细胞学说的影响

细胞学说的影响
细胞学说的影响

细胞学说:细胞生物学的基石

【摘要】通过对细胞学说建立前生物学研究进展、细胞学说建立的过程以及细胞学说建立后细胞生物学的后续发展的总结,说明了细胞学说促使了细胞生物学作为一门独立学科出现,并为现代细胞生物学的研究提供理论基础。

【关键词】细胞学说细胞生物学细胞结构细胞分裂

细胞生物学是研究和揭示细胞基本生命活动规律的科学,当今的细胞生物学从显微、亚显微与分子水平上研究细胞结构与功能,细胞增殖、分化、代谢、运动、衰老、死亡以及细胞信号转导,细胞基因表达与调控,细胞起源与进化等重大生命过程。[1]作为现代生物学的热门领域,细胞生物学研究综合了生物化学、分子生物学、遗传学、生理学等多学科的研究方法,目的是从细胞角度理解生命系统的机制。细胞尺度研究的重要性,在于细胞是生物体结构与功能的基本单位,也即细胞学说的内容。细胞学说的提出,可谓是生物学界的革命,标志着细胞生物学作为独立的基础学科的建立。

通常认为,细胞学说的建立以1838年Schleiden和1839年Schwann相继发表的著作《植物发生论》《关于动植物结构和生长一致性的显微研究》为标志。在此之前,18世纪及19世纪初期生物学的主要领域是分类学、形态学、解剖学、生理学等。例如林奈于1953年发表著作《植物种志》,黑尔斯对于植物水分生理和动植物呼吸作用的探究,斯帕兰札尼对消化过程的研究,居维叶的比较解剖学研究等等。另一个已经发展起来的领域是胚胎学。由于对卵及早期胚胎的具体结构和内容尚不清楚,由哈维和马尔比基等人提出的预成论与沃尔夫等支持的渐成论仍相持不下。[2]

而对于细胞的认识,早在1667年英国的Robert Hooke用自制显微镜观察到软木细胞壁结构时就开始了。Malpighi(1675,1679)和Grew(1682)先后对植物组织显微结构进行了描述并指出薄壁组织由封闭的囊状结构(utriculi)组成。而进化学家Lamarck(1809)和植物学家Mirbel(1808,1809)都提出了生物体由统一的”cellular tissue”构成,但是仅把这种组织结构作为连续整体看待,并不强调单独细胞结构的独立性。1824年,Dutrochet指出动物组织由微小的细胞构成,组织间的差异仅由其组成细胞的内含物的差别决定,这表明了细胞的结构基本单元的地位。1830年,德国植物学家Meyen提出,藻类单细胞与高等植物的组成细胞是一致的,在多细胞植物中细胞自身也有营养等活动的独立性。1837年,他提出细胞是“吸收和构建的必要基本结构”。[3]

1838年,Schleiden发表《植物发生论》,对植物细胞的这种独立性做了明确的阐释,并研究了细胞的产生机制。1839年,Schwann的著作《关于动植物结构和生长一致性的显微研究》总结了众多显微镜学家的成果,指出所有有机体都服从细胞构建的规律,细胞结构先于纤维、管道等结构而存在,是机体构建的基础。在前人研究的基础上,两人最突出的贡献是提出了细胞产生机制的假说,但是由于Schleiden选择了核先于胞质分裂的胚珠作为观察对象,得出的结论是细胞核从母细胞核周围的小泡中产生;而Schwann将这个机制扩展为细胞可以从母细胞内部或外部自然产生。[3,4]这种错误认识直到1855年Virchow提出“一切细胞都来源于已有的相似细胞”才得以修正。[5]细胞学说至此得到完善。

细胞学说的建立,为生物学研究提供了一个前所未有的新尺度。由于细胞是有机体结构和功能的最基本单位,不同生物的形态结构和生理活动,最终都可归结为特定细胞的结构与

功能的反映。因此为了进一步揭示诸如生物体生殖和胚胎发育、遗传和生理等生命活动的机制,就必须对细胞的相应活动进行观察研究。这就促使细胞生物学这一学科的产生和发展。

在细胞学说的框架下,对细胞结构的研究随显微和染色技术的发展而进步。1831年,Robert Brown 发现植物细胞核;1839年,Purkinje引入了原生质(protoplast)的概念;1865年,Suchs 发现叶绿体;1883年,Beneden和Boveri发现中心体;1894年,Altman发现线粒体[1];1895年,Overton用生理学方法证明了细胞膜的存在并推断其成分为脂质;1898年,Golgi用银染法发现了发现高尔基体。

细胞学说还推动了对于细胞生命活动的研究,尤其是细胞分裂。1837年,Hugo von Mohl 观察了藻类的分裂,发现了分裂过程中细胞内分隔的产生。1824年Prevost和Dumas观察了蛙胚胎的卵裂,Kolliker在1843年描述了马蛔虫的卵裂,但没有意识到这是细胞结构的复制,也没有发现其与Schwann理论的相悖。Remak在1855年明确提出Schwann认为细胞可以在细胞之外产生的理论得不到证实,通过自己对蛙胚胎的观察他认为细胞通过分裂增殖。Walter Flemming以蝾螈细胞为材料研究了有丝分裂,描述了染色体在中期向两极的分裂,成为Rabl、Boveri和Weismann关于遗传物质连续性理论的基础[4],可见细胞作为基本单位的的分裂增殖与生物体繁殖之间的关系已经受到生物学家的重视。

以上是细胞学说的建立对早期细胞学的影响。事实上,细胞学说确立的细胞作为基本单位的地位,是到目前为止整个细胞生物学学科的基础定律和思想基础。细胞作为基因表达、代谢、增殖、运动、衰老的基本单元,其生命活动和生命活动的变化直接反映了有机体生命活动的调节、适应等过程,是宏观生命活动及其分子机制相联系的桥梁。由遗传物质决定的生物大分子的产生和发挥作用,通过直接调控细胞的理化状态和生命活动,进而实现对宏观生命过程的有序控制。因此细胞学说允许我们通过对特定细胞内基因调控、生化反应、机械运动的观察来研究机体对代谢和发育的调控、机体代谢循环和通路、机体宏观运动等生命活动。它是现代细胞生物学研究理论框架和先验假设的基石,对现代细胞生物学的发展有着不可替代的意义。

参考文献

[1] 翟中和, 王喜忠,丁明孝. 细胞生物学(第四版)[M]. 北京:高等教育出版社. 2011, 1-8.

[2] 周昌忠等译. 亚·沃尔夫. 十八世纪科学技术和哲学史[M]. 北京:商务印书馆. 1987:280-318.

[3] Edwin G. Conklin. Predecessors of Schleiden and Schwann[J]. The American Naturalist. 1939,73(749): 538-546

[4] L. Wolpert. Evolution of the Cell Theory[J]. Philosophical Transactions: Biological Sciences. 1995, 349(1329): 227-233.

[5] Alice Downing Polk. The Cell Theory[J]. Bios. 1934,5(3): 87-97

岩石大地构造复习资料分析

岩石大地构造学(PETROTECTONICS) 教师:张开均 课程简介:本课程是地质学学科础课,是岩石学、地球化学、大地构造学和矿物学等基础学科的有机融合和发展。岩石是认识固体地球的主要信息载体,是地球化学的主要研究对象之一。在不同的板块构造背景下,可能产生不同的岩石或岩石组合。通过认识和研究这些岩石及岩石组合来理解地球特别是岩石圈板块构造的演变,恢复和确定特定区域、特定地质历史时期的板块构造环境,是本课程的目的。 教学要求:通过本课程的学习,掌握岩石大地构造学的基本概念、研究内容、研究方法、研究前缘及其进展,能够在野外调查和室内分析的基础上,通过对矿物岩石学标志、地球化学标志等的甄别,确定特征岩石和典型岩石组合,并进而合理地探讨岩石及岩石组合与岩石圈大地构造演化之间的关系。 第一章板块构造与地幔柱理论 1.板块构造基本原理(Mid一ocean Ridges,Intracontinental Rifts,Island Arcs,Active Continental Margins,Back-arc Basins,Ocean Island,Continent):固体地球上层在垂直方向上可划分为物理性质截然不同的两个圈层:上部刚性的岩石圈[包括地壳和地慢最上部的橄榄岩层],和下部的塑性软流圈。岩石圈在侧向上又可由不同的板块边界划分为若干大小不等的刚性板块。彼此间在软流圈之上作大规模水平运动。 相邻岩石圈间水平运动有三种类型:在洋中脊裂谷带,两板块作背向运动(离散),产生新洋壳和海底扩张;在海沟一岛弧带位置上,两板块相向运动(汇聚),伴随洋壳消亡或大陆碰撞;在转换断层处,相邻板块间发生走向滑动,洋壳既无新生,也无消减。在全球范围内,板块沿分离边界的扩张增生与沿汇聚边界的收敛消亡相互补偿抵消,从而使地球半径和体积保持不变。岩石圈板块运动的驱动力来自地球内部,最可能是地幔中的物质和热对流。 2.离散型板块边界:相当于大洋中脊轴部,两侧板块相背离开,其应力状态是拉张。中脊轴部是海底扩张中心,软流圈物质从这里上涌冷凝成新的洋底岩石圈,并添加到两侧板块的后缘上,故分离型边界也是板块的增生边界或称建设型板块边界。离散型板块边界的典型:北大西洋洋脊,大洋中脊被东西向转换断层错开。

衰老学说

衰老学说 有人认为老年病正是衰老的原因;另有人反对说,老年病恰是衰老的结果。那么,究竟衰老的本质是什么呢? (一)氧自由基学说。这是世界上公认的主要衰老学说之一。它认为机体的细胞在氧化、代谢过程中,或受射线照射,服用化学药剂后,都使体内积累大量有害的自由基,这种自由基可是生物膜中多元不饱和脂肪酸发生过氧化作用,最终导致蛋白质交联物渐渐增多,导致细胞功能积累性退化衰老。自由基是使人衰老的罪魁祸首,所以设法消除这种自由基病便可延长人的寿命。美国路易斯维尔大学的生化专家即从植物中提取了一种能消除动物体内自由基的物质,用它喂蚊子,使其寿命从29天延长到45天。一旦能找到适合人服用的这类物质,人的寿命可望大大提高。 (二)细胞突变说。认为细胞分裂次数与寿命成正比。衰老即是由于细胞受损而产生突变。,从而使细胞本身及下一代细胞异常,生理功能下降,分裂次数降低。在实验中,人体细胞只能分裂50次,然后就土崩瓦解;但是在低温下,细胞分裂速度可变慢,这是延长寿命的方法之。与此相似的是生物钟学说,认为人的细胞分裂次数50次是生物钟决定的。例如寿命为30年的鸡,细胞分裂25次;寿命为3年的小白鼠,只分裂12次。有人提出一个推断:人的体温若降低2摄氏度,寿命可延长到200岁,若降低4摄氏度,可活700岁,且生命质量不变。又有人认为合理有益的饥饿,可大大提高人的寿命,这都是减缓细胞分裂速度的原理使然。程序衰老学说认为,人和动物的神经寿命是有特定的遗传程序决定的,不可更改,因此,人的衰老成为必然,这个学说也可以叫做遗传衰老学学说。 (三)免疫功能退化学说。这是为许多人接受的一种衰老学说,也是一个主要的衰老学说。它认为人的免疫功能在中老年后,随着年龄的增长而退化,而人类是处于外部病菌、病毒、内部异常细胞、毒素的包围之中,岁时又受侵害的可能,免疫功能降低就是致病且不易治愈,这就使器官、组织受损或致死。有人把幼儿内分泌腺诸如老人体内能,借此增加老人的米纳一功能,但尚未得到广泛临床应用。淋巴细胞是免疫系统的“主帅”。英国老年保健研究所公布的一项鸭牛结果表明:在一个老人死前3年终,淋巴细胞数量明显下降趋势。这是他们对05个人进行长达30年之久的考察得出的结论。 此外,北京大学大学医学部免疫学研究时发现,白细胞介素随着人的计数年龄的增长而呈明显夏季那个趋势,它在康衰老中参与机体的免疫调节。 (四)自身中毒说。人的大肠细菌等可分泌一种有毒物质,它可以使人衰老。此外,美国洛克菲勒大学的细胞生物学家尤金尼亚还从人体的结缔组织细胞中分离出一种特殊的蛋白质,是老化的、不能分裂的细胞的产物,正是它杀死了细胞。消除这种毒物,可望推迟衰老。 (五)死亡激素说。有人问为老化的关键步骤并非发生在细胞中,而是发生在大脑、神经、内分泌的活动,使机体老化的决定因素。若早期摘除大白鼠垂体腺,并喂食可的松激素,会延长大白鼠寿命。有的学者认为脑垂体腺在大脑中释放一种“死亡激素”,有的说胸线释放这种“死亡激素”但都未得到实验的证实。有人从乌贼鱼的泪腺中发现“死亡激素”。 (六)胶体化学说。捷克的汝兹卡认为衰老是滞后作用的过程,即使由于体内状态的变化。人随着年龄增长,体内进行胶体颗粒的合并过程,于是机体活性酸度下降,呈现衰老状态。

中医细胞学说

中医微观细胞学说 李宗勤著 本博按:中医细胞学说在西医细胞的基础上,运用中医哲学及中医经络、意识内容,构建中医细胞学说。 提出中医细胞经络概念“细胞曾孙脉”、“中医细胞”;结合阴阳、五行阐述细胞的形成、生长、衰减等过程;阐述具有中医医理与人体细胞特点相结合的中医细胞学说。本文是《中医宇宙时空生命全息学说》定稿后的一部分。 尊重原创,转载请注明出处:中医天地---李宗勤新浪博客 2016年10月16日 内容提要: 1. 中医微观细胞学说的必要性;2. 西医细胞学说的内容; 3. 西医细胞学说存在的不足; 4. 中医微观细胞学说 1.中医微观细胞学说的必要性 中医之所以在医学微观领域暂时无建树,根源于没有 微观哲学理论。中医传统理论结晶于精、气血、阴阳,在 物质结构层次限于脏腑、气血、皮毛、肌肉、骨骼、经络 奇恒等;进一步细化肌肉骨骼之下一级物质构造尚处于空 白。微观中医发展之金字塔结构底层基础,随着科技发展 总会得到开拓与发展;微观中医领域的发展哲学理论必然是根基与源泉,任何科学领域莫不如此。 本文尝试从微观领域进一步阐述气血如何作用于肌肉,肌肉细分组织构造如何生化成长,以图在中医在微观领域进一步有所思考。抛砖引玉,期冀有志之士共同开拓,完善中医微观哲学,为中医之微观领域发展尽绵薄之力。 2.西医细胞学说的内容 西医细胞学说来自理论思维和科学实验的结合,并在修正中前进。

西医细胞学说是1838~1839年间由德国植物学家施莱登和动物学家施旺最早提出,直到1858年才较完善。它是关于生物有机体组成的学说。细胞学说论证了整个生物界在结构上的统一性,以及在进化上的共同起源。细胞学说揭示了细胞的统一性。这一学说的建立推动了生物学的发展,并为辩证唯物论提供了重要的自然科学依据。 西医物质细胞结构:细胞壁、细胞膜、细胞质、细胞核 在光学显微镜下观察植物的细胞,可以看到它的结构分为下列四个部分:细胞壁:位于植物细胞的最外层,是一层透明的薄壁。它主要是由纤维素与果胶组成的,孔隙较大,物质分子可以自由透过。细胞壁对细胞起着支持和保护的作用。 细胞膜:细胞壁的内侧紧贴着一层极薄的膜,叫做细胞膜。这层由蛋白质分子和脂类分子组成的薄膜,水和氧气等小分子物质能够自由通过,而某些离子和大分子物质则不能自由通过,因此,它除了起着保护细胞内部的作用以外,还具有控制物质进出细胞的作用:既不让有用物质任意地渗出细胞,也不让有害物质轻易地进入细胞。 细胞膜在光学显微镜下不易分辨。用电子显微镜观察,可以知道细胞膜主要由蛋白质分子和脂类分子构成。在细胞膜的中间,是磷脂双分子层,这是细胞膜的基本骨架。在磷脂双分子层的外侧和内侧,有许多球形的蛋白质分子,它们以不同深度镶嵌在磷脂分子层中(图3-1-2),或者覆盖在磷脂分子层的表面。这些磷脂分子和蛋白质分子大都是可以流动的,可以说,细胞膜具有一定的流动性。细胞膜的这种结构特点,对于它完成各种生理功能是非常重要的。 细胞质:细胞膜包着的黏稠透明的物质,叫做细胞质基质。在细胞质中还可看到一些带折光性的颗粒,这些颗粒多数具有一定的结构和功能,类似生物体的各种器官,因此叫做细胞器。例如,在绿色植物的叶肉细胞中,能看到许多绿色的颗粒,这就是一种细胞器,叫做叶绿体。绿色植物的光合作用就是在叶绿体中进行的。在细胞质中,往往还能看到一个或几个液泡,其中充满着液体,叫做细胞液。在成熟的植物细胞中,液泡合并为一个中央液泡,其体积占去整个细胞的大半。 细胞质不是凝固静止的,而是缓缓地运动着的。在只具有一个中央液泡的细

2020-2021学年生物新教材人教必修1学案:第1章第1节细胞是生命活动的基本单位含解析

第1节细胞是生命活动的基本单位 核心素养 对接 1.生命观念——运用生物学观点认识生物的统一性。 2.科学思维——归纳与概括生命活动与细胞的关系;认同细胞是最 基本的生命系统。 一、细胞学说及其建立过程 1.建立者:德国的科学家施莱登、施旺。 2.内容 (1)细胞是一个有机体,一切动植物都由细胞发育而来,并由细胞和细胞产物所构成。 (2)细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体生命起作用。 (3)新细胞是由老细胞分裂产生的。 3.连线

提示:Ⅰ—①—a Ⅱ—③—eⅢ—④—fⅣ—②—bⅤ—⑤—c Ⅴ—⑥—dⅤ—⑦—g 4.意义:揭示了动物和植物的统一性,从而阐明了生物界的统一性。 (1)细胞学说使人们认识到植物和动物有着共同的结构基础,催生了生物学的问世。 (2)细胞学说中关于细胞是生命活动基本单位的观点,使生物学的研究进入细胞水平,并为后来进入分子水平打下基础。 (3)细胞学说中细胞分裂产生新细胞的结论,不仅解释了个体发育,也为后来生物进化论的确立埋下了伏笔。 二、细胞是基本的生命系统 1.生物体与细胞的关系 (1)单细胞生物:单个细胞就能完成各项生命活动的生物。 (2)多细胞生物:依赖各种分化的细胞密切合作,共同完成各项生命活动的生物。 2.生理活动与细胞的联系 ①各种生理活动的基础 ②生物的生长发育 ③遗传和变异a.细胞内基因的传递和变化 b.细胞代谢 c.细胞增殖、分化 提示:①—b②—c③—a 3.生命系统的结构层次 (1)写出图中各序号所对应的生命系统的结构层次名称。 ①细胞;②组织;③系统;④种群;⑤群落;⑥生物圈。 (2)最基本的生命系统是①(填序号),最大的生命系统是⑥(填序号)。4.细胞是基本的生命系统 (1)细胞是生命活动的基本单位,生命活动离不开细胞。

细胞凋亡检测方法

细胞凋亡检测方法 一、细胞凋亡的形态学检测 1 光学显微镜和倒置显微镜 (1)未染色细胞:凋亡细胞的体积变小、变形,全面皱缩,细胞膜完整但出现发泡现象,细胞凋亡晚期可见凋亡小体,凋亡小体为数个圆形小体围绕在细胞周围。贴壁细胞出现皱缩、变圆、脱落。 (2)染色细胞: 姬姆萨(Giemsa)染色、瑞氏染色等:正常细胞核色泽均一;凋亡细胞染色质浓缩、边缘化,核膜裂解、染色质分割成块状和凋亡小体等典型的凋亡形态;坏死细胞染色浅或没染上颜色。 苏木素-伊红(HE)染色:细胞核固缩碎裂、呈蓝黑色、胞浆呈淡红色(凋亡细胞),正常细胞核呈均匀淡蓝色或蓝色,坏死细胞核呈很淡的蓝色或蓝色消失。 2 荧光显微镜和共聚焦激光扫描显微镜 一般以细胞核染色质的形态学改变为指标来评判细胞凋亡的进展情况。 常用的DNA特异性染料有:Hoechst 33342,Hoechst 33258,DAPI。三种染料与DNA 的结合是非嵌入式的,主要结合在DNA的A-T碱基区。紫外光激发时发射明亮的蓝色荧光。 Hoechst是与DNA特异结合的活性染料,能进入正常细胞膜而对细胞没有太大细胞毒作用。Hoechst 33342在凋亡细胞中的荧光强度要比正常细胞中要高。 DAPI为半通透性,用于常规固定细胞的染色。 PI和Hoechst33342双标:PI、Hoechst33342均可与细胞核DNA(或RNA)结合。但PI不能通过正常细胞膜,Hoechst则为膜通透性荧光染料,故细胞在处于坏死或晚期调

亡时细胞膜被破坏,这时可为PI着红色。正常细胞和中早期调亡细胞均可被Hoechst着色,但是正常细胞核的Hoechst着色的形态呈圆形,淡兰色,内有较深的兰色颗粒;而调亡细胞的核由于浓集而呈亮兰色,或核呈分叶,碎片状,边集。故PI着色为坏死细胞;亮兰色,或核呈分叶状,边集的Hoechst着色的为调亡细胞。 凋亡细胞体积变小,细胞质浓缩。细胞凋亡过程中细胞核染色质的形态学改变分为三期:Ⅰ期的细胞核呈波纹状(rippled)或呈折缝样(creased),部分染色质出现浓缩状态;Ⅱa期细胞核的染色质高度凝聚、边缘化;Ⅱb期的细胞核裂解为碎块,产生凋亡小体(图1)。 3 透射电子显微镜观察 凋亡细胞体积变小,细胞质浓缩。凋亡Ⅰ期(pro-apoptosis nuclei)的细胞核内染色质高度盘绕,出现许多称为气穴现象(cavitations)的空泡结构(图2);Ⅱa期细胞核的染色质高度凝聚、边缘化;细胞凋亡的晚期,细胞核裂解为碎块,产生凋亡小体。 二、磷脂酰丝氨酸外翻分析(Annexin V法) 磷脂酰丝氨酸(Phosphatidylserine, PS)正常位于细胞膜内侧,但在细胞凋亡早期,PS可从细胞膜内侧翻转到细胞膜表面,暴露在细胞外环境中。磷脂酰丝氨酸的转位发生在凋亡早期阶段,先于细胞核的改变、DNA断裂、细胞膜起泡。体内的吞噬细胞可通过识别

细胞学名词解释

1.cell biology(细胞生物学):从细胞的显微结构、超微结构和分子结构的各级水平研究细胞的结构与功能的关系, 从而探索细胞生长、发育、分化、繁殖、遗传、变异、代谢、衰亡及进化等各种生命现象规律的科学。 2.cell theory:(细胞学说):施莱登和施旺提出一切动植物都由细胞发育而来,并由细胞和细胞产物所构成,每个细 胞作为相对独立的单位.也与其他细胞相互影响;魏尔肖后来对细胞学说做了重要的补充,强调细胞只能来自细胞。 3.protoplast(原生质体):除细胞壁之外的细胞内所有的生活物质。 4.cell(细胞):是由膜包围的能独立进行繁殖的原生质团,是生物体最基本的结构和功能单位,具有进行生命活动的 最基本的要素。 5.Prokaryotic cell(原核细胞):无核膜,DNA游离在细胞质中;染色体为环状,仅有一条;缺少发达的内膜系统,细 胞小,多在0.2—10 um之间至今未发现细胞骨架。 6.eukaryotic cell(真核细胞):有膜结构围成的细胞核,DNA与蛋白质结合,形成染色质(体),基因组至少有两条染 色体;有内膜系统,包括内质网、高尔基体、溶酶体、线粒体、叶绿体等;具有细胞骨架系统。 7.archaeobacteria(古细菌):又称原细菌、古核生物,是一些生长在极端特殊环境中的细菌;最早发现的古核生物为 产甲烷细菌类,后来又陆续发现盐细菌、硫氧化菌等。 8.plasmid(质粒):细菌内除了核区的DNA外,存在的可自主复制的遗传因子。1、resolution(分辨串率):是指区分开 两个质点间的最小距离。 9.f1uorescence microscopy(荧光显微镜技术):分子由激发态回到基态时, 由于电子跃迁而由被激发分子发射的光称 为荧光。荧光显微技术包括免疫荧光技术和荧光素直接标记技术。荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 10.autoradiography(放射自显影):是利用放射性同位素的电离辐射对乳胶(含AgBr或Agcl)的感光作用,对细胞内生 物大分子进行定性、定位与定量的一种细胞化学技术。 11.scanning electron microscopy(扫描电子显微镜,SEM):扫描电子显微镜是l 965年发明的较现代的细胞生物学研 究工具,主要是利用二次电子信号成像来观察样品的表面形态、即用极狭窄的电于束去扫描样品,通过电子柬与样品的相互作用产生各种效应,其中主要是样品的二次电子发射。二次电子能够产生样品表面放大的形貌像。这个像是在样品被扫描时按时序建立起来的,即使用逐点成像的方法获得放大像。 12.scanning transmission electron microscopy (扫描透射电子显微镜,STEM):像SEM一样,STEM用电子柬在样品 的表面扫描,但又像TEM,通过电子穿透样品成像。STEM能够获得了TEM所不能获得的一些关于样品的特殊信息。STEM技术要求较高,要非常高的真空度,并且电子学系统比TEM和SEM都要复杂。 13.immunofluorescence(免疫荧光技术):将免疫学方法(抗原—抗体特异结合)与荧光标记技术结合起来研究特异蛋白 抗原在细胞内分布的方法。由于荧光素所发的荧光可在荧光显微镜下检出,从而可对抗原进行细胞定位。 14.immunoelectron microscopy (免疫电镜):将抗体进行特殊标记后用电子显微镜观察免疫反应的结果.。根据标记方 法的不同,免疫电镜技术可分为免疫铁蛋白技术、免疫酶标技术和免疫胶体金技术。由于某些固定技术(如饿酸固定)对抗体、抗原的结合有干扰,因此应采取铰为温和的样品制备方法。

高中生物 细胞凋亡.doc

第一节细胞凋亡的生物学意义及其相关基因 对于一个多细胞生物来说,要维持完整性和保持平衡性,凋亡是一个非常重要的生物学过程。多细胞生物的诞生、生长、发育、存活以及死亡,无一不伴随着细胞凋亡过程。 关于细胞增殖能力和寿命是有限的观点。细胞,至少是培养的二倍体细胞,有一定的寿命;它们的增殖能力不是无限的,而是有一定的界限,这就是 Hayflick 界限。癌细胞或培养的细胞系是不正常细胞,其染色体数目或形态已经不同于原先的细胞细胞的增殖能力与供体年龄有关。物种寿命与培养细胞寿命之间存在着一定的关系。 一、细胞衰老 二倍体细胞的衰老是由细胞本身决定的。决定细胞衰老的因素在细胞内部,而不是外部的环境;是细胞核而不是细胞质决定了细胞衰老。在机体内,细胞的衰老和死亡是常见的现象,甚至在个体发育的早期也会发生;衰老动物体内,细胞分裂速度显著减慢,其原因主要是G1期明显延长;衰老个体内的环境因素影响了细胞的增殖和衰老; 二、衰老细胞结构的变化 细胞核的变化: 体外培养的二倍体细胞,细胞核随着细胞分裂次数的增加不断增大;细胞核的核膜内折(invagination)、染色质固缩化。 2. 内质网的变化: 衰老动物内质网成分弥散性地分散于核周胞质中,粗面内质网的总量似乎是减少了。 3.线粒体的变化: 通常细胞中线粒体的数量随龄减少,而其体积则随龄增大;致密体的生成:脂褐质,老年色素等。 4.膜系统的变化: 衰老的细胞,其膜流动性降低、韧性减小。衰老细胞间间隙连接减少;细胞膜

内(P面)颗粒的分布也发生变化(减少)三、细胞衰老的分子机理氧化性损伤学说:代谢过程中产生的活性氧基团或分子(ROS---O2-, OH-, H2O2),引发的氧化性损伤的积累,最终导致衰老。 端粒与衰老:发现端粒长度确实与衰老有着密切的关系,提出细胞衰老的“有丝分裂钟”学说(Harley,1990)。 rDNA与衰老: 酵母染色体外rDNA 环的积累,导致细胞衰老。 沉默信息调节蛋白复合物与衰老:复合物存在于异染色质区,其作用在于阻断所在位点DNA转录。. 细胞衰老的分子机理:SGS1基因和WRN基因与衰老:SGS1基因和WRN基因同源,编码解旋酶;酵母sgs1突变体寿命明显短于野生型(平均9.5代:24.5代); wrn 突变引发早老症. 2.发育程序与衰老: 线粒体DNA与衰老: Sen-DNA(80年代);mtDNA突变积累与细胞衰老有关 (一)细胞死亡的方式死亡是生命的普遍现象,但细胞死亡并非与机体死亡同步。正常的组织中,经常发生“正常”的细胞死亡,它是维持组织机能和形态所必需的。 细胞死亡的方式通常有3种: ①细胞坏死(necrosis) ②细胞凋亡(apoptosis) ③细胞程序性死亡(programmed cell death,PCD) 影响因素:化学因素(如强酸、强碱、有毒物质)、物理因素(如热、辐射)、 生物因素(如病原体)、坏死细胞的形态改变。 病理过程 酶性消化:参与此过程的酶,如来源于死亡细胞本身的溶酶体,则称为细胞自溶(autolysis);若来源于浸润坏死组织内白细胞溶酶体,则为异溶(heterolysis)蛋白变性 坏死细胞的形态改变

生物 细胞衰老

细胞衰老的分子生物学机制 摘要:随着人口老龄化加剧,细胞衰老的生物学基础及其相关分子机制的研究已成为一个重要的研究方向。细胞衰老是多种因素引起的细胞周期永久性阻滞,与老化疾病如糖尿病、骨质疏松、动脉粥样硬化、神经退行性疾病等有关。现介绍细胞衰老及细胞衰老与年龄相关疾病的分子生物学机制,重点介绍衰老领域的最新研究进展:清除衰老细胞能改善或延缓老 龄化疾病,延长机体寿命。 关键词:生物学论文 细胞的衰老和死亡与个体的衰老和死亡是两个不同的概念,个体的衰老并不等于所有细胞的衰老,但是细胞的衰老又是同个体的衰老紧密相关的。细胞衰老是个体衰老的基础,个体衰老是细胞普遍衰老的过程和结果。 细胞衰老是正常环境条件下发生的功能减退,逐渐趋向死亡的现象。衰老是生界的普遍规律,细胞作为生物有机体的基本单位,也在不断地新生和衰老死亡。生物体内的绝大多数细胞,都要经过增殖、分化、衰老、死亡等几个阶段。可见细胞的衰老和死亡也是一种正常的生命现象。我们知道,生物体内每时每刻都有细胞在衰老、死亡,同时又有新增殖的细胞来代替它们。 衰老是一个过程,这一过程的长短即细胞的寿命,它随组织种类而不同,同时也受环境条件的影响。高等动物体细胞都有最大增殖能力(分裂)次数,细胞分裂一旦达到这一次数就要死亡。各种动物的细胞最大裂次数各不相同,人体细胞为50~60次。一般说来,细胞最大分裂次数与动物的平均寿命成正比。通过细胞衰老的研究可了解衰老的某些规律,对认识衰老和最终找到延缓或推迟衰老的方法都有重要意义。细胞衰老问题不仅是一个重大的生物学问题,而且是一个重大的社会问题。随着科学发展而不断阐明衰老过程,人类的平均寿命也将不断延长。但也会出现相应的社会老龄化问题以及呼吸系统疾病、心血管系统疾病、脑血管病、癌症、关节炎等老年性疾病发病率上升的问题。因此衰老问题的研究是今后生命科学研究中的一个重要课题。 1 细胞衰老的特征 科学研究表明,衰老细胞的细胞核、细胞质和细胞膜等均有明显的变化:①细胞内水分减少,体积变小,新陈代谢速度减慢;②细胞内酶的活性降低;③细胞内的色素会积累;④细胞内呼吸速度减慢,细胞核体积增大,核膜内折,染色质收缩,颜色加深。线粒体数量减少,体积增大;⑤细胞膜通透性功能改变,使物质运输功能降低。形态变化总体来说老化细胞的各种结构呈退行性变化。 衰老细胞的形态变化表现有:①核:增大、染色深、核内有包含物;②染色质:凝聚、固缩、碎裂、溶解;③质膜:粘度增加、流动性降低;④细胞质:色素积聚、空泡形成;⑤线

大地构造学讲解

吉林大学 读书报告 大地构造学与区域大地构造学理论及关系 2016年 6 月

大地构造学(Tectonics或Geotectonics)是研究岩石圈组成、结构、运动(包括变形和变位)及演化的一门综合性很强的地质学分支学科。一般说来,大地构造学应该是一门研究整个地球的组成、结构、运动和演化的学科,但是受技术手段和研究方法的局限,要实现这个目标,还要经过很漫长的道路,目前正在努力之中。目前,大地构造学是以地质学方法为主来进行研究的,因此还不能真正研究整个岩石圈,更不用说整个地球,实际上重点研究的是大陆地壳表层几千米之内区域的组成、结构、运动和历史演化。近年来,随着地球物理学和地球化学方法的引入,大地构造学正在逐渐扩展其研究的深度、广度与时间尺度。 研究地壳形成演化基本动力的大地构造学分支统称为地球动力学(Geodynamics),由于地球动力学是各种学说的立论基础,因而成为当今地质学中最热门的话题。地球动力总的来讲可归结为五大系统:重力、膨胀收缩与脉动、地幔分异与对流、地球自转与星际作用等,它们又可细分为若干个不同的学派或假说,而且新的学说仍在不断涌现。 由于历史的局限,不同学者观察分析手段的不同,分析问题方法的不同,先后提出了以不同地球动力作为自己立论基础的大地构造假说,如地槽地台学、地质力学、板块构造学、地幔柱构造学等,其中在地学领域影响最为深远的是地槽地台假说(槽台说)和板块构造假说。槽台说是在长期的大陆地质研究基础上提出来的假说,20世纪60年代以前在地学界占有绝对的统治地位,因此被称为经典大地构造理论,深刻影响了地质学的各个领域;板块构造学是在海洋地质研究基础上提出来的假说,它把地幔对流作为动力来源,主要研究板块间的分裂、漂移、俯冲、碰撞等过程,是20世纪60年代以来占主导地位的大地构造学理论。值得一提的是,地幔柱构造学是针对板块构造说在大陆构造应用中存在的问题的基础上提出来的,创导者认为地幔柱构造学是不同于板块构造学的一种新的全球构造学说,它既能解决大陆构造的问题也能解决大洋构造的问题。 就大地构造学的理论体系而言,国内外常见的有四种类型,分别以区域大地构造学、构造模式、构造解析方法和构造演化历史为主线(万天丰,2004): ⑴以区域大地构造学为主线,区域大地构造学是大地构造学的基础,大地构造学的确也是在区域大地构造学研究基础上发展起来的,我国早年的大地构造学几乎都附属在区域大地构造学之中,例如,北京地质学院区域地质教研室(1963)出版的《中国区域地质》和杨森楠、杨巍然(1985)编写的《中国区域大地构造学》教科书实际上都是以区域大地构造学为基础来讨论大地构造学的;程裕淇院士(1994)主编的《中国区域地质概论》更是在系统总结中国区域大地构造资料的基础上,阐明对于中国大地构造的认识;最近,车自成等(2002)编著的《中国及其邻区区域大地构造学》也是以地块的区划研究作为主线的。以区域大地构造为主线的体系,对于了解各地区的特征比较有利,但是对于中国大陆宏观的总体特征,就可能稍嫌薄弱。 ⑵以构造模式为主线,李四光先生创导的地质力学,在讨论中国大地构造时,就是以构造模式为主线,他称之为“构造体系”,即按构造线的组合特征和地质体所受作用力的类型不同,来建立构造模式,如山字型、多字型、旋卷构造、棋盘格式构造、入字型构造等。20世纪30年代,李四光(1926、1947、1962)就提出了上述构造体系,是世界上第一批从构造变

细胞凋亡学说在帕金森病发病机制的理论探索

细胞凋亡学说在帕金森病发病机制的理 论探索 (作者:___________单位: ___________邮编: ___________) 作者:吴建军肖清刘凯刘永琦苏韫聂蕾郑炜 【关键词】帕金森病;发病机制;细胞凋亡 帕金森病(PD)主要症状包括静止性震颤、肌肉僵直、运动迟缓和姿势平衡障碍等,病理变化主要为黑质致密部(DSN)和多巴胺(DA)能神经元选择性变性〔1〕。PD病情呈渐进性的加重过程,患者晚期生活无法自理,最终死于肺部感染等并发症。PD 在中老年人群发病率很高,流行病学调查显示〔2〕,55 岁以上人口 PD 患病率为 1.4%,在 75 岁以上人口达 3.4%。PD 被发现以来其病因到目前仍不明确,有关病因的假说主要有遗传学说和环境毒素学说。随着研究水平的提高,从细胞凋亡理论探索PD的发病机制近几年受到了国内外学术界的关注。 1 PD研究中已克隆出的相关基因与细胞凋亡〔3〕 见表1。这些基因的发现能够解释家族性 PD 的病因,但家族性PD占PD病人的总数还不到10%,其余的大部分都是散发性PD,很难确定其中的遗传因素。环境毒素学说的提出最早开始于1甲基4 苯基1,2,3,6四氢吡啶(1methyl4phenyl1,

2,3,6tetrahydropyridine,MPTP)毒性作用的发现〔4〕。人类和非灵长类动物给予MPTP后引起PD的运动缺乏表现,并且伴随着有DSN、DA 能神经元的选择性破坏和DA含量的显著降低。另外,除草剂和杀虫剂的使用与PD的发生呈正相关。鱼藤酮是一种被广泛应用的杀虫剂,能够抑制线粒体复合体Ⅰ的活性。在动物实验中发现,静脉注射鱼藤酮可以选择性造成DA能神经元的死亡,残存神经元内形成一种被称为Lewy小体的物质,并且动物出现类似PD运动障碍的症状〔5〕。这都表明在散发型PD的发病过程中环境因素可能起着重要的作用。虽然遗传学说和环境毒素学说都各有依据,但彼此不能互相否定。许多遗传学的研究不能排除亲缘关系较近的人群受共同生活环境的影响;而环境毒素学说也不能解释为什么接触毒素后仅有少数人出现了PD症状。这就产生了另外一个假说,即大部分PD是在一定的遗传背景下受环境毒素侵害而发病的,但这一学说有待于相关研究的证实。 PD的发病机制尚未明确。目前有关PD发病机制的假说有氧化应激、线粒体损伤、神经兴奋毒性、神经营养缺失、蛋白水解应激、免疫异常、炎症反应、多巴胺转运体失活、αsynuclein异常沉积和细胞凋亡等,其中神经兴奋毒性、氧化应激和细胞凋亡学说较受重视〔6〕。神经兴奋毒性学说认为兴奋型神经递质如谷氨酸(Glu)等大量释放,通过激动α氨基羟甲恶唑丙酸(AMPA)受体及N甲基D天门冬酸(NMPA)受体和代谢型Glu受体以及通过膜去极化激活电压依赖性钙通道造成胞内钙超载,最终通过一系列机制导致细胞死亡。氧化应激学说认为PD是由于神经细胞氧化磷酸化过程中所产生的自由基

2021版浙江新高考选考生物一轮复习教师用书:第3讲 细胞概述、细胞膜和细胞壁

第3讲细胞概述、细胞膜和细胞壁 知识内容考试要求知识内容 考试要求知识内容考试要求 1.细胞学说的基本观点a 4.活动:观察 多种多样的 细胞 b 7.植物细胞壁 的组成和作用 a 2.细胞学说的建立过程b 5.质膜的结构 和功能 b 8.活动:验证 活细胞吸收物 质的选择性 b 3.细胞的大 小、数目和种 类a 6.质膜组成成 分的作用 a 9.真核细胞与 原核细胞的异 同 b 细胞学说与原核细胞 1.细胞学说的建立 (1)建立过程 时间科学家重要贡献1665年英国,胡克发现并命名细胞 1838年德国,施莱登提出“所有的植物都是由细胞组成的,细胞是植物各种功能的基础” 1839年德国,施万提出“所有的动物也是由细胞组成的” 1858年德国,菲尔肖提出了所有的细胞都必定来自已存在的活细胞 ①所有的生物都是由一个或多个细胞组成的。 ②细胞是所有生物的结构和功能的单位。 ③所有的细胞必定是由已存在的细胞产生的。 (3)意义:揭示了生物体结构上的统一性。2.细胞的大小、数目和种类

(1)细胞大小 ①计量单位:微米。 ②生物体的生长:主要是由于细胞数目的增多。 (2)细胞的种类 ①依据:有无核被膜包被的细胞核。 ②种类:原核细胞和__真核细胞。 (3)原核细胞 ①下面为模式化的原核细胞,填出标号所指的结构名称。 ②细菌和蓝细菌的拟核及相关细胞器 与真核细胞相比,细菌和蓝细菌等原核生物没有由核膜包被的细胞核,也没有染色体,但有一环状的DNA分子,位于无明显边界的区域,这个区域叫做拟核,只有核糖体一种细胞器。质膜是好氧细菌进行需氧呼吸的场所,质膜向内折叠成好几层形成光合膜,是蓝细菌中光合色素分布和光合作用进行的场所。 [基础诊断] (1)蓝细菌无叶绿体却可以进行光合作用,硝化细菌无线粒体却可以进行需氧呼吸(√) (2)乳酸菌、衣藻、蘑菇和蓝细菌都具有RNA、染色体和核膜(×) (3)在电子显微镜下,颤藻和水绵细胞中都能观察到的细胞器是核糖体(√) (4)所有的真核细胞都具有细胞核(×) (5)细胞学说揭示了生物界的多样性和统一性,认为细胞一定都是由细胞分裂产生的(×) (6)细胞学说不涉及原核细胞、真菌和病毒,仅涉及动、植物细胞(√) (7)细胞学说的创立完全是由施莱登和施万完成的(×) [教材热考拾遗] (必修1 P24~P25相关内容改编)下图甲、乙、丙分别代表三类生物基本结构或部分结构的模式图,则下列相关叙述正确的是() A.甲为原核细胞结构 B.乙一定是真核细胞 C.丙是真核生物细胞核

《大地构造学》知识点总结.

《大地构造学》知识点总结 第一章绪论 一、大地构造学的研究对象、内容、方法、意义 研究对象:大地构造学,是研究地球过程的综合学科。 研究内容:①区域或全球尺度的地壳与岩石圈构造变形特征及圈层相互作用,如:大洋-大陆相互作用、地球内部圈层相互作用、造山带与盆地的形成过程等;②构造变形与岩浆作用-沉积作用-变质作用的相互关系;③地壳与岩石圈的形成与演化过程;④地球表面海-陆的形成与演变方式及过程;⑤地球深部作用过程及其机制。 研究方法:大地构造学研究方法需要综合利用地质学其他学科以及地球物理探测、地球化学的研究手段与研究成果。 研究意义:大地构造学研究可以为认识和分析构造地质学的研究背景和形成机制提供宏观的上成因解释。 二、固体地球构造的主要研究方法 主要包括固体构造几何学与构造运动学的研究。 固体地球的构造几何学:主要研究地球的组成成分及结构。方法有:①研究暴露在地表的中、下层地壳乃至地幔顶部剖面,通过地质、地物、地化综合研究,揭示地壳深部物质组成、结构构造、物理性质、岩石矿物及元素的物化行为、温压条件、地热增温率、有关元素及矿物成分的聚散规律;②研究火山喷发携带到地表的深源包裹体,揭示深部物质与构造特征;③人工超深钻探直接取样(目前为止涉及最深深度12km);④地震探测:分为天然地震探测和人工地震探测,利用地震波的折射与反射可揭示地球深部构造特征。 固体地球构造运动学:主要研究地质历史时期的大地构造运动学与现今固体地球表面的构造运动。地质历史时期的大地构造运动学可以利用古地理学(岩相、生物、构造)、古气候分区、地球物理学与古地磁学进行研究;现今固体地球表面的构造运动可以利用空间对地的观测与分析技术。 三、大地构造学研究意义 理论意义:可以为认识和分析构造地质学的研究背景和形成机制提供宏观的上成因解释; 实际应用意义:①大型成矿集中区(矿集区)等成矿构造背景、资源规划;②大规模破坏性地震产生于形成的地质构造背景与稳定性评价;③绝大对数大型、灾难性地震都发生在活动板块边缘带(区)上,或与板块相互作用有关的次级活动构造单元边界区域。 第二章固体地球主要构造特征 一、地球表面基本面貌:海陆分布、高程分布及其意义 海陆分布特征:陆地面积占29.22%;海水覆盖面积70.78%; 高程分布特征:陆地主要分布在海平面以上数百米高程范围,大洋的主体分布在海平面以下5km的高程上;

江苏省徐州市2020-2021学年高一上学期期末考试试题生物 解析版

一、单项选择题 1.下列有关生物体内元素的叙述错误 的是() .. A.生物体内最基本元素是C B. 糖类和脂肪的元素组成相同 C. 蛋白质的元素组成是C、H、O、N、P D. 自然界中没有一种元素是细胞所特有的 【答案】C 【解析】 【分析】 1.糖类组成元素是碳、氢、氧;脂质主要是由碳、氢、氧三种化学元素组成,其中磷脂组成元素为碳、氢、氧、氮、磷,脂肪组成元素为碳、氢、氧;蛋白质主要组成元素是碳、氢、氧、氮,大多数还含有硫元素;核酸的组成元素是碳、氢、氧、氮、磷.碳是细胞中的最基本元素,组成生物大分子的基本骨架是碳链。2.组成细胞的化学元素在地壳中都普遍存在,没有一种化学元素是细胞特有的,但同一元素在细胞和自然界中含量相差甚远,说明生物界与非生物界既有统一性又有差异性。 【详解】A、生物大分子以碳链为骨架,碳是生物体内的最基本元素,A正确; B、构成糖类和脂肪的元素相同,都是碳、氢、氧,B正确; C、蛋白质的元素组成是碳、氢、氧、氮,C错误;? D、自然界中没有一种元素是细胞所特有的,体现生物界与非生物界的统一性,D正确。 故选C. 2.某同学的体检报告显示血红蛋白含量偏低,合成血红蛋白需要的无机盐离子是( ) A. Na+B. Fe2+ C. Mg2+ D. Ca2+

【解析】 【分析】 无机盐的主要存在形式是离子,有些无机盐是某些复杂化合物的组成成分,如Mg是叶绿素的组成成分,Fe是血红蛋白的组成成分,I是甲状腺激素的原料等. 【详解】由于Fe是血红蛋白的组成成分,人体缺Fe会影响血红蛋白的合成,造成缺铁性贫血,因此如果某同学的血红蛋白含量过低,可能的原因是缺铁。?故选B. 【点睛】本题旨在考查学生对无机盐的存在形式和功能的理解和准确识记,并学会应用相关知识解释生活问题. 3.在植物细胞和动物细胞中都含有的糖是 A.葡萄糖和脱氧核糖 B.麦芽糖和乳糖 C. 纤维素和蔗糖 D. 糖原和淀粉 【答案】A 【解析】 葡萄糖和脱氧核糖是植物细胞和动物细胞中都含有的糖,A项正确;麦芽糖是植物特有的二糖,乳糖是动物特有的为二糖,B项错误;纤维素和蔗糖都是植物特有的糖,C项错误;糖原是动物特有的糖,淀粉是植物特有的糖,D项错误。 4.下列蛋白质与其功能对应正确的是( ) A. 抗体—--催化 B. 血红蛋白--—免疫 C.胰岛素—--调节D.唾液淀粉酶—--组成生物体结构 【答案】C 【解析】 【分析】

衰老理论和衰老学说

衰老理论和衰老学说 目录 衰老学说概述 衰老学说研究 自然交联学说及其对经典生命难题的解释 生物分子自然交联学说与其他衰老学说 其他衰老学说简介 衰老理论和衰老学说无论是英汉词典还是汉英词典,“理论”和“学说”的英文释义都是“Theory”,这说明理论和学说在英文语境中没有明显的差异。与英文不同,中文语境中理论等同于真理;学说则相等于假设。因此,用中文评价衰老说,就应当区分理论和学说两种类型。本文尝试以理论和学说为两极,理性分析现在流行的各种衰老学说,希望能折射它们在这一直线座标系的相对位置及其到达理论顶点的“距离”。衰老学说概述 自19世纪末应用实验方法研究衰老以来,先后提出的学说不下数十种,有些学说已被否定(如大肠中毒说),近年来比较流行的有代表性的学说大致有:程序衰老说、密码子限制说、DNA修复缺陷说、生物分子自然交联学说、免疫机能退化说、大分子交联说、神经内分泌学说、体细胞突变学说、自由基学说、交联学说、生物钟学说、基因调节学说(细胞分裂速度逐渐减慢最终停止说)、剩余信息学说、衰老的免疫学说、端粒学说、基因阻遏平衡论等十几种。 毫无疑问,这些学说的许多观点是正确的,由于生命过程太过繁杂,研究者的观察角度不同、位置不同以及研究方法的不同,得出的结果就会不同,准确程度也就不同。就象饮水思源,长江的源头在哪里?虽然模糊了几千年,直到1978年才得出至今仍存争议的沱沱河,即使沱沱河就是长江源头,那么汇聚成沱沱河源头的山涧哪一条最长?离长江出口最远的一股泉水出自长江上游的哪一条山沟!至此,我想传统意义的饮水思源到此可以为止了;如果要寻找更深层次的源头,应该还可以追溯到某个山顶的某一颗树,那么这树上的水又是哪里来的呢?于是会追溯到某一团云彩,会追溯到生成这一团云彩的是某某水,会追溯到水的物理循环、水的理化性质。这许多因素中对我们饮水思源最重要的是什么呢?从社会层面说我们应该饮水不忘挖井人,从更深层次我们应该感谢自然界赋予水的自然属性,是水的理化性质和自然环境以及地形地貌、万有引力等多种因素的相互作用,才得以形成清澈的山泉,汇聚成奔腾的长江,周而复始,永不枯竭。虽然我们不希望把衰老的原因描述成一个哲学问题,但是让我们带着哲学的思维方式来探讨这个问题是必须的,在饮水思源的例子中,长江之水永不枯竭的原因有多种,但最核心的原因还是水的自然属性,正所谓外因通过内因起作用。生物的衰老也是如此,有很多种衰老的原因:有内在的原因、也有外在的原因。因此,一切有意义的衰老学说所证明的原因应该也不会超出内因和外因这样两种

高中生物细胞学说知识点

高中生物细胞学说知识点 高中生物细胞学说基础知识点 细胞学说的内容: 细胞学说建立于19世纪,家里者主要是两位德国科学家施莱登(M·J·Schileiden,1804-1881)和 施旺(T·Schwann,1810-1882) 主要内容: (1)细胞是一个有机体,一切动植物都由细胞发育而来,并由细胞和细胞产物所构成; (2)细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命起作用; (3)新细胞可以从老细胞中产生。 细胞学说建立的意义: 揭示了细胞的统一性和生物体结构的统一性。 细胞学说的建立过程: 时间 科学家 重要发展 1543年 比利时的维萨里,法国的比夏 揭示了人体在组织和器官水平的结构 1665年

英国的虎克 用显微镜观察植物的不栓组织,发现许多规则的“小室”并命名为细胞 19世纪 德国的施莱登、施旺 细胞是构成动植物提的基本单位 1858年 德国的魏尔肖 细胞是构成动植物提的基本单位 高中生物细胞知识点 细胞质基质 功能:细胞质基质是活细胞进行新陈代谢的主要场所,其为新陈代谢的进行提供所需要的物质和一定的环境条件。例如,提供ATP、核苷酸、氨基酸等。 化学组成:呈胶质状态,由水、无机盐、脂质、糖类、氨基酸、核苷酸和多种酶等组成。 细胞骨架 真核细胞中有维持细胞形态、保持细胞内部结构有序性的细胞骨架。 细胞骨架是由蛋白质纤维组成的网架结构,与细胞运动、分裂、分化以及物质运输、能量转换、信息传递等生命活动密切相关。

线粒体 结构特点:具有双层膜结构,外膜是平滑而连续的界膜,内膜反复延伸折入内部空间,形成嵴。线粒体具有半自主性,腔内有成环状的DNA、少量RNA和核糖体,它们都能自行分化,但是部分蛋白质还要在胞质内合成。线粒体基质和线粒体内膜上含有呼吸作用有关的酶。 功能:细胞进行有氧呼吸的主要场所,是“动力车间”。 叶绿体 结构特点:具有双层膜。在叶绿体内部存在扁平袋状的膜结构,叫类囊体。类囊体通常是几十个垛叠在一起而成为基粒。类囊体膜上有光合作用的色素,叶绿体基质中含有与光合作用有关的酶。叶绿体具有特有环状DNA、少量RNA、核糖体和进行蛋白质生物合成的酶,能合成出一部分自己所必需的蛋白质。 功能:光合作用的场所,是植物细胞的“养料制造车间”和“能量转换站”. 高中生物记忆方法 1联想记忆法 根据教材内容,巧妙地利用联想帮助记忆。 2对比记忆法 在生物学学习中,有很多相近的名词易混淆、难记忆,对于这样的内容,可运用对比法记忆。对比法即将有关的名

(完整word版)细胞凋亡过程

细胞凋亡的过程大致可分为以下几个阶段:接受凋亡信号→凋亡调控分子间的相互作用→蛋白水解酶的活化(Caspase)→进入连续反应过程细胞凋亡的启动是细胞在感受到相应的信号刺激后胞内一系列控制开关的开启或关闭,不同的外界因素启动凋亡的方式不同,所引起的信号转导也不相同,客观上说对细胞凋亡过程中信号传递系统的认识还是不全面的,比较清楚的通路主要有:1)细胞凋亡的膜受体通路:各种外界因素是细胞凋亡的启动剂,它们可以通过不同的信号传递系统传递凋亡信号,引起细胞凋亡,我们以Fas -FasL为例:Fas是一种跨膜蛋白,属于肿瘤坏死因子受体超家族成员,它与FasL结合可以启动凋亡信号的转导引起细胞凋亡。它的活化包括一系列步骤:首先配体诱导受体三聚体化,然后在细胞膜上形成凋亡诱导复合物,这个复合物中包括带有死亡结构域的Fas相关蛋白FADD。Fas又称CD95,是由325个氨基酸组成的受体分子,Fas一旦和配体FasL结合,可通过Fas分子启动致死性信号转导,最终引起细胞一系列特征性变化,使细胞死亡。Fas作为一种普遍表达的受体分子,可出现于多种细胞表面,但FasL的表达却有其特点,通常只出现于活化的T细胞和NK细胞,因而已被活化的杀伤性免疫细胞,往往能够最有效地以凋亡途径置靶细胞于死地。Fas分子胞内段带有特殊的死亡结构域(DD,death domain)。三聚化的Fas和FasL结合后,使三个Fas分子的死亡结构域相聚成簇,吸引了胞浆中另一种带有相同死亡结构域的蛋白FADD。FADD是死亡信号转录中的一个连接蛋白,它由两部分组成:C端(DD结构域)和N端(DED)部分。DD结构域负责和Fas分子胞内段上的DD结构域结合,该蛋白再以DED连接另一个带有DED的后续成分,由此引起N段DED随即与无活性的半胱氨酸蛋白酶8(caspase8)酶原发生同嗜性交联,聚合多个caspase8的分子,caspase8分子遂由单链酶原转成有活性的双链蛋白,进而引起随后的级联反应,即Caspases,后者作为酶原而被激活,引起下面的级联反应。细胞发生凋亡。因而TNF诱导的细胞凋亡途径与此类似2)细胞色素C释放和Caspases激活的生物化学途径线粒体是细胞生命活动控制中心,它不仅是细胞呼吸链和氧化磷酸化的中心,而且是细胞凋亡调控中心。实验表明了细胞色素C从线粒体释放是细胞凋亡的关键步骤。释放到细胞浆的细胞色素C在dATP存在的条件下能与凋亡相关因子1(Apaf-1)结合,使其形成多聚体,并促使caspase-9与其结合形成凋亡小体,caspase-9被激活,被激活的caspase-9能激活其它的caspase如caspase-3等,从而诱导细胞凋亡。此外,线粒体还释放凋亡诱导因子,如AIF,参与激活caspase。可见,细胞凋亡小体的相关组份存在于正常细胞的不同部位。促凋亡因子能诱导细胞色素C 释放和凋亡小体的形成。很显然,细胞色素C从线粒体释放的调节是细胞凋亡分子机理研究的关键问题。多数凋亡刺激因子通过线粒体激活细胞凋亡途经。有人认为受体介导的凋亡途经也有细胞色素C从线粒体的释放。如对Fas应答的细胞中,一类细胞(type1)中含有足够的胱解酶8 (caspase8)可被死亡受体活化从而导致细胞凋亡。在这类细胞中高表达Bcl-2并不能抑制Fas诱导的细胞凋亡。在另一类细胞(type2)如肝细胞中,Fas受体介导的胱解酶8活化不能达到很高的水平。因此这类细胞中的凋亡信号需要借助凋亡的线粒体途经来放大,而Bid -- 一种仅含有BH3结构域的Bcl-2家族蛋白是将凋亡信号从胱解酶8向线粒体传递的信使。尽管凋亡过程的详细机制尚不完全清楚,但是已经确定Caspase即半胱天冬蛋白酶在凋亡过程中是起着必不可少的作用,细胞凋亡的过程实际上是Caspase不可逆有限水解底物的级联放大反应过程,到目前为止,至少已有14种Caspase被发现,Caspase分子间的同源性很高,结构相似,都是半胱氨酸家族蛋白酶,根据功能可把Caspase基本分为二类:一类参与细胞的加工,如Pro-IL-1β和Pro-IL-1δ,形成有活性的IL-1β和IL-1δ;第二类参与细胞凋亡,包括caspase2,3,6,7,8,9.10。Caspase家族一般具有以下特征:1)C端同源区存在半胱氨酸激活位点,此激活位点结构域为QACR/QG。2)通常以酶原的形式存在,相对分子质量29000-49000(29-49KD),在受到激活后其内部保守的天冬氨酸残基经水解形成大(P20)小(P10)两个亚单位,并进而形成两两组成的有活性的四聚体,其中,每个P20/P10异二聚体可来源于同一前体分子也可来源于两个不同的前体分子。3)末端具有一个小的或大的原结构域。参与诱导凋亡的Caspase分成两大类:启动酶(inititaor)和效应酶(effector)它们分别在死亡信号转导的上游和下游发挥作用。

相关文档
最新文档