克莱德气力输送系统介绍

克莱德气力输送系统介绍
克莱德气力输送系统介绍

克莱德贝尔格曼华通

物料输送有限公司

气力输送系统介绍

现场培训用材料(试行版) 05.3.30

前言:气力输送的相关概念和原理

一:电厂输送的物料(输送对象)

1:电除尘的飞灰。

2:省煤器和空气预热器灰。

3:循环流化床锅炉的炉底渣。

4:循环流化床锅炉的石灰石粉料。

二:电除尘飞灰的主要性能指标及对输送的影响

1:粒度

粒度是对粉煤灰颗粒大小的度量,是粉煤灰的基本物理参数之一。粉煤灰许多的物化性能与此参数有密切的联系。

测量方法:筛分(范围)和粒度分析仪(范围更小的数值范围)。

粒度大将引起在浓相输送中不容易形成灰栓、导致输送困难并引起耗气量增加。2:密度

密度:单位容积内的重量。

气化密度:灰层处于气化状态下的密度。

在粒度相同时,密度小、孔隙率高,易输送。

3:粘附力

粘附力是分子力(分子间的引力,和距离的)、静电力(带相同电荷和相反电荷之间颗粒的引力和排斥力)、毛细粘附力(2个相邻湿润颗粒之间的拉力)总合。

分子力:分子间的引力,和距离的成反比,距离超过100A(1A=0.00001μM)时,此力忽略不计。当分子力很大时,粉粒从环境中吸收水分,增加粘性力.

静电力:带相同电荷和相反电荷之间颗粒的引力和排斥力.在相邻带电的粒子间的空气介质湿度教大,册静电力的作用就会显著减弱或全部消失.

粘附力大,会导致灰的流动性差,导致落灰困难并会增加浓相输送的困难。

4:磨蚀性

粉煤灰在流动中对管道壁的磨损。

影响磨蚀性的因素:粉煤灰颗粒的硬度、灰的几何形状、大小、密度、强度、流动速度。

粉煤灰颗粒的硬度:是物料磨蚀性及抗破碎性程度的表征,又是物料强度、流动性好坏的度量。硬度高:流动性差;导致为输送高硬度的物料需要耗费大的耗气量。。

一般:多棱体比光滑表面磨蚀性大、粗灰比细灰磨蚀性大。

在5-10μ的颗粒磨蚀性可以忽略;颗粒增大;磨蚀性增加,增大到极限值后,磨蚀性下降。

磨蚀性与气流速度的2-3次方成正比。灰的浓度低,磨蚀性大;灰的浓度高、其磨蚀性低。

5:灰斗内的架桥和离析

架桥(棚灰):粉料堵塞在排料口以至于不能进行自由落体的排料。

架桥的原因:堆积密度(大)、压缩性(高)、粘附性(粘、软)、可湿性(高)、喷流性(差)、拱顶物料强度(高)、储存时间(长)、出料口(小)

括号内是增加架桥发生的诱因变化趋势。

防止架桥的措施:

2合理设计灰斗的形状和尺寸,安装时要保证灰斗的密封严密。

3对灰斗进行保温(防潮)。

4减小粉料对灰斗的流动磨擦阻力,在灰斗拼接时,保证钢板之间无突台。

5降低灰斗内的压力,提高负压,防止灰粉被压实。

离析:颗粒状态的物料在高度趋势变化时,出现的颗粒运动,。

1在高度堆积过程:细料从堆积的物料中分离出来。

2在高度下降过程:粗料从堆积的物料中分离出来。

3溜槽造成的离析:在物料斜面上运动时,颗粒大的物料速度快,落下后远离斜面的末断;颗粒小的物料落下后,靠近斜面的末端。

严重的离析直接影响会的流动性、增加落料的困难,导致在进入设备后,流化困难、输送困难、耗气量增加、管道磨损加剧。

防止出现明显离析和溜槽的措施,保证颗粒的差值小,使物料的颗粒粒度分布在一定范围,分布范围小,则离析和溜槽的现象弱。

三:输送

1:灰气比

在气、固两相流中,固体物料和气量的比值(质量比、容积比)。

灰气比越大,输送能力越高。

但悬浮输送,灰气比大压力损失大,易堵管。

2:实际浓度

在输送管道中,单位长度内的物料质量和气体质量之比。

在气流与物料速度相等的时候,实际浓度等于灰气比。(稀相和栓塞浓相)

3:物料在管道中的状态

★均匀流(悬浮流):物料均匀分布在管道的气流中;属于稀项输送。

其灰气比低(浓度低)、速度快、对管道磨损大。

输送动力是:气动力

★部分流:速度降低后,灰被气流带动。属于中相输送。

其速度低于均匀流。

★栓柱流:物料充满一段管路,形成栓柱状。属于浓相输送。

输送动力:栓柱两侧的压差。

流动速度低,对管道磨损小。

四:气力输送特点(与水利输送比)

优:

1:节省水

2:有利于粉煤灰的综合利用。

3:占用场地小。

4:减少污染。

5:减少管道结垢和腐蚀。

6:自动化程度高,运行人员少。

7:输送管路布置方便。

8:可以用于长距离输送。

弱:

9:对维护要求高。

10:对运行人员的素质要求高。

11:对粉煤灰的粒度和湿度有限制,不宜输送颗粒粗大和潮湿的灰。

五:气力输送分类

1:按输送状态分:悬浮流、部分流、栓柱流。

2:按输送压力状态:动压(悬浮流)、静压输送(栓柱流)。

混合(动静都有-双套管)。

3:压力不同:正压、负压(设备和管道磨损大)。

六:栓柱流

不宜浮动的物料,堆积在一起并完全充满了一段管路。

输送靠栓柱前后压差产生的推力;属于压差输送。而悬浮流为气动力输送。

栓柱的产生:一般在管道的某一段上设计有一个脉冲气切刀,当物料经过时,物料被切割成段。

影响栓柱流的因素:

灰的粘附性、可湿性、存储时间和灰表面强度,以及脉冲切割刀的强度(气量压力、输送用气的水分、温度)。

保证措施:

强化气化风系统、减少水分对灰和空气的侵入、适当调整脉冲切割刀的气量。

我公司主要从事:正压栓柱流输送。

在我公司主要产品AV、MD、PD、TD等输送系统的管道上,均设计有脉冲气切割刀,气量将根据在标准设计下根据实际情况调节、气的压力一般不低于0.55MPA。在众多运行的现场中,运行良好,在灰库的入库管道上可以明显辨别栓柱状态的灰栓。

主要特点:和其他系统比较消耗气量小、灰气比高、管道使用寿命强、运行时管道振动小、对管架的要求低。

第一节:气力输送系统基本介绍

一:系统图

(受不同现场的限制,无法给出具体数据,在培训时需要按照系统图逐一填写。) 1:从系统图上可以看出,该系统由X台炉的输送系统组成.

每台炉设X个电场,每个电场由X台泵组成.

其中:

一电场由X台XX型号的泵组成,管道为DNXXX.

二电场由X台XX型号的泵组成,管道为DNXXX.

三、四电场各由X台XX型号的泵组成,由切换阀进行电场运行的切换。

省煤器由X台XX型号的泵组成,管径为DNXXX。

2:灰库上安装布袋除尘器、真空压力释放阀、切换阀、高、低料位计。

3:输送空气来自X台XX立方的空压机及冷干机组成的气源系统。

4:仪用空气来自大厂仪用空气系统(或来自仪用空压机)

5:在XX电场的灰斗上设计有高料位计,对灰斗存灰量起到进行监视作用;在XX电场的灰斗上设计低料位计,用于和循环间隔定时器并联起到触发该电场运行的作用。

第二节MD泵工作介绍

一:MD泵结构介绍:

从示意图和装配图可以看出:

1:主MD泵由入口圆顶阀、排气圆顶阀、主输送空气管路、流化空气管路组成。 2:付MD泵由入口圆顶阀、排气圆顶阀、流化空气管路组成。

3:出口MD泵由入口圆顶阀、排气圆顶阀、流化空气管路、泵后补气管路组成。

4:每台MD泵设计有泵内高料位计,泵间管道设计有泵间补气管路。

二:MD泵运行条件

1:主电控屏幕上的启动/停止/吹扫开关置于“启动”或者“吹扫”位置。

2:就地主泵的气控箱上程控/就地按钮置于“程控”位置。

3:输送管道压力小于0.03 Mpa。

4:其他联锁条件正确,(在运行状态下)泵内没有高料位信号。

5:输送供气压力大于0.55 MPa 。

6:主泵入口和排气圆顶阀关闭并且密封。

7:所有副泵的入口和排气圆顶阀关闭并且密封。

8:最小循环周期定时器关闭或手动旁路按钮按下。

9:管路确定可用。

10:输送目标灰库有空间可用。

三:MD泵工作步骤:

1:在其他条件满足时,当循环间隔时间到时或灰斗低料位触发,所有入口圆顶阀通过相应的电磁阀线圈得电打开,由于排气圆顶阀和其使用同一个气控阀,所以,排气阀也同时打开。受重力的作用,灰斗内的积灰落入泵内。

2:当落料定时器到时或泵内料位计触发信号,在延时2秒后,所有入口阀和排气阀通过相应的电磁阀线圈失电关闭。

3:当所有入口阀和排气阀关闭并发回密封信号后,主输送空气阀和所有流化空气阀通过相应的电磁阀线圈和得电打开,输送空气分别通过此2种管路进入输送泵内。

4:当输送压力低于设定的结束压力(0.3BAR)后,延时20秒后,所有的主输送空气阀和流化空气阀通过相应的电磁阀线圈失电关闭,此次的输送结束。待条件满足时,开始新的输送循环。

四:程序自动疏通

若在输送中,输送压力高于设定的压力值,主输送空气阀、主流化空气阀、伏泵的流化空气阀、出口泵的空气阀将通过相应的电磁阀线圈失电依次关闭;但输送压力下降到设定值时,上述阀将陆续通过相应的电磁阀线圈和得电打开,直到输送压力符合输送完成的数值要求。

在设计中,一般关闭所有阀的压力为3.5BAR,重新打开上述阀门的压力为1.5BAR。

在调试中,将根据实际情况对上述的3个值(既结束压力、关闭进气阀压力、重新打开进气阀压力)有所调整和增加设置。

第三节AV泵工作介绍

二:AV泵结构介绍:

从示意图和装配图可以看出:

1:主AV泵由入口圆顶阀、主输送空气管路、

流化空气管路、泵体组成。

2:付AV泵由入口圆顶阀、泵体组成。

3:出口AV泵由入口圆顶阀、泵体组成。

4:泵间管道上设计有泵间补气组件。

二:运行条件:

1:主电控盘上的启动/停止/吹扫开关置于“启动”

或者“吹扫”位置。

2:就地气控箱上程控/就地按钮置于“程控”位置。

3:输送管道压力小于0.03 MPa 。

4:输送供气压力大于0.55 MPa。

5:主泵入口圆顶阀关闭并且密封。

6:所有副泵的入口圆顶阀关闭并且密封。

7:管路确认可用。

8:目标灰库空间可用。

9:设定的循环周期时间到时,或者就地主泵气控盘的手动旁路按钮被压下。

三:工作步骤为:

1:在其他条件满足时,当循环间隔时间到时或灰斗低料位触发,所有入口圆顶阀依次通过相应的电磁阀线圈得电(由主泵开始,间隔1秒)打开。受重力的作用,灰斗内的积灰落入泵内。

2:当落料定时器到时,在延时2秒后,所有入口阀依次(由主泵开始,间隔1秒)通过相应的电磁阀线圈失电关闭。

3:当所有入口阀关闭并发回密封信号后,主输送空气阀和流化空气阀通过相应的电磁阀线圈和得电打开,输送空气分别通过此2种管路进入输送泵内。

4:当输送压力低于设定的结束压力(0.3BAR)后,延时20秒后,主输送空气阀和流化空气阀关闭,此次的输送结束。

5:待条件满足时,开始新的输送循环。

四:程序自动疏通

若在输送中,输送压力高于设定的压力值,主输送空气阀、流化空气阀将通过相应的电磁阀线圈失电关闭;当输送压力下降到设定值时,上述2个阀将再次通过相应的电磁阀线圈和得电打开,直到输送压力符合输送完成的数值要求。

在初步的设计中,一般关闭空气阀的压力为3.5BAR,重新打开上述阀门的压力为1.5BAR。

在调试中,将根据实际情况对上述的3个值(既结束压力、关闭进气阀压力、重新打开进气阀压力)有所调整和增加设置。

第四节 D泵介绍

一:D泵的结构介绍

从示意图和装配图上可以看出:

1:主D泵含有入口圆顶阀、出口圆顶法、排气圆顶阀、平衡圆顶阀,流化管路。并有主进气管路。

2:付D泵含有入口圆顶阀、出口圆顶法、排气圆顶阀、平衡圆顶阀,流化管路。

3:所有泵内设计高料位计。

4:和其他圆顶阀有所区别:出口圆顶阀在特殊设计的控制作用下,可以实现三个位置的动作(即完全关闭、完全打开、在设定的中间位置打开)。

二:工作条件(按单D泵工作)

1:D泵气控箱上的就地气控盘上的“程控/就地”开关置于“程控”位置。

2:主电控屏幕上的“启动/停止/吹扫”开关置于“启动”或者“吹扫”位置。

3:其他联锁条件正确。

4:D泵压力小于0.03 Mpa。

5:入口圆顶阀关闭并且密封。

6:出口圆顶阀关闭并且密封。

7:平衡圆顶阀关闭并且密封。

8:管道压力小于0.15MPa。

9:输送供气压力大于0.55MPa

10:渣库高料位计未被覆盖。

11:缓冲斗高料位计被覆盖或就地气控盘上的手动旁路按钮按下。

三: D泵运行步骤(单台泵运行)

1:入口圆顶阀通过相应的电磁阀得电开启,排气圆顶阀失电打开;物料在重力的作用下,落入泵内。

2:当泵内高料位信号触发或落料时间到时,在延时0。1秒后,关闭入口圆顶阀和排气圆顶阀,同时,如果主输送进气阀没有打开,将通过相应电磁阀得电开启。

3:在上述2个圆顶阀关闭并反馈密封信号后,平衡阀将通过相应电磁阀失电开启,流化进气阀将通过相应电磁阀得电打开

4:当平衡阀打开后,出口圆顶阀开启延时定时器启动,使D泵泵内压力与输送管道内压力平衡。

注:如果平衡阀在3秒钟内未能开启,流化进气阀将关闭直到

平衡阀开启时再打开。

5:当出口圆顶阀开启延时定时器到时,出口圆顶阀开启至设定位置。物料将从D泵进入输送管道然后随气流流进渣库。

6:如果管道压力高于0.15MPa,出口圆顶阀将关闭。直到管

道压力下降至低于0.13MPa后,出口圆顶阀再重新开启。

在D泵的就地气控盘上设有“全开”手动按钮,可手动操作使出口圆顶阀全开以清除大块物料。

7:当输送压力下降至0.05MPa,显示泵内已经排空,出口圆顶阀在10秒延时关闭。

8:当出口圆顶阀关闭延时定时器到时,出口圆顶阀关闭。

同时,平衡阀将通过电磁阀得电关闭,流化进气阀将通过电磁阀失电关闭。主输送进气阀关闭延时定时器(30秒)将开启。

注意:主输送进气阀(PV02)将保持开启状态,如果主输送进气阀关闭延时定时器到时,下一次循环仍未开始,主输送进气阀将通过电磁阀关闭。

9:当出口圆顶阀和平衡阀关闭并密封,D泵排气阀将通过电

磁阀得电开启。

10:当泵内压力降至低于0.03MPa,循环复位定时器(3秒)

将启动。当循环复位定时器已到时,则输送循环完成。

11:管路切换在当循环复位定时器已到时,管路切换延时定时

器(40秒)也到时后切换。

四:双联D泵在运行上和单个D泵有所不同,表现在:

落料时:

1:当泵中的高料位计已被覆盖,或者物料充填定时器已完成时,启动过量充填定时器(0.1S)。

同时,如果主输送进气阀没有打开,将通过相应电磁阀得电开启。

2:当过量充填定时器已到时,进口圆顶阀通过相应的电磁阀失电关闭。

同时,如果另一台D泵现在没有输送,排气圆顶阀通过相应的电磁阀失电关闭,执行下一步程序动作。

注意:如果现在另一台D泵正在输送,那么本泵循环在这里停止,排气阀仍开着,直到另一台D泵输送完成。另一台D泵输送完成后,该泵的出口圆顶阀、流化进气阀和平衡阀都关闭并密封,排气阀开启,随后本泵循环继续。

五:D泵出口圆顶阀的控制

出口圆顶阀将控制物料下落至管道内的速度。在输送过程中出

口圆顶阀将打开至设定位置,用以控制物料准确排放量。设定的位置将在调试期间确定。

D泵在就地气控盘上设计有“全开”按钮(HS03),允许操作员手动全开出口圆顶阀来清除存积在阀门上的大块物料和残片。当按压下按钮,阀门全开并保持2秒,然后全关2秒,再打开至中间的设定位置。

注:只有泵在输送灰时(既出口圆顶阀得到半开指令时)按下此按钮,阀门才全开。

当出口圆顶阀关闭时,密封电磁阀(EV03)将失电密封,没有信号进入阀门开度控制器接口端。

第五节 PD泵介绍

一:PD泵结构介绍

从示意图和装配图可以看出:

1:主PD泵含有入口圆顶阀、排气圆顶阀、出口圆顶阀和流化管路。并有主进气管路。

2:付PD泵含有入口圆顶阀、排气圆顶阀、出口圆顶阀和流化管路。

3:出口PD泵含有入口圆顶阀、排气圆顶阀、出口圆顶阀和流化管路。并有出口补气管路。

4:所有泵内设有高料位和压力开关。

二:运行条件

1:PD泵就地气控盘上的启动/停止开关置于“启动”位置。

2:主控画面上的启动/停止/吹扫开关置于“启动”或者“吹扫”位置。

3:PD泵内压力小于0.3barg(PT25)。

4:输送压缩空气压力大于5.0barg

5:PD泵入口圆顶阀关闭并且密封(PS01)。

6:PD泵排气阀关闭并且密封(PS05)。

7:目标细灰库的高料位开关没有被覆盖(LSH83)。

8:输送管道确认可用

9:灰斗料位开关被覆盖(LS01)并且最小循环周期定时器已经计时完毕或者手动旁路按钮(HS01)被压下。

三:运行步骤:

1:入口圆顶阀和排气阀分别通过相应的电磁阀线圈和得电开启,。飞灰将通过重力作用落入PD泵内。同时,出口圆顶阀将通过相应的电磁阀线圈得电关闭。

2:当PD泵内的料位开关已被覆盖或者当短填充定时器已经计时完毕时,PD泵的排气圆顶阀通过相应的电磁阀线圈失电关闭。

3:在延时0.1秒后,入口圆顶阀将通过相应的电磁阀线圈失电关闭。

4:当入口圆顶阀和排气阀关闭并且密封,而且出口圆顶阀也关闭并密封,主进气阀和流化进气阀将分别通过相应的电磁阀线圈得电开启。压缩空气进入PD泵,泵内压力上升。

5:当泵的压力上升达到0.5barg时出口圆顶阀将通过相应的电磁阀线圈失电开启,飞灰进入输送管道。

6:飞灰通过输送管道进入终端灰库。当安全输送定时器计时完毕并且泵内压力下降到0.3barg以下时,延时20秒后,主进气阀和流化进气阀将通过相应的电磁阀线圈失电关闭。

四:自动输通:

如果在输送过程中泵内压力升高到4.0barg以上时,主进气阀和流化进气阀将通过相应的电磁阀线圈和失电关闭,直到泵内压力降低到3.5barg以下时才重新开启。

在调试中,将根据实际情况对上述的3个值(既输送结束压力、关闭进气阀压力、重新打开进气阀压力)有所调整和增加设置。

第六节:TD泵运行介绍

一:结构

从外形可见:

1;安装有入口圆顶阀、出口圆顶阀、排气圆顶阀。

2:主输送空气阀、出口进气阀、流化进气阀和辅助进气阀。

3:泵内料位计、输送压力变送器、就地压力表。

4:流化板采用织物。

二:运行条件

TD泵就地气控盘上的启动/停止开关

置于“启动”位置。

主控画面上的启动/停止/吹扫开关置于“启动”或者“吹扫”位置。

TD泵内压力小于0.3barg(PT02)。

输送压缩空气压力大于5.5barg

TD泵入口圆顶阀关闭并且密封(PS01)。

TD泵排气阀关闭并且密封(PS05)。

目标粗灰库的高料位开关没有被覆盖

输送管道确认可用

上部灰斗(中间仓)斗料位开关被覆盖并且最小循环周期定时器已经计时完毕

或者手动旁路按钮(HS01)被压下。

三:运行步骤

3:运行开始后,出口圆顶阀通过相应的电磁阀线圈得电关闭,排气圆顶阀和流化进气阀分别通过相应的电磁阀线圈得电开启。

2:当入口圆顶阀延时开启定时器计时完毕并且如果TD泵内的压力小于

0.3barg,入口圆顶阀将通过相应的电磁阀线圈得电开启。飞灰在重力作用下落

入TD泵内。

3:当TD泵内的料位开关已被覆盖或者当短填充定时器已经计时完毕时,TD 泵的排气圆顶阀通过相应的电磁阀线圈失电关闭同时启动过填充定时器(0.1秒)。

4:过填充定时器计时完毕时,入口圆顶阀将通过相应的电磁阀线圈(EV01)失电关闭。

注意:如果在输送循环开始时TD泵的料位开关(LSH02)被覆盖或者启动/停止/吹扫开关置于“吹扫”位置,则不开启入口圆顶阀,循环从下一步骤继续。

5:当入口圆顶阀和排气阀关闭并且密封,出口圆顶阀将通过相应的电磁阀线圈失电开启,同时启动出口圆顶阀开启延时定时器(1秒)。

6:当出口圆顶阀开启后,主进气阀、出口进气阀和辅助进气阀将分别通过相应的电磁阀线圈得电开启。压缩空气进入TD泵,泵内压力将上升,飞灰被输送到粗灰库。

7:当泵的压力上升到2.0barg以上或者当最大增压持续时间定时器已经计时完毕时,辅助进气阀将通过相应的电磁阀线圈失电关闭。

注意:如果在输送过程中泵内压力升高到4.0barg以上时,主进气阀将通过相应的电磁阀线圈失电关闭,直到泵内压力降低到3.5barg以下时才重新开启。

8:飞灰通过输送管道进入粗灰库。当输送安全定时器计时完毕并且泵内压力下降到0.7barg以下时,控制系统将发出输送完成的信号,主进气阀、流化进气阀和出口进气阀将分别通过相应的电磁阀线圈失电关闭。

9:当输送安全定时器已经计时完毕并且泵内压力已经下降到0.3barg (PT02)以下时,循环复位定时器(3秒)将被启动。

10:当循环复位定时器计时完毕,则输送循环完成。

注意:如果在循环过程中,任何一个启动联锁条件变为非真值,则本次循环将继续进行到完成,然后系统将停止,直到所有的启动联锁条件重新变为真值。例如,系统启动时进料灰斗的料位计是被覆盖的。如果在循环过程中,这个料位计变为不被覆盖,这个条件将被忽略而不会使循环停止或者复位。通过PLC程序锁定循环启动指令实现。

同样的,当发生一个故障,允许循环执行到下一步骤,然后循环进程将被挂起,直到联锁条件为真值后,循环将继续执行下一步。下一步骤循环进程的循环信息将被锁定,使得出现故障,随后的联锁条件变为非真值时,循环不会停止或

者倒退。闭锁在循环末的循环复位定时器运行过程中解除。

第七节:路径选择(切换灰库)及“输送管路确认”

物料将通过在库顶安装的切换阀进入两个灰库中的任意一个。管路切换必须在该管路上输送系统的输送循环完成且系统处于

静止状态的情况下进行。要保证以上条件,管路切换延时定时器(3S)必须到时。

一个两位切换阀对应2个灰库,确保操作员可以选择可落料输入的灰库。两个库的切换位置被分别标为“关闭”和“自动”。当开关在“自动”位置时,则那个灰库将一直被落料输入,直至高料位计被覆盖。

当这个灰库已充满(高料位计已被覆盖)时,将自动切换到另外一个高料位计没被覆盖的库;或者如果“关闭/自动”开关设定在“关闭”位置时,当前循环将允许继续运行直至结束;然后控制系统将管路切换至的另一灰库,这个灰库的切换开关需要切换在“自动”位置且高料位计没被覆盖。

如果没有另外的灰库可用,则控制系统将禁止系统进行下一步的运行。

在各个系统循环运行之前,控制系统将检查管路阀门开启位置,以保证输送管路设置正确。如果管路阀门发生故障,控制系统将禁止系统运行直至故障排除。

这就是在循环启动连锁要求中所提到的“输送管路确认”。

第八节:目标灰库可用

在各个系统循环运行之前,控制系统将检查目标灰库高料位开关的状态,以保证有足够的物料填充空间。如果出现当前灰库的高料位计已被覆盖,则控制系统将管路切换至另一可用灰库,或禁止系统的运行。这一点在运行条件要求中被称为“目标灰库空间可用”。

第九节:CBH系统运行的主要条件

一:物料的参数

英国克莱德公司在长期的系统设计和产品的工作原理设计中,依据的是相对的物料特性参数。针对不同性能参数,英国克莱德公司设计有不同的设备用来进行输送。

在电厂飞灰系统设计中,在煤质和前级设备工作都可以保证时飞灰的粒度和容

二:空气品质

1:仪用空气;

压力不小于6.0bar,压力露点温度 -20 0C ,含油量< 5ppm。

流量要求依据设备的实际情况,设计而定。

2:输送空气:

压力露点温度为+2 0C,含油量< 5ppm.7.0Bar(g)空压机,带干燥器和储气罐。

流量要求依据设备的实际情况,设计而定。

三:上游设备

上游设备中的磨煤机、烟风道、电除尘在设计、制造、安装、调试期间不存在缺陷;煤粉燃烧充分。

第十节:圆顶阀

圆顶阀是由英国CLYDE公司独创的用于物料输送专业的阀门。

一:分类

1:按公称尺寸分为:DN50、DN80、DN100、DN125、DN150、DN200、DN250、DN300、DN400、DN500。

2:按气缸分类:分为直行程和扇型。

3:按用途:分为入料阀、排气阀和出口阀。

4:按结构:分为有密封和无密封。

5:按工作温度:分为PHV:常温(180)、PH1:200-300;PH2:301-350;

PH3:351-450。

二:工作步骤:(以入料圆顶阀为例,直行程气缸)

1:在正常状态下,圆顶阀关闭并密封。

2:当控制该阀的电磁阀得电后,打开圆顶阀的气路被接通,气流进入气缸的前侧,气缸活塞向气缸后端移动;气缸后端的气被排除从快排阀进入大气,圆顶在转臂的带动下,向打开方向转动。

3:在圆顶转动过程中,被转臂调整螺栓压下的限位开关的触头,逐渐伸长。当伸长的长度满足限位开关内部气路连接转换长度时,密封圈的压缩空气被排入大气,密封圈内也没有压力。在打开的过程中,密封圈自然收缩,不会与圆顶之间有磨擦。

在6毫米行程的这个过程,密封圈内的气被全部放掉。

4:在活塞移动到气钢底部时,圆顶阀被完全打开。

5:当电磁阀失去电时,圆顶阀关闭的气路被接通。

6:空气将进入气钢后端,推动活塞向前运动,转臂带动圆顶旋转、关闭。

7:被转臂调整螺栓压下的限位开关的触头长度逐渐缩短。当缩短的长度满足限位开关内部气路连接的转换长度时,压缩空气进入密封圈内并被接到压力开关的进气口;压力达到一定压力后,压力开关被接通,信号将被反馈到柜内。

三:设计特点

1:在关闭位置时,金属的圆顶和柔性材质的密封圈之间为面接触,密封效果可靠。

2:在打开时,在物流的通道上没有阻碍;保证物流畅通。

3:在打开时,圆顶被布置在顶板后面、密封面在里面,保证了圆顶不受到磨损。

4:快速冲气密封和快速排气,保证了圆顶阀密封圈在工作中,不受到过多的磨损。

5:在圆顶和球顶之间合理的装配间隙,也保证了圆顶阀在工作中球顶和密封圈不受到磨损。

6:转动部位设计为轴瓦,保证了该部位的工作质量和寿命。

四:使用注意事项

1:用来润滑轴承的圆顶阀油嘴需要每2周注油一次。用润滑气缸的油雾器中需要随时添加。

轴承处的可选油料:

Shell(壳牌)公司 Malleus JB1或 Mobil公司 SHC1500

油雾器中的油料可选:

Shell(壳牌)公司 Tellus 37 等级 37

Moibl(美孚)公司 DTE Oil.Light 等级 32

BP 公司 HLP32 等级 32

2:为避免划伤密封圈,在物料中不允许有锋利的金属杂质。

3:无密封信号反馈时,不允许在程序和线路上强制和短接该信号,必须进行实际的解决。

4:更换密封圈后,需要重新检测圆顶和密封圈之间的间隙。在0。5-0。8之间为最佳。

5:安装在不同位置、起不同作用的圆顶阀,其“打开”和“关闭”的动作电磁阀线圈是得到不同的“得电”或“失电”的控制。

第十节:逆止阀

一:在气力输送系统中主要采用如下几类:

1:按尺寸分类:DN15、DN20、DN25、DN40、DN50、DN65、DN80、DN100。

2:按材料分类:金属和非金属。

3:按结构分类:弹簧恢复和自恢复。

4:按安装部位:主输送管路、辅助进气管路、流化进气管路。

二:作用

保证输送空气进入管道中,并避免灰倒灌到气路中。

三:工作方式

1:气流进入逆止阀的进气口时,当压力大于逆止阀打开的阻力时,逆止阀板被打开,气流通过。

2:当气流进入逆止阀的出口时,逆止阀的逆止阀板被压紧到花篮上(或端面上),并有足够的密封,气流不能通过。

四:使用注意事项

1:定时检查逆止阀的工作状态,及时处理。

750td垃圾焚烧厂飞灰气力输送系统设计

1、前言 快速增长的生活垃圾,给城市环境管理带来了巨大的压力。而垃圾焚烧发电以其占地面积小,无害化、减量化和资源化效果好等特点,在我国正越来越受到关注。垃圾焚烧过程中产生的飞灰,也随之而来。飞灰中含有重金属、二恶英、溶解盐等有毒有害的物质,所以飞灰的无害化处理非常的重要。飞灰的气力输送能有效地控制其二次污染,密封性好,对人体伤害少。故飞灰的气力输送系统的设计与应用越来越受到重视。 750t/d垃圾焚烧厂飞灰气力输送系统设计主要是飞灰气力输送装置、工艺、控制等方面的设计研究。气力输送是一项利用气体能量输送固体颗的先进而有效的技术,迄今已有100多年的发展历史。在气力输送的发展历史中,尤其是近几十年,气力输送技术有了突飞猛进的进步。气力输送装置一般由发送器、进料阀、排气阀、自动控制部分及输送管道组成。 气力输送与传统的机械输送方式有着明显的优点:结构简单、紧凑,工艺布置灵活,便于自动化操作;一次性投资较小,维修保养方便;可将由数点集中的物料送往一处或由一处送往分散的数点,适于长距离输送;整个输送过程完全密闭,不受气候影响,也不污染环境,并无噪音;对于化学性质不稳定的物料,可以使用惰性气体输送;广泛用于石油、化工、医药及建材等工业领域。国外应用实践证明一般性情况下气力输送系统的综合经济效益优于机械输送系统。 我国自80年代以来在厂输送中转站、预拌混凝土搅拌站、粉体(散装水泥、铁矿粉、钛白粉、药粉等)输送专用火车、汽车、船等设备的正压输送、负压抽吸等气力输送系统的应用越来越广泛。气力输送在垃圾焚烧厂的运用也是随着垃圾焚烧产业的发展而发展的。近几年来,气力输送在垃圾焚烧厂的运用越来越多,也越来越重要。近年来垃圾焚烧发电厂生产过程中飞灰、活性炭、消石灰、水泥等原料、副产品的输送越来越多的采用气力输送,因而其输送效率高,利用率高,无二次污染和粉尘分扬,垃圾焚烧发电厂的整体环境得到明显改善。

气力输送系统基本参数计算知识

系统基本参数计算 更新时间:2005年07月20日 系统基本参数计算 1.输灰管道当量长度Leg 输灰管道的总当量长度为 Leg=L+H+∑nLr (m)(5-19) 2.灰气比μ 根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比 μ=φGhX103/[ Qmγa(t2+t3)](kg/kg)(5-20) Gh=ψγhνp (t/仓) (5-21) 式中Gh—仓泵装灰容量,t/仓。 灰气比的选择取决于管道的长度、灰的性质等因素。对于输送干灰的系统,μ值一般取7-20 kg/kg。当输送距离短时,取上限值;当输送距离长时,则取下限值。 3.输送系统所需的空气量 因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)(5-22) 质量流量Ga=Qaγa=16.67 Gm/μ (kg/min)(5-23) 4.灰气混合物的温度 输送管始端灰气混合物的温度可按下式计算tm=( Gmchth+ Gacata)/( Gmch+Gaca) (℃) (5-24) 式中Gm—系统出力,kg/min; ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算 th—灰的温度,℃; ca—空气的比热容,一般采用o.24kcal/(kg℃); ta—输送空气的温度,℃。 因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。根据经验,每100m的温降值一般为6—20℃。当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。 5.输送速度 仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:

通风除尘与气力输送系统的设计说明

第一章通风除尘与气力输送系统的设计 第一节概述 在食品加工厂中,车间的通风换气、设备和物料的冷却、粉尘的清除等都需要通风除尘系统来完成。粉状、颗粒状的物料(如奶粉、谷物等)的输送都可借助气力输送系统实现。通风除尘和气力输送系统是食品加工厂的常用装置。 食品加工厂中粉尘使空气污染,影响人的身体健康。灰尘还会加速设备的磨损,影响其寿命。灰尘在车间或排至厂房外,会污染周围的大气,影响环境卫生。由于粉尘的这些危害性,国家规定工厂中车间部空气的灰尘含量不得超过10mg/m3,排至室外的空气的灰尘含量不得超过150mg/m3,为了达到这个标准,必须装置有效的通风除尘设备。 图1是食品加工厂常见的通风除尘装置。主要由通风机、吸风罩、风管和除尘器等部分组成。当通风机工作时,由于负压的作用,外界空气从设备外壳的缝隙或专门的风管引入工作室,把设备工作时产生的粉尘、热量和水汽带走,经吸风罩沿风管送入除尘器净化,净化后的空气排出室外。 气力输送系统的形式与通风除尘系统相似,但其目的是输送物料,主要由接料器(供料器)、管道、卸料器、除尘器、风机等部分组成。气力输送系统除了起到输送作用外,还可以在输送过程中对物料进行清理、冷却、分级和对作业机完成除尘、降温等。小型面粉厂气力输送工艺流程如图2。

风机 气力输送具有设备简单、一次性投资低、可以一风多用等特点,与机械输送相比,气力输送的缺点主要是能耗较大,对颗粒物料易造成破碎。 通风除尘和气力输送都是利用空气的流动性能来进行空气的净化或物料的搬运的,因此,流体力学是本章的基础知识。有关流体力学的知识可参阅相关书籍资料,在此不再敷述。本章主要讨论食品加工厂通风除尘和气力输送系统的设计。 第二节通风除尘系统的设计与计算 1 通风除尘系统的设计原则和计算容 通风除尘系统也叫除尘网路或风网。通风除尘网路有单独风网和集中风网两种形式。在确定风网形式时,当: 1)吸出的含尘空气必须作单独处理; 2)吸风量要求准确且需经常调节; 3)需要风量较大;或设备本身自带通风机;

垃圾焚烧飞灰有气力输送系统

垃圾焚烧飞灰有气力输送系统 一、垃圾焚烧电厂让我们身边的垃圾变废为宝 随着科技的不断进步,垃圾再利用技术得到了迅速推广。垃圾焚烧发电厂——一个能让大部分垃圾变废为宝的重大科研发现。让我们生活更加洁净健康。垃圾焚烧电厂,必然会出现焚烧后的飞灰。飞灰如果处理不当的话,定会造成二次环境污染。 二、分析垃圾焚烧飞灰气力输送类型选择 飞灰气体输送系统是将垃圾焚烧后的飞灰烟气,净化后从收尘器的灰斗输送至灰库。因为飞灰有毒有害的原因,国家环保部门规定飞灰的运输应密封、无二次污染。所以我们设计采用气力输送系统输送飞灰,而不能采用传统的机械输送系统了。 而粉体气力输送、气流输送的形式有多种,气力输送系统按类型可分为:正压输送即压送式、负压输送吸送式、正、负压组合输送。 我们又该如何选择飞灰输送该用哪种输送系统呢? 负压气力输送:该系统是通过风力也就说的气力将物料从一处吸聚输送到料仓,,适合堆积面积广或存放深处的物料输送,喂料方式简单,但相对于压送式输送而言,输送产量和输送距离有一定的限制。 正、负压组合输送:该系统常用于输送系统较复杂工艺。向我们所涉及的飞灰气力输送从除尘器输送到料仓,相对工艺较简单。不是很特殊的输送工况。用简单的输送方式更方便、节能降耗,更合理。 正压气力输送:该系统技术成熟,工程实践多,输送效率高,不会受输送条件变化而影响。适宜于从一处向多处进行分散输送。

适合于大容量、长距离输送。 分离器和除尘器的结构比较简单,因为都是正压,物料易从排料口排出。 可以方便的发现漏气的位置,以便及时处理。 由于带粉尘气体不通过风机内部,对风机的磨损少,使用寿命长。 综合以上介绍,在更具飞灰本身特性,以及输送工况和输送量等要求。故飞灰输送选择正压气力输送较合理。 三、飞灰气力输送系统详解 1、飞灰气力输送系统概述 近年来,对于垃圾焚烧电厂飞灰处理,我们常用飞灰低压气力输送装置。低压气力输送是一项利用气体能量输送固体颗的先进而有效的技术,迄今已有100多年的发展历史。在低压气力输送的发展历史中,尤其是近几十年,低压气力输送技术有了突飞猛进的进步。低压气力输送装置一般由发送器、进料阀、排气阀、自动控制部分及输送管道组成。 2、飞灰气力输送系统运行原理 进料阶段:进料阀呈开启状态,一次进气阀和出料阀关闭,仓泵上部与灰斗连接,除尘器捕集的飞灰借助重力自由落入仓泵内,当灰位高至灰位上限时,料位计发出料满信号,或到按系统进料设定时间时,进料阀关闭,进料阶段结束。 流化加压阶段:进料阶段完成后,系统自动打开一次进气阀,经过处理的压缩空气经过流量调节阀进入仓泵底部流化锥,穿过流化锥后的

气力输送系统介绍

气力输送系统介绍 气力输送是一项综合性技术,它涉及流体力学、材料科学、自动化技术、制造技术等领域,属输送效率高、占地少、经济而无污染的高新技术项目。随着我国经济的快速发展,各行各业的生产也在不断扩大,有些行业如火力发电厂、化工厂、水泥厂、制药厂、粮食加工厂等的一些原材料、粉粒料在输送生产工程中产生的环境污染越来越得到广泛的重视。气力输送技术于是得到了逐步的推广。气力输送是清洁生产的一个重要环节,它是以密封式输送管道代替传统的机械输送物料的一种工艺过程,是适合散料输送的一种现代物流系统。将以强大的优势取代传统的各种机械输送。 气力输送系统具有以下特点: ◆气力输送是全封闭型管道输送系统 ◆布置灵活 ◆无二次污染 ◆高放节能 ◆便于物料输送和回收、无泄漏输送 ◆气力输送系统以强大的优势。将取代传统的各种机械输送。 ◆计算机控制,自动化程度高 气力输送形式: ◆气力输送系统按类型分:正压、负压、正负压组合系统 ◆正压气力输送系统:一般工作压力为0.1~0.5MPa ◆负压气力输送系统:一般工作压力为-0.04~0.08 MPa ◆按输送形式分:稀相、浓相、半浓相等系统。 气力输送系统功能表: 常见适合气力输送物料 可以气力输送的粉粒料品种繁多,每种物料的料性对气力输送装置的适合性和效率都有很大的影响。因此在选定输送装置前要先对物料进行性能测定。现在常见适合气力输送物料示例如下:

浓相气力输送系统 浓相气力输送系统根据国外先进技术及经验,结合科学实验,经过数年实践,被确认为是一种既经济又可靠的气力输送系统。该系统输送灰气比高,耗气量少,输送速度低,有效降低管道磨损。该系统主要由压缩空气气源,发送器、控制柜、输送管、灰库五大部分。 1、压缩空气气源: 由空气压缩机、除油器、干燥器、储气罐及管道组成,主要为发送器及气控元件提供高质量的压缩空气。 2、发送器: 器集灰斗的飞灰,经流化后通过输送管道送至灰库。 3、控制柜: 以电脑集中控制各种机械元件动作,并附有手动操作机构。 4、输送管道: 经实验,输送距离可达1300米,管路寿命可达20000小时以上。 5、灰库: 由灰库本体、布袋除尘器、真空释放阀、料位计、卸灰设备等组成。 浓相气力输送系统示意图

负压气力输送系统

负压气力输送系统 负压气力输送系统指利用负压风机(真控泵)产生系统负压,将在受料器处与空气均匀混合的粉粒状物料通过管道

抽送至贮料装置的输送系统,主要用于燃煤电厂的灰处理系统,又称负压气力除灰系统,为国外引进技术,其系统设计技术已为国内除灰系统设计人员完全掌握。 负压气力输送系统投资较省,可以多点受料,要求灰斗下部的净空较小,适用于300MW及以下火电机组的除灰系统,且由于设备和管路在真空状态下只可能发生内泄漏,因而环境比较清洁。缺点是由于负压植有限,因而输送距离较短,一般输送的极限几何距离为200米,实际工程宜按≤150米设计;单个系统的最大出力一般为40吨/小时(粉煤灰)。 负压气力除灰系统通常由物料输送阀、进气止回阀、输送管道及阀门、灰气分离设备、贮灰库及辅助设备、负压风机和控制系统等组成。 物料输送阀又称E形阀,作为受料器是负压系统的关键设备之一,其作用是通过物料输送阀上的补气阀和灰量调节装置的工作,使灰斗内的灰与空气均匀混合,使灰气混合物具有良好的流动性而顺利进入输送管道,以保证输送通畅高效地进行。物料输送阀采用气动控制,其阀体和阀板应具有良好的耐磨性。我厂百可提供其它形式的卧式或立式受灰器。在物料输送阀与灰斗之间,应设常开型手动检修门。灰斗宜采取气化加热措施。 进气止回阀采用旋启式结构,当输送管道内浓度过高造成输灰支管进气端真空值过高时,进气止回阀自动打开,补入适量地空气以稀释过高的物料浓度,以防止堵管的发生。 由于负压气力除灰系统选择了较高的管内流速,且管道又不太长,故管道一般选用耐磨合金材料(包括直管、弯头等)。通常一个负压除灰系统用一根主输送管,每个电场(单侧或双侧)的灰斗组成一条支线,通过切换阀门与主管相连。切换阀门通常采用专用的隔离滑阀。

初识生活垃圾气力输送-收集系统

初识生活垃圾气力输送\收集系统 摘要:随着社会经济的快速发展和人们对于生活品质以及环境 要求的不断提高,为了提升垃圾处理设施在公众心中的印象,彻底解决垃圾在投放、清除、转运、回收过程中洒漏、腐败变质产生恶臭而引起二次污染的问题,瑞典在世界上率先开发并投入使用了生活垃圾真空气力输送收集系统。该系统是一种全新形式的生活废弃物输送、收集系统,也是目前世界上最先进的垃圾收运方式之一。本文从以下方面去叙述。 关键词:生活垃圾;气力输送收集;系统 abstract: with the rapid socio-economic development and people constantly improve the quality of life and environmental requirements, in order to enhance the impression of solid waste disposal facilities in the public mind, completely solve the garbage in the running, clear, transit, recycling process leakage of spoilagenoxious odors and cause secondary pollution problem in the world, sweden is the first to develop and put into use in the real air force transport garbage collection system. the system is an entirely new form of life waste transportation, collection systems, one of the ways is the world’s most advanced garbage removal. this article is from the narrative.keywords: garbage; pneumatic conveying collected; system

各种气力输送系统的经济性分析和对比

各种气力输送系统的经济性分析和对比 在设计气力除灰系统时,首先要保证能完成预期的输送任务,同时,合理地决定所采用的设备种类和容量,以及与此有关的问题,设计时,不能只看设备费用的多少,而更重要的是要综合考虑物料的性质对质量的影响,输送量、输送距离、输送路线的情况,以及运行管理的难易和费用等等,例如对于某些物料,各种设备的条件均适宜于气力输送,但由于物料含有大量的水分、具有粘附性等原因而不能采用气力输送时,即使机械输送设备费用大,也得选取机械输送方式。也有这样的情况,输送某些物料时,例如,向循环流化床锅炉炉前贮料仓输送石灰石粉时,采用气力输送所需的功率大,乍看起来运行费用较高,但从系统的合理性或生产技术上来看,还是用气力输为好。 究竟在什么样的情况下采用哪一种方式技术经济性比较合理呢,一般来说,在较短距离的输送时,机械输送是有利的;反之,对较长距离的输送。虽然从所需的功率来看,采用气力输送系统是不利的,但在设备费用方面,往往采用气力输送系统是有利的。设备费用和所需功率及运行费用随周围条件不同,变化很大,所以不能笼统地比较,同时还应注意到随着各种平台支架和附属设备的情况不同,变化幅度也很大。总之在设计气力除灰系统时,应该根据工程具体条件.综合性地通过技术经济比较后选择最合适的输送系统和相应的设备。 如果系统的输送出力和输送距离已定,则系统的经济性一般取决于输送的灰气混合比,从设备能量消耗来看,压(抽)气设备所需的功率与系统压力和空气流量的乘积成正比。如果提高灰气混合比,输用的空气量则可减小,在输送速度保持一定的条件下,输送用的空气量与管径的平方成正比,即Q∝D2而系统压力即输送管道的阻力与管内径的平反成反比,即P∝1/D而与灰气比并不是按正比关系增加。 因此,提高输送的灰气比,减少空气量,对降低压(抽)气设备的能量消耗是十分有利的:其次,从系统基建费用来看,由于灰气比的提高,设备和输送管道内径、支架及安装费用都可以相应地减小,降低系统基建费用的效果也是显而易见的。 灰气比μ越大,对于增大输送能力来说越有利,显然也将提高经济性。但是,灰气比过大,则在同样的气流速度下可能产生堵塞,并且输送压力也增高,对负压式和低正压气力输送系统,有可能会超过压气机械所允许的吸气压力或排气压力。因而,灰气比的数值受到物料的物理性质、输送方式以及输送条件等因素的限制。特别是对正压气力输送系统,考虑仓式泵本身的尺寸和构造、输料管的内径和长度、弯头数目以及使用的空气量等条件,其灰气比自然更受到制约。 在设计计算时,要考虑输送条件和参考各种实例来选定灰气比的数值一般选取的范围如表5-8所示 表5-8灰气比μ的数值 输送方式μ 负压式 低真空 高真空<10 10-20

气力输送系统的设计要点

气力输送系统的设计要点 【摘要】本文简要介绍了气力输送系统的分类和组成,并对气力输送系统设计中存在的一些重要问题进行归纳总结,为以后的工程设计提供参考。 【关键词】气力输送;分类;组成;设计要点 0.前言 气力输送是借助负压或正压气流通过管道输送粉料的技术。与其他机械输送方式如斗提、皮带等相比,具有设备简单、布置灵活、占地面积小、操作及维修方便等特点,在钢铁、煤炭、电力、化工、粮食等行业得到广泛应用[1]。气力输送系统设计的合理与否,对输送效率、运行成本和使用寿命都有重要影响,因此本文对气力输送系统设计中着重考虑的问题进行归纳总结,希望引起工程设计同行的重视,为将来的工程设计提供参考。 1.气力输送系统 1.1气力输送的分类 根据输送管中物料的密集程度,气力输送可分为稀相输送和密相输送。稀相输送的混合比一般为0.1~25,输送气速为18~30m/s,高于浓相输送[2]。 根据输送管中气体的压力大小,气力输送可分为吸送式和压送式。吸送式的输送管内压力低于大气压,能自吸进料,缺点是必须负压卸料,而且物料输送距离较短;压送式的输送管内压力高于大气压,卸料方便,物料输送距离较长,其缺点是须用给料器将物料送入带压的管道中[3]。 1.2气力输送系统的组成 气力输送系统主要包括给料系统、输料系统、集料系统、动力系统和控制系统五大部分。 给料系统的作用是保证粉尘能够连续、均匀地进入输送管中,主要包括粉料缓冲斗、插板阀、旋转给料阀、给料器等。由于吸送式气力输送的输送管内存在一定负压,能够自吸进料,故其给料器通常采用L型或V型给料器,压送式的给料器较复杂,一般采用船型给料器或仓泵。 输料系统是粉料输送的关键环节,由输送直管、弯管、吸气口、吹扫口等组成,输送管的布置对气力输送系统的压力损失、连续稳定运行有至关重要的影响。 集料系统的作用是使料气分离,并将粉料收集后集中处理,主要包括集料器、卸料阀、粉料储罐等。集料器即除尘器,烟尘粒径小、混合比大时,应采用二级

垃圾气力管道输送系统概述

垃圾气力管道输送系统概述 2007-8-9 1. 垃圾气力管道输送系统在国内外的应用 真空管道垃圾收集系统在国外应用十分广泛且技术已经相对成熟。该系统在欧洲城市新建区及卫星城、世博会、体育运动村等大型城市发展区较为普遍使用,西班牙、葡萄牙两国使用气力管道输送生活垃圾的普及率都已达到10%-20%,在亚洲的应用主要集中在日本、新加坡和香港。日本主要采用三菱的系统,将焚烧厂周边地区的垃圾直接输送到焚烧厂,例如东京湾和横滨;新加坡和香港都采用瑞典Envac系统,新加坡应用了7套,香港应用了9套;国内上海浦东国际机场和广州市白云新国际机场厨房也都采用的该系统,北京国际中心、上海泰晤士小镇住宅区、广州金沙洲居住区和花园酒店的垃圾气力管道输送系统也正在建设中。 目前全球共有近千套垃圾气力管道输送系统在投入使用。这种系统对提高环境质量的作用已逐渐被认同。 2. 垃圾气力管道输送系统的工作原理 垃圾被丢入投放口内(室内投放口或室外投放口),电脑程序控制清空过程,风机运行产生真空负压,所有垃圾以70公里/小时的速度,通过管道网络传输,将垃圾抽吸到 收集中心。每次清空一类垃圾。垃圾被导入相应类别集装箱内,由卡车运走。传送垃圾的气流经过过滤清洁,达到环保标准后排出。这套系统还可以通过增设投放口,实现垃圾分类。 垃圾气力输送系统组成主要有:垃圾投放口、垃圾管道及管道附属设施、吸气阀、排放阀,垃圾收集中心、电力和控制系统等。 3. 垃圾气力管道输送系统的特点 气力管道输送系统是一个高效的、现代化的和卫生的固废收运系统。该系统以空气为动力,经地下管网运输,将固体废弃物从建筑物运输到中央收集站。整个系统完全封闭,具有以下特点: (1)环境优雅。气力输送系统垃圾完全密闭收集与运输,可以使整个区域环境得到有效改善。小区内可取消手推车、垃圾桶、垃圾箱房等传统的收集工具与设施,有效的减少了二次污染。系统能基本避免人力车等垃圾运输工具穿行于居住区,有利于保持清爽的居住环境。

克莱德气力输送系统介绍

克莱德贝尔格曼华通 物料输送 气力输送系统介绍 现场培训用材料(试行版) 05.3.30

前言:气力输送的相关概念和原理 一:电厂输送的物料(输送对象) 1:电除尘的飞灰。 2:省煤器和空气预热器灰。 3:循环流化床锅炉的炉底渣。 4:循环流化床锅炉的石灰石粉料。 二:电除尘飞灰的主要性能指标及对输送的影响 1:粒度 粒度是对粉煤灰颗粒大小的度量,是粉煤灰的基本物理参数之一。粉煤灰许多的物化性能与此参数有密切的联系。 测量方法:筛分(围)和粒度分析仪(围更小的数值围)。 粒度大将引起在浓相输送中不容易形成灰栓、导致输送困难并引起耗气量增加。2:密度 密度:单位容积的重量。 气化密度:灰层处于气化状态下的密度。 在粒度相同时,密度小、孔隙率高,易输送。 3:粘附力 粘附力是分子力(分子间的引力,和距离的)、静电力(带相同电荷和相反电荷之间颗粒的引力和排斥力)、毛细粘附力(2个相邻湿润颗粒之间的拉力)总合。 分子力:分子间的引力,和距离的成反比,距离超过100A(1A=0.00001μM)时,此力忽略不计。当分子力很大时,粉粒从环境中吸收水分,增加粘性力. 静电力:带相同电荷和相反电荷之间颗粒的引力和排斥力.在相邻带电的粒子间的空气介质湿度教大,册静电力的作用就会显著减弱或全部消失. 粘附力大,会导致灰的流动性差,导致落灰困难并会增加浓相输送的困难。 4:磨蚀性 粉煤灰在流动中对管道壁的磨损。 影响磨蚀性的因素:粉煤灰颗粒的硬度、灰的几何形状、大小、密度、强度、流动速度。 粉煤灰颗粒的硬度:是物料磨蚀性及抗破碎性程度的表征,又是物料强度、流动性好坏的度量。硬度高:流动性差;导致为输送高硬度的物料需要耗费大的耗气量。。 一般:多棱体比光滑表面磨蚀性大、粗灰比细灰磨蚀性大。 在5-10μ的颗粒磨蚀性可以忽略;颗粒增大;磨蚀性增加,增大到极限值后,磨蚀性下降。 磨蚀性与气流速度的2-3次方成正比。灰的浓度低,磨蚀性大;灰的浓度高、其磨蚀性低。 5:灰斗的架桥和离析 架桥(棚灰):粉料堵塞在排料口以至于不能进行自由落体的排料。 架桥的原因:堆积密度(大)、压缩性(高)、粘附性(粘、软)、可湿性(高)、喷流性(差)、拱顶物料强度(高)、储存时间(长)、出料口(小) 括号是增加架桥发生的诱因变化趋势。

气力输送系统的设计原则与程序

气力输送系统的设计原则与程序 在设计压送式气力输送装置时,首先必须要对被输送物料的性质和料粒形状,输送条件,现场状况等进行了解和研究,在此基础上充分发挥气力输送的优点,正确选择气力输送的类型,以利于提高生产效率。 一、设计原则 1、输送物料的性质和料粒形状物料的粒度常取平均粒度作为物料的计算粒度,并要了解物料粒度的分布情况。物料的流动性一般用堆积角和摩擦角的大小来间接表示。同一种物料由于含水量不同,流动性有很大的差别,对物料的含水量需考虑是内部水分还是表面水分,要考虑物料的粘附作用。 ●物料的密度和堆密度是直接影响气力输送装置的外形尺寸、结构形式及功率 消耗的大小。 ●物料破碎率决定气力输送的布置路线、输送距离和选定合适的气流速度。 ●物料的腐蚀性对输送管道的材质提出特殊的要求。 ●物料有静电效应时,要安装必要的地线和防止带电装置,防止产生静电。

●对爆炸性物料,除防止静电外,必须采取防爆安全措施。 ●对输送有害物料,必须考虑采取密闭的搬运安全措施,防止管道和设备磨损 或损坏而外泄。 2、输送量在压送式气力输送装置设计时,要根据单位时间的输送量来确定装置的容量及规格。气力输送装置往往是成套设备中的一部分,必须与其他主机及辅机匹配,如果在输送量的大小上发生矛盾,可以采取中间料斗贮存缓冲的办法予以解决。输送量还与工艺有关,根据工艺要求决定采用间歇式还是连续式的装置,在选用压送式气力输送形式还应考虑装置的可靠性,要估计气力输送一旦发生故障对生产的影响。 3、输送起点和终点的状况在保证工艺的前提下尽可能缩短输送距离,充分发挥压送式气力输送的优势。装置的安装高度和给料方式要允分考虑周围的环境,必须不阻碍交通,便于检修,并减少设备维护费用。 4、降噪及环保气源机械的噪声影响环境,在气源进口及出口处,必须采取降低噪声措施。如风机或空气压缩机安装在单独的房间内,采用消声器等。气力输送装置必须考虑排气的除尘效果,采用各种类型适合于气力输送特点的除尘器,防止对大气的污染,若采用湿法除尘器时,要考虑污水处理。 5、自动化水平程度气力输送装置可实现集中自动控制,由中央控制室进行远程控制。这不仅减少操作人员,而且实现自动连锁,防止事故发生。 6、安装要点气力输送装置安装在室外时要考虑防雨防冻措施。岔道、增压器、气动或电气控制元件、阀、限位开关等必须要有箱体,防止雨淋而失灵。 7、特殊条件的要求输送高温物料需考虑冷却因素,输送管道要考虑保温和加热。气源机械(如空压机)要考虑水冷条件及排水措施。

简析浓相正压输送高压仓泵气力输送系统

简析浓相正压输送高压仓泵气力输送系统 正压浓相气力输送系统主要由进料装置、发送仓泵、管道、阀门、库底除尘装置、库底气化装置、库底卸料装置、动力气源、程控装置等结构组成,采用全自动PLC智控制,也可切换手动,操作简单易维护。 正压密相气力输送系统是输送颗粒、粉状型、块状型物料常用的输送设备之一,主要由压缩空气作为输送介质,采用强制性气力输送,依靠密闭压力容器作为发送器,一般气源压力为0.5Mpa-0.7Mpa,运行压力0.3Mpa-0.5Mpa,发送罐只能采取间歇性输送方式,输送距离可达1000米以上。物料在管道内以较低速度,、沙丘状态、流态化或团聚状态输送,输送效率高,输送质量好。输送能耗远低于其形式的气力输送系统,吨输送量每百米能耗为1.5kw,是其他形式气力输送系统的65%左右。 工作原理 1.进料阶段 进料阀和排气阀打开,物料自由落入泵体内,料满后,料位计发出信号,进料阀和排气阀自动关闭,完成进料过程; 2.流化加压阶段 打开进气阀,压缩空气进入泵体上部及底部,上部加压,下部空气扩散后穿过流化床,使物料呈流态化状态,同时泵内压力上升; 3.输送状态 当泵内压力达到一定值时,压力表或压力开关发出信号,出料阀自动打开,流化床上的物料流化加强,输送开始,泵内物料逐渐减少,此时流化床上的物料始终处于边流化边输送的状态; 4.吹扫阶段 当泵内物料输送完毕,压力下降到管道阻力时,压力表或压力开关发出信号,通气延续一定时间,压缩空气清扫管道,然后进气阀关闭,间隔一段时间,关闭出料阀,打开进料阀,完成一次输送循环。

系统特点 正压浓相气力输送系统是以空压机为气源,仓泵输送物料的一种密相高压气力输送系统。正压浓相气力输送系统具有流速低,耗气量小,适宜长距离,大容量的输送,便于实现流态化输送,具有噪声低、破碎少的特点,适宜输送水泥、粉煤灰、矿粉、铸造型砂、化工原料等磨削性大的物料。 1、输送管道配置灵活,使工厂生产工艺流程更合理; 2、输送系统完全密闭,粉尘飞扬少,可实现环保要求; 3、运动零部件少,维护保养方便,易于实现自动化; 4、物料输送效率高,降低了包装和装卸运输费用; 5、能避免输送的物料受潮,污损和混入其他杂物,保证了输送质量; 6、在输送过程中可同时实现多种工艺操作过程; 7、对于化学物质不稳定的物料,可采用惰性气体输送。 8、流速低,对管道的磨损小;耗气量小,适合长距离输送;单罐输送是间歇输送,实现连续输送,须用双罐;破碎少,噪音低;自动化程度较高。 我们目前正压浓相气力输送系统的气力输送泵是在汲取国内外同类产品的先进技术与结构的基础上,采用正压气力输送方式输送粉粒状物料,使用于电厂粉煤灰,水泥,铸造型沙,矿粉,粮食,化工原料等粉粒状物料的输送,可根据具体地形布置输送管道,实现集中,分散大高度长距离输送,输送过程不受条件限制,能确保物料不受潮湿,利用生产和环境保护,本设备配置自动化操作台,可实现手动和自动控制,自动控制采用继电器或PLC微处理器两种形式,通过长期运行,实践证明,其性能稳定,质量可靠,无粉尘污染,是较理想的气力输送设备。

电厂仓泵干除灰气力输送系统的PLC控制详述

电厂仓泵干除灰气力输送系统的PLC控制详述 文摘本文详细介绍了火力发电厂气力输送(干除灰)系统的工作流程和控制要求,仓泵气力输送技术开始在国内的运用,进一步促进了国内电厂粉煤灰气力输送技术的发展并且气力输送系统的输送距离、输送浓度、系统出力和设备的制造工艺及自动化水平得到加强和提高。 发电厂控制系统采用OMRON公司的C200H可编程序控制器,并在仓泵的输灰控制系统中的应用,实现了对仓泵的进料,进气,排气,出料等过程的计算机控制。本文给出了具体的实施方案,由该装置所构成的控制系统运行正常,其综合效益十分明显。 一、系统构成简介 在仓泵输灰控制过程中有大量连锁及闭锁。如: ①在仓泵体仍有余压得情况下就只能开放气阀降压而禁止开进料阀,进料和放气两阀未完全关闭时则禁止打开进风阀,以防止返灰;②在灰管压力较允许值高时则闭锁打开出料阀和进风阀,以防灰管堵塞或堵塞故障变大;③在空气母管压力较低时闭锁打开进风阀,防止堵管;④在进风阀未完全关闭时,闭锁大开放气阀和进料阀;⑤当仓泵内的灰料高度已达到预定位置、同侧的另一台仓泵不再出料状态且空气母管压力已达到规定值时,连锁打开出料计进风阀进行出料; 当空气母管压力降到规定值后,连锁关闭进风、出料阀,停止出料;另外还者有阀门故障检测系统,当一阀门从全关位置到全开位置或从全开位置到全关位置的动作时间超过一定时间值时,则发出声报警信号,提醒运行人员,该阀门已卡,应立即进行处理。 二、气力输送管中颗粒的运动状态 气力除灰是一种以空气为载体的方法,借助于某种压力设备(正压或负压)在管道中输送粉煤灰的方法。在输送管中,粉体颗粒的运动状态随气流速度与灰气比不同有显著变化,气流速度越大,颗粒在气流中的悬浮分布越均匀;气流速度越小,粉粒则越容易接近管低,形成停流,直至堵塞管道。 通过实验观察到某些粉体在不同的气流速度下所呈现的运动状况具有下面六种类型: (1)均匀流当输送气流速度较高,灰气比很低时,粉粒基本上及以接近均匀分布的状态在气流中悬浮输送。 (2)管底流当风速减小时,在水平管中颗粒向管底聚集,越接近管底,分布越密,当尚未出现停址。颗粒一面做不规则的旋转或碰撞,一面被输送走。 (3)疏密流当风速在降低或灰气进一步增大时,则会出现疏密流,这是粉体悬浮输送的极限状态。以上三种状态为悬浮流。 (4)集团流疏密流的风速再降低,则密集部分进一步增大,其速度也降低,大部分颗粒失去悬浮能力而开始在管道底滑动,形成集团流。粗大的颗粒透气好容易形成集团流。集团流只是在风速较小的水平管和倾斜管中产生。在垂直管中,颗粒所需要的浮力,已由气流的压力损失补偿了,所以不存在集团流。 (5)部分流常见的是栓塞流上部被吹走后的过度现象所形成的流动状态。 (6)栓塞流堆积的物料充满一段管路,水泥及粉灰煤灰一类不容易悬浮的粉粒,容易形成栓塞流。它的输送是靠料栓前后压差的推动。与悬浮流输送相比,在力的作用方式和管壁的摩擦上,都存在原则性区别,即悬浮流为气动力输送,栓塞流为压差输送。 2.1 气力除灰技术特点 气力除灰是一种以空气为载体,借助于某种压力设备在管道中输送粉煤灰的方法。气力除灰技术具有如下的特点: (1)节省大量的冲灰水; (2)在输送过程中,灰不与水接触,固灰的固有活性及其他特性不受影响,有利于粉煤灰的综合利用; (3)减少灰场占地; (4)避免灰场对地下水及周围大气环境的污染;

某大型气力垃圾输送系统设计实例

某大型气力垃圾输送系统设计实例 发表时间:2018-11-03T12:12:24.300Z 来源:《建筑模拟》2018年第22期作者:张义龙程学营 [导读] 某车站是国内首个应用垃圾气力输送系统来清运垃圾的大型车站。本文针对车站特点对气力垃圾输送系统的主要设计参数、设备选型进行简要介绍,为类似工程提供借鉴。 张义龙程学营 中国铁路设计集团有限公司天津 300251 摘要:某车站是国内首个应用垃圾气力输送系统来清运垃圾的大型车站。本文针对车站特点对气力垃圾输送系统的主要设计参数、设备选型进行简要介绍,为类似工程提供借鉴。 关键词:垃圾;气力输送;垃圾收集站 Practical design of a large-scale pneumatic garbage conveying system Abstract:In this paper,the major design parameters and equipment selection of a pneumatic waste conveying system in a large-scale station,which is the first station in China to use garbage pneumatic conveying system to clear rubbish,were introduced,providing reference for similar projects. Keyword:Garbage;pneumatic conveying;garbage collection station. 1 概述 气力垃圾收集输送系统是由工业上气力输送运输发展而来,其工作原理是利用抽风机制造负压,通过专用管道,使各个投放口收集的垃圾输送至垃圾收集站,再经过垃圾分离器将垃圾从气流中分离,用于输送垃圾的空气气流经过过滤器和气体净化装置净化后排到户外。 气力垃圾收集输送系统由垃圾投放系统、管道输送系统和垃圾收集站三大部分组成。其中垃圾投放系统主要由投放口、进气阀、排放阀等设备组成;管道输送系统主要由输送管、分段阀、检修口等设备组成;垃圾收集站主要由抽风机、分离器、压实机、集装箱等设备组成,是整个系统的核心,承担系统动力来源、设备控制、垃圾压缩和临时存储等功能。 某大型车站是新建车站,为提高车站卫生条件,减少垃圾运输对运营的影响,针对整个车站设计了一套大型气力垃圾输送系统,负责站台及部分站房普通垃圾输送,现就主要设计内容介绍。 2 气力垃圾输送系统设计 2.1 设计规模 考虑到系统安全运行,本设计仅考虑生活垃圾输送,车站厨余垃圾由专门机构收集。垃圾处理量25~80 t/d。气力垃圾输送系统考虑极端情况下车站的垃圾产生量,远期预估站台及候车大厅每天产生垃圾量不超过80 t,保证车站垃圾气力输送在最不利情况下仍能满足运输作业要求。 2.2 主要设计参数 垃圾与空气的输送比为10:1,设计风速25 m/s,风机负压值-30 KPa。 2.3 投放口设置 高速车场及普速车场各站台西端分别设置垃圾投放口1处及补气口1处,共计17处;中央站房主体内±0.00m层设置4处垃圾投放口、高架10m层南北站房各设2处垃圾投放口、候车区西侧设置2处垃圾投放口,各投放口处利用管道竖井设置补气通道。 2.4 气力输送管道设置 垃圾气力输送管道连接垃圾投放口,通往垃圾中央收集站。管道埋深不低于0.9 m;管道敷设时,需铺0.2 m厚砂垫层,在弯头和三通处设置支墩,并沿垃圾走向设置0.1%坡度。管道每间隔100 m及弯头、三通的下游设检查井及检修口,便于设备检修及堵点疏通。 2.5 垃圾收集站设置 在站房西北侧设垃圾中央收集站一座,内设两套收集装置,一套装置收集中央站房主体区域垃圾及地面普速车场两座基本站台列车垃圾,另一套装置收集地面普速车场其他中间站台及高架车场站台列车垃圾。每套装置配备抽风机、垃圾分离器、垃圾压实机、集装箱、空压机组、电气控制系统、除尘除臭器和集装箱移动系统等。 3 关键设备研制/选型 3.1 垃圾投放口 垃圾投放口设有传感器,当垃圾到达限定高度时,系统自动开启气力主机,当气力主机运行一段时间,风速到达一定值时,气动排放阀自动开启,垃圾由于重力及负压进入主管道,延时数秒后,气动排放阀关闭。 站台垃圾投放口设置在敞开式的空间,考虑到防雨防潮,材质选用不锈钢。考虑到运行时的安全问题,投放口配备专用钥匙,由专人保管及使用;在投放口面板设置警示灯,红灯亮时,系统处于待机状态,可开启投放口投放垃圾;绿灯亮时,风机运行,投放口底部排放阀处于关闭状态,可开启投放口投放垃圾;黄灯闪烁时,投放口底部排放阀开启,不得开启投放口投放垃圾;投放口底部排放阀与投放口锁联动,投放口未锁闭时,排放阀始终处于关闭状态。 3.2 垃圾分离器 高速气流携带着垃圾进入气固分离器,分离出的垃圾暂存于分离器下部缓存箱内,待缓存箱满后,排入垃圾压缩站,气流进行下一步的除湿除尘除臭处理。 3.3 气力主机 根据设计,系统的最大压损为最远端投放口即候车室投放口至除臭装置的总压损。当投入物料后,气力输送系统产生的压力损失由沿程压损、弯管压损、局部压损、加速压损、提升物料压损等几部分组成,经计算系统最远端管路总压损为15 kPa。本系统设3台8 kPa的风机串联安装,两用一备。 3.4 气力输送管道及空气压缩管道 气力输送管道和压缩空气管道均为直埋,若因为管道锈蚀或焊接质量导致漏气或较大的破裂,将严重影响整个系统的使用。因此管道

正压浓相气力输送系统的工作原理及流程

正压浓相气力输灰工作原理及分步流程 正压浓相气力输送系统的工作原理:浓相干输灰是根据固气两相流的气力输送原理,利用压缩空气的静压和动压高浓度、高效率输送物料。飞灰在仓泵内必须得到充分流化,而且是边流化边输送。整个系统由五个部分组成:气源部分、输送部分、管路部分、灰库部分和控制部分。其中输送部分根据输灰量的要求,配以相应规格的输送机(仓泵)组成,每台输送机都是一个独立体,既可单机运行,也能多台组成系统运行。 仓泵 它是系统的核心部分,通过它将干灰与压缩空气充分混合并流态化,从而得以顺利在系统中运行。它是一个密闭的钢罐,上面装有进出料阀、流化盘、料位计、安全阀等配套设备。 仓泵工作原理: 仓泵是一个带有空气喷嘴的压力容器,这种设备具有输灰距离远、工作可靠、自动化程度高等特点,且需要用比较高压力的压缩空气作为输送介质,要配备一套空压机。它的工作过程是:先打开排气阀和进料阀进行装料,料满后关闭进料阀和排气阀,打开缸体加压阀,压缩空气将缸体内的粉尘带走。如此循环往复,就可将粉尘输送出去。

1、进料阶段:进料阀呈开启状态,一次进气阀和出料阀关闭,仓泵上部与灰斗连接,除尘器捕集的飞灰藉重力自由或经卸料机落入仓泵内,当灰位高至使料位计发出料满信号,或按系统进料设定时间到,进料阀关闭,排气阀关闭,进料状态结束。 2、加压流化阶段:进料阶段完成后,系统自动打开一次进气阀,经过处理的压缩空气经过流量调节阀进入仓泵底部流化锥,穿过流化锥后使空气均匀包围在每一粒飞灰周围,同时仓泵内压力升高,当压力高至使压力传感器发出信号时,系统自动打开出料阀,加压流化阶段结束。 3、输送阶段:出料阀、二次进气阀打开,一次进气阀不停,此时仓泵一边继续进气,边气灰混合物通过出料阀进入输灰管,飞灰始终处于边流化边进入输送管道进行输送,当仓泵内飞灰输送完后,管路压力下降,仓泵内压力降低,使压力传感器发出信号时,二次进气阀关闭,当仓泵内压力继续下降,至使压力传感器发出信号时,输送阶段结束,进气阀和出料阀保持开启状态,进入吹扫阶段。 4、吹扫阶段:进气阀和出料阀保持开启状态,压缩空气吹扫仓泵和输灰管道,定时一段时间后,吹扫结束,关闭进气阀,待仓泵内压力降至常压时,关闭出料阀,打开进料阀、排气阀,进入进料阶段,至此,系统完成一个输送循环,自动进入下一个输送循环。

气力输送系统的组成气力输送

《食品加工机械与设备》 前言 研究内容:农产品加工中常用的机械和设备以及其构成、各部分的功能,特性,适用范围,使用与维护和相关性能指标的测定(生产率、功率消耗等)。 研究目的和意义:了解现有的设备,设计未来的产品。 第一章物料输送机械 本章学习目标 1)了解各种形态物料的输送特点; 2)掌握输送机械的主要类型及其工作原理; 3)了解各种主要输送机械的基本结构; 4)掌握输送机械的基本性能特点; 5)掌握输送机械的选用和使用要点。 一前言: 输送机械的类型:按传送过程的连续性分为连续式和间歇式 按传送时运动方式可分为直线式和回转式 按驱动方式分机械驱动、液压驱动、气压驱动和电磁驱动 按所传送的物料形态分为固体物料输送机械和液体物料输送机械输送物料的状态:固体物料状态有块状、粒状和粉状,输送机械有带式、螺旋、振动式、刮板式、斗式输送机与气力输送装置,固体物料的组织结构、形状、表面状态、摩擦系数、密度、粒度大小;液体物料状态有牛顿流体和非牛顿流体,输送机械有离心泵、齿轮泵和螺杆泵,液体物料的粘度、成分构成。 良好输送效果,应考虑物料性质、工艺要求、输送路线及运送位置的不同选择适当形式的输送设备。 二固体物料输送机械 (一)带式输送机应用最广泛,连续输送机械,用于块状、颗粒状物料及整件物料的水平或倾斜方向的运送,还常用于连续分选、检查、包装、清洗和预处理的

操作台。v=0.02~4m/s 1.工作原理和类型:环形输送带作为牵引及承载构件,绕过并张紧于两滚筒上,输送带依靠 其与驱动滚筒之间的摩擦力产生连续运动,同时,依靠其与物料之间的 摩擦力和物料的内摩擦力使物料随输送带一起运动,从而完成输送物料 的任务。主要组成部件:环形输送带,驱动滚筒,张紧滚筒,张紧装置, 装料斗、卸料装置、托辊及机架组成 特点:结构简单,适应性广;使用方便,工作平稳,不损失被运输物料;输送过程中物料与输送带间无相对运动,输送带易磨损,在输送轻质粉料时易形成飞扬。 1.2主要构件: 1.2.1输送带: A种类:食品工业常用的输送带有橡胶带、纤维编织带、网状钢丝带及塑料带。 1)橡胶带纤维织品与橡胶构成的复合结构,上下两面为橡胶层,耐磨损,具有良好 的摩擦性能。工作表面有平面和花纹两种,后者适宜于内摩擦力较小的光滑颗粒物 料的输送。规格:300、400~1600mm宽 2)钢带0.6~1.4mm厚,宽<650mm;强度大耐高温、不易伸长和损伤 3)网状钢丝带强度高、耐高温、耐腐蚀,网孔大小可选,常用于水冲洗+输送, 边输送,并清、沥水、炸制、通分冻结、干燥。 4)塑料带耐磨、耐酸碱、耐油、耐腐蚀,适用温度变化范围大,一般有单层和多层 结构。 B托辊: 作用:承托输送带及其上面的物料,避免作业时输送带产生过大的挠曲变形。 种类:上托辊(载运托辊)和下托辊(空载托辊) 上托辊有单辊式和多辊组合式。前者输送带表明平直,物料运送量较少,适合运输成件物品;后者输送带弯曲呈槽形,运输量大、生产率高,适合运送 颗粒状物料,单输送带易磨损。 材料:铸铁、钢管+端头 1)上托辊φ89、φ108、φ159mm , 间距<1/2物件长(大于20公斤)一般 0.4~0.5m 2)下托辊只起托运输送作用,多为平面单辊。 C: 滚筒 1)驱动滚筒一般有电机+减速机+带、链传动,电动滚筒。宽大于带宽10~20cm.

相关文档
最新文档