TTL和COMS电平匹配以及电平转换的方法

TTL和COMS电平匹配以及电平转换的方法
TTL和COMS电平匹配以及电平转换的方法

TTL和COMS电平匹配以及电平转换的方法

一.TTL

TTL集成电路的主要型式为晶体管-晶体管逻辑门

(transistor-transistor logic gate),TTL大部分都采用5V电源。

1.输出高电平Uoh和输出低电平Uol

Uoh≥2.4V,Uol≤0.4V

2.输入高电平和输入低电平

Uih≥2.0V,Uil≤0.8V

二.CMOS

CMOS电路是电压控制器件,输入电阻极大,对于干扰信号十分敏感,因此不用的输入端不应开路,接到地或者电源上。CMOS电路的优点是噪声容限较宽,静态功耗很小。

1.输出高电平Uoh和输出低电平Uol

Uoh≈VCC,Uol≈GND

2.输入高电平Uoh和输入低电平Uol

Uih≥0.7VCC,Uil≤0.2VCC (VCC为电源电压,GND为地)

从上面可以看出:

在同样5V电源电压情况下,COMS电路可以直接驱动TTL,因为CMOS的输出高电平大于2.0V,输出低电平小于0.8V;而TTL电路则不能直接驱动 CMOS电路,TTL的输出高电平为大于2.4V,如果落在2.4V~3.5V之间,则CMOS电路就不能检测到高电平,低电平小于0.4V满足要求,所以在TTL电路驱动COMS电路时需要加上拉电阻。如果出现不同电压电源的情况,也可以通过上面的方法进行判断。

如果电路中出现3.3V的COMS电路去驱动5V CMOS电路的情况,如3.3V单片机去驱动74HC,这种情况有以下几种方法解决,最简单的就是直接将74HC换成74HCT(74系列的输入输出在下面有介绍)的芯片,因为3.3V CMOS 可以直接驱动5V的TTL电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间。

三.74系列简介

74系列可以说是我们平时接触的最多的芯片,74系列中分为很多种,而我们平时用得最多的应该是以下几种:74LS,74HC,74HCT这三种,这三种系列在电平方面的区别如下:

输入电平输出电平

74LS TTL电平 TTL电平

74HC COMS电平 COMS电平

74HCT TTL电平 COMS电平

++++++++++++++++++++++++++++++++++++

TTL和CMOS电平

1、TTL电平(什么是TTL电平):

输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。

2、CMOS电平:

1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。而且具有很宽的噪声容限。

3、电平转换电路:

因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。

4、OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。否则它一般只作为开关大电压和大电流负载,所以又叫做驱动门电路。

5、TTL和COMS电路比较:

1)TTL电路是电流控制器件,而CMOS电路是电压控制器件。

2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常现象。

3)COMS电路的锁定效应:

COMS电路由于输入太大的电流,部的电流急剧增大,除非切断电源,电流一直在增大。这种效应就是锁定效应。当产生锁定效应时,COMS的部电流能达到40mA以上,很容易烧毁芯片。

防御措施: 1)在输入端和输出端加钳位电路,使输入和输出不超过不超过规定电压。

2)芯片的电源输入端加去耦电路,防止VDD端出现瞬间的高压。

3)在VDD和外电源之间加限流电阻,即使有大的电流也不让它进去。

4)当系统由几个电源分别供电时,开关要按下列顺序:开启时,先开启COMS 路得电源,再开启输入信号和负载的电源;关闭时,先关闭输入信号和负载的电源,再关闭COMS电路的电源。

6、COMS电路的使用注意事项

1)COMS电路时电压控制器件,它的输入总抗很大,对干扰信号的捕捉能力很强。所以,不用的管脚不要悬空,要接上拉电阻或者下拉电阻,给它一个恒定的电平。

2)输入端接低阻的信号源时,要在输入端和信号源之间要串联限流电阻,使输入的电流限制在1mA之。

3)当接长信号传输线时,在COMS电路端接匹配电阻。

4)当输入端接大电容时,应该在输入端和电容间接保护电阻。电阻值为R=V0/1mA.V0是外界电容上的电压。

5)COMS的输入电流超过1mA,就有可能烧坏COMS。

7、TTL门电路中输入端负载特性(输入端带电阻特殊情况的处理):

1因为这时可以看作是输入端接一个无穷大的电阻。

2)在门电路输入端串联10K电阻后再输入低电平,输入端出呈现的是高电平而不是低电平。因为由TTL门电路的输入端负载特性可知,只有在输入端接的串联电阻小于910欧时,它输入来的低电平信号才能被门电路识别出来,串联电阻再大的话输入端就一直呈现高电平。这个一定要注意。COMS门电路就不用考虑这些了。

8

它的输出就叫做开漏输出。OC门在截止时有漏电流输出,那就是漏电流,为什么有漏电流呢?那是因为当三极管截止的时候,它的基极电流约等于0,但是并

不是真正的为0,经过三极管的集电极的电流也就不是真正的 0,而是约0。而这个就是漏电流。

开漏输出:OC门的输出就是开漏输出;OD门的输出也是开漏输出。它可以吸收很大的电流,但是不能向外输出的电流。所以,为了能输入和输出电流,它使用的时候要跟电源和上拉电阻一齐用。OD门一般作为输出缓冲/驱动器、电平转换器以及满足吸收大负载电流的需要。

9、什么叫做图腾柱,它与开漏电路有什么区别?

TTL集成电路中,输出有接上拉三极管的输出叫做图腾柱输出,没有的叫做OC门。因为TTL就是一个三级关,图腾柱也就是两个三级管推挽相连。所以推挽就是图腾。一般图腾式输出,高电平400UA,低电平8MA

+++++++++++++++++++++++++++++++++++++++++++

CMOS 器件不用的输入端必须连到高电平或低电平, 这是因为 CMOS 是高输入阻抗器件, 理想状态是没有输入电流的. 如果不用的输入引脚悬空, 很容易感应到干扰信号, 影响芯片的逻辑运行, 甚至静电积累永久性的击穿这个输入端, 造成芯片失效.

另外

CMOS电平和TTL电平:

CMOS逻辑电平围比较大,围在3~15V,比如4000系列当5V供电时,输出在4.6以上为高电平,输出在0.05V以下为低电平。输入在3.5V以上为高电平,输入在1.5V以下为低电平。

而对于TTL芯片,供电围在0~5V,常见都是5V,如74系列5V供电,输出在2.7V以上为高电平,输出在 0.5V以下为低电平,输入在2V以上为高电平,在0.8V以下为低电平。因此,CMOS电路与 TTL电路就有一个电平转换的问题,使两者电平域值能匹配。

有关逻辑电平的一些概念:

要了解逻辑电平的容,首先要知道以下几个概念的含义:

1:输入高电平(Vih):保证逻辑门的输入为高电平时所允许的最小输入高电平,当输入电平高于Vih时,则认为输入电平为高电平。

2:输入低电平(Vil):保证逻辑门的输入为低电平时所允许的最大输入低电平,当输入电平低于Vil时,则认为输入电平为低电平。

3:输出高电平(Voh):保证逻辑门的输出为高电平时的输出电平的最小值,逻辑门的输出为高电平时的电平值都必须大于此Voh。

4:输出低电平(Vol):保证逻辑门的输出为低电平时的输出电平的最大值,逻辑门的输出为低电平时的电平值都必须小于此Vol。

5:阀值电平(Vt):数字电路芯片都存在一个阈值电平,就是电路刚刚勉强能翻转动作时的电平。它是一个界于Vil、Vih之间的电压值,对于CMOS电路的阈值电平,基本上是二分之一的电源电压值,但要保证稳定的输出,则必须要求输入高电平> Vih,输入低电平

Vih这个区域,电路的输出会处于不稳定状态。

对于一般的逻辑电平,以上参数的关系如下:

Voh > Vih > Vt > Vil > Vol

6:Ioh:逻辑门输出为高电平时的负载电流(为拉电流)。

7:Iol:逻辑门输出为低电平时的负载电流(为灌电流)。

8:Iih:逻辑门输入为高电平时的电流(为灌电流)。

9:Iil:逻辑门输入为低电平时的电流(为拉电流)。

门电路输出极在集成单元不接负载电阻而直接引出作为输出端,这种形式的门称为开路门。开路的TTL、CMOS、ECL门分别称为集电极开路(OC)、漏极开

OC)门,其上拉电阻阻值RL应满足下面条件:

(1):RL < (VCC-Voh)/(n*Ioh+m*Iih)

(2):RL > (VCC-Vol)/(Iol+m*Iil)

其中n:线与的开路门数;m:被驱动的输入端数。

10:常用的逻辑电平

·逻辑电平:有TTL、CMOS、LVTTL、ECL、PECL、GTL;RS232、RS422、LVDS等。·其中TTL和CMOS的逻辑电平按典型电压可分为四类:5V系列(5V TTL和5V CMOS)、3.3V系列,2.5V系列和1.8V系列。

·5V TTL和5V CMOS逻辑电平是通用的逻辑电平。

·3.3V及以下的逻辑电平被称为低电压逻辑电平,常用的为LVTTL电平。

·低电压的逻辑电平还有2.5V和1.8V两种。

·ECL/PECL和LVDS是差分输入输出。

·RS-422/485和RS-232是串口的接口标准,RS-422/485是差分输入输出,RS-232是单端输入输出。

++++++++++++++++++++++++++++

OC门,又称集电极开路(漏极开路)与非门门电路,Open Collector(Open Drain)。为什么引入OC门?

实际使用中,有时需要两个或两个以上与非门的输出端连接在同一条导线上,将这些与非门上的数据(状态电平)用同一条导线输送出去。因此,需要一种新的与非门电路--OC门来实现“线与逻辑”。

OC门主要用于3个方面:

1、实现与或非逻辑,用做电平转换,用做驱动器。由于OC门电路的输出管的集电极悬空,使用时需外接一个上拉电阻 Rp到电源VCC。OC门使用上拉电阻以输出高电平,此外为了加大输出引脚的驱动能力,上拉电阻阻值的选择原则,从降低功耗及芯片的灌电流能力考虑应当足够大;从确保足够的驱动电流考虑应当足够小。

2、线与逻辑,即两个输出端(包括两个以上)直接互连就可以实现“AND”的逻辑功能。在总线传输等实际应用中需要多个门的输出端并联连接使用,而一般

TTL门输出端并不能直接并接使用,否则这些门的输出管之间由于低阻抗形成很大的短路电流(灌电流),而烧坏器件。在硬件上,可用OC门或三态门(ST 门)来实现。用OC门实现线与,应同时在输出端口应加一个上拉电阻。

3、三态门(ST门)主要用在应用于多个门输出共享数据总线,为避免多个门输出同时占用数据总线,这些门的使能信号(EN)中只允许有一个为有效电平(如高电平),由于三态门的输出是推拉式的低阻输出,且不需接上拉(负载)电阻,所以开关速度比OC门快,常用三态门作为输出缓冲器。

+++++++++++++++++++++++++++++++++++++

什么是OC、OD?

集电极开路门(集电极开路 OC 或漏极开路 OD)

Open-Drain是漏极开路输出的意思,相当于集电极开路(Open-Collector)输出,即TTL中的集电极开路(OC)输出。一般用于线或、线与,也有的用于电流驱动。

Open-Drain是对MOS管而言,Open-Collector是对双极型管而言,在用法上没啥区别。

开漏形式的电路有以下几个特点:

a. 利用外部电路的驱动能力,减少IC部的驱动。或驱动比芯片电源电

压高的负载.

b.可以将多个开漏输出的Pin,连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。这也是I2C,SMBus等总线判断总线占用状态的原理。如果作为图腾输出必须接上拉电阻。接容性负载时,下降延是芯片的晶体管,是有源驱动,速度较快;上升延是无源的外接电阻,速度慢。如果要求速度高电阻选择要小,功耗会大。所以负载电阻的选择要兼顾功耗和速度。

c. 可以利用改变上拉电源的电压,改变传输电平。例如加上上拉电阻就可以提供TTL/CMOS电平输出等。

d. 开漏Pin不连接外部的上拉电阻,则只能输出低电平。一般来说,开漏是用来连接不同电平的器件,匹配电平用的。

正常的CMOS输出级是上、下两个管子,把上面的管子去掉就是OPEN-DRAIN 了。这种输出的主要目的有两个:电平转换和线与。

由于漏级开路,所以后级电路必须接一上拉电阻,上拉电阻的电源电压就可以决定输出电平。这样你就可以进行任意电平的转换了。

线与功能主要用于有多个电路对同一信号进行拉低操作的场合,如果本电路不想拉低,就输出高电平,因为OPEN-DRAIN上面的管子被拿掉,高电平是靠外接的上拉电阻实现的。(而正常的CMOS输出级,如果出现一个输出为高另外一个为低时,等于电源短路。)

OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下

降沿输出。

电平转换方法:

(1) 晶体管+上拉电阻法

就是一个双极型三极管或 MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。

(2) OC/OD 器件+上拉电阻法

跟 1) 类似。适用于器件输出刚好为 OC/OD 的场合。

(3) 74xHCT系列芯片升压(3.3V→5V)

凡是输入与 5V TTL 电平兼容的 5V CMOS 器件都可以用作 3.3V→5V 电平转换。

——这是由于 3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而 CMOS 的输出电平总是接近电源电平的。

廉价的选择如 74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列 (那个字母 T 就表示 TTL 兼容)。

(4) 超限输入降压法(5V→3.3V, 3.3V→1.8V, ...)

凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。

这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制 (改变了输入级保护电路)。

例如,74AHC/VHC 系列芯片,其 datasheets 明确注明"输入电压围为

0~5.5V",如果采用 3.3V 供电,就可以实现5V→3.3V 电平转换。

(5) 专用电平转换芯片

最著名的就是 164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的 (俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。

(6) 电阻分压法

最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。

(7) 限流电阻法

如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如 74HC 系列为 20mA),仍然是安全的。

(8) 无为而无不为法

只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种 5V 逻辑器件,其输入是 3.3V 电平,只要在选择器件时选择输入为 TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。

详解电平种类与电平转换

详解电平种类与电平转换 1. 常用的电平转换方案 (1) 晶体管+上拉电阻法 就是一个双极型三极管或 MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。 (2) OC/OD 器件+上拉电阻法 跟 1) 类似。适用于器件输出刚好为 OC/OD 的场合。 (3) 74xHCT系列芯片升压(3.3V→5V) 凡是输入与 5V TTL 电平兼容的 5V CMOS 器件都可以用作3.3V→5V电平转换。 ——这是由于 3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而 CMOS 的输出电平总是接近电源电平的。 廉价的选择如 74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列 (那个字母 T 就表 示 TTL 兼容)。 (4) 超限输入降压法(5V→3.3V,3.3V→1.8V, ...) 凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。 这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制 (改变了输入级保护电路)。 例如,74AHC/VHC 系列芯片,其 datasheets 明确注明"输入电压范围为0~5.5V",如果采 用 3.3V 供电,就可以实现5V→3.3V电平转换。 (5) 专用电平转换芯片 最著名的就是 164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的 (俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。 (6) 电阻分压法 最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。 (7) 限流电阻法 如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如 74HC 系列为 20mA),仍然是安全的。 (8) 无为而无不为法 只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种 5V 逻辑器件,其输入是 3.3V 电平,只要在选择器件时选择输入为 TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。

常见TTL电平转换电路

常见TTL电平转换电路 ------设计参考 1.二、三级管组成的TTL/CMOS电平转换电路,优点是价格非常低,缺点是要求使用在 信号频率较低的条件下。 建议上拉电阻为10K时,可使用在信号频率为几百Khz以下的环境中,曾经在960Khz 的串口通信中做过测试。上拉电阻越小,速率越高,但是电路的功耗也越高,在低功耗要求高的电路中需要慎重考虑。在选择二、三极管时,尽量选用结电容小,开关速率高的。 A ) 图1所示电路,仅能使用在输入信号电平大于输出信号电平的转换上,例如3.3V转2.8V。二极管选用高速肖特基二极管,并且V F尽量小,例如RB521S。 图1 B ) 图2电路,仅能使用在输入信号电平大于输出信号电平的转换上,例如3.3V转2.8V,否则PNP管可能关不断。如果对输出低电平电压幅度有较严格的要求,PNP管则选用饱和压降小些的管子。PNP管也不如NPN的通用。VCC_OUT是输出信号的电源电压。 图2

C ) 图3是NPN管组成的转换电路,对输入和输出电平的谁高谁低没有要求,适用性很好。其中VCC_IN是输入信号的电源电压,VCC_OUT是输出信号的电源电压。转换后输出的低电平VOL=Vin_Lmax+Vsat,Vin_Lmax为输入信号低电平的最高幅值,Vsat为NPN管的饱和压降,如果对输出低电平电压幅度有较严格的要求,NPN管则选用饱和压降小些的管子,以满足一般电路中VOL<0.8V的要求。 图3 2.OC/OD输出的反相器组成的电平转换电路。 图4,由2级反相器组成,反相器必须是OC/OD输出的。反相器的电源与输入信号的电平相同或者相匹配,最后的输出电平由上拉电阻上拉到输出信号的目标电平上。上拉电阻的取值直接影响功耗和可适用的信号频率。 图4

5V电平信号与3.3V电平信号转换问题及方法

5V电平信号与3.3V电平信号转换问题及方法 现在低压、低耗器件越来越多,3.3v、2.1v电平信号越来越常见。这就存在了一个电平转换问题。 当然很多时候都不需要转化,一些器件具有较大的包容性。具体能不能包容多种电平需要查看IC手册。如果能容忍其相异的电压,就不需要交转换单元了。 加上转换电路肯定会对通信速度、稳定性有所限制。 转化前要注意两个地方。 1、ABSOLUTE MAXIMUM RATINGS 这个是保证IC安全、健康的限制参数,应用连接时千万别超过这个范围。比如:DVDD(模拟电源)对DGND(模拟地)电压范围是-0.3V到+6.0V ;数字I/O口电压对地电压范围是-0.3V到+vdd+0.3V 。 2、需不需要电平信号转换单元就看下面这个参数:

可见这个IC的数字逻辑输入低电平门限<0.7V(3.3V情况);高电平门限>2V(3.3V情况);当然这些参数都是限制在ABSOLUTE MAXIMUM RATINGS的。 下面转入正题,看看电平转换方法。 1、较低电平转较高电平(比如3.3V转5V): “低”接较低电平信号;“高”接较高电平信号。

两个晶体管,保证两端信号极性一致。 2、较高电平转较低电平(比如3.3V转5V): 分析:当“高”处(+5V电平信号)输出为逻辑1,二极管截至(相当于断开),低处被上拉到约+3.3V。 当“低”处(+5V电平信号)输出为逻辑0,二极管导通,理想情况“低”处导通到0电压,实际“低”处电压是二极管导通压降(0.7V左右,如果觉得高,可以使用肖特基二极管,肖特基二极管管压降小)。 有一些电平信号转换可以采用比较器,我以前在一个比较器手册上看过这种应用,也十分方便,就是成本有些高。 我听一些网友说,可以在不同电平信号之间串一个小电阻解决问题。我也这样试过(3.3V的cyclon2与5V的单片机通信),好像能正常使用,不过总感觉不太安稳,呵呵。

电平转换方法

5V-3.3V电平转换方法 在实际电路设计中,一个电路中会有不同的电平信号。 方案一:使用光耦进行电平转换 首先要根据要处理的信号的频率来选择合适的光耦。高频(20K~1MHz)可以用高速带放大整形的光藕,如6N137/TLP113/TLP2630/4N25等。如果是20KHz以下可用TLP521。然后搭建转换电路。如将3.3V信号转换为5V信号。电路如下图: CP是3.3V的高速信号,通过高速光耦6N137转换成5V信号。如果CP接入的是5V 的信号VCC=3.3V,则该电路是将5V信号转换成3.3V信号。优点:电路搭建简单,可以调制出良好的波形,另外光耦还有隔离作用。缺点:对输入信号的频率有一定的限制。 方案二:使用三极管搭建转换电路 三极管的开关频率很高,一般都是几百兆赫兹,但是与方案一相比,电路搭建相对麻烦,而且输出的波形也没有方案一的好。 电路如下图: 其中C1为加速电容,R1为基极限流电阻,R2为集电极上拉电阻,R3将输入端下拉到地,保证在没有输入的情况下,输出端能稳定输出高电平。同时在三极管截止时给基区过量的电荷提供泄放回路缩短三极管的退饱和时间。 优点:开关频率高,在不要求隔离,考虑性价比的情况下,此电路是很好的选择。 缺点:输出波形不是很良好。 方案三:电阻分压 这里分析TTL电平和COMS电平的转换。首先看一下TTL电平和CMOS电平的区别。 TTL电平:输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2。最小输入高电平>=2.0V,输入低电平<=0.8,噪声容限是0.4V。 CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。而且有很宽的噪声容限。 下面的电路是将5V的TTL电平转换成3V的TTL电平

MAX3232电平转换原理图

RS232TO TTL 通讯模块

实现RS232到TTL数据转换。芯片采用MAX3232适用电压3V-5.5V,具有ESD保护功能、支持流控制、零延时自动收发转换和波特率自适应特点,即插即用,稳定可靠。 主要资源: 一、DB9母头RS232接口带流控功能可直接接电脑 二、2.54排针RS232接口带流控功能可替代DB9接头 三、3个指示灯分别是电源指示灯、数据收指示灯、数据发指示灯 四、2.54排针TTL接口带流控功能可直接接TTL设备 淘宝网站 https://https://www.360docs.net/doc/a314361484.html,/?spm=2013.1.1000126.d21.lOnOC1

以MCU单片机TTL到PC台式机RS232数据通信为例 1、PC台式机接DB9接口 2、MCU通过杜邦线接排针P1接口 P1接口说明 1GND接GND信号流向:GND 2VCC接3V-5V信号流向:VCC<--MCU_5V/MCU_3.3V 3RX接MCU_TX信号流向:PC_RX<--MAX3232<--RX 4TX接MCU_RX信号流向:PC_TX-->MAX3232-->TX 5CTS接MCU_RTS信号流向:PC_CTS<--MAX3232<--MCU_RTS 6RTS接MCU_CTS信号流向:PC_RTS-->MAX3232-->MCU_CTS 产品附件 1、RS232-TTL小板一个 2、杜邦线十根十种颜色 3、防静电自封袋一个 4、原理图

淘宝 https://https://www.360docs.net/doc/a314361484.html,/?spm=2013.1.1000126.d21.lOnOC1产品图片

选择正确的电平转换方案英文

Application Report SCEA044–June2010 A Guide to Voltage Translation With TXS-Type Translators Dave Moon,Aeysha Sultana High Volume Linear ABSTRACT Modern trends are driving the need for lower supply voltages across many system-level designs.As most processor voltage levels continue to decrease in the interest of achieving the lowest possible power consumption,peripheral devices maintain a need for higher voltage levels,creating potential for voltage discontinuities within a system.To remedy this mixed voltage system incompatibility,a voltage translator can be used. Texas Instruments High Volume Linear group offers a wide-range of voltage level translators.A variety of architectures provide solutions for different application environments including dual-supply direction-controlled,auto-direction sensing,and application-specific memory card interface translators. The information in this application report is intended to help system designers understand the architecture and operation of the TXS-type auto-direction sensing translator family Contents 1The Need For Voltage-Level Translation (2) 2Auto-Direction Sensing Voltage Translator Architecture (2) 3Input Driver Requirements With TXS-Type Translators (6) 4Driving External Loads With TXS-Type Translators (7) 5Output Enable Control (7) 6Conclusion (7) List of Figures 1Digital Switching Levels (2) 2Basic TXS0101,TXS0102,and TXS0104Architecture (3) 3Transfer Characterisitics of an N-Channel Transistor (3) 4Basic TXS0108E Architecture (4) 5TXS0108E During Low-to-High Signal Transition (5) 6TXS0108E During High-to-Low Signal Transition (6) 1 SCEA044–June2010A Guide to Voltage Translation With TXS-Type Translators Copyright?2010,Texas Instruments Incorporated

TI-选择正确的电平转换方案

1. 简介 在今天的电子电路系统中电压电平的转换基本成为了必须。例如:一 个ASIC的供电为VccA,而I/O器件的供电为VccB。为了使它们之间正常通信,就需要一个如图1的电平转换(level-translation)方案。 输入电平限值和器件的输出电平主要根据器件采用的工艺技术和供电 。图2显示了不同的供电和元件技术的限值范围。为了成功的实现两个 器件的接口,一定要保证以下的条件: ■驱动器件的Voh必须大于接收器件的Vih ■驱动器件的Vol必须小于接收器件的Vil ■驱动器件的输出电压范围不能超过接收器件的可容忍的I/O电 压范围

2. 双电源电平转换器件(Dual-Supply Level Translators) 2.1 特性 双电源的器件是为了满足两类总线或不同供电器件之间的异步通讯的 。这类器件采用双电源:VccA为A端(A side)供电,VccB为B端供电。对于数据从A到B或B到A都能传输的双向的电平转换器件,方向取决于输入pin DIR的逻辑电平。如果器件有OE控制,在OE有无效时 A端和B端的总线隔离。 TI的双电源器件有各种位宽的应用并几乎覆盖了当前出现的全部的供 电应用。这些器件灵活,易用并能实现双向转换,对于许多电平转换 的应用都是理想的选择(译者注:强!)。它们的电流驱动能力可以 使其适合长线及重载的应用。 SN74AVCB324245是一种32位双电源电平转换器件(由四组8位端口组成)。图3显示了SN74AVCB324245的1.8V转3.3V的一个端口,同

时另一个端口实现3.3V到1.8V的转换。 双电源器件的优点: ●可以在不同电压结点间灵活的转换 ●具有电流驱动的能力 ●具有不同的位宽 2.2 产品列表

5V到3V3的电平转换-串口通信

5V到3V3的电平转换-串口通信 一、电平转换电路 下面来分析一下电路的设计思路: https://www.360docs.net/doc/a314361484.html,/BLOG_ARTICLE_244240.HTM 首先声明一下:这个电路是从3V3的角度考虑的! 1、接收通道 我们首先来明确一下数据流向(其实就是电平驱动方向),接收通道是由5V方驱动的(Source),3V3方只是取电平(Sink),因此TXD5V作为此通道的输入方,RXD3V3作为通道的输出方。 我们知道,三极管(开关型)集电极输出驱动能力不错,我们就设计为集电极输出;但是,只有一个三极管是不行的,因为集电极输出的时候,基极电平和集电极逻辑是相反的;那么,加一个反相器?没必要,那是另外一种电平转换的方法了,我们只需要再使用一个三极管,基极接前级输出就可以了。这样,逻辑转换就完成了,当输入低电平时,Q1截止,集电极输出高电平,Q2导通,集电极输出低电平。同理,高电平分析是一样的。 逻辑转换完成了,那么就是电平的问题了。这很好解决,输入方为5V逻辑,那么就给它一个VCC5,3V3逻辑高电平需要一个3V3,那么就给一个VCC3V3;OK! 2、发送通道 分析完接收通道,发送通道的原理其实也是一样的,就不详细介绍了。 3、结论 其实如果稍微熟悉电子电路知识的人看来,这个电路实在太简单,正因为如此,我才要强调,基础很重要!否则,一个系统的设计会在这些小地方卡住。 二、电平问题: 单片机手册————电气特性 常用逻辑电平:12V,5V,3.3V; 1.TTL电平: 输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。

3.3V转5V的双向电平转换电路

3.3V转5V的双向电平转换电路 说说所有的电平转换方法,你自己参考~ (1) 晶体管+上拉电阻法 就是一个双极型三极管或MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。 (2) OC/OD 器件+上拉电阻法 跟1) 类似。适用于器件输出刚好为OC/OD 的场合。 (3) 74xHCT系列芯片升压(3.3V→5V) 凡是输入与5V TTL 电平兼容的5V CMOS 器件都可以用作3.3V→5V 电平转换。 ——这是由于3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而CMOS 的输出电平总是接近电源电平的。 廉价的选择如74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列(那个字母 T 就表示TTL 兼容)。 (4) 超限输入降压法(5V→3.3V, 3.3V→1.8V, ...) 凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。 这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制(改变了输入级保护电路)。 例如,74AHC/VHC 系列芯片,其datasheets 明确注明"输入电压范围为0~5.5V",如果采用3.3V 供电,就可以实现5V→3.3V 电平转换。 (5) 专用电平转换芯片 最著名的就是164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的(俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。 (6) 电阻分压法 最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。 (7) 限流电阻法 如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如74HC 系列为20mA),仍然是安全的。 (8) 无为而无不为法 只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种5V 逻辑器件,其输入是3.3V 电平,只要在选择器件时选择输入为TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。 (9) 比较器法 算是凑数,有人提出用这个而已,还有什么运放法就太恶搞了。 那位说的可以~但我分析你也不是非要芯片不可吧?尽量节约成本啊~ 3.3V转5V 电平转换方法参考 电平转换

常用的电平转换方案

常用的电平转换方案 TTL、CMOS、ECL等电路的高低电平阀值不同,他们之间逻辑连接需要电平转换;还有,就是接口与接口之间的,如RS232与485之间,USB与串口之间等等,由于这些接口协议里面定义的电平不同,所以也需要电平转换。 1. 常用的电平转换方案 (1) 晶体管+上拉电阻法 就是一个双极型三极管或MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。 图1. 电阻-二极管拓扑,是在同一根信号线上实现双向转换的可选技术之一

图2. 分立/数字晶体管是实现双向转换的另外一种选择 (数据入和数据出也被称为主入从出(MISO)和主出从入(MOSI)。SPI能够使用超过20Mbp的时钟信号,使用CMOS推挽逻辑。由于SPI是单向的,没有必要在同一根信号线上实现双向转换。这使电平转换变得简单一些,因为 可以采用电阻与二极管(图1)或分立/数字晶体管(图2)等简单方案。I2C、SMBusTM和1-Wire 接口为双向、漏极开路拓?扑。I2C有3个速度范围:≤ 100kbps的标准模式,≤ 400kbps的快速模式,≤ 3.4Mbps的高速模式。双向总线的电平转换更加困难,因为必须在同一根数据线上进行双向转换。基于电阻-二极管或集电极/漏极开路的单级晶体管转换器的简单拓扑由于固有的单向性,无法满足要求。 ) (2) OC/OD 器件+上拉电阻法 跟1) 类似。适用于器件输出刚好为OC/OD 的场合。 (3) 74xHCT系列芯片升压(3.3V→5V) 凡是输入与5V TTL 电平兼容的5V CMOS 器件都可以用作 3.3V→5V 电平转换。 ——这是由于3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而CMOS 的输出电平总是接近电源电平的。 廉价的选择如74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列(那个字母T 就表示TTL 兼容)。 (4) 超限输入降压法(5V→3.3V, 3.3V→1.8V, ...) 凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。 这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制(改变了输入级保护电路)。 例如,74AHC/VHC 系列芯片,其datasheets 明确注明"输入电压范围为0~5.5V",如果采用 3.3V 供电,就可以实现5V→3.3V 电平转换。 (5) 专用电平转换芯片 最著名的就是164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的(俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。

CMOS电平转换电路详解

CMOS电平转换电路详解 COMS集成电路是互补对称金属氧化物半导体(Compiementary symmetry metal oxide semicoductor)集成电路的英文缩写,电路的许多基本逻辑单元都是用增强型PMOS晶体管和增强型NMOS管按照互补对称形式连接的,静态功耗很小。 COMS电路的供电电压VDD范围比较广在+5~+15V均能正常工作,电压波动允许10,当输出电压高于VDD-0.5V时为逻辑1,输出电压低于VSS+0.5V(VSS为数字地)为逻辑0。CMOS电路输出高电平约为0.9Vcc,而输出低电平约为0.1Vcc.当输入电压高于VDD-1.5V时为逻辑1,输入电压低于VSS+1.5V(VSS为数字地)为逻辑0。 TTL电平信号被利用的最多是因为通常数据表示采用二进制规定,+5V等价于逻辑1,0V 等价于逻辑0,这被称做TTL(晶体管-晶体管逻辑电平)信号系统,这是计算机处理器控制的设备内部各部分之间通信的标准技术。 标准TTL输入高电平最小2V,输出高电平最小2.4V,典型值3.4V,输入低电平最大0.8V,输出低电平最大0.4V,典型值0.2V(输入H》2V,输入L《0.8V;输出H 》2.4V(3.4V),输出L《0.4V(0.2V)。 CMOS电平是数字信号还是模拟信号?CMOS电平是数字信号,COMS电路的供电电压VDD范围比较广在+5--+15V均能正常工作,电压波动允许10,当输出电压高于VDD-0.5V 时为逻辑1,输出电压低于VSS+0.5V(VSS为数字地)为逻辑0,一般数字信号才是0和1 。 cmos电平转换电路1、TTL电路和CMOS电路的逻辑电平 VOH:逻辑电平1 的输出电压 VOL:逻辑电平0 的输出电压 VIH :逻辑电平1 的输入电压 VIH :逻辑电平0 的输入电压 TTL电路临界值:

各种电平总结

TTL和CMOS电平总结 TTL和CMOS电平总结 TTL——Transistor-Transistor Logic HTTL——High-speed TTL LTTL——Low-power TTL STTL——Schottky TTL LSTTL——Low-power Schottky TTL ASTTL——Advanced Schottky TTL ALSTTL——Advanced Low-power Schottky TTL FAST(F)——Fairchild Advanced schottky TTL CMOS——Complementary metal-oxide-semiconductor HC/HCT——High-speed CMOS Logic(HCT与TTL电平兼容) AC/ACT——Advanced CMOS Logic(ACT与TTL电平兼容)(亦称ACL) AHC/AHCT——Advanced High-speed CMOS Logic(AHCT与TTL电平兼容) FCT——FACT扩展系列,与TTL电平兼容 FACT——Fairchild Advanced CMOS Technology 1,TTL电平: 输出高电平>2.4V,输出低电平<0.4V。在室温下,一般输出高电平是3.5V,输出低电平 是0.2V。最小输入高电平和低电平:输入高电平>=2.0V,输入低电平<=0.8V,噪声容限是0.4V。 2,CMOS电平: 1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。而且具有很宽的噪声容限。 3,电平转换电路: 因为TTL和COMS的高低电平的值不一样(ttl 5v<==>cmos 3.3v),所以互相连接时需 要电平的转换:就是用两个电阻对电平分压,没有什么高深的东西。哈哈 4,OC门,即集电极开路门电路,OD门,即漏极开路门电路,必须外界上拉电阻和电源才能将开关电平作为高低电平用。否则它一般只作为开关大电压和大电流负载,所以又叫做驱 动门电路。 5,TTL和COMS电路比较: 1)TTL电路是电流控制器件,而coms电路是电压控制器件。 2)TTL电路的速度快,传输延迟时间短(5-10ns),但是功耗大。 COMS电路的速度慢,传输延迟时间长(25-50ns),但功耗低。 COMS电路本身的功耗与输入信号的脉冲频率有关,频率越高,芯片集越热,这是正常

5V-3.3V电平转换方案

2013年1月8日 15:17 源文档 整理By caowent@ https://www.360docs.net/doc/a314361484.html, 近年来,半导体制造工艺的不断进步发展,为便携式电子工业产品的广泛应用提供了动力和保证,便携式设备要求使用体积小,功耗低,电池耗电小的器件,因低电压器件的成本比传统5V器件更低,功耗更小,性能更优,加上多数器件的I/O脚可以兼容5V/3.3vTTL电平,可以直接使用在原有的系统中,所以各大半导体公司都将3.3,2.5v等低电平集成电路作为推广重点。但是,目前市场上仍有许多5V电源的逻辑器件和数字器件,因此在许多设计中3.3V(含3V)逻辑系统和5V逻辑系统共存,而且不同的电源电压在同一电路板中混用,随着更低电压标准的引进,不同电源电压和不同逻辑电平器件间的接口问题将在很长一段时间内存在.MSP430系列单片机的供电电压在1.8~3.6V这间,因此在使用它的过程中不可避免要碰到不同电压,电平的接口问题. 在混合电压系统中,不同的电源电压的逻辑器件相互连接时会存在以下三个主要问题: 1:加到输入和输出引脚上的最大允许电压限制问题; 器件对加到输入或者输出脚上的电压通常是有限制的.这些引脚有二极管或者分离元件接到Vcc。如果接入的电压过高,则电流将会通过二极管或者分离元件流向电源。例如在3.3V器件的输入端加上5V的信号,则5V电源会向3.3V电源充电,持续的电流将会损坏二极管和其他电路元件. 2:两个电源间电流的互串问题 在等待或者掉电方式时,3.3V电源降落到0V,大电流将流通到地,这使得总线上的高电压被下拉到地,这些情况将引起数据丢失和元件损坏.必须注意:不管在3.3V的工作状态还是在0V的等待状态下都不允许电流流向Vcc. 3:必须满足输入转换门限电平的问题. 用5V的器器件来驱动3.3V的器件有很多不同的情况,同样TTL和CMOS间的转换电平也存在着不同的情况.驱动器必须满足接收器的输入转换电平,并且要有足够的容限以保证不损坏电路元件. 在实际电路设计中,一个电路中会有不同的电平信号。 方案一:使用光耦进行电平转换首先要根据要处理的信号的频率来选择合适的光耦。高频(20K~1MHz)可以用高速带放大整形的光藕,如 6N137/TLP113/TLP2630/4N25等。如果是20KHz以下可用TLP521。然后搭建转换电路。如将3.3V信号转换为5V信号。电路如下图:

电平转换电路

3.1 应用举例-应用SN74LVC2G07实行电平转换 图6显示了SN74LVC2G07一个Buffer作1.8V到5V的转换,另一Buffer 作3.3V到1.8V的转换。 器件的电源电压为1.8V。它可以保证器件将输入最低的VIH识别为有效的高电平。输出上拉电阻的最小值取决于器件开漏脚的最大灌电流能力(maximum current-sinking capability Iol max)。而最大灌电流能力是受限于输出信号的最大允许的上升时间的。 Rpu(min)=(Vpu-Vol)/ Iol(max) 对于图6中的SN74LVC2G07,假设Vpu1=5V±0.5V,Vpu2=1.8V±0.15V,而且电阻的精度为5% Rpu1(min)=((5.5V-0.45V)/4mA)×(1/0.95)=1.33kΩ 最接近的标称值为1.5kΩ。 Rpu2(min)=((1.8V-0.45V)/4mA)×(1/0.95)=394.73Ω 最接近的标称值为430Ω。 图7显示了在不同上拉电阻值的情况下具有10pF容性负载情况下的输出波形。当上拉电阻值增大后,输出信号的上升时间也增加了。

3.2 不要在CMOS 驱动的输出端加上拉电阻

在电平转换时,系统设计者不能在CMOS器件的输出端加上拉电阻。这种作法有很多弊端,应该避免使用。一个问题是在输出为低时增加了功耗。当CMOS 驱动输出为高是也会产生另一个危害。高电平的电源会通过上拉电阻对低电平电源灌电流。此时,下部的N沟道晶体管是关闭的,上部的P沟道晶体管是导通的。电流灌入低电平的电源会产生无法预料的后果。 4 FET开关 TI的CB3T,CBT,CBTD和TVC系列的总线开关可以用作Level-shifter。FET开关非常适用于不需要电流驱动并有很短传播时延的电平转换应用。 FET开关的好处: ●很短的传播时延 ●TVC器件(或者将CBT 器件配置为TVC)不用方向控制就可以实现双向电平转换 TI的CB3T系列器件可以用于5V到3.3V转换。图9显示了CB3T器件用作双向电平转换的一些应用。

电平转换方法

常用的电平转换方案 (1) 晶体管+上拉电阻法 就是一个双极型三极管或 MOSFET,C/D极接一个上拉电阻到正电源,输入电平很灵活,输出电平大致就是正电源电平。 (2) OC/OD 器件+上拉电阻法 跟 1) 类似。适用于器件输出刚好为 OC/OD 的场合。 (3) 74xHCT系列芯片升压 (3.3V→5V) 凡是输入与 5V TTL 电平兼容的 5V CMOS 器件都可以用作 3.3V→5V 电平转换。 ——这是由于 3.3V CMOS 的电平刚好和5V TTL电平兼容(巧合),而 CMOS 的输出电平总是接近电源电平的。 廉价的选择如 74xHCT(HCT/AHCT/VHCT/AHCT1G/VHCT1G/...) 系列 (那个字母 T 就表 示 TTL 兼容)。 (4) 超限输入降压法 (5V→3.3V, 3.3V→1.8V, ...) 凡是允许输入电平超过电源的逻辑器件,都可以用作降低电平。 这里的"超限"是指超过电源,许多较古老的器件都不允许输入电压超过电源,但越来越多的新器件取消了这个限制 (改变了输入级保护电路)。 例如,74AHC/VHC 系列芯片,其 datasheets 明确注明"输入电压范围为0~5.5V",如果采 用 3.3V 供电,就可以实现 5V→3.3V 电平转换。 (5) 专用电平转换芯片 最著名的就是 164245,不仅可以用作升压/降压,而且允许两边电源不同步。这是最通用的电平转换方案,但是也是很昂贵的 (俺前不久买还是¥45/片,虽是零售,也贵的吓人),因此若非必要,最好用前两个方案。 (6) 电阻分压法 最简单的降低电平的方法。5V电平,经1.6k+3.3k电阻分压,就是3.3V。 (7) 限流电阻法 如果嫌上面的两个电阻太多,有时还可以只串联一个限流电阻。某些芯片虽然原则上不允许输入电平超过电源,但只要串联一个限流电阻,保证输入保护电流不超过极限(如 74HC 系列为 20mA),仍然是安全的。 (8) 无为而无不为法 只要掌握了电平兼容的规律。某些场合,根本就不需要特别的转换。例如,电路中用到了某种 5V 逻辑器件,其输入是 3.3V 电平,只要在选择器件时选择输入为 TTL 兼容的,就不需要任何转换,这相当于隐含适用了方法3)。 (9) 比较器法

电平转换电路

7.10 电平转换电路 在数字电路系统中,一般情况下,不同种类器件(如TTL、CMOS、HCMOS等)不能直接相连;电源电压不同的CMOS、HCMOS器件因输出电平不同也不能直接相连,这就涉及到电平转换问题。所幸的是目前单片机应用系统中的MCU、存储器、μP监控芯片、I/O扩展与接口电路芯片等多采用HCMOS工艺;另一方面74LS系列数字电路芯片已普遍被74HC系列芯片所取代。即数字电路系统中的门电路、触发器、驱动器尽可能采用74HC系列(或高速的74AHC系列)芯片、CD40系列或 CD45系列的CMOS器件(速度较HCMOS系列慢,但功耗比HC系列芯片低、电源电压范围宽。当电源电压大于5.5V时,CMOS数字逻辑器件就成了唯一可选的数字IC芯片),尽量不用74LS系列芯片(速度与74HC系列相同,但电源范围限制为5.0V±5%、功耗大、价格甚至比74HC系列高)与74系列(在74系列中,只有输出级可承受高压的7406、7407 OC门电路芯片仍在使用)。 根据CMOS、HCMOS芯片输出高低电平特征、输入高低电平范围,在电源电压相同,且不大于5.5V情况下,这些芯片能直接相连。因此,在现代数字电子电路中只需解决不同电源电压CMOS、HCMOS器件之间的连接问题。 7.10.1 高压器件驱动低压器件接口电路 高压器件驱动低压器件(如5V驱动3V或9V驱动5V、3V)时,一般不能直接相连,应根据高压器件输出口结构(漏极开路的OD门、准双向或CMOS互补推挽输出)选择相应的接口电路。 对于OD输出引脚,可采用图7-42(a)所示电路,上拉电阻R一般取 10K~510K之间,具体数值与前级输出信号频率有关:输出信号频率高,如1MHz以上方波信号,R取小一些;输出信号频率低,R可取大一些,以减小输出低电平时上拉电阻R的功耗。 对于CMOS互补推挽输出、准双向(如MCS-51的P1、P2、P3口)输出,须在两者之间加隔离二极管,如图7-42(b)所示,其中电阻R选择与图(a)相同,二极管D可采用小功率开关二极管,如1N4148。前级输出高电平时,二极管D截止,后级输入高电平电压接近电源电压。当前级输出低电平时,二极管D导通,后级输入低电平电压=+(二极管导通压降)。显然<1.0V,当后级电路为HCMOS、CMOS器件时,只要输入级N沟

TTL和COMS电平匹配以及电平转换的方法

TTL和COMS电平匹配以及电平转换的方法 一.TTL TTL集成电路的主要型式为晶体管-晶体管逻辑门 (transistor-transistor logic gate),TTL大部分都采用5V电源。 1.输出高电平Uoh和输出低电平Uol Uoh≥2.4V,Uol≤0.4V 2.输入高电平和输入低电平 Uih≥2.0V,Uil≤0.8V 二.CMOS CMOS电路是电压控制器件,输入电阻极大,对于干扰信号十分敏感,因此不用的输入端不应开路,接到地或者电源上。CMOS电路的优点是噪声容限较宽,静态功耗很小。 1.输出高电平Uoh和输出低电平Uol Uoh≈VCC,Uol≈GND 2.输入高电平Uoh和输入低电平Uol Uih≥0.7VCC,Uil≤0.2VCC (VCC为电源电压,GND为地)

从上面可以看出: 在同样5V电源电压情况下,COMS电路可以直接驱动TTL,因为CMOS的输出高电平大于2.0V,输出低电平小于0.8V;而TTL电路则不能直接驱动 CMOS电路,TTL的输出高电平为大于2.4V,如果落在2.4V~3.5V之间,则CMOS电路就不能检测到高电平,低电平小于0.4V满足要求,所以在TTL电路驱动COMS电路时需要加上拉电阻。如果出现不同电压电源的情况,也可以通过上面的方法进行判断。 如果电路中出现3.3V的COMS电路去驱动5V CMOS电路的情况,如3.3V单片机去驱动74HC,这种情况有以下几种方法解决,最简单的就是直接将74HC换成74HCT(74系列的输入输出在下面有介绍)的芯片,因为3.3V CMOS 可以直接驱动5V的TTL电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间。 三.74系列简介 74系列可以说是我们平时接触的最多的芯片,74系列中分为很多种,而我们平时用得最多的应该是以下几种:74LS,74HC,74HCT这三种,这三种系列在电平方面的区别如下: 输入电平输出电平

典型电平转换电路方案分析

典型电平转换电路方案分析

英联半导体电平转换芯片产品线 低成本 UM2001 1Ch UM2002 2Ch UM3212 2Ch 通用型 (应用于Push-Pull/Open-Drain端口) UM3202 2Ch UM3204 4Ch 高速 (应用于Push-Pull端口 ) UM3301 1Ch UM3302 2Ch UM3304 4Ch UM3308 8Ch

2种外部端口形式 (a) push-pull推挽输出(b) open-drain开漏输出

电平转换方案1:分立MOSFET 工作原理分析: (1)两端均不被总线拉低时,VGS=0,管子截止分别被上拉至不同电平,实现高电平的双向传输; (2)An 端首先被总线拉低,VGS=VCCA ,管子导通,Bn 被拉低,实现An 到Bn 低电平传输; (3) Bn 端首先被总线拉低,通过寄生二极管,An 被瞬间拉低,VGS 变高,管子导通,An 最终被Bn 拉 低至相同的低电平,实现Bn 到An 低电平传输。 低电压端 高电压端 优点: ? 比较灵活,通道数量随意; ? 价格较低; 缺点: ? 速率低:一般推荐在几百KHz 频率以下使用; ? 可靠性一般:噪声容限差,延时较大,通道间一致性不好; ? 大部分MOSFET 无ESD 防护性能; ? PCB 占用面积较大;

高电压端信号隔离原理分析: ?若VCCB 断电,Q3Q4截止,Bn 信号被隔离开出来,An 端通讯不受影响; 电平转换方案2:分立MOSFET (隔离) 低电压端 高电压端 优点: ? 比较灵活,通道数量随意; ? 支持高电压端断电隔离; 缺点: ? 速率低:一般推荐在几百KHz 频率以下使用; ? 可靠性一般:噪声容限较差,延时较大,通道间一致性不好; ?大部分MOSFET 无ESD 防护性能; ? 元件数量多,BOM 成本、贴片成本较高; ? PCB 占用面积较大,布线复杂;

1-Wire双向电平转换器(1.8V至5V)参考设计

1-Wire?双向电平转换器(1.8V至5V)参考设计 Stewart Merkel 摘要:设计人员要求1-Wire主机IO采用漏极开路架构,工作在1.8V。而多数1-Wire 从器件无法工作在1.8V。本应用笔记介绍了实现1.8V 1-Wire主机与5V 1-Wire从器件之间电平转换的参考设计(RD)。该参考设计用于驱动典型的1-Wire从器件,利用MAX3394E 电平转换器实现电平转换。 引言 FPGA、微处理器、DS2482-100和DS2480B是常见的1-Wire主机器件。1-Wire/iButton?从器件由Maxim生产,该系列器件的典型工作电压为2.8V至5.25V。过去,传统的1-Wire 主机和从器件均采用5V漏极开路逻辑。 现在,设计人员需要1-Wire主机IO提供1.8V的漏极开路逻辑。而大部分1-Wire从器件可以安全地工作在5V,它们中的绝大多数无法工作在1.8V。需要一个双向电平转换器克服这种限制。本参考设计(RD)采用Maxim?的MAX3394E双向电平转换器,用于解决这类应用中的问题。 电平转换器 MAX3394E双向电平转换器采用8引脚、3mm x 3mm TDFN封装。借助其内部摆率增强电路,可理想用于大电容负载驱动。1-Wire从器件电容负载通常大于500pF。MAX3394E的VCC I/O引脚具有±15kV HBM (人体模式)静电保护,为1-Wire主机提供保护。1-Wire总线通常用于连接外部世界,HBM保护是基本需求。推荐在上拉电阻(R3)、可选择的强上拉电路以及1-Wire从器件处使用DS9503P以增强ESD保护。 应用电路 图1所示电路利用MAX3394E实现1.8V至5V双向电平转换,系统采用漏极开路端口。 图1. 1-Wire双向电平(1.8V至5V)转换器电路原理图,注意,引脚I/O VL和I/O VCC 具有10kΩ内部上拉。 该参考设计的BOM (材料清单)如表1所示。

常见电平转换芯片

常用的一些电平转换芯片 芯片描述电压范围位数是否双电源 SN74AVC1T45 具有可配置电压转换和 3 态输出的单位双电源总线收发器 1.2 3.6 两者兼有 1 双电源 SN74LVC1T45 具有可配置电压转换和 3 态输出的单位双电源总线收发器 1.65 5.5 两者兼有 1 双电源 SN74AVCH2T45 具有可配置电压转换和 3 态输出的双位双电源总线收发器 1.2 3.6 两者兼有 2 双电源 SN74LVC2T45 具有可配置电压转换和 3 态输出的双位双电源收发器 1.65 5.5 两者兼有 2 双电源 SN74AVC2T45 具有可配置电压转换和 3 态输出的双位双电源总线收发器 1.2 3.6 两者兼有 2 双电源 SN74AVCH4T245 具有可配置电压转换和 3 态输出的 4 位双电源总线收发器 1.2 3.6 两者兼有 4 双电源SN74AVC4T245 具有可配置电压转换和 3 态输出的 4 位双电源总线收发器 1.2 3.6 两者兼有 4 双电源 SN74AVCH8T245 具有可配置电压转换和 3 态输出的 8 位双电源总线收发器 1.2 3.6 两者兼有 8 双电源SN74LVC8T245 具有可配置电压转换和 3 态输出的 8 位双电源总线收发器 1.65 5.5 两者兼有 8 双电源SN74AVC8T245 具有可配置电压转换和 3 态输出的 8 位双电源总线收发器 1.2 3.6 两者兼有 8 双电源 SN74LVC16T245 具有可配置电压转换和 3 态输出的 16 位双电源总线收发器 1.65 5.5 两者兼有 16 双电源SN74AVC16T245 具有可配置电压转换和 3 态输出的 16 位双电源总线收发器 1.2 3.6 两者兼有 16 双电源SN74AVC20T245 具有可配置电压转换和 3 态输出的 20 位双电源总线收发器 1.2 3.6 两者兼有 20 双电源SN74AVC24T245 具有可配置电压转换和 3 态输出的 24 位双电源总线收发器 1.2 3.6 两者兼有 24 双电源SN74AVC32T245 具有可配置电压转换和 3 态输出的 32 位双电源总线收发器 1.2 3.6 两者兼有 32 双电源SN74TVC3306 双路钳位电压 0.8 5.0 两者兼有 2 FET 开关 SN74TVC3010 10 位钳位电压 0.8 5.0 两者兼有 10 FET 开关 SN74TVC16222A 22 位钳位电压 0.8 5.0 两者兼有 22 FET 开关

相关文档
最新文档