计算方法第一章绪论(32学时)-2014.2

教材

聂玉峰、王振海等

《数值方法简明教程》,高等教育出版社,2011

作业

计算方法作业集(A、B)

参考书

?封建湖,车刚明

计算方法典型题分析解集(第三版)

西北工业大学出版社,2001

?封建湖,聂玉峰,王振海

数值分析导教导学导考(第二版)

西北工业大学出版社,2006

?车刚明,聂玉峰,封建湖,欧阳洁

数值分析典型题解析及自测试题(第二版)

西北工业大学出版社,2003

西北工业大学理学院欧阳洁2

第一章绪论

§1 引言

§2 误差的度量与传播

§3 选用算法时应遵循的原则

西北工业大学理学院欧阳洁3

§1 引言

科学与工程领域中运用计算机求解问题的一般过程:

1 实际问题的提出

2 建立数学模型

3 设计可靠、高效的数值方法

4 程序设计

5 上机实践计算结果

6 数据处理及结果分析

西北工业大学理学院欧阳洁4

学习算法的意义

科学计算(数值模拟)已经被公认为与理论分析、实验分析并列的科学研究三大基本手段之一。

计算方法课程的研究对象具有广泛的适用性,著名流行软件如Maple、Matlab、Mathematica 等已将其绝大多数内容设计成函数,简单调用之后便可以得到运行结果。

但由于实际问题的具体特征、复杂性, 以及

算法自身的适用范围决定了应用中必须选择、设计适合于自己特定问题的算法,因而掌握数值方法的思想和内容至关重要。

西北工业大学理学院欧阳洁5

鉴于实际问题的复杂性,通常将其具体地

分解为一系列子问题进行研究,本课程主要涉

及如下几个方面问题的求解算法:

?非线性方程求根

?线性代数方程组求解

?函数插值

?曲线拟合

?数值积分与数值微分

?常微分方程初值问题的数值解法?矩阵特征值与特征向量计算

西北工业大学理学院欧阳洁6

§2 误差的度量与传播一误差的来源与分类

模型误差:数学模型与实际问题的误差

观测误差:

观测结果与实际问题的误差

截断误差:数学模型的理论解与数值计算问

题的精确解之间的误差

舍入误差:对超过某有限位数的数据进行舍

入所产生的误差

西北工业大学理学院欧阳洁7

数值计算方法学习指导书内容简介

数值计算方法学习指导书内容简介 数值计算方法学习指导书内容简介《数字信号处理学习指导》是浙江省高等教育重点建设教材、应用型本科规划教材《数字信号处理》(唐向宏主编,浙江大学出版社出版,以下简称教材)的配套学习指导书,内容包括学习要求、例题分析、教材习题解答、自测练习以及计算机仿真实验等。学习指导书紧扣教材内容,通过例题讲解,分析各章节的学习重点、难点以及需要理解、掌握和灵活运用的基本概念、基本原理和基本方法。全书共有66例例题分析、121题题解、2套自测练习和6个mat1ab计算机仿真实验。 数值计算方法学习指导书目录绪论 第1章离散时间信号与系统 1.1 学习要点 1.2 例题 1.3 教材习题解答 第2章离散系统的变换域分析与系统结构 2.1 学习要点 2.2 例题 2.3 教材习题解答 第3章离散时间傅里叶变换

3.1 学习要点 3.2 例题 3.3 教材习题解答 第4章快速傅里叶变换 4.1 学习要点 4.2 例题 4.3 教材习题解答 第5章无限长单位冲激响应(iir)数字滤波器的设计5.1 学习要点 5.2 例题 5.3 教材习题解答 第6章有限长单位冲激响应(fir)数字滤波器的设计6.1 学习要点 6.2 例题 6.3 教材习题解答 第7章数字信号处理中的有限字长效应 7.1 学习要点 7.2 例题 7.3 教材习题解答 第8章自测题 8.1 自测题(1)及参考答案 8.2 自测题(2)及参考答案 第9章基于matlab的上机实验指导 9.1 常见离散信号的matlab产生和图形显示

9.2 信号的卷积、离散时间系统的响应 9.3 离散傅立叶变换 9.4 离散系统的频率响应分析和零、极点分布 9.5 iir滤波器的设计 9.6 fir滤波器的设计 数值计算方法学习指导书内容文摘第1章离散时间信号与系统 1.1 学习要点 本章主要介绍离散时间信号与离散时间系统的基本概念,着重阐述离散时间信号的表示、运算,离散时间系统的性质和表示方法以及连续时间信号的抽样等。本章内容基本上是“信号与系统”中已经建立的离散时间信号与系统概念的复习。因此,作为重点学习内容,在概念上需要明白本章在整个数字信号处理中的地位,巩固和深化有关概念,注意承前启后,加强葙关概念的联系,进一步提高运用概念解题的能力。学习本章需要解决以下一些问题: (1)信号如何分类。 (2)如何判断一个离散系统的线性、因果性和稳定性。 (3)线性时不变系统(lti)与线性卷积的关系如何。 (4)如何选择一个数字化系统的抽样频率。 (5)如何从抽样后的信号恢复原始信号。 因此,在学习本章内容时,应以离散时间信号的表示、离散时间系统及离散时间信号的产生为主线进行展开。信号的离散时间的表示主要涉及序列运算(重点是卷积和)、常用序列、如何判

现代数值计算方法习题答

现代数值计算方法习题答案 习 题 一 1、解:根据绝对误差限不超过末位数的半个单位,相对误差限为绝对误差限除以 有效数字本身,有效数字的位数根据有效数字的定义来求.因此 49×10 -2 :E = 0.005; r E = 0.0102; 2位有效数字. 0.0490 :E = 0.00005;r E = 0.00102; 3位有效数字. 490.00 :E = 0.005; r E = 0.0000102;5位有效数字. 2、解: 7 22 = 3.1428 …… , π = 3.1415 …… , 取它们的相同部分3.14,故有3位有效数字. E = 3.1428 - 3.1415 = 0.0013 ;r E = 14 .3E = 14 .30013.0 = 0.00041. 3、解:101的近似值的首位非0数字1α = 1,因此有 |)(*x E r |) 1(10 1 21--??=n < = 2 1× 10 -4 , 解之得n > = 5,所以 n = 5 . 4、证:) ()(1)()(1)(* 1 1* * 1 1 * * x x x n x E x n x E n n n -= ≈ -- )(11)()(1) ()(* * * * * 1 1 ** * * x E n x x x n x x x x n x x E x E r n n n n n r = -= -≈ = - 5、解:(1)因为=20 4.4721…… , 又=)(*x E |*x x -| = |47.420-| = 0.0021 < 0.01, 所以 =*x 4.47. (2)20的近似值的首位非0数字1α = 4,因此有 |)(*x E r |) 1(10 4 21--??= n < = 0.01 , 解之得n > = 3 .所以,=*x 4.47. 6、解:设正方形的边长为x ,则其面积为2x y =,由题设知x 的近似值为*x = 10 cm . 记*y 为y 的近似值,则

数值计算方法课程报告

课程报告 课程名称______《数值计算》 __ 学生学院_____机电工程学院___ 专业班级_____微电子(1)班____ 学号________ 学生姓名_______________ 指导教师_____ ________ XXXX年XX月XX日

姓 名: 线 学 号 : 订 装专 业:学院: 广东工业大学考试试卷( A ) 课程名称: 数值计算试卷满分100 分考试时间: 2015 年 12 月 26 日(第 17 周星期六) 题号一二三四五六七八九十总分 评卷得分 评卷签名 复核得分 复核签名 “数值计算”考试要求 “数值计算”考试以开卷形式进行。在“数值计算”课程考试日(2015 年12 月 19 日,第 12 周星期五)考试时间,在考试教室领取试题,在 2015 年12 月 26 日(第 17 周星期六)进行答辩。不参加答辩者将取消考试成绩。 “数值计算”考试结果要求独立在计算机上完成,可使用Matlab或 C 程序编程实现。考试结果将以报告书形式提交,内容包括对问题描述、计算程序以及算例、计算结果、分析组成。计算程序要求具有通用性,能够处理异常情况,可以输入问题、算法参数、算例及初始值,在计算过程中显示当前计算状态、计算完成后显示计算结果。上述内容将作为试卷成绩的主要评定依据。特别提醒,不得使用教师在讲课和实验时的范例作为考试结果。报告书具体格式参考毕业设计手册。 以考生学号命名的文件夹存放程序及报告书电子版,以班级为单位刻录在一张光盘中,与打印版报告书一起由班长和学习委员一起上交任课教师。 数值计算课程总成绩将由试卷成绩(70%)、平时成绩(30%)组成。

数值计算方法教学大纲

《数值计算方法》教学大纲 课程编号:MI3321048 课程名称:数值计算方法英文名称:Numerical and Computational Methods 学时: 30 学分:2 课程类型:任选课程性质:任选课 适用专业:微电子学先修课程:高等数学,线性代数 集成电路设计与集成系统 开课学期:Y3开课院系:微电子学院 一、课程的教学目标与任务 目标:学习数值计算的基本理论和方法,掌握求解工程或物理中数学问题的数值计算基本方法。 任务:掌握数值计算的基本概念和基本原理,基本算法,培养数值计算能力。 二、本课程与其它课程的联系和分工 本课程以高等数学,线性代数,高级语言编程作为先修课程,为求解复杂数学方程的数值解打下良好基础。 三、课程内容及基本要求 (一) 引论(2学时) 具体内容:数值计算方法的内容和意义,误差产生的原因和误差的传播,误差的基本概念,算法的稳定性与收敛性。 1.基本要求 (1)了解算法基本概念。 (2)了解误差基本概念,了解误差分析基本意义。 2.重点、难点 重点:误差产生的原因和误差的传播。 难点:算法的稳定性与收敛性。 3.说明:使学生建立工程中和计算中的数值误差概念。 (二) 函数插值与最小二乘拟合(8学时) 具体内容:插值概念,拉格朗日插值,牛顿插值,分段插值,曲线拟合的最小二乘法。 1.基本要求 (1)了解插值概念。 (2)熟练掌握拉格朗日插值公式,会用余项估计误差。 (3)掌握牛顿插值公式。 (4)掌握分段低次插值的意义及方法。

(5)掌握曲线拟合的最小二乘法。 2.重点、难点 重点:拉格朗日插值, 余项,最小二乘法。 难点:拉格朗日插值, 余项。 3.说明:插值与拟合是数值计算中的常用方法,也是后续学习内容的基础。 (三) 第三章数值积分与微分(5学时) 具体内容:数值求积的基本思想,代数精度的概念,划分节点求积公式(梯形辛普生及其复化求积公式),高斯求积公式,数值微分。 1.基本要求 (1)了解数值求积的基本思想,代数精度的概念。 (2)熟练掌握梯形,辛普生及其复化求积公式。 (3)掌握高斯求积公式的用法。 (4)掌握几个数值微分计算公式。 2.重点、难点 重点:数值求积基本思想,等距节点求积公式,梯形法,辛普生法,数值微分。 难点:数值求积和数值微分。 3.说明:积分和微分的数值计算,是进一步的各种数值计算的基础。 (四) 常微分方程数值解法(5学时) 具体内容:尤拉法与改进尤拉法,梯形方法,龙格—库塔法,收敛性与稳定性。 1.基本要求 (1)掌握数值求解一阶方程的尤拉法,改进尤拉法,梯形法及龙格—库塔法。 (2)了解局部截断误差,方法阶等基本概念。 (3)了解收敛性与稳定性问题及其影响因素。 2.重点、难点 重点:尤拉法,龙格-库塔法,收敛性与稳定性。 难点:收敛性与稳定性问题。 3.说明:该内容是常用的几种常微分方程数值计算方法,是工程计算的重要基础。 (五) 方程求根的迭代法(4学时) 具体内容:二分法,解一元方程的迭代法,牛顿法,弦截法。 1.基本要求 (1)了解方程求根的对分法和迭代法的求解过程。 (2)熟练掌握牛顿法。 (3)掌握弦截法。 2.重点、难点 重点:迭代法,牛顿法。

现代数值分析

研硕16《化工数值方法及Matlab应用》试题 班级姓名成绩 1.(15分)数值计算方法的主要研究对象有哪些?其常用基本算法主要包括哪三个方面?举例说明Matlab在解决化工数值计算问题方面有什么样实用价值?答:(1)数值计算方法的主要研究对象为非线性方程求根,插值法、曲线拟合、数值积分、常微分方程(组)、初值问题求解、线性和非线性方程组求解。(2)基本算法包括①离散化方法:用差商代替导数、差分代替微分等,将连续的数学问题转化为离散问题。②逼近方法:用简单函数的值近似代替求解困难或形式未知的复杂函数的值。③迭代法:用一个固定公式反复计算,对较为粗糙的根的近似值进行加工直到满足精度要求的方法。 (3)Matlab在解决化工数值计算问题的实用价值有:数值计算和符号计算功能;图形功能;MATLAB语言;功能性和学科性工具箱。 2.(10分)数值计算中的“曲线拟合”,一般有哪些方法?请至少指出四种,并简述各自的基本特点。 答:(1)拉格朗日插值:,优点在于不要求数据点事等间隔的,缺点是数据点不易过多,当数据比较多时,差值函数有偏离原函数的风险; (2)牛顿插值法:它不仅克服了“增加一个节点时整个计算工作必须重新开始”的缺点,而且可以节省乘、除法运算次数。同时,在牛顿插值多项式中用到的差分与差商等概念,又与数值计算的其他方面有着密切的关系。

(3)牛顿迭代法:牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根,此时线性收敛,但是可通过一些方法变成超线性收敛。 (4)区间二分法:优点:算法简单,容易理解,且总是收敛的。缺点:收敛速度太慢,浪费时间,二分法不能求复根跟偶数重根。 (5)最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。 3. (15分)在298K 下,化学反应 2OF 2=O 2+2F 2 的平衡常数为0.410 atm ,如在298K 下将OF 2 通入容器,当t=0 时为1 atm ,问最后总压是多少?取计算精度为10-3 。 解:首先写出求解问题的数学方程式。 假设气体是理想气体,由反应的化学计量式可知, 22222F O OF += 设氧的分压为p ,平衡时有p 21- p p 2。 平衡时,有()410.02142 3=-p p 整理得 0410.064.1640.1423=-+-p p p 函数关系为 ()0410.064.1640.1423=-+-=p p p p f

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

《数值计算方法》上机实验报告

《数值计算方法》上机实验报告华北电力大学 实验名称数值il?算方法》上机实验课程名称数值计算方法专业班级:电力实08学生姓名:李超然学号:200801001008 成绩: 指导教师:郝育黔老师实验日期:2010年04月华北电力大学实验报告数值计算方法上机实验报吿一. 各算法的算法原理及计算机程序框图1、牛顿法求解非线性方程 *对于非线性方程,若已知根的一个近似值,将在处展开成一阶 xxfx ()0, fx ()xkk 泰勒公式 "f 0 / 2 八八,fxfxfxxxxx 0 0 0 0 0 kkkk2! 忽略高次项,有 ,fxfxfxxx 0 ()()(),,, kkk 右端是直线方程,用这个直线方程来近似非线性方程。将非线性方程的 **根代入,即fx ()0, X ,* fxfxxx 0 0 0 0, ,, kkk fx 0 fx 0 0,

解出 fX 0 *k XX,, k' fx 0 k 水将右端取为,则是比更接近于的近似值,即xxxxk, Ik, Ik fx ()k 八XX, Ikk* fx()k 这就是牛顿迭代公式。 ,2,计算机程序框图:,见, ,3,输入变量、输出变量说明: X输入变量:迭代初值,迭代精度,迭代最大次数,\0 输出变量:当前迭代次数,当前迭代值xkl ,4,具体算例及求解结果: 2/16 华北电力大学实验报吿 开始 读入 l>k /fx()0?,0 fx 0 Oxx,,01* fx ()0 XX,,,?10 kk, ,1,kN, ?xx, 10 输出迭代输出X输出奇异标志1失败标志

,3,输入变量、输出变量说明: 结束 例:导出计算的牛顿迭代公式,并il ?算。(课本P39例2-16) 115cc (0), 求解结果: 10. 750000 10.723837 10. 723805 10. 723805 2、列主元素消去法求解线性方程组,1,算法原理: 高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘 -个 方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上 对上三角 3/16 华北电力大学实验报告方程组求解。 列选主元是当高斯消元到第步时,从列的以下(包括)的各元素中选出绝 aakkkkkk 对值最大的,然后通过行交换将其交换到的位置上。交换系数矩阵中的 两行(包括常ekk 数项),只相当于两个方程的位置交换了,因此,列选主元不影响求解的结 ,2,计算机程序框图:,见下页, 输入变量:系数矩阵元素,常向量元素baiji 输出变量:解向量元素bbb,,12n

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

数值计算方法习题答案(第二版)(绪论)

数值分析 (p11页) 4 试证:对任给初值x 0, 0)a >的牛顿迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 2112(1)(,0,1,2,.... (2)1,2,...... k k k x k x x k x k +-= -=≥= 证明: (1 )(2 1122k k k k k k x a x x x x +-??-=+= =? ?? (2) 取初值00>x ,显然有0>k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而() k k k k k x x x x x 28882182 1-=-???? ? ?+=-+ n n k k x x 212211021 5.22104185 .28--+?=??<-∴>≥Θ 1k x +∴必有2n 位有效数字。 8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数*x 可表示为m n a a a x 10......021*?±=,如果* x 具有l 位有效数字,则其相 对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1a 为*x 中第一个非零数)

则7.21=x ,有两位有效数字,相对误差限为 025.0102 21 111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x ∴其相对误差限为 00678.07 .20183 .011≈<-x e x 同理对于71.22=x ,有 003063.071 .20083 .022≈<-x e x 对于718.23=x ,有 00012.0718 .20003 .033≈<-x e x 备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。 (2)采用第二种方法时,分子为绝对误差限,不是单纯的对真实值与近似值差值的四舍五入,绝对误差限大于或等于真实值与近似值的差。 11. 解: ......142857.3722≈,.......1415929.3113 255≈ 2102 1 722-?≤-∴ π,具有3位有效数字

数值计算方法教学大纲(本)

数值计算方法教学大纲(本) 本着“崇术重用、服务地方”的办学理念和我校“高素质应用型人才”的培养目标,特制定了适合我校工科专业本科生的新教学大纲。 一、课程计划 课程名称:数值计算方法Numerical Calculation Method 课程定位:数学基础课 开课单位:理学院 课程类型:专业选修课 开设学期:第七学期 讲授学时:共15周,每周4学时,共60学时 学时安排:课堂教学40学时+实验教学20学时 适用专业:计算机、电科、机械等工科专业本科生 教学方式:讲授(多媒体为主)+上机 考核方式:考试60%+上机实验30%+平时成绩10% 学分:3学分 与其它课程的联系 预修课程:线性代数、微积分、常微分方程、计算机高级语言等。 后继课程:偏微分方程数值解及其它专业课程。 二、课程介绍 数值计算方法也称为数值分析,是研究用计算机求解各种数学问题的数值方法及其理论的一门学科。随着计算科学与技术的进步和发展,科学计算已经与理论研究、科学实验并列成为进行科学活动的三大基本手段,作为一门综合性的新科学,科学计算已经成为了人们进行科学活动必不可少的科学方法和工具。 数值计算方法是科学计算的核心内容,它既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际实验的高度技术性的特点,是一门与计算机使用密切结合的实用性很强的数学课程.主要介绍插值法、函数逼近与曲线拟合、线性方程组迭代解法、数值积分与数值微分、非线性方程组解法、常微分方程数值解以及矩阵特征值与特征向量数值计算,并特别加强实验环节的训练以提高学生动手能力。通过本课程的学习,不仅能使学生初步掌握数值计算方法的基本理论知识,了解算法设计及数学建模思想,而且能使学生具备一定的科学计算能力和分析与解决问题的能力,不仅为学习后继课程打下良好的理论基础,也为将来从事科学计算、计算机应用和科学研究等工作奠定必要的数学基础。 科学计算是21世纪高层次人才知识结构中不可缺少的一部分,它潜移默化地影响着人们的思维方式和思想方法,并提升一个人的综合素质。

现代数值分析复习题

复习题(一) 一、填空题: 1、求方程0.5x2 101x 1 0的根,要求结果至少具有6位有效数字。已知 V10203 101.0099,贝卩两个根为x1 _____________________________ , X2 ________________________________ .(要有计算过程和结果) 4 1 0 A A 1 4 1 2、0 1 4,则A的LU分解为。 1 2 A 3、 3 5,贝卩(A) ____________ ,A __________ . 4、已知f(1)「Q f(2)「2,f(3) =3,则用抛物线(辛卜生)公式计算求 3 得1 f(x)dx -------------------- ,用三点式求得f (1) ________________ . 5、f(1) 1,f(2) 2,f(3) 1,则过这三点的二次插值多项式中x2的系数 为_____ ,拉格朗日插值多项式为 _________________________ . 二、单项选择题: 1、Jacobi迭代法解方程组Ax b的必要条件是( ). A. A的各阶顺序主子式不为零 B. (A) 1 C a ii 0,i 1,2, ,n D|| A 1 2、设f(x) 3x99 5x 7,均差f[1,2,22, ,299]=(). D. 3

4、三点的高斯求积公式的代数精度为 ( ). A.3 B. -3 C. 5 D.0 2 2 3 A 0 5 1 3、设 0 0 7 ,则 (A )为( ). A. 2 B. 5 C. 7

分别用拉格朗日插值法和牛顿插值法求 f (x )的三次插值多项式P 3(x ),并 求f (2)的近似值(保留四位小数). 4、 取步长h 0.2,用预估-校正法解常微分方程初值问题 y 2x 3y y (0) 1 (0 x 1) 5、 已知 A. 2 B.5 C. 3 D. 4 5、幕法的收敛速度与特征值的分布 A.有关 B.不一定 C. 无关 三、计算题: 1、用高斯-塞德尔方法解方程组 4X ! 2X 2 X 3 11 X 1 4X 2 2X 3 18 2X ! X 2 5X 3 22 (°) /c c c\T ,取 x (°,°,°),迭 四次(要求按五位有效数字计算 ). 1 2、求A 、B 使求积公式 1 f (X )dX A[f( 1) f (1)] 1 B [f (2)f (2)] 的代数精 度尽量高,并求其代数精度;利用此公式求 I 21dx 1 x (保留四位小 数)。 3、已知

数值分析第一章绪论习题答案

第一章绪论 1.设0x >,x 的相对误差为δ,求ln x 的误差。 解:近似值* x 的相对误差为* **** r e x x e x x δ-= == 而ln x 的误差为()1ln *ln *ln ** e x x x e x =-≈ 进而有(ln *)x εδ≈ 2.设x 的相对误差为2%,求n x 的相对误差。 解:设()n f x x =,则函数的条件数为'() | |() p xf x C f x = 又1 '()n f x nx -= , 1 ||n p x nx C n n -?∴== 又((*))(*)r p r x n C x εε≈? 且(*)r e x 为2 ((*))0.02n r x n ε∴≈ 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字:*1 1.1021x =,*20.031x =, *3385.6x =, * 456.430x =,*57 1.0.x =? 解:*1 1.1021x =是五位有效数字; *20.031x =是二位有效数字; *3385.6x =是四位有效数字; *456.430x =是五位有效数字; *57 1.0.x =?是二位有效数字。 4.利用公式(2.3)求下列各近似值的误差限:(1) * * * 124x x x ++,(2) ***123x x x ,(3) **24/x x . 其中****1234 ,,,x x x x 均为第3题所给的数。 解:

*4 1* 3 2* 13* 3 4* 1 51()1021()1021()1021()1021()102 x x x x x εεεεε-----=?=?=?=?=? *** 124***1244333 (1)()()()() 1111010102221.0510x x x x x x εεεε----++=++=?+?+?=? *** 123*********123231132143 (2)() ()()() 111 1.10210.031100.031385.610 1.1021385.610222 0.215 x x x x x x x x x x x x εεεε---=++=???+???+???≈ ** 24**** 24422 *4 33 5 (3)(/) ()() 11 0.0311056.430102256.43056.430 10x x x x x x x εεε---+≈ ??+??= ?= 5计算球体积要使相对误差限为1,问度量半径R 时允许的相对误差限是多少? 解:球体体积为34 3 V R π= 则何种函数的条件数为 2 3'4343 p R V R R C V R ππ=== (*)(*)3(*)r p r r V C R R εεε∴≈= 又(*)1r V ε=

现代数值计算方法

吉林大学研究生公共数学课程 教学大纲 课程编号: 课程名称:现代数值计算方法 课程英文名称:Modern numerical method 学时/学分:64/3(硕士)/32/2(博士) 课程类别:研究生公共课程 课程性质:必修课 适用专业:理、工、经、管等专业 开课学期:第Ⅰ或第Ⅱ学期 考核方式:考试(闭卷) 执笔人:李永海 制定日期:2011年5月

吉林大学研究生公共数学课程教学大纲 课程编号: 课程名称:现代数值计算方法 课程英文名称:Modern numerical method 学时/学分:64/3(硕士)/32/2(博士) 课程类别:研究生教育课程 课程性质:必修课 适用专业:理、工、经、管等专业 开课学期:第Ⅰ或第Ⅱ学期 考核方式:考试(闭卷) 一、本课程的性质、目的和任务 本课程属于非数学类研究生数学公共基础课程之一,数值计算方法作为一种基本的数学工具,在数学学科与其他科学技术领域诸如力学、电磁学、化学、生物、系统工程等学科都有广泛应用。电子计算机及计算技术的发展也为数值计算方法的应用开辟了更广阔的前景。因此,学习和掌握现代数值计算方法,对于将来从事工程技术工作的工科研究生来说是必不可少的。通过该门课程的学习,期望学生能深刻地理解现代数值计算方法的基本知识和数学思想,掌握有关的计算方法及技巧,提高学生的数学素质,提高科研能力,掌握现代数值计算方法在物理、电子、化学、生物、工程等领域的许多应用。 二、本课程教学基本要求 1. 线性代数方程组直接法 理解线性代数方程组直接法求解算法原理,了解算法收敛性结果;理解算法应用条件;掌握用软件实现一般线性代数方程组直接法的求解步骤。 2. 线性代数方程组迭代法 理解线性代数方程组迭代法求解算法原理,了解算法收敛性结果;理解算法应用条件;掌握用软件实现一般线性代数方程组迭代法的求解步骤。 3. 矩阵特征值与特征向量计算 理解乘幂法和反幂法算法原理,了解实对称矩阵的Jacobi方法;理解算法应用条件;掌握用软件实现一般矩阵特征值与特征向量计算。 4. 非线性方程(组)求根 理解二分法和牛顿法原理,了解解非线性方程组的牛顿法和拟牛顿法;理解算法应用条件;掌握用软件实现非线性方程(组)求根计算。 5. 函数插值 理解一般函数插值公式原理,了解三次样条插值;理解算法应用条件;掌握用软件实现函数插值计算。 6. 数值积分

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

数值计算方法第一章

第一章 绪 论 本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题. §1.1 引 言 计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。 由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括 (1) 非线性方程的近似求解方法; (2) 线性代数方程组的求解方法; (3) 函数的插值近似和数据的拟合近似; (4) 积分和微分的近似计算方法; (5) 常微分方程初值问题的数值解法; (6) 优化问题的近似解法;等等 从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关. 计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差. 我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断, 从而产生截断误差. 如 +++=! 21 !111e 的计算是无穷过程,当用 ! 1 !21!111n e n ++++= 作为e 的近似时,则需要进行有限过程的计算,但产生了 截断误差e e n -.

数值计算方法实验报告(例)讲解

实验报告 一、实验目的 二、实验内容 三、实验环境 四.实验方法 五、实验过程 1实验步骤 2 关键代码及其解释 3 调试过程 六、实验总结 1.遇到的问题及解决过程 2.产生的错误及原因分析 3.体会和收获。 七、程序源代码: 八、教师评语

实验报告 一.试验目的:练习用数值方法求解给定的非线性方程。 二.实验内容:求解人口方程: )1(5 .43e 1004.156-+ =λλλ e 要求误差小于410-。 三.实验环境:PC 计算机,FORTRAN 、C 、C ++、VB 任选一种。 四.实验方法:牛顿法 牛顿法简述:牛顿法是一种特殊的迭代法,其迭代公式为: ,2,1,0,) () (1='- =+k x f x f x x k k k k , 当数列{}k x 收敛时,其极限值x 即为方程的解。 定理:给定方程],[,0)(b a x x f ∈= 1)设0)()(''x f x f ; 则牛顿法产生的序列{}k x 收敛于0)(=x f 在],[b a 内的唯一解x 。 五.实验过程: 1.编程: 用C 语言编出牛顿法的源程序。 2. 开机, 打开C 语言编译程序,键入所编程序源代码. 3. 调试程序, 修改错误至能正确运行. 六.实验总结: (1)牛顿法收敛速度快,但初值不容易确定,往往由于初值取得

不当而使迭代不收敛或收敛慢,但若能保证)()(1+>K K x f x f (称为下山条件),则有可能收敛。把新的近似值看作初值的话会比原来的取得好,有可能落入局部收敛的邻域。 (2)牛顿法要求)(x f '在x 附近不为零。亦即x 只能是单根, 不能求重根。可用重根加速收敛法求重根。 (3)牛顿法的每一步迭代中,都要计算一次导数值,若计算)(x f '比计算函数的近似值要麻烦的多。为了避免求导数,可用差商近似代替微商 1 1) ()()(----='K K K K K x x x f x f x f 此时牛顿迭代法改为 )() ()() (111--+--- =K K K K K K K x x x f x f x f x x . (4) 由于人口方程来源于实际问题, λ代表人口增长率, 其真实 值不会太大, 初值不应取得过大.否则会得到该方程的另外一个解 七、程序源代码: #include #define ep 1e-4 float f (float x) { float y; y=100*exp(x)+43.5*(exp(x)-1)/x-156.4; return(y); } float df (float x) { float y; y=100*exp(x)+43.5*( x*exp(x)-exp(x)+1)/(x*x); return(y); } float root(float x) { float y; if (fabs)f

常用数值计算方法及仿真软件简介a

1.1.1 常用数值计算方法 自1864年麦克斯韦建立电磁场基本方程以来,电磁波理论与应用的发展已经过了100多年的历史。对电磁分布边值问题的求解从图解、模拟、解析到目前所采用的数值计算方法,经历了四个过程。解析方法只能解决一些经典问题,具体到复杂的实际环境,往往需要通过数值解得到具体环境中的电磁波特性。随着高速和大容量计算机技术的飞速发展,电磁数值计算已经发展成为一门新兴的重要学科,已提出多种实用有效的求解麦克斯韦方程的数值方法,主要有矩量法(MOM)、有限元法(FEM)、有限积分法(FIT)、和时域有限差分法(FDTD)等。基于这些数值计算方法开发出了许多优秀的电磁仿真软件。 一个好的数值算法可以很接近地模拟出微波器件的特性,这对于工程设计和研究而言,可以避免很多次的“cut-and-try”(试凑),节省时间从而提高了效率。 求解电磁问题的最终要求就是获得满足实际条件的Maxwell方程的解,借助于计算数学中的数值算法能够得到大多数电磁问题的近似解。数值算法的基本思想就是把连续变量函数离散化,把微分方程化为差分方程;把积分方程化为有限和的形式,从而建立起收敛的代数方程组,然后利用计算机技术进行求解。 目前常见的几种数值分析方法如表错误!文档中没有指定样式的文字。-1 电磁数值算法分类所示。针对本论文所应用到的方法,下面简要叙述常用的几种数值方法及相应的商业软件。

1.1.1.1 有限元法 基于有限元方法(FEM)计算电磁问题,其基本构想是将由偏微分方程表征的连续函数所在的封闭场域划分成有限个小区域,每个小区域用一个选定的近似函数来代替,于是整个场域上的函数被离散化,由此获得一组近似的代数方程,并联立求解,以获得该场域中函数的近似数值。 广义的来说,三维麦克斯韦方程是三维电磁问题的三维支配方程,但是,一般情况下为了方便求解和建模,大多选取由麦克斯韦方程组的前两个旋度方程导出的电场强度满足矢量亥姆赫兹方程作为支配方程。如Ansoft HFSS 软件[i]的支配方程为: 2010r r E k E εμ??????-= ??? (错误!文档中没有指定样式的文字。-1) 由变分原理,上式的泛函可以写为: ()()() 201r r F E E E k E E d εμΩ??=????????-?Ω???? (错误!文档中没有指定 样式的文字。-2) 将这一个三维问题的泛函通过多面体离散成单元小矩阵,矩形块、四面体和六面体等都可以被选用做基本的离散单元,但是,不同离散单元对于有限元运算的精度、速度和内存需求都有不同。Ansoft HFSS 软件采用四面体作为基本离散单元,如图 错误!文档中没有指定样式的文字。-1所示,并选用上一世纪80 年代以后才被应用于电磁学中的棱边元作为矢量基函数。 假设图 错误!文档中没有指定样式的文字。-1所示的四面体内的未知函数e φ能够近似为 z d y c x b a e e e e e +++=φ (错误!文档中没有指定样式的文 字。-3)

数值计算方法实验报告

差值法实验日志 实验题目:插值法 实验目的: 1.掌握拉格朗日插值、牛顿插值、分段低次插值和样条插值的方法。 2.对四种插值结果进行初步分析。 实验要求: (1)写出算法设计思想; (2)程序清单; (3)运行的结果; (4)所得图形; (5)四种插值的比较; (6)对运行情况所作的分析以及本次调试程序所取的经验。如果程序未通过,应分析其原因。 实验主要步骤: 1.已知函数) f满足: (x x0.0 0.1 0.195 0.3 0.401 0.5 f(0.39894 0.39695 0.39142 0.38138 0.36812 x ) 0.35206 (1)用分段线性插值; 打开MATLAB,按以下程序输入: x0=-5:5; y0=1./(1+x0.^2); x=-5:0.1:5; y=1./(1+x.^2); y1=lagr(x0,y0,x); y2=interp1(x0,y0,x); y3=spline(x0,y0,x);

for k=1:11 xx(k)=x(46+5*k); yy(k)=y(46+5*k); yy1(k)=y1(46+5*k); yy2(k)=y2(46+5*k); yy3(k)=y3(46+5*k); end [xx;yy;yy2;yy3]' z=0*x; plot(x,z,x,y,'k--',x,y2,'r') plot(x,z,x,y,'k--',x,y1,'r') pause plot(x,z,x,y,'k--',x,y3,'r') 回车得以下图形:

(2) 拉格朗日插值。 创建M 文件,建立lagr 函数: function y=lagr1(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=p*y0(k)+s; end y(i)=s; end 新建一个M 文件,输入: x0=[0.0 0.1 0.195 0.3 0.401 0.5]; y0=[0.39894 0.39695 0.39142 0.38138 0.36812 0.35206]; x=0.0:0.01:0.5; y1=lagr1(x0,y0,x); 00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

相关文档
最新文档