发电机转子经过一段时间的运动变化后仍能恢复同步运行,即功角δ能达到一个稳定值,则系统就是功角稳定的,否则就是功角不稳定。

根据功角失稳的原因和发展过程,功角稳定可分为如下三类:

静态稳定(小干扰)

暂态稳定(大干扰)

动态稳定(长过程)

3电力系统静态稳定及其特点。

定义:指电力系统在某一正常运行状态下受到小干扰后,不发生自发振荡或非周期性失步,自动恢复到原始运行状态的能力。如果能,则认为系统在该正常运行状态下是静态稳定的。不能,则系统是静态失稳的。

特点:静态稳定研究的是电力系统在某一运行状态下受到微小干扰时的稳定性问题。系统是否能够维持静态稳定主要与系统在扰动发生前的原始运行状态有关,而与小干扰的大小、类型和地点无关。

4电力系统暂态稳定及其特点。

定义:指电力系统在某一正常运行状态下受到大干扰后,各同步发电机保持同步运行并过渡到新的或恢复到原来的稳态运行状态的能力。通常指第一或第二振荡周期不失步。如果能,则认为系统在该正常运行状态下该扰动下是暂态稳定的。不能,则系统是暂态失稳的。

特点:研究的是电力系统在某一运行状态下受到较大干扰时的稳定性问题。系统的暂态稳定性不仅与系统在扰动前的运行状态有关,而且与扰动的类型、地点及持续时间均有关。

作业2

5发电机组惯性时间常数的物理意义及其与系统惯性时间常数的关系。

表示在发电机组转子上加额定转矩后,转子从停顿状态转到额定转速时所经过的时间。TJ=TJG*SGN/SB

6例题6-1 (P152) (补充知识:当发电机出口断路器断开后,转子做匀加速旋转。汽轮发电机极对数p=1。额定频率为50Hz。要求列写每个公式的来源和意义。)题目:已知一汽轮发电机的惯性时间常数Tj=10S,若运行在输出额定功率状态,在t=0时其出口处突然断开。试计算(不计调速器作用)

(1)经过多少时间其相对电角度(功角)δ=δ0+PAI.(δ0为断开钱的值)(2)在该时刻转子的转速。

解:(1)Tj=10S,三角M*=1,角加速度d2δ/dt2=三角M*W0/Tj=W0/10=31.4RAD/S2 δ=δ0+0.5dd2δ/dt2 所以PI=0.5*2PI*f/10t方 t=更号10/50=0.447

(2)t=0.447时,

OMG=OMG0+dOMG/dt*t=OMG0+d2δ/dt2*0.447=OMG0+OMG0/10*0.447=1.045OMG0=1 .045*2PIf=328.3rad/s N=1.045*3000=3135R/MIN

7.习题6.2.1已知一水轮发电机额定功率为300MW,额定功率因数为0.875,飞轮转矩GD2为70000t*M2转速为125R/MIN(1)计算TJ(2)若全系统基准功率SB=200MVA,TJ应该如何归算

解:TJG=2.74GD2*n方/1000SGN(SGN单位Kva)=2.74*70000*125方/1000*(300/0.875)*1000=8.74S

TJ=TJG*SGN/SB=8.74*(300/0.875)/200

8P156例题6-2

9习题6-202(凸机不要求)

10多机系统中发电机电磁功率的特点

答:图公式,任一台发电机的功

角特性,是它与其余所以发电机电势相角差的函数。在系统含有三台以上发电机的情况下,不能用曲线作出发电机的功角特性。

任一台发电机输出的电磁功率,都与所有发电机的电势及电势间的相角差有关,因此任一台发电机运行状态的变化,都要影响到其余发电机的运行状态。

11发电机稳态运行时,强制空载电势与空载电势的关系?

答:相等,Eqe=Eqe'+Td0'dEq'/dt

12自动调节励磁系统直接控制发电机励磁电压还是励磁机励磁电压?

答:励磁机励磁电压

13晶闸管调节励磁器的工作原理?

答:当发电机端电压(和定子电流)变化时,量测单元测得的电压信号与给定的电压相比较,得到的电压偏差信号经放大后,作用于移相触发单元,产生不同的相位触发脉冲,进而改变晶闸管导通角,使励磁机励磁绕组电压电流变化以达到调节发电机励磁绕组电压乃至发电机电压的目的。

14强行励磁动作与退出的原因是什么?

当发电机电压由于系统发生短路而大幅度下降时,采用强行励磁,即短接强励电

阻RC或者全部开通晶闸管导通角,此时uff立即跃变至最大值uffm。短路切除后发电机端电压上升到一定值,或者强行励磁运行达到时间限制后,为了系统安全,则强行励磁将退出工作,即相应恢复RC或者晶闸管导通角的控制,此时uff 将变为正常运行时的uff0

15无

16发电机和异步电动机的电磁转矩和机械转矩的作用有何不同?

发电机机械转矩助动电磁转矩制动。电动机相反

17异步电动机转子侧的电阻与转差的关系?

R=rs/s反比

18异步电动机的电磁转矩与电压的关系?

MEmax=U方/2(XS6+Xr6)正比U方

19异步电动机的电磁转矩-转差特性的具体特点是什么?

如图

S升高ME升高 IF S小于Scr .

S升高ME降低 IF S大于Scr.

ME=MEmax IFS=Scr

20综合负荷的静态电压特性一般如何表示?

忽略频率变化,综合负荷的静态电压特性为:

PD=apU2次方+bpU+Cp ap+bp+cp=1

QD=aqU2次方+bqU+Cq aq+bq+cq=1

21整步功率系数的定义及其与简单系统静态稳定的关系?

整步功率系数=dPE/dδ大于零系统稳定. 整步功率系数大小可以说明系统静态稳定的程度。整步功率系数值越小,静态稳定的程度越低。整步功率系数等于0,则是稳定与不稳定的分界点,即静态稳定极限点。在简单系统中静态稳定极限点所对应的功角就是功角特性的最大功率所对应的功角。

22静态稳定储备系数KP的概念,在电力系统实际运行中对KP的具体要求。

Kp=(PM-P0)/P0*100/100PM稳定极限点对应的功率PO某一运行情况下的输送功KP大于等于15-20%正常运行方式的静态稳定储备要求

KP大于等于10%事故后运行方式的静态稳定储备要求

23简单系统和电动机的静态稳定判据是什么?

整步功率系数=dPE/dδ大于零系统稳定

23小干扰法的基本原理是什么

对于一个非线性动力系统,1首先列写描述系统运动的非线性状态方程组;2然后利用泰勒级数对非线性状态方程组进行线性处理3再根据线性状态方程组系数矩阵的特征值判断系统的稳定性。

24例题7-125

25习题7-2-1

26不计阻尼作用,列写简单系统线性化转子运动方程的特征根,根据整步功率系数与特征根的关系,说明其对系统静态稳定的影响。

当(dPE/Dδ)小于0特征值分别为一个正实根和负实根,△ δ非周期性发散,发电机失去同步,系统不稳定

当(dPE/Dδ)大于0特征值为一对虚根,△ δ等幅振荡。实际中,若系统存在正阻尼,△ δ作衰减振荡,发电机最终恢复同步,系统稳定。

27考虑阻尼作用,列写简单系统线性化转子运动方程的特征根,并根据整步功率系数和阻尼功率系数与特征根的关系,说明其对系统静态稳定的影响。

人12=-D+-根号(D方-4W0TJ(SEq)δ0)/2TJ (SEq)δ0整步功率系数

=(dPE/dδ)δ0

(SEq)δ0小与0无论D是正是负,人总有一正实根,系统非周期性失去稳定。只是在正阻尼时失稳过程会慢一些

(SEq)δ0大于0则由D的正负决定系统的稳定性

1D大于0(一般不大,10左右),正阻尼,人是一对具有负实部的共轭复根,小扰动后,△δ作衰减振荡,系统稳定。

2D小于0,负阻尼,人为一对正实部的共轭根,小扰动后,△ δ自发振荡,系统失去稳定。

28分别考虑正阻尼和负阻尼作用,绘制小干扰下简单系统运行点的运动轨迹,并根据运动轨迹的变化说明阻尼功率对系统静态稳定的影响。

答:△P=PT-(PE+D△W) PD=D△W

正阻尼D大于0图

5

D大于0时,衰减振荡的特征是运行点在P-δ平面上顺时针移动,最后回到初始点。D小于0时自发振荡的特征是运行点在P-δ平面上逆时针移动逐渐远离初始运行点,自发振荡时功角变化的幅度越来越大,最后必将导致电源之间失步,即系统稳定性受到破坏

29自动励磁调节器对功角特性的影响

加装电压偏差比例式励磁调节器后,稳定极限可由暂态电势恒定模型来确定。系统的极限功率和极限功角都增大了。自动调节励磁器可增大极限点功率、极限功

角和静态稳定储备系数,即可增强系统静态稳定性

30自动励磁调节器对简单系统静态稳定的影响.

(1)比例式励磁调节器可以提高和改善系统静态稳定性。其扩大了稳定运行范围,发电机可以运行在SEq小于0,即δ大于90 的一定范围内,也增大了稳定极限功率,提高了输送能力。(2)具有比例式励磁调节器的发电机不能运行在 SEq 小于0 情况下。(3)放大倍数的整定值是应用比例式励磁调节器要特别注意的问题。

31考虑自动励磁调节器后劳斯稳定判据的物理意义

判据(1)表示:发电机的运行极限可用暂态电势恒定模型来表示。若系统具有静态稳定性,则整步功率系数必须大于0,否则系统将非周期发散失去稳定。判据(2)要求:当运行点使得K5小于0时,比例式励磁调节器的放大倍数不得大于其最大值。否则,劳斯阵列第一列元素中倒数第二个元素为负,系统存在正实部共轭根,自发振荡,失去稳定。判据(3)要求:当运行点使得SEq 小于0时,比例式励磁调节器的放大倍数不得小于其最小值。否则,劳斯阵列第一列元素中最后一个元素为负,系统存在正实数根,非周期发散失去稳定。

32励磁调节器放大倍数对简单系统静态稳定的影响

1如果Ke整定的适当,即满足Kemin小于Ke小于Kemax,则可近似用SE'q=0来确定

稳定极限,发电机采用暂态电势恒定模型。2如果Ke整定的较大,由于受到自发振

荡条件的限制(即Ke小于Kemax),极限运行角将缩小,一般比SE'q=0 对应的功

角小得多,差别的大小与Te有关。当Ke整定的过大而使得Ke大于Kemax,系统存在

具有正实部的共轭特征值,系统将自发振荡失去稳定。3当运行点处SEq小于0时,

如果Ke整定的过小使得0小于Ke小于Kemin,则系统存在正实数特征值,系统将非周期发散失去稳定。

32提高系统静态稳定性的一般原则

系统的功率极限愈高则静态稳定性愈高。以单机无穷大系统为例,则可以通过减小发电机与无穷大系统之间的电气距离(电抗)、提高发电机的电动势和电网运行电压来提高系统的功率极限。PM=EU/X∑

33提高系统静态稳定性的常用措施

1自动调节励磁装置5减小元件的电抗(1)采用分裂导线(2)提高线路额定电压(3)采用串联电容补偿3改善系统的结构和采用中间补偿设备

34结合系统的正常、故障及故障线路切除的三个状态,绘制振荡与失步过程的功率特性曲线,说明运行点的运动轨迹与变化趋势。

7a:

正常运行突然故障P1到P11推出a到b

b:W=1,△W=0,δa=δb=δ0 PT大于PE,W增加大于1,δ增加推出沿P11b到c。C:保护动作切除故障P11到P111推出C到e Wc=Wmax大于1,△Wc=△Wmax大于0,δc=δe,δc为切除角。e:PT小于PE,W下降大于1推出△W下降大于0推出δ增加推出沿P111:e到f。f:W=1,△W=0,δf=δmax,PT小于PE推出W 下降小于1推出△W下降小于0推出δ下降推出沿P111:f到e到

K.K:PT=PE,Wk=Wmin小于1,△W=△Wmin小于0推出δ下降推出δmin,W升高推出1推出△W升高推出0此后运行点沿P111绕K点振荡如存在正阻尼则振荡衰减最终停留在K点上持续运行。

35例8-136

36习题8-2-3

37改进欧拉法求解转子运动方程的步骤是什么?

(1) 计算tn时δ和W 的斜率上点δn=(wn-1)w0 上点wn=PT-PE(δn)/TJ

(2)计算tn+1时的δ和W的初步估计值δn+1(0)=δ+上点δnh Wn+1(0)=Wn+上点Wnh(3)计算tn+1时δ和W的斜率:上点δn+1(0)=(Wn+1(0)-1)*W0 上点Wn+1(0)=(PT-PE(δn+1(0))/TJ(4)计算TN+1时δ和W 的校验值:δN+1=δN+0.5(上点δN+上点δn+1(0))h Wn+1=Wn+0.5(上点Wn+上点Wn+1(0))h

38提高系统暂态稳定性的措施有哪些?

主要原理:减少扰动后的功率差额(一般为临时措施,只在暂态过程中起作用)1 故障的快速切除和自动重合闸装置2 提高发电机输出的电磁功率3 减小原动机输出的机械功率4 系统失去稳定后的措施(设置解列点,短期异步运行和再同步的可能性)

39在双回线的简单系统中,如果发生单回线路始端单相短路时,分别通过物理过程的分析说明重合闸成功和不成功对暂态稳定的影响。要求绘制功率特性曲线,列写运行点的运动轨迹,标注加速面积与减速面积,说明加速面积与减速面积的变化关系。

40在单回线的简单系统中,如果发生线路始端单相短路时,通过物理过程的分

析说明三相与单相重合闸成功对暂态稳定的影响。要求绘制功率特性曲线,列写运行点的运动轨迹,标注加速面积与减速面积,说明加速面积与减速面积的变化关系。说明单相重合闸相对于三相重合闸的特点。答:

当发生单相故障时,单相重合闸能增大故障相线路切除到重合期间的传输功率,有利于系统暂态稳定性。超高压输电线路,单相故障很多,宜采用单相重合闸。单相重合闸的去游离时间比三相重合闸的长,因为切除一相后其余两相仍处在带

电状态,尽管故障电流被切断了,但带电的两相仍将通过导线间的电容和电感耦合向故障点继续提供电流(潜供电流),因此维持了电弧的燃烧,对去游离不利。

41电气制动的动作原理及影响其作用发挥的主要因素?通过物理过程的分析说明电气制动对暂态稳定的影响。要求绘制功率特性曲线,列写运行点的运动轨迹,标注加速面积与减速面积,说明加速面积与减速面积的相对变化关系。

答案:原理:发生故障后投入电阻消耗发电机的有功(增加电池功率)从而减小功率差额。

主要因素:制动电阻的大小及其投切时间对电气制动提高系统暂态稳定性作用的发挥非常重要。合适的制动电阻和投切时间,则可显著提高系统暂态稳定性。否则,存在欠制动和过制动。

42设置解列点的基本原则是什么

系统失去稳定后快速将系统分解成几个独立子系统,子系统内电源和负荷基本平衡,可保证解列后各子系统的电压和频率接近正常值,有利于子系统内的供电可靠性。当然,此时各独立部分相互间不再保持同步。故障排除后,须尽快恢复并列运行

43振荡中心的定义是什么?

简单系统中,当送端发电机与无穷大系统之间失步时,若这两电源电势E‘和U 之间的功角振荡而幅值保持不变。则当功角为180°时,在距离无限大母线的电气距离为(U/E'+U)*X∑ 处电压降为0,该点为震荡中心。

44同步发电机进行异步运行时的问题是什么?

1异步运行时发电机组的振动和转子的过热,损伤发电机。

2吸收无功功率,若系统无功功率储备不足,则势必降低系统的电压水平,甚至使系统陷入“电压崩溃”。

3异步运行时,功角增大,功率、电压、电流随之振荡,振荡中心附近电压极低,甚至为0,这些地方的电动机失速、停顿,或者在低压保护装置作用下自动脱离系统。4异步运行时,电压电流变化复杂,可能引起保护误动进一步扩大事故

桂林市典型危岩体稳定性及危险性评价2讲解

桂林喀斯特危岩体发育特征及稳定性分析 刘宝臣1 ,郑金1 (1.桂林理工大学土建学院,桂林541004) 摘要:危岩体是由多组的结构面组合而形成,在地表风化作用、卸荷作用、重力、地震、降雨等诱发因素作用下处于不稳定、欠稳定或极限平衡状态的岩体。笔者对桂林市15座山的326块危岩体发育情况进行实地调查,测绘等手段得到几组重要数据,根据危岩体的结构特征和状态特征,将桂林市的危岩体类型分为悬挂式式、倾倒式、贴坡式、孤立式三种基本类型,本文以屏风山1号危岩体为对象进行研究,并采用极限平衡法对该危岩体稳定性进行定量验算,综合分析评价桂林市危岩体的发育特征及稳定性。 关键词:危岩;极限平衡状态;稳定性;定量验算 Stability analysis and risk assessment for three typical rocks in the Guilin city liuBao-chen1 Zheng-jin1 (1.Guilin University of Technology,Guilin 541004) Abstract:Dangerous rock is combined to form groups of the structure surface ,In the Unstable, less stable or equilibrium state of the rock and the factors of Surface weathering, unloading, gravity, earthquake, rainfall and so on. Through the investigation and mapping on the 326 dangerous rocks of fifteen mountains of the Guilin city,the writer get some important data ,According to the structure and State features of dangerous rocks ,Guilin dangerous rocks are divided into Hanging-type , dumping-type、posted slope -type and Isolated style. using the three typical rocks as the research object and checking the stability of the dangerous rocks by Limit equilibrium method, analyze the stability of the dangerous rocks. Key word:dangerous rock;Limit equilibrium;Stability;Quantitative Checking 0前言 危岩崩塌灾害是我国三大地质灾害之一,已成为我国山地开发和建设的重要制约因素。由于危岩崩塌灾害分布零散, 通常规模有限, 爆发随机性强,难以有一个准确的灾害统计数据,但是其危害程度并不亚于泥石流、滑坡等灾害。我区石灰岩出露面积广大,这些地区岩溶山峰和地下洞穴非常发育,形成了独特的喀斯特旅游风景名胜区。举世瞩目的桂林景区以其独特秀丽的风景吸引了广大的国内外游客参观,其中岩溶山峰和洞穴景观占景区主要部分。但其独特的喀斯特区山体岩石突露、奇峰林立,在特殊的地质条件下风化剥蚀已形成大量危岩,严 重威胁山体附近居民及游人的人身和财产安全,严重影响喀斯特景区特色旅游业的稳定快速发展。而国内外对此种危岩的研究甚少。为此,研究岩溶地区岩质边坡和洞穴危岩发生发展的机理、致灾因素,显得非常必要。本文通过地质灾害勘查、物探、室内模拟试验与计算机模拟等,确定危岩失稳破坏的过程与临界条件,提出桂林市危岩体的类型,确定危岩的稳定性判别指标,并对区内典型的危岩体作出稳定性评价,为后期区内危岩体的治理防控技术体系的研究创造条件。 1.1危岩体发育特征分析

稳定性方法评价

边坡稳定性评价方法概述 (辽宁工程技术大学土木与交通学院辽宁阜新123000 作者:张媛)对边坡稳定性评价方法进行了综述,有:极限平衡法、有限元法、离散单元 法、快速拉格朗日分析法、DDA法、流行元法、块体理论法、可靠度方法、模 糊综合评价法、灰色系统评价法、聚类分析法、神经网络、遗传算法和专家系统。在概要地叙述了各个方法的理论基础上,对各个方法的优缺点进行了叙述,指出了各自的适合条件以及目前的应用状况。其中极限平衡法、块体理论法很多时候 与实际情况不相符合,快速拉格朗日法具有随意性,DDA法在数学收敛上的实 现有一定的难度,有限元法需要定义合适的系数,模糊综合评价法和聚类分析法不能全面、最优,专家系统对于知识的获取具有一定的难度,综合各个方法,其中的离散单元法、流行元法、神经网络、遗传算法的适用性较好。 关键词:边坡稳定性;研究进展;评价方法 Prospect Methods of the Research on Slope Stability Zhang Yuan ( liaoning Technical University Civil Engineering and Transportation Department, Liaoning Fuxin 123000 ) Abstract: The paper reviews the prospect methods of the research on slope stability. There are Limit Equilibrium Method, Finite Element Method, Distinct Element Method, Fast Lagrangion Analysis of Method, Discontinuous Deformation Analysis, Manifold Element Method, Block Theory, Reliability Method, Comprehensive Fuzzy Evaluation, Grey system Evaluation, Clustering Analysis Method, Neural Network, Genetic Algorithm, Expert System. On the base of the theory summary about every method, the paper relate the advantages and disadvantages of these methods,points their suiting conditions and using state. In the outline, Limit Equilibrium Method and Block Theory cannot agree with the fact at the most time. Fast Lagrangion Analysis of Method is at its ease, There is a difficulty of math converge about Discontinuous Deformation Analysis, Finite Element Method needs to definite suitable coefficient, Comprehensive Fuzzy Evaluation and Clustering Analysis Method cannot give a overall result, or often it is not the best, Expert System has a

结构动力稳定性的分析方法与进展_何金龙

结构动力稳定性的分析方法与进展 何金龙1,法永生2 (1.卓特建筑设计有限公司,广东佛山528322;2.上海大学土木工程系,上海200074) 【摘 要】 就目前结构动力稳定性问题这一研究领域的若干基本问题,常用的处理方法,判别准则与实验研究方法以及目前取得的主要成果作了简要总结和综述,并且对结构动力稳定性分析与研究今后的发展方向进行了展望。 【关键词】 结构; 动力稳定性; 处理方法; 判别准则; 实验研究 【中图分类号】 T U311.2 【文献标识码】 A 根据结构承受荷载形式的不同,可以将结构稳定问题分为静力稳定和动力稳定两大类。动力载荷作用下结构的稳定性问题是一个动态问题,由于时间参数的引入,使问题变得极为复杂。对于结构动力稳定性的定义一直难以确切给出,这是因为结构自身动力特性具有复杂性使得其在数学意义上的定义很难予以准确表达[1]。长期以来,力学工作者致力于结构稳定性问题的研究,在发展了经典稳定性理论的同时也极大地推动了动力稳定理论研究的前进。如稳定性判定准则的建立、临界载荷的确定、初缺陷的影响或后分叉分析等。理论分析和实验研究逐渐增多,使得这门学科不仅在理论上形成了一个庞大而复杂的体系,而且具有重要的实用价值。可以说,现在的结构动力稳定性研究分析已经是结构动力学、有限元法、数值计算方法及程序设计等诸多学科相互交叉、有机结合的产物,属于现代工程结构研究领域中的一个重要分支。 1 结构动力稳定性的分类及主要的研究问题 结构动力稳定性就其承载的动力形式大致可以分为三类。 (1)结构在周期性荷载作用下的动力稳定性。在简谐荷载等周期性荷载作用下,当结构的自振频率与外载荷的强迫振动频率非常接近时,结构将产生强烈的共振现象;当结构的横向固有振动频率与外荷载的扰动频率之间的比值形成某种特定的关系时,结构将产生强烈的横向振动,即参数振动。对于这类问题,前苏联学者符华·鲍络金(Bolito n)在其著作《弹性体系的动力稳定》中给出了较全面的分析和论述。他们导出的区分稳定区和不稳定区的临界状态方程是一个周期性方程,即M athieu-Hill方程。在周期相同的解之间存在着不稳定区域,便把问题归结为确定微分方程具有周期解的条件,从而解决了稳定的判别问题。但是对于大变形的几何非线形结构,结构的刚度矩阵需要经过迭代,微分方程非常复杂,这些理论将难以成立。 (2)结构在冲击荷载作用下的动力稳定性。在这种情况下,结构的动力稳定性与冲击类型密切相关,而且首要问题在于合理、实用的判别准则,它不仅要在逻辑上站得住脚,又要在实际上可行,遗憾的是这个问题至今未能形成一致的看法。目前对结构承受瞬态冲击作用下的冲击稳定性的试验和理论研究主要集中在理想脉冲以及阶跃荷载下的动力稳定性。在脉冲荷载作用下发生的动力屈曲称为脉冲屈曲,已有的研究表明[2][3][4],脉冲屈曲是一类响应式屈曲或者动力发展型屈曲。阶跃荷载是一类具有恒定幅值和无限长持续时间的载荷形式。在试验或者实际当中,固体与固体之间的冲击引起的屈曲就可看作脉冲冲击。 (3)结构在随动荷载作用下的动力稳定性。所谓随动荷载是指随着时间的变化荷载的幅值保持不变而方向发生变化的作用力,它是非保守力。它的分析将极其复杂,目前还难以见到可借鉴的动力稳定性分析文献。因此,许多学者通常采用结构动力学响应分析常用的手段,将这类荷载作为确定性荷载进行分析。通过对结构的动力平衡路径全过程进行跟踪,根据结构的各参数在动力平衡路径中的变化特性,对结构的动力稳定性进行有效的判定[5]。 综上所述,目前国内外动力稳定性研究的现状大致为:对周期荷载下的参数动力稳定性问题、在冲击荷载作用下的冲击动力稳定性问题和阶跃荷载下的参数阶跃动力稳定性问题研究较多,并取得了满意的效果[6][7][8]。恒幅阶跃载荷及矩形脉冲载荷或其它冲击载荷作用下杆的动力稳定问题也有很多研究,并从不同的角度建立了一些稳定性判定准则。但冲击载荷作用下板的动力稳定问题还没有获得广泛和深入的研究。对于较为复杂的冲击荷载作用下结构的动力稳定性问题,目前的研究主要集中于理想脉冲载荷和阶跃载荷作用下结构的动力稳定问题。在这类问题的分析中,最常采用的屈曲准则有B-R准则、Simitses总势能原理和放大函数法。对非周期激振、参数激振和强迫激振耦合引起的动力稳定问题研究较少;对弹性基本构件和简单模型研究较多(如周期激励下的柱子、梁、拱及壳等已得到了成功的分析),对复杂工程结构研究较少。对于在地震、风荷载等任意动力荷载作用下的具有较强的几何非线性的结构的动力稳定性问题,国内外这方面的文献资料虽然最近几年也有一些,但距离真正地合理解决这类动力稳定性问题还有许多工作要做。 [收稿日期]2006-06-12 [作者简介]何金龙(1962~),男,工学学士,一级注册结构工程师,主要从事工业与民用建筑设计工作。 155  ·工程结构·  四川建筑 第27卷2期 2007.04

性能稳定性分析

性能稳定性分析 1功角的具体含义。 电源电势的相角差,发电机q轴电势与无穷大系统电源电势之间的相角差。 电磁功率的大小与δ密切相关,故称δ为“功角”或“功率角”。电磁功率与功角的关系式被称为“功角特性”或“功率特性”。 功角δ除了表征系统的电磁关系之外,还表明了各发电机转子之间的相对空间位置。 2功角稳定及其分类。 电力系统稳态运行时,系统中所有同步发电机均同步运行,即功角δ是稳定值。系统在受到干扰后,如果发电机转子经过一段时间的运动变化后仍能恢复同步运行,即功角δ能达到一个稳定值,则系统就是功角稳定的,否则就是功角不稳定。 根据功角失稳的原因和发展过程,功角稳定可分为如下三类: 静态稳定(小干扰) 暂态稳定(大干扰) 动态稳定(长过程) 3电力系统静态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到小干扰后,不发生自发振荡或非周期性失步,自动恢复到原始运行状态的能力。如果能,则认为系统在该正常运行状态下是静态稳定的。不能,则系统是静态失稳的。 特点:静态稳定研究的是电力系统在某一运行状态下受到微小干扰时的稳定性问题。系统是否能够维持静态稳定主要与系统在扰动发生前的原始运行状态有关,而与小干扰的大小、类型和地点无关。 4电力系统暂态稳定及其特点。 定义:指电力系统在某一正常运行状态下受到大干扰后,各同步发电机保持同步运行并过渡到新的或恢复到原来的稳态运行状态的能力。通常指第一或第二振荡周期不失步。如果能,则认为系统在该正常运行状态下该扰动下是暂态稳定的。不能,则系统是暂态失稳的。 特点:研究的是电力系统在某一运行状态下受到较大干扰时的稳定性问题。系统的暂态稳定性不仅与系统在扰动前的运行状态有关,而且与扰动的类型、地点及持续时间均有关。 作业2 5发电机组惯性时间常数的物理意义及其与系统惯性时间常数的关系。 表示在发电机组转子上加额定转矩后,转子从停顿状态转到额定转速时所经过的时间。TJ=TJG*SGN/SB 6例题6-1 (P152) (补充知识:当发电机出口断路器断开后,转子做匀加速旋转。汽轮发电机极对数p=1。额定频率为50Hz。要求列写每个公式的来源和意义。)题目:已知一汽轮发电机的惯性时间常数Tj=10S,若运行在输出额定功率状态,在t=0时其出口处突然断开。试计算(不计调速器作用) (1)经过多少时间其相对电角度(功角)δ=δ0+PAI.(δ0为断开钱的值)(2)在该时刻转子的转速。 解:(1)Tj=10S,三角M*=1,角加速度d2δ/dt2=三角M*W0/Tj=W0/10=31.4RAD/S2 δ=δ0+0.5dd2δ/dt2 所以PI=0.5*2PI*f/10t方 t=更号10/50=0.447 (2)t=0.447时,

二阶瞬态响应特性与稳定性分析资料报告

广西大学实验报告纸 组长: 组员: 指导老师: 成绩: 学院:电气工程学院 专业:自动化 班级:163 实验容:实验五 二阶瞬态响应特性与稳定性分析 2018年5月11日 【实验时间】 2018年 5月 11日 【实验地点】 综合808 【实验目的】 1、以实际对象为基础,了解和掌握典型二阶系统的传递函数和模拟电路图。 2、观察和分析典型二阶系统在欠阻尼、临界阻尼、过阻尼的响应曲线。 3、学会用MATLAB 分析系统稳定性。 【实验设备与软件】 1、Multisim 10电路设计与仿真软件 2、labACT 试验台与虚拟示波器 3、MATLAB 数值分析软件 【实验原理】 1、被模拟对象模型描述 永磁他励电枢控制式直流电机如图1(a )所示。根据Kirchhoff 定律和机电转换原理,可得如下方程 u k Ri dt di L e =++ω (1) l t T i k b dt d J -=+ωω (2) ωθ =dt d (3) 式中,各参数如图1(a )所示:L 、R 为电机和负载折合到电机轴上的转动惯量,Tl 是折合到电机轴上的总的负载转矩,b 是电机与负载折合到电机轴上的粘性摩擦系数;kt 是转矩系数(Nm/A ),k e 是反电动势 系数(Vs/rad )。令R L /e =τ(电磁时间常数),b J /m =τ(机械时间常数) ,于是可由这三个方程 画出如图1(b )的线性模型框图。 将Tl 看成对控制系统的扰动,仅考虑先行模型框图中()()s s U Θ→的传递函数为 ()()()()()s Rb k k s s Rb k s U s s G t e m e t 1 /11/?+++=Θ= ττ (4) 考虑到电枢电感L 较小,在工程应用中常忽略不计,于是上式转化为

边坡稳定性分析方法及其适用条件资料

边坡稳定性分析方法及其适用条件 摘要:边坡是一种自然地质体,在外力的作用下,边坡将沿其裂隙等一些不稳定结构面产生滑移,当土体内部某一面上的滑动力超过土体抗滑动的能力,将导致边坡的失稳。边坡稳定性分析是岩土工程的一个重要研究内容,并已经形成一个应用研究课题,本文对目前边坡稳定性分析中所采用的各种方法进行了归纳,并阐述了其适用条件。 关键词:边坡稳定性分析方法适用条件 正文: 一、工程地质类比法 工程地质类比法,又称工程地质比拟法,属于定性分析,其内容有历史分析法、因素类比法、类型比较法和边坡评比法等。该方法主要通过工程地质勘察,首先对工程地质条件进行分析,如对有关地层岩性、地质构造、地形地貌等因素进行综合调查和分类,对已有的边坡破坏现象进行广泛的调查研究,了解其成因、影响因素和发展规律等;并分析研究工程地质因素的相似性和差异性;然后结合所要研究的边坡进行对比,得出稳定性分析和评价。其优点是综合考虑各种影响边坡稳定的因素,迅速地对边坡稳定性及其发展趋势作出估计和预测;缺点是类比条件因地而异,经验性强,没有数量界限。 适用条件:在地质条件复杂地区,勘测工作初期缺乏资料时,都常使用工程地质类比法,对边坡稳定性进行分区并作出相应的定性评价,因此,需要有丰富实践经验的地质工作者,才能掌握好这种方法。

二、极限分析法 应用理想塑性体或刚塑性体处于极限状态的极小值原理和极大 值原理来求解理想塑性体的极限荷载的一种分析方法。它在土坡稳定分析时,假定土体为刚塑性体,且不必了解变形的全过程,当土体应力小于屈服应力时,它不产生变形,但达到屈服应力,即使应力不变,土体将产生无限制的变形,造成土坡失稳而发生破坏。其最大优点是考虑了材料应力—应变关系,以极限状态时自重和外荷载所做的功等于滑裂面上阻力所消耗的功为条件,结合塑性极限分析的上、下限定理求得边坡极限荷载与安全系数。 三、极限平衡法 该法将滑体作为刚体分析其沿滑动面的平衡状态,计算简单。但由于边坡体的复杂性,计算时模型的建立与参数的选取不可避免地使计算结果与实际结果不吻合。常用的方法有如下几种。 1瑞典条分法。基本假定:A边坡稳定为平面应变问题;B滑动面为圆弧;C计算圆弧面安全系数时,将条块重量向滑面法向分解来求法向力。该方法不考虑条间力的作用,仅能满足滑动体的力矩平衡条件,产生的误差使安全系数偏低。 优缺点:在不能给出应力作用下的结构图像的情况下,仍能对结构的稳定性给出较精确的结论,分析失稳边坡反算的强度参数与室内试验吻合度较好,使分析程序更加可信;但需要先知道滑动面的大致位置和形状,对于均质土坡可以通过搜索迭代确定其危险滑动面,但是对于岩质边坡,由于其结构和构造比较复杂,难以准确确定其滑动

大跨度公路隧道长期稳定性分析.

大跨度公路隧道长期稳定性分析 6.1 引言 前面的分析都是基于岩体的弹塑性本构关系进行的,未考虑时间效应和长期蠕变的影响。前人研究发现,地下工程开挖后一段很长时间内,支护或衬砌上的压力一直在变化,可见岩石的蠕变对于隧道特别是深埋隧道围岩的变形和长期稳定性,具有重要影响[78]。为保证现场隧道的长期稳定运行,必须考虑到长期蠕变效应。 蠕变是当应力不变时,应力随时间增加而增长的现象,是流变效应的最重要表现特征。岩石的蠕变曲线有三种主要类型[88],见图6-1。 图6-1 岩石蠕变曲线 图中三条蠕变曲线是在不同应力下得到的,C B A σσσ>>,蠕变试验表明,当岩石在较小荷载σC 持续作用下,变形量虽然随时间增长有所增加,但变形速率逐渐减小,最后变形趋于一个稳定的极限值,这种蠕变称为稳定蠕变;当荷载σA 很大时,变形速率逐渐增加,变形量一直加速增长,直到破坏,蠕变为不稳定蠕变;当荷载较大时,如图中的abcd 曲线所示,此时根据应变速率不同,蠕变过程可分为3个阶段:第一阶段,如曲线中ab 所示,应变速率随时间增加而减小,故又称为减速蠕变阶段或初始蠕变阶段;第二阶段,如曲线中bc 所示,应变速率保持不变,故又称为等速蠕变阶段;第三阶段,如曲线中cd 所示,应变速率迅速增加直到岩石破坏,故又称为加速蠕变阶段。 一种岩石既可发生稳定蠕变也可发生不稳定蠕变,这取决于岩石应力的大小。超过某一临界应力时,蠕变向不稳定蠕变发展。小于此临界应力时,蠕变按稳定蠕变发展,通常称此临界应力为岩石的长期强度。对岩石隧道来讲,由于开挖和支护导致应力重分布,围岩产生不同的应力分布状态,在进行长期蠕变效应分析时,应计算相应监测点的应力和变形状态,判断其蠕变效应。 众所周知,固体本构关系有三种:弹性、塑性和粘性。文献中,通常将围岩应力小于屈服极限时应力应变与时间的关系称为粘弹性问题,将围岩应力大于屈服极限时应力应变与时间的关系称为粘塑性问题。研究表明,在隧道开挖完毕后的长期运营过程中,大多数岩石都表现出瞬时变形(弹性变形)和随着时间而增长的变形(粘性变形),即岩石是粘弹性的[80];为使巷道维持稳定状态,人们也总是力图使围岩应力小于屈服极限。 下面采用FLAC 软件进行数值分析,版本为FLAC2D 5.00.355。 6.3 弹塑性数值分析 ε

危岩体稳定性分析

附件2 危岩体稳定性分析 1、WY-01危岩体稳定性定量评价 1 计算模型 从工程防治的角度按照危岩失稳类型进行分类,可将危岩概化分为滑移式危岩、倾倒式危岩和坠落式危岩3 类。WY-01危岩体为滑移式危岩;其软弱结构面倾向山外,上覆盖体后缘裂隙与软弱结构面贯通,在动水压力、地震和自重力作用下,缓慢向前滑移变形,形成滑移式危岩,其模式见图(图3-1)。 图3-1 滑移式危岩示意图 危岩体 危岩前缘 扬压力U 静水压力V 地下水位 后缘裂隙 危岩后缘 软弱结 构面 W c o s θ W W s i n θh w θ 图3-2 滑移式危岩稳定性计算示意图(后缘有陡倾裂隙) 2 计算公式 ①后缘有陡倾裂隙、滑面缓倾时,滑移式危岩稳定性按下式计算:

(cos sin sin )sin cos cos W Q V V tg c l K W Q V θθθφθθθ---+?= ++ 2 21w w h V γ= 式中:V ——裂隙水压力(kN/m),; w h ——裂隙充水高度(m),取裂隙深度的1/3。 w γ——取10kN/m 。 Q ——地震力(kN/m),按公式e Q W ξ=?确定,式中地震水平作用系数七 级烈度地区 e ξ取0.075; K ——危岩稳定性系数; c ——后缘裂隙粘聚力标准值(kPa);当裂隙未贯通时,取贯通段和未贯通 段粘聚力标准值按长度加权和加权平均值,未贯通段粘聚力标准值取岩石粘聚力标准值的0.4倍; φ——后缘裂隙内摩擦角标准值(kPa);当裂隙未贯通时,取贯通段和未贯 通段内摩擦角标准值按长度加权和加权平均值,未贯通段内摩擦角标准值取岩石内摩擦角标准值的0.95倍; θ——软弱结构面倾角(°),外倾取正,内倾取负; W ——危岩体自重(kN/m3)。 3 危岩稳定性计算结果 根据危岩结构特征和形态特征,②区危岩破坏模式主要为滑移式。 (1)计算参数: 崩塌区出露地层为第四系崩坡积物和石炭系太原组,根据附近工程岩体参数及工程类比得出物理力学参数见表: 表3-2 岩体物理力学参数表 岩石 名称 密度 g/cm3 抗压强度σ MPa 抗剪强度 抗拉强度 (KPa) 软化 系数 C(MPa) ф(°) 灰岩 2. 70 32 0.110~0.271 30.3~40.2 698.5 0.53 结构面 灰岩结构面 0.03-0.10 23-29

控制实验报告二典型系统动态性能和稳定性分析

控制实验报告二典型系统动态性能和稳定性分 析

实验报告2 报告名称:典型系统动态性能和稳定性分析 一、实验目的 1、学习和掌握动态性能指标的测试方法。 2、研究典型系统参数对系统动态性能和稳定性的影响。 二、实验内容 1、观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 2、观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三、实验过程及分析 1、典型二阶系统 结构图以及电路连接图如下所示:

对电路连接图分析可以得到相关参数的表达式: ;;; 根据所连接的电路图的元件参数可以得到其闭环传递函数为 ;其中; 因此,调整R x的阻值,能够调节闭环传递函数中的阻尼系数,调节系统性能。 当时,为过阻尼系统,系统对阶跃响应不超调,响应速度慢,因此有如下的实验曲线。 当时,为临界阻尼系统,系统对阶跃响应恰好不超调,在不发生超调的情况下有最快的响应速度,因此有如下的实验曲线。对比上下两张图片,可以发现系统最后的稳态误差都比较明显,应该与实验仪器的精密度有关。同时我们还观察了这个系统对斜坡输入的响应,其特点是输出曲线转折处之后有轻微的上凸的部分,最后输出十分接近输入。

当时,为欠阻尼系统,系统对阶跃超调,响应速度很快,因此有如下的实验曲线。 2、典型三阶系统 结构图以及电路连接图如下所示:

根据所连接的电路图可以知道其开环传递函数为: 其中,R x的单位为kΩ。系统特征方程为,根据劳斯判据可以知道:系统稳定的条件为012,调节R x可以调节K,从而调节系统的性能。具体实验图像如下: 四、软件仿真 1、典型2阶系统 取,程序为:G=tf(50,[1,50*sqrt(2),50]); step(G) 调节时间为5s左右。 取,程序为:G=tf(50,[1,10*sqrt(2),50]); step(G) 调节时间为0.6s左右。 取,程序为:G=tf(50,[1,2*sqrt(2),50]); step(G)

两种边坡稳定性分析方法比较研究

第10卷 第10期 中 国 水 运 Vol.10 No.10 2010年 10月 China Water Transport October 2010 收稿日期:2010-06-11 作者简介:马玉岩(1987-),男,黑龙江绥化人,武汉大学水资源与水电工程科学国家重点实验室水利水电工程施工与 管理专业硕士研究生,主要研究方向为岩土边坡工程研究以及结构设计。 两种边坡稳定性分析方法比较研究 马玉岩 (武汉大学 水资源与水电工程科学国家重点实验室,湖北 武汉 430072) 摘 要:以某水电工程岩质高边坡做为实例,将强度折减理论与FLAC3D 软件相结合,通过有限差分程序FLAC3D 软件来模拟分析其稳定性。并与极限平衡方法的分析结果对比,探索两种方法的差异性与结果的可靠性,为确定适合工程建设实际的岩质边坡稳定分析方法提出了有益的参考。 关键词:强度折减法;极限平衡法;边坡稳定性 中图分类号:P642.1 文献标识码:A 文章编号:1006-7973(2010)10-0197-03 一、引言 目前,国内在建和待建的大型水电工程大多坐落在西南、西北高山峡谷地区。我国的水电建设面临着一系列高边坡稳定问题。在现代岩土工程和科学技术的新成就的支持下,确定适合工程建设实际的岩质边坡稳定分析方法,是摆在水利水电工程技术人员面前的任务[1]。 目前工程实践中岩质边坡稳定性定量分析主要有三种方法:解析法(最常用的是极限平衡法)、数值方法和概率法。极限平衡法是最常用的解析法,它是在边坡滑动面确定的情况下,根据滑裂面上抗滑力和滑动力比值直接计算安全系数,此外,关键块理论也属于这样的确定性分析方法。数值方法则是借助计算机进行数值分析(例如有限元、快速拉格朗日分析法、离散元、块体元和DDA 等)从而确定边坡的位移场和应力场,再用超载法、强度折减法等使边坡处于极限状态,从而间接得到安全系数。这种方法同时可以考虑位移协调条件和岩体本构关系等。概率法是将概率统计理论被引用到边坡岩体的稳定性分析中来,它通过现场调查,以获得影响边坡稳性影响因素的多个样本,然后进行统计分析,求出它们各自的概率分布及其特征参数,再利用某种可靠性分析方法,来求解边坡岩体的破坏概率即可靠度[2]。 文中选用某水电工程岩质高边坡做为实例,采用强度折减法和极限平衡法对岩质高边坡的稳定性进行对比分析。 二、边坡工程地质条件 模型宽约为700m,高约为700m。 基岩以中粒结构的灰白色、微红色黑云二长花岗岩为主,并有辉绿岩脉(β)、花岗细晶岩脉、闪长岩脉等各类脉岩穿插发育于花岗岩中,尤以辉绿岩脉分布较多。建模过程中考虑了岩体中对边坡稳定影响较大的几个岩脉。 根据岩体风化特点,岸坡岩体由表向内可划分为全风化带、强风化带、弱风化带、微风化—新鲜岩体。岩体风化的水平、垂直分带性明显。 边坡内无地下水分布。 边坡剖面如图1 所示。 图1 边坡剖面 三、强度折减法 强度折减系数法的基本原理是将坡体强度参数凝聚力c 和内摩擦角f 值同时除以一个安全系数K,得到一组新的c k 、f k 值,然后作为新的资料参数输入,再进行试算,当计算不收敛时,对应的K 被称为坡体的最小稳定安全系数,此时坡体达到极限状态,发生剪切破坏,同时可得到坡体的破坏滑动面。 FLAC3D (Three Dimensional Fast Lagrangian Analysis of Continua)是美国Itasca Consulting Goup lnc 开发的三维快速拉格朗日分析程序。该程序能较好地模拟地质材料在达到强度极限或屈服极限时发生的破坏的力学行为,特别适用于分析渐进破坏和失稳。 文中利用FLAC3D,采用“二分法”[3]实现强度折减法,求解安全系数。 所建计算模型节点为29,646个,单元为24,005个。模型的边界条件:模型四周法向约束,底部固定约束,顶部自由,仅受重力作用。 研究表明,随着剪胀角的增大,安全系数也逐渐增大[4]。不过,Vermeer 和de Borst(1984年)研究证明,一般土体、岩石和混凝土的剪胀角要比它们的摩擦角小得多,且通常在0°~20°内变化[5]。因此,剪胀角对强度折减法计算

药物稳定性试验统计分析方法

药物稳定性试验统计分析方法 在确定有效期的统计分析过程中,一般选择可以定量的指标进行处理,通常根据药物含量变化计算,按照长期试验测定数值,以标示量%对时间进行直线回归,获得回归方程,求出各时间点标示量的计算值(y'),然后计算标示量(y')95%单侧可信限的置信区间为y'±z ,其中: 2 2 02)()(1X Xi X X N S t z N -∑-+ ??=- (12-21) 式中,t N -2—概率0.05,自由度N-2的t 单侧分布值(见表12-4),N 为数组;X 0—给定自变量;X —自变量X 的平均值; 2 -= N Q S (12-22) 式中,xy yy bL L Q -=;L yy —y 的离差平方和,N y y L yy /)(2 2∑-∑=;L xy —xy 的离差乘 积之和N y x xy L xy /))((∑∑-∑=;b —直线斜率。 将有关点连接可得出分布于回归线两侧的曲线。取质量标准中规定的含量低限(根据各品种实际规定限度确定)与置信区间下界线相交点对应的时间,即为药物的有效期。根据情况也可拟合为二次或三次方程或对数函数方程。 此种方式确定的药物有效期,在药物标签及说明书中均指明什么温度下保存,不得使用“室温”之类的名词。 例:某药物在温度25±2℃,相对温度60±10%的条件下进行长期实验,得各时间的标示量如表12-4。 表12-4 供试品各时间的标示量 时间/月 0 3 6 9 12 18 标示量/% 99.3 97.6 97.3 98.4 96.0 94.0 以时间为自变量(x ),标示量%(y )为因变量进行回归,得回归方程 y= 99.18-0.26x ,r=0.8970,查T 单侧分布表,当自由度为4,P=0.05得 t N -2=2.132 9279.04 444 .32==-= N Q S 210)(2=-∑X X i

典型系统动态性能和稳定性分析

典型系统动态性能和稳定性分析 一·实验目的 1学习和掌握动态性能指标的测试方法。 2研究典型系统参数对系统动态性能和稳定性的影响。 二·实验要求 1观测二阶系统的阶跃响应测出其超调量和调节时间并研究其参数变化对动态性能和稳定性的影响。 2观测三阶系统的阶跃响应测出其超调量和调节时间并研究其参数变化对动态性能和稳定性的影响。 三·实验步骤 1熟悉实验箱利用实验箱上的模拟电路单元参考本实验附录中的图2.1.1和图2.1.2设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路如用U9、U15、U11和U8连成。注意实验接线前必须对运放仔细调零。接线时要注意对运放锁零的要求。 2利用实验设备观测该二阶系统模拟电路的阶跃特性并测出其超调量和调节时间。 3改变该二阶系统模拟电路的参数观测参数对系统动态性能的影响。 4利用实验箱上的模拟电路单元参考本实验附录中的图2.2.1和图2.2.2设计并连接由一个积分环节和两个惯性环节组成的三阶闭环系统的模拟电路如用U9、U15、U11、U10和U8连成。 5利用实验设备观测该三阶系统模拟电路的阶跃特性并测出其超调量和调节时间。 6改变该三阶系统模拟电路的参数观测参数对系统稳定性与动态指标的影响。 7分析实验结果完成实验报告。注意以上实验步骤中的2、3与5、6的具体操作方法请参阅“实验一”的实验步骤2实验步骤7的具体操作方法请参阅“实验一”的实验步骤3这里不再赘述。 附录 1典型二阶系统 典型二阶系统的方块结构图如图 2.1.1所示 其开环传递函数为 其闭环传递函数为其中 取二阶系统的模拟电路如图2.1.2所示该系统的阶跃响应如图2.1.3所示Rx接U4单元的220K电位器改变元件参数Rx大小研究不同参数特征下的时域响应。2.1.3a 2.1.3b 2.1.3c 分别对应二阶系统在过阻尼临界阻尼欠阻尼三种情况下的阶跃响应曲线

原料药稳定性试验报告

L- 腈化物稳定性试验报告 一、概述 L-腈化物是L- 肉碱生产过程中的第一步中间体(第二步中间体: L-肉碱粗品;第三步中间体:L-肉碱潮品),由于L- 肉碱生产工艺为 间歇操作,即每生产一步中间体,生产完毕并出具合格检测报告后,存 入中间体仓库,以备下一步生产投料所需。根据本公司L- 肉碱产品的 整个生产周期,L- 腈化物入库后可能存放的最长时间为4 周(约28 天)。以此周期为时间依据制定了L- 腈化物稳定性试验方案,用于验 证L-腈化物在再试验期限内的各项质量指标数据的稳定性,并且能否符 合L- 腈化物的质量标准,此次稳定性试验的整个周期为28 天,具体 的稳定性试验方案以ICH 药物稳定性指导原则为基础制定,以确保L- 腈化化物稳定性试验的可操作性。 二、验证日期 2010 年1 月13 日- 2010 年2 月10 日 三、验证方案 1)样品储存和包装: 考虑到L- 腈化物今后的贮藏、使用过程,本次用于稳定性试验的样品 批次与最终规模生产所用的L- 腈化物的包装和放置条件相同。 2)样品批次选择:此次稳定性试验共抽取三批样品,且抽取样品的批次与 最终规模生产时的合成路线和生产工艺相同

3)抽样频率和日期:从2010.1.13 起,每隔7 天取样一次,共取五次,具体日期为:2010.1.13 、2010.1.20 、2010.1.27 、 2010.2.3 、2010.2.10 ,以确保试验次数足以满足L- 腈化物的稳 定性试验的需要。。 4)检测项目:根据L- 腈化物的质量标准的规定,此次稳定性试验的检测项目共五项,分别为外观、氯含量、熔点、比旋度、干燥失重。这 些指标在L- 腈化物的储存过程中可能会发生变化,且有可能影响 其质量和有效性。 5)试样来源和抽样:L- 腈化物由公司102 车间生产,经检测合格后储存于中间体仓库,本次稳定性试验的L- 腈化物均取自于该中间体仓 库,其抽样方法和抽样量均按照L- 腈化物抽样方案进行抽样。抽 样完毕后直接进行检测分析,并对检测结果进行登记,保存,作为稳 定性数据评估的依据。 四、稳定性试验数据变化趋势分析及评估 通过对三批L- 腈化物的稳定性试验,对其物理、化学方面稳定性资料进行评价,旨在建立未来相似情况下,大规模生产出的L- 腈化物是否适用 现有的再试验期(28天)。批号间的变化程度是否会影响未来生产的

热稳定性分析方法

版 本 号:0.1 页 码:1/3 发布日期:2009-12-09 实验室程序 编 写: 批 准: 签 发: 文件编号:SHLX\LAB\L2-008 题 目:热稳定性测量方法 1.0 目的 提供了产品热稳定性的测量方法。 2.0 概述 (1)原理 Na 2SO 3 方 法 : 用 1N 的 Na 2SO 3 溶 液 吸 收 样 品 粒 子 中 释 放 的 甲 醛 , 生 成HOCH 2SO 3Na 和 NaOH 。 CH 2O +Na 2SO 3+H 2O →HOCH 2SO 3Na +NaOH (2)本测量方法是利用聚甲醛树脂在高温熔融,产生甲醛气体,随氮气带出,被亚 硫酸钠溶液吸收,由滴定反应生成的氢氧化钠,得出甲醛含量。 3.0 仪器和试剂 【仪器】 (1) 油浴(容量约为 130L ,并配有样品熔融管) (2) 加热器 (3) 过热保护装置 (4) 搅拌器 (5) 自动滴定装置 (6) 数据处理计算机 【试剂】 (1) 0.005mol/l 硫酸 (2) 福尔马林(36.0~38.0%) (3) 亚硫酸钠(Na 2SO 3) (4) 缓冲液(pH 6.86) (5) 缓冲液(pH 9.18) (6) 0.1mol/l NaOH 4.0 定义 甲醛含量通过以下方式表示: (1)K 0 :表示从 2 分钟到 10 分钟之间,聚合物中溶解的甲醛,不稳定端基和聚合 物主链分解出来的甲醛量。转化为每分钟的甲醛含量。 (2)K 1 :表示从 10 分钟到 30 分钟之间,聚合物中剩余的溶解甲醛,不稳定端基

文件编号:SHLX\LAB\L2-008 和聚合物主链分解出来的甲醛量。转化为每分钟的甲醛含量。 (3)K2:表示从50 分钟到90 分钟之间,聚合物不稳定端基和聚合物主链分解出来的甲醛量。转化为每分钟的甲醛含量。 5.0安全注意事项 (1)搁置和取出样品过程中,要穿戴安全手套,以防被烫伤。 (2)电极容易损坏,使用时防止碰撞。 (3)作业时,穿戴安全眼镜和防护手套。 (4)实验过程中使用氮气作为载气,所以要控制好氮气流量,并确保良好的通风。6.0步骤 6.1准备 (1) 确认油浴温度223±2℃,硫酸溶液的量。 (2) 打开参比液添加孔,检查电极内饱和KCL 的量,确保液位超过甘汞位置。 (3) 打开自动电位滴定仪、打印机及电脑电源。 (4) 打开电脑桌面上AT-WIN,输入密码并确认与自动电位滴定仪联机。 (5) 调整氮气流量到60 l/h。 (6) 分别用pH 为6.86(25℃)、9.18(25℃)的缓冲液,对电极进行校正(根据 电脑提示进行),若显示“OK”,则校正通过,否则进行检查并重复校正步 骤。 (7) 对自动电位滴定仪进行排气,确保滴定管路中无气泡。 (8) 用250ml 的烧杯,取150ml 吸收液(1mol/L 亚硫酸钠溶液,它的配制方法: 将250g 的Na 2SO3溶于2000ml 的水中,充分搅拌。),放入磁性搅拌子、加 盖、并将电极、N2管、喷嘴插入溶液中,启动搅拌按钮。 (9) 用硫酸溶液(0.1N)将溶液pH 调节至9.10,待稳定后,用0.1mol/l 甲醛溶 液(配制方法:将81g 的福尔马林放入1L 的容量瓶中,然后加水到刻度线, 配成约0.1mol/l 福尔马林),调节pH 至9.21~9.22,并稳定10 分钟以上。 (10) 电极浸泡液的配制方法:PH=4 的缓冲试剂250ml 一包溶于250ml 水中, 再加入56gKCL,适当加热,搅拌至完全溶解。 6.2步骤 (1) 用铝皿取3.000±0.003g,将其放到小金属底部,然后用钩子,将准备好的 样品放入油浴的熔融管中。 (2) 盖紧硅胶塞,快速按下START,开始试验,试验过程控制pH 值为9.20。 (3) 当实验进行到设定的时间后,自动结束。(按“RESET”键,可手动停止实 验。)测定结束,打印机自动打印结果。 (4) 取出金属筒冷却,取出电极,并将电极放入浸泡液中。

稳定性分析

Ⅰ形大高宽比屈曲约束钢板剪力墙的试验和理论研究 [摘要]基于普通钢板剪力墙具有易发生平面外屈曲,不能充分发挥钢板剪力墙的承载力;在往复荷载作用下,滞回曲线捏缩效应严重,不利于耗能减震;钢板耐火性能差等主要缺点,提出一种新型大高宽比屈曲约束钢板剪力墙。本文通过缩尺模型试验对4组该屈曲约束钢板剪力墙模型进行单调加载和循环加载试验,并与一组纯钢板剪力墙试验进行对比。试验表明,预制混凝土钢板剪力墙可以有效地对钢板平面外失稳进行约束,从而极大的提高了钢板剪力墙的承载力和耗能性能。同时还推导了这种屈曲约束钢板剪力墙初始刚度和屈服承载力的理论公式,通过与实验结果和有限元分析结果的对比,验证该理论公式的正确性。 [关键词]屈曲约束;钢板剪力墙;缩尺模型试验 Experimental and theoretical study on slim Ⅰ-shape buckling-restrained steel plate shear walls [Abstract]As a promising lateral load resisting elements in new or retrofit construction of building s, buckling-restrainedcomposite steel plate shear wall clamped with concrete plates (BRSP) has gained a g rea t deal of attention ofresearchers and engineers.However , almost all of BRSPs being studied and constructed are in small aspect ratio , ofwhich width is equal or larger than the height .Actually , in some situations, BRSP in large aspect ratio may beserviceable if there do not have enough space to put a wide BRSP .Therefore , several experimental investigationshave been conducted on narrow BRSPs with large aspect ratio , including monotonic loading tests and cyclic loadingtests on four sets of BRSP with different aspect ratio from 2∶1 to 4∶1, as w ell as a comparative test on a normal steelplate shear wall.Form of the walls was modified to improve their energy dissipation.Experimental results areexamined to reveal the wall' s failure mechanics, ductility performance , hysteretic behavior and ultimate load-carryingcapacity .Analytical models have been verified by the experiments and design guidelines have been provided for theapplication of BRSP . [Keywords]buckling-restrained; steel plate shear wall;

相关文档
最新文档