第10章 定时计数器8253分析

第10章 定时计数器8253分析
第10章 定时计数器8253分析

第十章定时计数器8253/8254

基本内容:8253/8254的功能、编程结构和工作原理,掌握8253/8254的外部接线、编程和使用方法。

基本要求:了解8253/8254的编程结构、工作原理及模式;掌握8253/8254的编程应用。重点内容:8253/8254的编程结构、工作原理及模式和编程应用。

难点内容:8253/8254的编程结构和工作模式。

可编程控制接口芯片的学习要点:

(1)不强调对接口芯片内部电路原理的具体分析;

(2)侧重掌握接口芯片的外特性。

①主要引脚的名称及定义;

②内部逻辑结构框图及功能描述;

③控制字、状态字的组成及定义;

④工作方式的定义。

第一节概述

一、定时信号的获得

定时/计数技术用于构建微机系统的定时子系统。

所谓定时(计数)就是通过硬件或软件的方法产生一个时间基准,以此来实现对系统的定时或延时控制。

定时有三种主要方法:软件定时、纯硬件定时及可编程的硬件定时器/计数器。

(1)软件定时

使用延迟子程序

由于执行每条指令都需要时间,则执行一个程序段就需要一个固定的时间,通过适当地挑选指令和安排循环次数来实现软件的定时。

该方法要求完全占用CPU的时间,因而降低了CPU的利用率。

(2)纯硬件定时

采用固定的电路,如可以采用小规模集成电路555,外接电阻和电容构成单稳延时电路。这样的定时电路简单,而且通过改变电阻和电容,可以使定时在一定的范围内调整。但它由纯硬件来完成,给使用带来不便。

(3)可编程硬件定时器/计数器

这是目前在控制系统中广泛使用的方法,它通过编程来控制电路的定时值及定时范围,功能强,使用灵活。在计算机系统中,象定时中断、定时检测、定时扫描等等都是用可编程定时器来完成定时控制的。

Intel 8253/8254就是常用的可编程定时/计数器。8253最高工作频率2.6MHz,8254

最高工作频率为10MHz。

计数器/定时器的用处:

①作为中断信号

②输出精确的定时信号

③作为波特率发生器

④实现延迟

二、可编程计数器/定时器的工作原理

计数器/定时器的基本原理图

计数器/定时器可以有下面几种工作模式:

①计数结束产生中断

②可重复触发的单稳态触发器

③分频器

④方波发生器

⑤选通信号发生器

第二节可编程计数器/定时器8253 一、8253的编程结构

3个计数器,每个计数器内部有:

8位的控制寄存器

16位的计数初值寄存器

计数执行部件

输出锁存器

8253的编程结构

二、8253的工作原理

8253的工作原理图

1、计数器0,计数器1,计数器2

计数器0、计数器1、计数器2是三个完全独立、结构相同的计数器,每一个计数器都是由一个16位的可预置的减法计数器构成。每一个计数器都有CLK、GATE、OUT

三个引脚。

①每一个计数器都是由一个16位的可预置的减法计数器构成,计数器的初值n 由程序预置。

②CLK:计数脉冲输入端。每进入一个脉冲,计数器计数值就减1。

③OUT:脉冲输出端。当计数器计数值减到“0”时,就从OUT端输出一个信号,输出信号的波形取决于工作方式。

则:定时时间 = 时钟周期 (T) ×预置的计数器初值( n )

④GATE:门控信号端,当GATE为低电平时,禁止计数器工作;当 GATE为高电平时,才允许计数器工作。

2、数据总线缓冲器

功能:①往计数器设置初值

②从计数器读取计数值

③往控制寄存器设置控制字

3、读写逻辑电路

A1、A0 对计数器和控制寄存器寻址,A1、A0为:

00----计数器0,01----计数器1,10----计数器2,11----控制器RD 读信号,读取选中计数器的内容(计数值)

WR 写信号,向选中的计数器写入计数初值,或向选中控制器写入控制字

CS 片选信号,有效表明8253被选中。

4、控制寄存器

在8253初始化时,由CPU写入控制字来设置计数器的工作方式。

特点:只能写入而不能读出。

三、8253 的控制字和编程

1、编程——即对8253初始化

刚接通电源时,8253处于未定义的状态,需用程序将其设置为一个特定的模式,即初始化。

步骤:①写入控制字;②写入计数器初值。

注意:

①三个计数器应该分别初始化

②计数器一旦初始化之后,就在设置的模式下进行减1计数

2、控制字的格式

①SC1、SC0:这两位决定这个控制字是哪一个计数器的控制字

②RL1、RL0:设置数据读/写格式。在读取计数值时,可令RL1、RL0 = 00,先将

写控制字时的计数值锁存,然后再读取。

③M2、M1、M0:设置每个计数器的工作方式。

④BCD:用于选择每个计数器的计数制。在二进制计数时,计数初值的范围是

0000H~FFFFH,其中0000H是最大值,代表65536。在BCD码计数时,计数初值的范围中0000~9999,其中,0000是最大值,代表10000。

注意:最大计数为0000,不是FFFFH或9999。除方式3外,最小值都为1。

四、8253的工作模式

8253的基本规则:

①控制字写入时,进入初始状态

②初值写入后,要经过上升沿和一个下降沿,才开始计数

③在CLK的上升沿被采样

④在CLK下降沿,计数器作减1计数

Intel 8253有6种工作方式:

方式0—计数结束后输出由低变高

方式1—可编程序的单拍脉冲

方式2——频率发生器(分频器)

方式3 —方波发生器

方式4——软件触发选通

方式5——硬件触发选通

6种工作方式的主要区别是:

1.输出的波形不同( 时序图) ,

2.计数过程中GATE信号对计数操作的影响不同,

3.启动计数器的触发方式不同。

1、模式0——计数结束产生中断(计数结束后输出由低变高)

特点:当计数到达0时,输出端OUT为高电平

模式0的时序图如下:注:CW=10H

①写入控制字后,OUT输出端变为低电平。当写入计数初值后,计数器开始减1计数。在计数过程中OUT一直保持为低电平,直到计数到0时,OUT输出变为高电平。此信号可用于向CPU发出中断请求。

②计数器只计数一遍。当计数到0 时,不恢复计数初值,且输出一直保持为高电平。只有在写入新的计数值时,OUT才变低,并开始新的计数。

③GATE是门控信号,GATE=1时允许计数,GATE=0时,禁止计数。在计数过程中,如果GATE=0则计数暂停,当GATE=1后接着计数。

④在计数过程中可改变计数值。若是8位计数,在写入新的计数值后,计数器将按新的计数值重新开始计数。如果是16位计数,在写入第一个字节后,计数器停止计数,在写入第二个字节后,计数器按照新的计数值开始计数。如图所示。

CW=10 H N=3N=2

WR

CLK

GATE

OUT

321210

2、模式1——可重复触发的单稳态触发器

特点:

门控上升沿作为触发信号

是单稳态方式

宽度主要决定于计数值

模式1的时序图如下:注:CW=12H

①写入控制字后,输出OUT将保持为高电平,计数由GATE启动。GATE启动之后,OUT变为低电平,当计数到0时,OUT输出高电平,从而在OUT端输出一个负脉冲,负脉冲的宽度为n个(计数初值)CLK的脉冲宽度。

②当计数到0后,不用送计数值,可再次由GATE脉冲启动,输出同样宽度的单拍脉冲。

③在计数过程中,可改变计数初值,此时计数过程不受影响。如果再次触发启动,则计数器将按新输入的计数值计数。

④在计数未到0时,如果GATE再次启动,则计数初值将重新装入计数器,并重新开始计数。

3、模式2——分频器(频率发生器)

特点:

微机接口 8253定时器实验报告剖析

浙江工业大学计算机学院实验报告 实验名称 8253定时器实验 姓名 学号 班级 教师 日期

一、实验内容与要求 1.1 实验内容 计数器方式2实验:将8253芯片的计数器0的工作方式设置为方式2,计数器初值为N,用手动开关逐个输入单脉冲,编程使计数值在屏幕上显示,并同时用TPC-USB平台上的LED 灯观察OUT0电平变化(当输入第N倍数个脉冲后OUT0变低电平,LED灯由亮变灭,其余脉冲OUT0都是高电平,LED灯都处于亮状态)。 计数器方式3实验:将计数器0、计数器1的工作方式分别设置为方式3,计数初值设为1000,并同时用TPC-USB平台上的LED灯观察OUT1电平变化(频率1Hz)。 1.2 实验要求 (1)具有一定的汇编编程的基础,能编写一些基本语句来实现实验。实验前根据实验流程 图,写出对应代码; (2)要了解8253定时/计数器芯片内部结构和外部引脚,了解芯片的硬件连接方法、时序关 系、各种模式的编程及应用,能熟练地对其进行编程; (3)熟悉实验平台TPC-USB了解各个接口的名称与功能,进行实验时能快速并正确地连接 好实验电路; (4)计数器方式2实验:连接PC与TPC-USB平台,用微机实验软件运行程序,用手动开 关逐个输入单脉冲,在屏幕上能一次显示计数值,当输入第N倍数个脉冲后OUT0变低电平,TPC-USB平台上的LED灯由亮变灭,其余脉冲OUT0都是高电平,LED灯都处于亮状态; (5)计数器方式3实验:连接PC与TPC-USB平台,用微机实验软件运行程序,TPC-USB 平台上的LED灯能周期性地亮灭,频率为1Hz。 二、实验原理与硬件连线 2.1 实验原理 1、8253定时/计数器芯片的内部结构:

8253定时器、计数器仿真实验报告

实验名称8253定时器/计数器仿真实验学生姓名 学生学号 专业班级 指导老师 2014-12-31

实验五8253定时器/计数器仿真实验 一、实验目的 1.针对特定的芯片,学会用Proteus ISIS设计仿真电路图; 2.掌握8253工作原理,对8253进行仿真; 3.了解电路一般仿真方法。 二、实验内容 1.配置Proteus仿真环境; 2.根据电路图,用合适的代码对其进行仿真。 三、实验步骤 1.安装Proteus和masm32编译器; 2.在Proteus里配置masm32编译器。配置过程如下: 图1 添加/移除代码生成工具(1) a)把masm32.bat 复制到c:\masm32\bin 里面(c:\masm32 为你自己安 装masm32的路径);

b)启动Proteus ISIS 后,选择菜单源代码——>设定代码生成工具。 打开如图1所示; c)点击“新建”,然后选择c:\masm32\bin\masm32.bat文件,就出现图 2; 图2 添加/移除代码生成工具(2) d)图中红圈位置分别填上ASM 和EXE。然后点确定。使用masm32 编 译器就配置好了。 3.在画好电路图后,选择菜单源代码——>添加/删除源文件。出现图3; 图3 添加/移除源代码(3) 4.代码生成工具选择masm32,然后点新建,创建自己的源代码。比如 8253.asm,点确定; 5.接下来点击源代码——>1.8253.asm,编辑自己的代码。完成后保存; 6.点击源代码——>全部编译。出现图4表示编译成功,表示程序可以执

行。 图4 代码成功编译 7.点击Proteus中的调试菜单的相应功能,完成仿真。 四、实验结果 1.仿真电路图如图5所示; 图5 8253仿真电路图

PLC实验定时器计数器实验

实验二定时器、计数器实验 一、目的要求 1、了解和熟悉编程软件的使用方法。 2、了解写入和编辑用户程序的方法。 3、掌握定时器、计数器的使用。 二、实验设备 台达可编程序控制器一台;PLC实验箱一台;装有WPL编程软件和开发软件的计算机一台;编程连接电缆一根。 三、实验内容 1、实验原理 定时器相当于继电器电路中的时间继电器,可在程序中作延时控制。 可编程控制器中的定时器是根据时钟脉冲累积计时的,时钟脉冲有 1ms、10ms、100ms等不同规格。(定时器的工作过程实际上是对时钟脉冲计数)因工作需要,定时器除了占有自己编号的存储器位外,还占有一个设定值寄存器(字),一个当前值寄存器(字)。设定值寄存器(字)存储编程时赋值的计时时间设定值。当前值寄存器记录计时当前值。这些寄存器为16位二进制存储器。其最大值乘以定时器的计时单位值即是定时器的最大计时范围值。定时器满足计时条件开始计时,当前值寄存器则开始计数,当当前值与设定值相等时定时器动作,常开触点接通,常闭触点断开,并通过程序作用于控制对象,达到时间控制的目的。 TMR为十六位定时器,当该指令执行时,其所指定的定时器线圈受电,定时器开始计时,当到达所指定的定时值(计时值≥设定值),其接点动作如下:CNT为十六位计数器,当该指令由Off→On执行,表示所指定的计数器线圈由失电→受电,则该计数器计数值加1,当计数到达所指定的定数值(计数值 = 设定值),其接点动作如下:?? 当计数到达之后,若再有计数脉冲输入,其接点及计数值均保持不变,若要重新计数或作清除的动作,请利用RST指令。 编程使PLC输出Y0输出3秒的脉冲,PLC输入1对脉冲计数,计数值为10时,PLC输出Y1输出为1,第11个脉冲清零。 OUTPUT00

8253定时器(微机原理)1

接口实验三 8253定时器 / 计数器 一、实验目的 ⒈学会8253芯片和微机接口的原理和方法。 ⒉. 掌握8253定时器/计数器的工作方式和编程原理。 二、实验内容 1. 用8253的0通道产生周期为30毫秒的方波,去控制发光二极管的亮和灭。 2.用8253的0通道和1通道级联的工作方式,产生周期为20秒的方波,去控制发光二极管的亮和灭。 3. 用8253的0通道产生1、2、3、4、5、6、7、8(1的高音)这八个音阶频率的方波信号,送到小喇叭去控制其发声。 三、实验接线图 图1

图2 图3 图6-5 四、实验原理 对8253编程,使OUT1输出周期为2MHZ(周期为0.5μS)的时钟直接加到CLK1,则OUT1输出的脉冲周期最大只有0.5μS*65536=32768μS=32.768MS,达不到20秒的延时要求,为此,需用几个通道级连的方案来解决这个问题。 设N0=5000,工作于方式2,则从OUT0端可得到序列负脉冲,频率为2MHZ/5000=400HZ,周期为2.5MS。再把该信号连到CLK1,并使通道1工作于方式3,使OUT1输出周期为20秒(频率为1/20=0.05HZ)的方波即可,应取时间常数N1=400HZ/0.05HZ=8000。

分频电路由一片74LS393组成, T0-T7为分频输出插孔。该计数器在加电时由RESET信号清零。当脉冲输入为8.0MHZ时,T0-T7输出脉冲频率依次为4.0MHZ,2.0MHZ,1.0MHZ,500KHZ,250KHZ,125KHZ,62500HZ,31250HZ。 五、编程指南 ⒈8253芯片介绍 8253是一种可编程定时/计数器,有三个十六位计数器,其计数频率范围为0-2MHz,用+5V单电源供电。 8253的功能用途: ⑴延时中断⑸实时时钟 ⑵可编程频率发生器⑹数字单稳 ⑶事件计数器⑺复杂的电机控制器 ⑷二进制倍频器 2,8253的六种工作方式: ⑴方式0:计数结束中断⑷方式3:方波频率发生器 ⑵方式l:可编程频率发生⑸方式4:软件触发的选通信号 ⑶方式2:频率发生器⑹方式5:硬件触发的选通信号 六、实验程序框图 七、实验步骤 ⒈按图1连好实验线路 ⑴8253的GATE0接+5V。

8253计数器定时器接口实验

微机原理实验报告 实验五 8253计数器/定时器接口实验 1.实验目的 1)学会通过PC总线、驱动器、译码器等在PC机外部扩充为新的芯片; 2)了解8253计数器/定时器的工作原理; 3)掌握8253初始化的程序设计; 4)掌握8253方式0的计数方式的使用方法和方式3方波产生的方法。 2.实验内容 将实验装置上的1片8253定时器/计数器接入系统,具体做两个内容的实验。 1)实验一:将8253的计数器0设置为工作于方式0,设定一个计数初值,用手 动逐个输入单脉冲,观察OUT0的电平变化。 硬件连接:断开电源,按图2-1将8253接入系统。具体包括: (1)将8253的CS接I/O地址输出端280H-287H; (2)将8253的计数器0的CLK0与单脉冲信号相连,以用来对单脉冲进行计数; (3)将8253的GATE0用专用导线接向+5V,以允许计数器0工作; (4)将8253的OUT0接到LED发光二极管,以显示8253计数器0的输出OUT0的 状态。 图2-1 8253实验一的连线图 2)实验二:将8253的计数器0、1均设置为工作于方式3(方波),按图2-2重 新接线。要求是当CLK0接1MHz时,OUT1输出1Hz的方波,OUT的输出由LED 显示出来。将计数器0与计数器1串联使用,计数器0的输出脉冲OUT0作为计数器1的时钟输入CLK1。

图2-2 8253实验二的连线图3.程序及框图 1)程序框图 图4-1给出了8253实验一的流程图。 图4-1 程序流程图 图4-2给出了8253实验二的流程图。 2)程序代码 实验一程序代码: CTRL EQU 283H TIME0 EQU 280H TIME1 EQU 281H DATA SEGMENT MESS DB 'ENTER ANY KEY RETURN TO DOS!',0DH,0AH,'$' DATA ENDS CODE SEGMENT

可编程定时器计数器(8253) 实验报告

实验名称可编程定时器/计数器(8253)学生姓名 学生学号 专业班级 指导老师 2015-1-7

实验六可编程定时器/计数器(8253) 一、实验目的 掌握8253芯片和微机接口原理和方法,掌握8253定时器/计数器的工作方式和编程原理。 二、实验内容 1.设计8253定时器/技术器仿真电路图; 2.根据仿真电路图,编写代码,对8253定时器/计数器进行仿真。 三、实验要求 1.要求计数器2工作于模式1(暂稳态触发器),计数初值为1250; 2.计数器0工作于方式3(方波模式),输出一个1KHz的方波,8253的 输入时钟为1MHz,计数初始值格式为BCD。 3.8253与系统的连接如图1所示。 图1计数器8253与8086连接原理图

注:实验过程中,发现图1有误。应将8253定时器/计数器右边部分的电阻R2与按钮交换位置。 四、实验原理 8253具有3个独立的计数通道,采用减1计数方式。在门控信号有效时,每输入1个计数脉冲,通道作1次计数操作。当计数脉冲是已知周期的时钟信号时,计数就成为定时。 8253的工作方式3被称作方波发生器。任一通道工作在方式3,只在计数值n为偶数,则可输出重复周期为n、占空比为1:1的方波。 进入工作方式3,OUTi输出低电平,装入计数值后,OUTi立即跳变为高电平。如果当GATE为高电平,则立即开始减“1”计数,OUTi保持为高电平,若n为偶数,则当计数值减到n/2时,OUTi跳变为低电平,一直保持到计数值为“0”,系统才自动重新置入计数值n,实现循环计数。这时OUTi端输出的周期为n×CLKi周期,占空比为1:1的方波序列;若n为奇数,则OUTi端输出周期为n×CLKi周期,占空比为((n+1)/2)/((n-1)/2)的近似方波序列。 8253定时器/计数器控制字决定这定时器0,1,2的工作模式。一旦CPU对控制字进行写操作,且对相应的定时器有效,则相应定时器改变工作模式,可能准备接收计时初值。控制字的格式如图2所示。

实验报告五 定时器计数器实验

信息工程学院实验报告 课程名称:微机原理与接口技术Array 实验项目名称:定时器/计数器实验实验时间: 班级:姓名:学号: 一、实验目的 1. 掌握8254 的工作方式及应用编程。 2. 掌握8254 典型应用电路的接法。 二、实验设备 PC 机一台、TD-PITD+实验系统一套。 三、实验原理 8254 是Intel 公司生产的可编程间隔定时器。是8253 的改进型,比8253 具有更优良的性能。8254 具有以下基本功能: (1)有 3 个独立的16 位计数器。 (2)每个计数器可按二进制或十进制(BCD)计数。 (3)每个计数器可编程工作于 6 种不同工作方式。 (4)8254 每个计数器允许的最高计数频率为10MHz(8253 为2MHz)。 (5)8254 有读回命令(8253 没有),除了可以读出当前计数单元的内容外,还可以读出状态寄存器的内容。 (6)计数脉冲可以是有规律的时钟信号,也可以是随机信号。计数初值公式为: n=f CLKi ÷f OUTi、其中f CLKi 是输入时钟脉冲的频率,f OUTi 是输出波形的频率。 图5-1 是8254 的内部结构框图和引脚图,它是由与CPU 的接口、内部控制电路和三个计数器组成。8254 的工作方式如下述: (1)方式0:计数到0 结束输出正跃变信号方式。 (2)方式1:硬件可重触发单稳方式。 (3)方式2:频率发生器方式。 (4)方式3:方波发生器。 (5)方式4:软件触发选通方式。 (6)方式5:硬件触发选通方式。

图5-1 8254 的内部接口和引脚 8254 的控制字有两个:一个用来设置计数器的工作方式,称为方式控制字;另一个用来设置读回命令,称为读回控制字。这两个控制字共用一个地址,由标识位来区分。控制字格式如表5-1~5-3 所示。 表5-1 8254 的方式控制字格式 表5-2 8254 读出控制字格式 表5-3 8254 状态字格式 8254 实验单元电路图如下图所示:

接口定时器与计数器实验定时器实验

同组同学学号:同组同学姓名:

实验框图: 主程序框图 源程序及分析: CONTROL equ 0c003h ;设置命令寄存器 COUNT0 equ 0c000h ;设置计数器0 COUNT1 equ 0c001h ;设置计数器1 COUNT2 equ 0c002h ;设置计数器2 code segment assume cs:code start proc near ;第一次定时器设定: mov al, 36h; ; 计数器0,16位,方式3,二进制(00110110B=36h) mov dx, CONTROL out dx, al mov ax, 1000

实验电路及连线: 连线连接孔1 连接孔2 1 8253_CS CS0 2 8253_OUT0L0 3 8253_GATE0VCC 4 8253_CLK0单脉冲 实验说明: 本实验中计数器按方式0工作。即十六位二进制计数器。当计数设置好后,计数器就开始计数。如果要读入计数器的值,要先锁存计数值,才能读到计数值。本实验所设计数值为5,也就是外部5个脉冲,计数器值加1。同时OUT脚输出一个高电平。实验时,可以将OUT0 接到LED上,观察计数器是否工作。 实验框图: 主程序框图 源程序及分析: CONTROL equ 08003h COUNT0 equ 08000h COUNT1 equ 08001h COUNT2 equ 08002h code segment assume cs:code start proc near mov al, 30h ; 通道0,方式0 mov dx, CONTROL out dx, al mov al, 5 ; 计数器初始值。

实验三 8253定时器

实验三8253定时器/计数器实验 姓名:张朗学号:11121535 一、实验目的 1. 学会8255芯片与微机接口的原理和方法。 2. 掌握8255定时器/计数器的工作原理和编程方法。 二、实验内容 编写程序,将8253的计数器0设置为方式2(频率发生器),计数器1设置为方式3(方波频率发生器),计数器0的输出作为计数器1的输入,计数器1的输出接在一个LED上,运行后可观察到该LED在不停地闪烁。 1.编程时用程序框图中的二个计数初值,计算OUT1的输出频率,用表观察LED,进行核对。 2.修改程序中的二个计数初值,使OUT1的输出频率为1Hz,用手表观察LED,进行核对。 3.上面计数方式选用的是16进制,现若改用BCD码,试修改程序中的二个计数初值,使LED的闪亮频率仍为1Hz。 三、实验区域电路连接图

CS3→0040H;JX8→JX0;IOWR→IOWR;IORD→IORD;A0→A0;A1→A1; GATE0→+5V;GATE1→+5V;OUT0→CLK1;OUT1→L1;CLK0→0.5MHz;(单脉冲与时钟单元) 四、程序框图 五、编程

1.T=1.48s CODE SEGMENT ASSUME CS:CODE ORG 1200H START: CLI MOV DX, 0043H MOV AL, 34H OUT DX, AL MOV DX, 0040H MOV AL, 0EEH OUT DX, AL MOV AL, 02H OUT DX, AL MOV DX, 0043H MOV AL, 76H ;01110110设置计数器1,方式3,16位二进制计数OUT DX, AL MOV DX, 0041H MOV AL, 0E8H OUT DX, AL MOV AL, 03H OUT DX, AL JMP $ ;8253自行控制led灯 CODE ENDS END START

定时器实验报告

电子信息工程学系实验报告 课程名称:单片机原理及接口应用Array实验项目名称:51定时器实验实验时间: 班级:姓名:学号: 一、实验目的: 熟悉keil仿真软件、protues仿真软件的使用和单片机定时程序的编写。了解51单片机中定时、计数的概念,熟悉51单片机内部定时/计数器的结构与工作原理。掌握中断方式处理定时/计数的工作过程,掌握定时/计数器在C51中的设置与程序的书写格式以及使用方法。 二、实验环境: 软件:KEIL C51单片机仿真调试软件,proteus系列仿真调试软件 三、实验原理: 1、51单片机定时计数器的基本情况 8051型有两个十六位定时/计数器T0、T1,有四种工作方式。MCS-51系列单片机的定时/计数器有几个相关的特殊功能寄存器: 方式控制寄存器TMOD; 加法计数寄存器TH0、TH1 (高八位);TL0、TL1 (低八位); 定时/计数到标志TF0、TF1(中断控制寄存器TCON) 定时/计数器启停控制位TR0、TR1(TCON) 定时/计数器中断允许位ET0、ET1(中断允许寄存IE) 定时/计数器中断优先级控制位PT0、PT1(中断优IP) 2、51单片机的相关寄存器设置 方式控制寄存器TMOD: TMOD的低四位为T0的方式字,高四位为T1的方式字。TMOD不能位寻址,必须整体赋值。TMOD各位的含义如下: 1. 工作方式选择位M1、M0 3、51单片机定时器的工作过程(逻辑)方式一 方式1:当M1M0=01时,定时器工作于方式1。

T1工作于方式1时,由TH1作为高8位,TL1作为低8位,构成一个十六位的计数器。若T1工作于定时方式1,计数初值为a,晶振频率为12MHz,则T1从计数初值计数到溢出的定时时间为t =(216-a)μS。 4、51单片机的编程 使用MCS-51单片机的定时/计数器的步骤是: .设定TMOD,确定: 工作状态(用作定时器/计数器); 工作方式; 控制方式。 如:T1用于定时器、方式1,T0用于计数器、方式2,均用软件控制。则TMOD的值应为:0001 0110,即0x16。 .设置合适的计数初值,以产生期望的定时间隔。由于定时/计数器在方式0、方式1和方式2时的最大计数间隔取决于使用的晶振频率fosc,如下表所示,当需要的定时间隔较大时,要采用适当的方法,即将定时间隔分段处理。 计数初值的计算方法如下,设晶振频率为fosc,则定时/计数器计数频率为fosc/12,定时/计数器的计数总次数T_all在方式0、方式1和方式2时分别为213 = 8192、216 = 65536和28 = 256,定时间隔为T,计数初值为a,则有 T = 12×(T_all – a)/fosc a = T_all – T×fosc/12 a = – T×fosc/12 (注意单位) THx = a / 256;TLx = a % 256; .确定定时/计数器工作于查询方式还是中断方式,若工作于中断方式,则在初始化时开放定时/计数器的中断及总中断: ET0 = 1;EA = 1; 还需要编写中断服务函数: void T0_srv(void)interrupt 1 using 1 { TL0 = a % 256; TH0 = a / 256; 中断服务程序段} .启动定时器:TR0(TR1)= 1。 四、实验内容过程及结果分析: 利用protues仿真软件设计一个可以显示秒表时间的显示电路。利用实验板上的一位led数码管做显示,利用中断法编写定时程序,控制单片机定时器进行定时,所定时间为1s。刚开始led数码管显示9,每过一秒数码管显示值减一,当显示到0时返回9,依此反复。然后设计00-59的两位秒表显示程序。 (1)实现个位秒表,9-0

8253定时计数器知识点总结

8253定时/计数器知识点总结 1、8253简介 8253是用来测量时间或者脉冲的个数,通过计量一个固定频率的脉冲个数,将时间信息转化为数字信息,供计算机系统使用。8253有着较好的通用性和灵活性,几乎可以在所有由微处理器组成的系统中使用。 2、性能描述 (1)每个8253芯片有3个独立的16位计数器通道; (2)每个计数器通道都可以按照二进制或二—十进制计数; (3)每个计数器的计数速率可以高达2MHz; (4)每个通道有6种工作方式,可以由程序设定和改变; (5)所有的输入、输出电平都与TTL兼容。 3、结构组成 结构框图如下 (1)数据总线缓冲器 8253内部实现与CPU数据总线连接的8位双向三态缓冲器,用以传送CPU向8253的控制信息、数据信息以及CPU从8253读取的状态信息,包括某一时刻的实时计数值。(2)读写逻辑控制 控制8253的片选及对内部相关寄存器的读/写操作,它接收CPU发来的址地信号以实现片选、内部通道选择以及对读/写操作进行控制。 (3)控制寄存器 在8253的初始化编程时,由CPU写入控制字,以决定通道的工作方式,此寄存器只能写入,不能读出。 (4)计数通道0号、1号、2号 三个独立的、结构相同的计数器/定时器通道,每个通道包含一个16位计数寄存器存放计数初始值,一个16位的减法计数器,一个16位的锁存器。 锁存器在计数器工作的过程中,跟随计数值的变化。 接收到CPU的读计数值命令时,锁存计数值,供CPU读取。

读取完毕之后,输出锁存器又跟随减1计数器变化。 另外,计数器的值为0的状态,还反映在状态锁存器中,可供读取。 4、引脚说明 与CPU 的接口信号: (1)D0—D7:双向三态数据线,与CPU 相连用以传送数据、控制字以及状态信息。 (2)CS :片选输入信号,低电平有效。 (3)W R RD ,:读/写控制信号,低电平有效。 (4)10,A A :8253的内部计数器和一个控制寄存器的编码选择信号,其功能如下: 10,A A 与其他控制信号,如CS ,W R RD ,共同实现对8253的寻址,如下图: 8253寻址读写操作逻辑表

单片机实验之定时器计数器应用实验二

一、实验目的 1、掌握定时器/计数器计数功能的使用方法。 2、掌握定时器/计数器的中断、查询使用方法。 3、掌握Proteus软件与Keil软件的使用方法。 4、掌握单片机系统的硬件和软件设计方法。 二、设计要求 1、用Proteus软件画出电路原理图,单片机的定时器/计数器以查询方式工作,设定计数功能,对外部连续周期性脉冲信号进行计数,每计满100个脉冲,则取反P1.0口线状态,在P 1.0口线上接示波器观察波形。 2、用Proteus软件画出电路原理图,单片机的定时器/计数器以中断方式工作,设定计数功能,对外部连续周期性脉冲信号进行计数,每计满200个脉冲,则取反P1.0口线状态,在P 1.0口线上接示波器观察波形。 三、电路原理图 六、实验总结 通过本实验弄清楚了定时/计数器计数功能的初始化设定(TMOD,初值的计算,被计数信号的输入点等等),掌握了查询和中断工作方式的应用。 七、思考题 1、利用定时器0,在P1.0口线上产生周期为200微秒的连续方波,利用定时器1,对 P1.0口线上波形进行计数,满50个,则取反P1.1口线状态,在P 1.1口线上接示波器观察波形。 答:程序见程序清单。

四、实验程序流程框图和程序清单。 1、定时器/计数器以查询方式工作,对外部连续周期性脉冲信号进行计数,每计满100个脉冲,则取反P1.0口线状态。 汇编程序: ORG 0000H START: LJMP MAIN ORG 0100H MAIN: MOV IE, #00H MOV TMOD, #60H MOV TH1, #9CH MOV TL1, #9CH SETB TR1 LOOP: JNB TF1, LOOP CLR TF1 CPL P1.0 AJMP LOOP END C语言程序: #include sbit Y=P1^0; void main() { EA=0; ET1=0; TMOD=0x60; TH1=0x9C; TL1=0x9C; while(1) { TR1=1; while(!TF1); TF1=0; Y=!Y; } } 开始 TMOD初始化 计数初值初始化 中断初始化 启动定时器 计数溢出 清计数溢出标志 Y N P1.0口线取反

第三章 8253定时

第三章8253定时/计数器 对零件产品计数 统计车辆流量等 测量转速 计数 计数器:对电脉冲计数 电脉冲 定时的本质-计数: 对时间基准的计数 任何一个周期运动的周期皆可作为时间标准 将若干小片时间累积起来,就获得一定时间.以秒为单位计时,即60秒就是1分钟,计满60分钟就是1小时. 秒的定义:是Ce-133原子基态两个超细能级间跃迁所对应辐射的9192631770个周期的时间.T=1.087827757*10-10s 定时作A/D转换采集信号 定时发送控制信号 计算机,总线的主频 定时作用举例 微机定时的方法 软件定时:CPU执行指令,预先知道所编程执行指令的周期,循环执行指令以延时 硬件定时:单稳电路,可编程通用定时器/计时器. 例intel8253 3个独立16位计数通道 每个通道可任选6种工作方式之一种 24脚双列直插芯片 6.1 框图与引脚 6.1.1 框图 1. 数据总线缓冲器 8位,三态,双向缓冲器,是CPU和8253交换数据的唯一通道. 2.读写控制逻辑 高电平时禁止三态和读写逻辑 控制数据的传送方向. A0 A1 不同组合决定CPU访问的芯片内部不同端口. CS=0 A0 A1 不同组合决定CPU 读写不同端口 框图 3 .控制字寄存器 A0A1=11时访问控制字寄存器,控制字D6D7决定写入那个通道寄存器,各个通道的控制寄存器的控制字,决定各通道工作方式等内容. 4. 通道0,1,2计数器 三个通道计数器相同 16位通道寄存器CR:接受初始计数值,开始计数之前,由CPU用输出指令预置入CR中. 16位计数单元CE:对CLK的输入脉冲信号,从预置的初始值减1计数,当初始值减为0时,由OUT 输出电平或脉冲,GATE引脚可控制输入脉冲是否能输入. 输出锁存器OL,锁存CE的内容,CPU可随时读取OL中CE的当前值,不影响计数器脉冲输入和计数器的继续计数.

8253定时

8253定时/计数器实验 一、实验目的 了解8253定时器的硬件连接方法及时序关系,掌握8253工作方式以及编程方法。二、实验内容 编程将8253定时器0设定为方式3,定时器1设定在方式2,定时器2设定在方式2,定时器0输出作为定时器1的输入,定时器1的输出作为定时器2的输入,定时器2的输出接在一个LED上,运行后可观察到该LED在不停闪烁。 1.8253是一种可编程计数器/定时器,它是用软、硬技术结合的方法实现定时和计数控制。其主要有以下特点: ①有3个独立的16位计数器,每个计数器均以减法计数。 ②每个计数器都可按二进制计数或十进制(BCD码)计数。 ③每个计数器都可由程序设置6种工作方式。 ④每个计数器计数速度可以达2MHz。 ⑤所有I/O都可与TTL兼容 2.8253部分管脚的功能简介: D0-D7——数据总线缓冲器 A0-A7——地址输入线,用来选择3个计数器和控制寄存器中的一个。 CLK——时钟脉冲输入端。计数脉冲加到CLK输入端,可进行二进制或十进制减1的计数。 GATE——门控脉冲输入,用以控制计数或复位。通常当其为低电平时,禁止计数器的工作,即此输入信号即可完成外部触发启动定时作用,又可用于中止计数或定时作用。 OUT——计数到零或定时时间到脉冲输出。当预置的数值减到零时,从OUT输出端输出一信号,在不同的方式下,可输出不同形式的信号。可以用作中断请求,也可用作周期性的负脉冲或方波输出。 三、实验内容及步骤 本实验需要用到单片机最小应用系统CPU模块(F1区)、8253模块(H3区)、时钟发生电路模块(C4区)和计数器/频率计(A4区)。 1.用导线单片机最小应用系统P 2.0、P2.1、P2.7、RD、WR分别接8253的A0、A1、CS-8253、RD、WR;单片机最小应用系统的P0口JD4F接8253模块的D0-7口JD0H,时钟发生电路模块的250kHz接8253模块的CLK0; GATE0接+5V,OUT0接计数器/频率计(A4区)的F IN 。 2.用串行数据通信线连接计算机与仿真器,把仿真器插到模块的锁紧插座中,请注意仿真器的方向:缺口朝上。 3.打开Keil uVision2仿真软件,首先建立本实验的项目文件,接着添加“TH20_8253.ASM”,进行编译,直到编译无误。 4.进行软件设置,选择硬件仿真,选择串行口,设置波特率为38400。 5.从计数器/频率计可以看到OUT0输出的频率是CLKO的256分频(大约=970Hz)。 四、源程序(见光盘中的程序文件夹) 五、思考题 1.比较8253的六种工作方式的异同,并列表分析。 2.分析如何根据实验电路确定8253的端口地址? 六、实验电路

实验六 8255和8253可编程芯片编程实验

实验六 8255/8253可编程芯片综合实验 一、实验目的 1.了解8255、8253芯片结构及接口方式。 2.掌握8255、8253的编程方法。 二、实验内容 1、以8253的计数器1,通过CLK1对300Hz的信号进行计数定时,采用方式2,要求定时时间为2S; 2、将计数器1的输出OUT1接到计数器2的CLK2上,用计数器2对其计数4次,采用方式3产生方波信号; 3、利用8255的A口工作于方式0输出控制LED灯、B口工作于方式0的输入, OUT2接到PB0上,查询PB0的状态,若PB0==0,则从A口输出00001111,若PB1==1,则从A口输出11110000。 三、实验预习要求 学习教材的相关内容,根据实验要求画出程序流程图,写出实验程序。 四、实验步骤 1)系统各跳线器处在初始设置状态。 将8位LED灯接到8255的A口,CS_8255接200H,则8255 状态/命令口地址为203H,PA口地址为200H,PB口地址为201H。 将CS-8253接208H,则8253计数器0地址为208H,计数器1地址为209H,计数器2地址为20AH,控制口地址为20BH。 CLK1接时钟信号源上的300Hz信号,OUT1接到CLK2上,OUT2接到8255的PB0上,GATE1和GATE2都接到+5V上。 2)启动PC机,打开THGMW-88软件,输入源程序,并编译源程序。编译无误后,下载程序运行。 五、实验要求 1)根据实验内容编写一个程序,并在实验仪上调试和验证,记录程序。 2)观察发光二极管的亮灭变化情况和时间的关系。 3)不改程序,将CLK1接到150Hz信号源上观察有什么变化,接到900Hz信号源上又有什么变化,想想为什么?

单片机实验-定时器计数器应用实验二教学文稿

单片机实验-定时器计数器应用实验二

定时器/计数器应用实验二 一、实验目的和要求 1、掌握定时器/计数器计数功能的使用方法。 2、掌握定时器/计数器的中断、查询使用方法。 3、掌握Proteus软件与Keil软件的使用方法。 4、掌握单片机系统的硬件和软件设计方法。 二、实验内容或原理 1、利用单片机的定时器/计数器以查询方式计数外 部连续周期性矩形波并在单片机口线上产生某一频率的连续周期性矩形波。 2、利用单片机的定时器/计数器以中断方式计数外 部连续周期性矩形波并在单片机口线上产生某一频率的连续周期性矩形波。 三、设计要求 1、用Proteus软件画出电路原理图,单片机的定时 器/计数器以查询方式工作,设定计数功能,对 外部连续周期性脉冲信号进行计数,每计满100 个脉冲,则取反P1.0口线状态,在P 1.0口线上 接示波器观察波形。 2、用Proteus软件画出电路原理图,单片机的定时 器/计数器以中断方式工作,设定计数功能,对 外部连续周期性脉冲信号进行计数,每计满200

个脉冲,则取反P1.0口线状态,在P 1.0口线上 接示波器观察波形。 四、实验报告要求 1、实验目的和要求。 2、设计要求。 3、电路原理图。 4、实验程序流程框图和程序清单。 5、实验结果(波形图)。 6、实验总结。 7、思考题。 五、思考题 1、利用定时器0,在P1.0口线上产生周期为200微秒的连续 方波,利用定时器1,对 P1.0口线上波形进行计数,满 50个,则取反P1.1口线状态,在P 1.1口线上接示波器观察波形。 原理图:

程序清单: /*功能:用计数器1以工作方式2实现计数(查询方式)每计满100个脉冲,则取反P1.0口线状态*/ ORG 0000H START:MOV TMOD,#60H MOV TH1,#9CH MOV TL1,#9CH MOV IE,#00H SETB TR1

8253计数器实验

一、实验目的 1、学习8088/86与8253的连接方法。 2、学习8088/86对8253的控制方法。 二、实验器材 计算机,汇编相关程序,WA VE6000实验仿真器 三、实验原理 利用8088/86外接8253可编程定时器/计数器,可以实现对外部事件进行计数。设置断点读回计数器的值。本实验中计数器按方式0工作。即十六位二进制计数器。当计数设置好后,计数器就开始计数。如果要读入计数器的值,要先锁存计数值,才能读到计数值。本实验所设计数值为5,也就是外部5个脉冲,计数器值加1。同时OUT 脚输出一个高电平。实验时,可以将OUT0接到LED 上, 四、实验步骤 (1) 在实验箱断电的情况下连好线。 (2) 输入程序并检查,保存程序。 (3) “编译”程序。 (4) “全速执行”程序。 (5) 记录实验结果及分析。 五、实验数据 CONTROL equ 08003h COUNT0 equ 08000h COUNT1 equ 08001h COUNT2 equ 08002h code segment assume cs:code start proc near mov al, 30h ; 通道 0,方式0 mov dx, CONTROL out dx, al mov al, 5 ; 计数器初始值。 mov dx, COUNT0 out dx, al ; 低八位 mov al, 0 out dx, al ; 高八位 Again: mov al, 00000000B ; 锁存计数器值

mov dx, CONTROL out dx, al mov dx, COUNT0 in al, dx ; 读入计数值低八位 mov bl, al in al, dx ; 读入计数值高八位 mov ah, al mov al, bl jmp Again start endp code ends end start 六、实验结果分析 电路连接后按下试验箱左侧开关,L0灯亮。因为选择输入的单脉冲为高电平。程序编译后全速执行,观察到L0灯灭了。因为单脉冲信号进入,写信号有效时向计数器写入控制字CW,之后其输出端OUT就变低电平,所以灯灭。按下单脉冲开关第六次后,L0灯重新亮起。原因是本实验所设计数值为5,也就是外部5个脉冲,计数器值加1。同时OUT脚输出一个高电平。所以灯又亮了。由此看来应该是第五次就亮的,那为什么是第六次灯才亮,是因为有一个软件误差,软件启动在CPU用输出指令向计数器写入初值后就启动计数。但事实上,CPU写入的计数初值只是写到了计数器内部的处置寄存器中,计数过程并未真正开始。写入初值后的第一个CLK信号将初值寄存器中的内容送到计数器中,而从第二个CLK脉冲的下降沿开始,计数器才真正进行减1计数。之后,每来一个CLK脉冲都会使计数器减1,直到减到零时在OUT端输出一个信号。因此,从CPU执行输出指令写入计数初值到计数结束,实际的CLK脉冲个数比编程写入的计数初值5要多一个,即6个。只要用软件启动计数,这个误差是不可避免的; 若要修改初值,可以在指令“MOV AL,5”修改,值得注意的是,由于有一个软件误差,所以每次输入的初值要比自己本来要的初值(N)多1,即(N+1)个脉冲

8253定时器计数器实验

洛阳理工学院实验报告

(1)、连接实验电路 连线: 8253 CS ------ 端口地址 300CS PACK IMS ----- 393 1A 393 1QD ------ 8253 CLK1 8253 OUT1 ---- 8253 CLK2 8253 OUT2 ---- 发光二极管 L15 8253 GATE1 -- (A10)+5V 8253 GATE2 -- (A10)+5V 结果如下图所示: (2)、实验程序如下所示: CS8253 EQU 0303H COUNT0 EQU 0300H COUNT1 EQU 0301H COUNT2 EQU 0302H CODE SEGMENT ASSUME CS:CODE START PROC NEAR MOV DX,CS8253 MOV AL,01110110B OUT DX,AL

MOV DX,COUNT1 MOV AX,307 OUT DX,AL MOV AL,AH OUT DX,AL MOV DX,CS8253 MOV AL,10110110B OUT DX,AL MOV DX,COUNT2 MOV AX,1000 OUT DX,AL MOV AL,AH OUT DX,AL JMP $ START ENDP CODE ENDS (3)、经编译、链接无语法错误后装载到实验系统,全速运行程序,观察发光二极管L15,应有周期为1s的点亮、熄灭。结果如下图所示: 一秒后又熄灭,如此往复。 (4)、做完实验后,应按暂停命令中止程序的运行。 二、8253计数器实验 验证8253的工作方式3,CLK1每输入5个单脉冲信号,改变一次OUT1状态。 实验电路: DATA BUS D7~D0 D0 8 OUT0 10 D1 7 GATE0 11 D2 6 CLK0 9 D3 5 D4 4 D5 3 D6 2 OUT1 13 D7 1 GATE1 14 CLK1 15 CS 21 RD 22 WR 23 OUT2 17 A0 19 GATE2 16 A1 20 CLK2 18 8253 /CS 300CS IOR IOW A0 A1 VCC 1.8432MHz OUT0 GATE1 CLK1 OUT1 OUT2 CLK2 GATE2 +5V SP单次正脉冲 L15发光二极管显示

实验三 定时计数器、8253方波实验

实验三定时/计数器、8253方波实验 一、实验目的 1.学会8253芯片和微机接口原理和方法。 2.掌握8253定时器/计数器的工作方式和编程原理。 二、实验内容 8253的0通常工作在方式3,产生方波。 三、电路原理图 1.程序流程 2.实验电路图 四、程序清单 CODE SEGMENT ASSUME CS:CODE,DS:CODE,ES:CODE ORG 3490H H9: MOV DX,0FFE3H MOV AL,36H OUT DX,AL MOV DX,0FFE0H

MOV AL,00H OUT DX,AL MOV AL,10H OUT DX,AL JMP $ CODE ENDS END H9 五、编程提示 8253芯片介绍 8253是一种可编程定/计数器,有三个十六位计数器,其计数频率范围为0~2MHZ,用+5V单电源供电。 8253的功能用途: ⑴延时中断 ⑵可编程频率发生器 ⑶事件计数器 ⑷二进制倍频器 ⑸实时时钟 ⑹数字单稳 ⑺复杂的电机控制器 8253的六种工作方式: ⑴方式0:计数结束中断 ⑵方式1:可编程频率发生 ⑶方式2:频率发生器 ⑷方式3:方波频率发生器 ⑸方式4:软件触发的选通信号 ⑹方式5:硬件触发的选通信号 8253的0号通道工作在方式3,产生方波。 六、实验步骤 1、实验连线 ⑴连接138译码输入端A.B.C,其中A连A2,B连A3,C连A4,138使能控制输入端G与总线单元上方的GS相连。 ⑵定时计数单元CLK0与分频单元T2相连,GATE0与5V相连,8253CS与译码单元Y0相连。

⑶用8芯扁平电缆将8251串行通信单元的数据总线插座与数据总线单元任一插座相连。 2、LED环境 (1)在“P.”状态下按“0→EV/UN”,装载实验所需的代码程序。 (2)在“P.”状态下键入3490,然后按“EXEC”进入实验项目的运行。 3、PC环境 在与PC联机状态下,编译、连接、下载PH88.asm,用连续方式运行程序。 4、观察运行结果 以连续方式运行程序,用示波器观察OUT0应有方波输出。 5、终止运行 按“暂停图标”或实验箱上的“暂停按钮”,使系统无条件退出该程序的运行返回监控状态。 七、实验心得 本次实验学会了8253芯片和微机接口原理和方法,掌握了8253定时器/计数器的工作方式和编程原理。

8253定时计数器实验

8253定时器/计数器实验 一、实验目的: 1、进一步了解可编程定时/计数器8253的特点与功能; 2、掌握8253定时/计数器的应用、编程方法。 二、实验设备: MUT—Ⅲ型实验箱、8086CPU模块、示波器。 三、实验内容: 用定时/计数器8253的计数器0、计数器1级联实现1秒的定时。使OUT1端所接发光二极管每隔1S闪烁一次,模拟电子秒表或信号报警器。 两个计数器皆工作于方式3(输出方波),CLK0端接频率为750KHz的时钟。 四、实验电路: 本实验用到两部分电路:时钟脉冲发生器(脉冲产生电路)(见附录)、8253定时器/计数器(1片)。电路原理图如图1所示。 图1:8253定时/计数器实验电路 五、实验步骤: (1)实验连线: CS0连CS8253,8253CLK0连时钟脉冲发生电路的CLK3,OUT0连8253CLK1,OUT1连LED1。如图2所示。注意:GATE信号线、数据线、地址线、读写控制信号线均已接好。 图2:线路连接示意图

(2)输入以下程序,编译、链接后,全速运行,观察实验结果。 ;8253初始化参考程序 CODE SEGMENT ASSUME CS:CODE ORG 0100H START: MOV DX,04A6H ;控制寄存器地址 MOV AL,00110110B ;计数器0控制字:方式3,二进制计数 OUT DX,AL MOV DX,04A0H ;计数器0的口地址 MOV AL,0EEH ;写计数初值低8位 OUT DX,AL MOV AL,02H ;写计数初值高8位 OUT DX,AL MOV DX,04A6H ;控制寄存器地址 MOV AL,01110110B ;计数器1控制字:方式3,二进制计数 OUT DX,AL MOV DX,04A2H ;计数器1的口地址 MOV AL,0E8H ;计数初值低8位 OUT DX,AL MOV AL,03H ;计数值高8位 OUT DX,AL NEXT: NOP JMP NEXT ;CPU在此循环执行空操作,说明8253独立工作。 CODE ENDS END START 实验说明: 实验中,计数器0的时钟由时钟发生器的CLK3提供,其频率为750KHz。程序中,计数器0的计数初值设为750,计数器1的计数初值设为1000。计数器0的OUT0输出的方波频率为:750KHz/750=1000Hz,即为CLK1的输入频率。则计数器2的UT0的输出方波的周期为:1000/1000Hz=1秒。可见,采用计数器级联后,输出周期范围可以大幅度提高,这在实际控制中是非常有用的。 实验结果: 程序全速运行后,LED1闪烁(周期为1s)。(可用示波器观察8253的CLK0、OUT0及OUT1的波形) 六、作业题 1、不改变电路连接,修改程序,使计数器0和计数器1都按BCD码计数使LED1每隔1秒闪烁一次,模拟电子秒表或信号报警器。 2、不改变电路连接,修改程序,使发光二极管LED1每隔2S闪亮一次,模拟信号报警器。

相关文档
最新文档