生物功能陶瓷的应用

生物功能陶瓷的应用
生物功能陶瓷的应用

生物功能陶瓷简介

摘要:材料是社会技术进步的物质基础与先导,现代高技术的发展,更是紧密依赖与材料的发展。生物陶瓷不仅具有不锈钢塑料所具有的特性,而且具有亲水性、能与细胞等生物组织表现出良好的亲和性。生物陶瓷除用于测量、诊断治疗等外,主要是用作生物硬组织的代用材料,可用于骨科、整形外科、牙科、口腔外科、心血管外科、眼外科、耳鼻喉科及普通外科等方面。

关键词:生物功能陶瓷介绍生物陶瓷性能口腔陶瓷应用展望

引言:生物功能陶瓷以医疗为目的,具备完成某种生物功能时应该具有的一系列性能,如:承受或传递负载功能、控制血液或体液流动功能、电、光、声传导功能、填充功能。近年来器官移植取得巨大进展,但有难题:排异、器官来源、法律、伦理等。因此医学界对生物医学材料和人工器官的要求日益增加。生物陶瓷应运而生为解决人类的健康问题带来福音。

生物功能陶瓷的介绍

1.生物惰性陶瓷材料

生物惰性陶瓷主要是指化学性能稳定,不发生或发生极小反应且生物相溶性好的陶瓷材料。这类陶瓷材料的结构都比较稳定,分子中的键力较强,而且都具有较高的机械强度,耐磨性以及化学稳定性,它主要有氧化铝陶瓷、单晶陶瓷、氧化锆陶瓷、玻璃陶瓷等。应用于临床的为高密度、高纯度Al2O3陶瓷,它有良好的生物相容性、优良的耐磨性、化学稳定性、高的机械强度。当Al2O3陶瓷的平均晶粒<4μm;:纯度超过99.7%时,其抗弯强度可达500MPa,因此能用于牙根、颌骨、髋关节及其他关节和骨的修复和置换。特种碳材料也在临床应用中获得相当的成功,它具有良好的生物相容性,特别是抗凝血性能显著,模量低,摩擦系数小,韧性好,因此耐磨和抗疲劳。在临床中广泛应用于心血管外科,如心脏瓣膜、缝线、起搏器电极等。

2.生物活性陶瓷材料

生物活性陶瓷包括生物表面活性陶瓷和生物吸收性陶瓷,又叫生物降解陶瓷。生物表面活性陶瓷通常含有羟基,还可做成多孔性,生物组织可长入内部并同其表面发生牢固的键合;生物吸收性陶瓷的特点是部分吸收或者全部吸收性,在生物体内能诱发新生骨的生长。生物活性陶瓷有生物活性玻璃(磷酸钙系),羟基磷灰石陶瓷,磷酸三钙陶瓷等几种。羟基磷灰石作为人体硬组织损伤后置换修复材料是目前国内外生物材料科学领域的主要课题之,为了提高其物理机械性能及引导与诱导作用研制了HA、FHA、CHA、HA、BGC、TCP等6种不同类型的生物陶瓷材料。

3.生物玻璃陶瓷

玻璃陶瓷也称微晶玻璃或微晶陶瓷,它是由结晶相和玻璃相组成的,无气孔,不同于玻璃,也不同于陶瓷。其结晶相含量一般为50%-90%,玻璃相含量一般为5%-50%,结晶相细小,一般小于1-2/μm,且分布均匀。因此,玻璃陶瓷一般具有机械强度高,热性能好,耐酸、碱性强等特点。国内外就

SiO2-Na2O-CaO-P2O5系统玻璃陶瓷、Li2O-Al2O3-SiO2系统玻璃陶瓷、

SiO2-Al2O3-MgO-TiO2-CaF系统玻璃陶瓷等进行了生物临床应用。发现它们具有良好的生物相溶性,没有异物反应。此外生物硬组织代用材料还有碳质材料,二氧化钛陶瓷,二氧化锆陶瓷材料等多种。

玻璃陶瓷的生产工艺过程为配料制备→配料熔融→成型→加工→细晶化

热处理→再加工。玻璃陶瓷生产过程的关键是在细晶化热处理阶段:第一阶段为成核阶段,第二阶段为晶核生长阶段,这两个阶段有密切的联系,在第一阶段必须充分成核,在第二阶段控制晶核的成长。玻璃陶瓷的细晶化过程由三个因素决定。第一个因素为晶核形成速度;第二个因素为晶体生长速度;第三个因素为玻璃的粘度。这三个因素都与温度有关。玻璃陶瓷的结晶速度不宜过小,也不宜过大,有利于对细晶化过程进行控制。为了促进成核,一般要加入成核剂,一种成核剂为贵金属如金、银、铂等离子,但价格较贵;另一种是普通的成核剂,如:TiO2、ZrO2、P2O5、V2O5、Cr2O3、MoO3、氟化物、硫化物等。

生物陶瓷具备的性能

生物陶瓷是一种能植入生物体内代替硬组织使用的材料,因此,应具有高度的生物学性能。包括精细陶瓷、多孔陶瓷、某些玻璃和单晶。生物陶瓷根据使用分为植入陶瓷和生物工艺学陶瓷。

植入陶瓷植入生物体内,用以恢复和增强生物体机能。由于植入陶瓷直接与生物体接触,故要求其与生物体的亲和性好,不产生有毒的侵蚀、分解产物;不使生物细胞发生变异、坏死,以及引起炎症和生长肉芽等;在体内长期使用功能好,对生物体无致癌作用,本身不发生变质;易于灭菌。常用的植入陶瓷有氧化铝陶瓷和单晶氧化铝、磷酸钙系陶瓷、微晶玻璃、氧化锆烧结体等,它们在临床上用作人造牙、人造骨、人造心脏瓣膜、人造血管和其他医用人造气管穿皮接头等。

生物工艺学陶瓷用于分离细菌和病毒,用作固定化酶载体,以及作为生物化学反应的催化剂,使用时不直接与生物体接触。常用的有多孔玻璃和多孔陶瓷。前者不易被细菌侵入,环境溶液中溶媒的种类、pH值和温度不易引起孔径变化,材质坚硬、强度高,多用作固定化酶载体。后者耐碱性能好,价格低,主要用作固定化酶载体,使固定化酶能长时间发挥高效催化作用。此外,控制多孔陶瓷的孔径,可用于细菌、病毒、各种核酸、氨基酸等的分离和提纯。

口腔陶瓷

1.特点:硬度高、耐磨性好、化学性能稳定、生物性能好、着色性能好。

2、常见材料:烤瓷及金属烤瓷、铸造陶瓷、种植陶瓷、陶瓷牙等。

3.性能:口腔陶瓷是口腔材料中化学性能最稳定的材料,均可耐受许多化学物质的作用而不发生变化,长期在口腔环境条件下,对各种食物、饮料、唾液、体液、微生物及其酶的作用,不会产生变质、变性。口腔陶瓷材料具有较好的生物学性能,在口腔内使用安全、无毒。特别是生物陶瓷,更应具有生物相容性。由于口腔陶瓷材料的着色性能好,表面光泽度高,又具有透明和半透明性,能恢复牙体组织的天然色彩。

4.注意事项:口腔陶瓷材料是热的绝缘体,热胀系数与牙体接近。但口腔陶

瓷材料在烧结制作过程中,存在较大的体积收缩而影响修复体的精度,需采取必要的措施,如烧结前尽量除去水分、振荡、压缩成型,以及真空烧结等防止或减小其收缩。影响陶瓷材料透明性的主要原因是陶瓷内存在的气孔。陶瓷粉颗粒越细,气孔越小,越致密,颗粒间的接触面积越大,但在光散射作用下透明度反而降低,因此采用适当的颗粒度可调整光透过率。对于含有石英等折光率较大原料的材料,可添加一些折光率较小的成分,如白榴石、长石等,可以提高透明性。

生物陶瓷的应用前景展望

在医用方面,生物陶瓷已成为生物材料的一个重要领域,生物陶瓷有着不可估量的医用前景。

1.人工陶瓷关节

人们正在研制开发机械强度高、韧性好、硬度及化学稳定性优良,臼盖和骨头的吻合性能更好,且容易制作的陶瓷材料,更理想的是手术时不必切除支撑关节面的骨骼,仅仅用于修复关节面就可以使用的新型陶瓷材料和技术。2.骨骼填充陶瓷材料

在骨髓细胞中包含有能分化成骨细胞的干细胞,所以预先从患者身上采集一些骨细胞,把它放置在多孔性的人体活性陶瓷之中,在体外培养直至分化出骨芽细胞,再把它随从陶瓷埋入骨缺损部,这时骨形成就更有效,人们正期待开发出这种骨填充陶瓷材料。

3.临床可以成形的人工骨

人们正期待研制出与骨缺损形状完全吻合的人工骨材料:把粉末和体液混合在一起后,数分钟内有流动性,然后固化,与周围的骨结合在一起,具有与人骨相似的力学性质,陶瓷人工骨可用注射器将它注入患病部位,修复骨缺损部位。

4.用作放射疗法治疗癌症的陶瓷

放射疗法是以保存坏部位只杀癌细胞为目的,很多时候是体外辐射,最理性的方法是对体内癌部位进行局部放射性治疗,用高频感应热等离子体方法,可以得到只有YPO微结晶组成的小球及很好的化学稳定性,用这些小球进行放疗治癌的动物试验正准备进行。

5.热疗治癌的陶瓷

正常细胞耐热温度为48℃左右,而癌细胞缺乏养的供给不耐热,在43℃左右便死亡,把强磁性陶瓷小球送入癌部,再把该部位放于交流磁场下,磁性体就会因磁滞损耗而发热,从而达到局部加热癌部位的目的。现在正在开发有更加良好发热效率的强磁性微小球。

结束语

生物陶瓷具有广阔的发展前景。生物陶瓷除用于测量、诊断治疗等外,主要是用作生物硬组织的代用材料。可用于骨科、整形外科、牙科、口腔外科、心血管外科、眼外科、耳鼻喉科及普通外科等方面。生物陶瓷,指与生物体或生物化学有关的新型陶瓷。包括精细陶瓷、多孔陶瓷、某些玻璃和单晶。根据使用情况,生物陶瓷可分为与生物体相关的植入陶瓷和与生物化学相关的生物工艺学陶瓷。

参考文献:

[1]李世普生物陶瓷

[2]谈国强、苗鸿雁、宁青菊、夏傲生物陶瓷材料

[3] 王迎军生物医用陶瓷材料

[4]冯海兰译著口腔材料学

材料工程基础作业

专业:

简析生物陶瓷材料

简析生物陶瓷材料 姓名: 班级: 学号:

摘要:生物陶瓷是一种具有与生物体或生物化学有关的区别于传统陶瓷材料的新型材料,有着传统陶瓷所不具备的特殊功能。随着材料科学的发展,生物陶瓷材料越来越为人们所重视和关注,应用也越来越广泛,成为生物医学材料中不可或缺的一部分。本文将回顾生物陶瓷材料的发展,介绍生物陶瓷材料的分类、性能和优点,并展望其发展热点。 关键词:生物陶瓷材料种类性能应用发展热点 现代医学中,人们对生物医学材料的需求越来越大,而在这众多生物材料中,目前应用比较广泛且生产工艺比较成熟的是生物陶瓷材料。它是指与生物体或生物化学有关的新型陶瓷。它能同人体骨骼起生物化学作用,导致成骨过程,使移植体或骨骼修补物能于人体组织长合在一起,从而达到治疗目的。 生物陶瓷材料的发展备受关注也越发迅速,本文将回顾生物陶瓷材料的发展,对其分类、性能、优点以及发展前景等作简要介绍。 1生物陶瓷材料的发展简史 当今人类社会使用的材料可分为三大类:金属及其合金材料、有机材料、无机非金属材料。这些材料都曾先后被用作人工硬组织的代替物, 并在应用中取得了宝贵的经验、教训。回顾历史, 可分为以下几个阶段。 1.1人工骨研究的启蒙阶段 18世纪前, 主要采用天然材料作为骨修复材料, 如柳枝、木、麻、象牙及贵金属等。 1.2自然发展阶段 约19世纪前, 由于冶金技术和陶瓷制备工艺的发展, 开始用纯金、纯银、铂等贵金属。 1.3探索阶段 20世纪中叶以前, 由于冶金的进步, 纯钦和钦合金年等被应用到人工骨领域, 开始有目的地探索新材料, 有机玻璃等高分子材料年也开始应用临床, 并在医学种植技术与病例选择方面积累了丰富经验,但基础理论的研究还很不深人。1.4迅速发展阶段 20世纪60年代初, 在新技术革命浪潮推动下, 材料科学迅速发展。人们开始有目的、有计划地探索、发现和合成新材料, 其中最有代表性的生物陶瓷的研究和应用获得了突飞猛进的发展。生物陶瓷的发展虽然还不到几十年, 但也同样经历了上述时期。起初以单晶氧化铝陶瓷为先导, 随后是多晶氧化铝、表面呈珊瑚状的氧化铝等。其后是生物活性陶瓷, 包括生物玻璃, 经基磷灰石和玻璃陶瓷类。 自20世纪70年代起, 生物陶瓷显露头角, 世界各国相继开展了理论和应用研究, 并且不断取得突破性进展。 2生物陶瓷材料的分类 2.1 根据其用途分类 根据用途,广义的生物陶瓷可以分为以下两大类: (1)植入陶瓷:又称生物体陶瓷,主要有人造牙、人造骨、人造心脏瓣膜、人

现代陶瓷材料发展及应用.

现代陶瓷材料发展及应用 摘要:本文简述了现代技术陶瓷最新研究、发展动态以及在实际中的应用,其中包括结构陶瓷、陶瓷基复合材料和功能陶瓷三个部分。还介绍了绿色陶瓷的发展及前景,科 学家试图使陶瓷生产与环境和谐完美的结合,开发出新型的绿色陶瓷材料。 关键词:陶瓷材料绿色陶瓷碳化硅晶须切削刀具氧化铝非氧化物陶瓷功能陶瓷结构陶瓷陶瓷基复合材料发展应用环境和谐 参考文献:《陶瓷材料概述》《现代技术陶瓷展与应用》《绿色陶瓷的发展前景》《陶瓷生产与环境和谐》 我国是一个具有悠久历史的陶瓷古国,在世界长期享有盛誉。当今陶瓷可以说已然成为了对我们生活产生重大影响的一门重要学科。近半个多世纪以来,随着先进陶瓷材料的研究和开发,在与人类生活息息相关的各个领域,如电子、通讯、能源、交通、宇宙探索和国家安全等,都能找到陶瓷的身影。可以说现代人的生活离不开陶瓷,陶瓷的进步给人类带来的是生活方式的日新月异。 陶瓷材料一般分为传统陶瓷和现代技术陶瓷两大类。传统陶瓷是指用天然硅酸盐粉末(如黏土、高岭土等为原料生产的产品。因为原料的成分混杂和产品的性能波动大,仅用于餐具、日用容器、工艺品以及普通建筑材料(如地砖、水泥等,而不适用于工业用途。现代技术陶瓷是根据所要求的产品性能,通过严格的成份和生产工艺控制而制造出来的高性能材料,主要用于高温和腐蚀介质环境,是现代材料科学发展最活跃的领域之一。 现代陶瓷材料主要有三大领域:结构陶瓷、陶瓷基复合材料和功能陶瓷。 一、结构陶瓷 同金属材料相比,陶瓷的最大优点是优异的高温机械性能、耐化学腐蚀、耐高温氧化、耐磨损、比重小(约为金属的1/3,因而在许多场合逐渐取代昂贵的超高合

功能陶瓷材料总复习讲解学习

功能陶瓷材料总复习

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1、定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率范围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 松弛极化 频率范围:

铁电体, 晶体在某温度范围内具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居里点附近的临界特性。 电滞回线: 铁电体的P 滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相→铁电相的转变温度 T>Tc 顺电相 TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与 发展 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶 瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷, 而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展, 各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科 学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高 速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震 而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各 行各业。 应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐 蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代 表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗 性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被 有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生 物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别 是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质 量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的 研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前 对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类 陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作

生物陶瓷材料的研究及应用

生物陶瓷材料的研究及应用 张波化工07-3班 120073304069 摘要介绍了生物陶瓷的定义,对羟基磷灰石生物陶瓷材料、磷酸钙生物陶瓷材料、复合生物陶瓷材料、涂层生物陶瓷材料和氧化铝生物陶瓷的特性和制备方法进行了较为深入的分析,在现代医学中的应用及发展前景。 关键词生物陶瓷,磷酸钙,复合生物陶瓷材料,涂层生物陶瓷材料,氧化铝陶瓷,生物陶瓷应用。 Bioceramic Materials Research and Application Zhangbo Chemical Engineering and Technology 073 class 120073304069 Abstract This paper introduces the definition of bio-ceramics, bio-ceramic material of hydroxyapatite, calcium phosphate bio-ceramic materials, composite bio-ceramic materials, coating materials, bio-ceramics and alumina ceramics of biological characteristics and preparation methods for a more in-depth analysis In modern medicine the application and development prospects. Key words bio-ceramics, calcium phosphate, composite bio-ceramic materials, coating materials, bio-ceramic, alumina ceramic, bio-ceramic applications. 1 引言 生物陶瓷是指用作特定的生物或生理功能的一类陶瓷材料,即直接用于人体或与人体相关的生物、医用、生物化学等的陶瓷材料。做为生物陶瓷材料,需具备如下条件:生物相容性;力学相容性;与生物组织有优异的亲和性;抗血栓;灭菌性并具有很好的 物理、化学稳定性。生物陶瓷材料可分为生物惰性陶瓷(如Al 2O 3 、ZrO 2 等)、生物活性 陶瓷(如致密羟基磷灰石、生物活性微晶玻璃等)和生物复合材料三类。生物陶瓷材料因其与人的生活密切相关,故一直倍受材料科学工作者的重视。 2 生物陶瓷材料的发展 目前世界各国相继发展了生物陶瓷材料,它不仅具有不锈钢塑料所具有的特性,而且具有亲水性、能与细胞等生物组织表现出良好的亲和性。因此生物陶瓷具有广阔的发展前景。生物陶瓷的应用范围也正在逐步扩大,现可应用于人工骨、人

功能陶瓷材料概述

功能陶瓷材料概述 功能陶瓷由于其在电、磁、声、光、热、力等方面优异的性能,广泛应用于电子电力、汽车、计算机、通讯等领域,在科学技术发展和实际生产生活中发挥着越来越重要的作用。主要阐述了功能陶瓷电学、光学、磁学、声学、力学等基本性质,并介绍了功能陶瓷的种类和应用以及未来发展趋势。 标签: 功能陶瓷;性质;应用 1 前言 功能陶瓷是具有电、磁、声、光、热、力、化学或生物功能等的介质材料。它有别于我们所熟知的日用陶瓷、艺术陶瓷、建筑陶瓷等,而是指在电子、微电子、光电子信息和自动化技术以及能源、环保和生物医学领域中所使用的陶瓷材料。功能陶瓷以其独特的声、光、热、电、磁等物理特性和生物、化学以及适当的力学等特性,在相应的工程和技术中发挥着关键作用,如制造电子线路中电容器用的电介质瓷,制造集成电路基片和管壳用的高频绝缘瓷等。 2 功能陶瓷基本性质 功能陶瓷是利用其对电、光、磁、声、热等物理性质所具有的特殊功能而制造出的陶瓷材料。其电学、光学、磁学、声学、热学、力学等性质是研究和运用的重点。功能陶瓷的这些性质与其组成、结构和工艺等有着密切关系。 功能陶瓷电学性质可以用电导率、介电常数、击穿电场强度和介质损耗来表示,是功能陶瓷材料很重要的基本性质之一。光学性质指其在可见光、红外光、紫外光及各种射线作用时表现出的一些性质。表征磁学性质的参数有磁导率、磁化率、磁化强度、磁感应强度等。材料在外力作用下都会发生相应的形变甚至破坏,有必要研究材料的力学性能,功能陶瓷材料也具有弹性模量、机械强度、断裂韧度等表征力学性能的参数。 3 功能陶瓷种类及其应用 功能陶瓷的发展始于20世纪30年代,经历从电介质陶瓷→压电铁电陶瓷→半导体陶瓷→快离子导体陶瓷→高温超导陶瓷的发展过程,目前已发展成为性能多样、品种繁多、使用广泛、市场占有份额很高的一大类先进陶瓷材料。目前已经研究比较深入并大量使用的功能陶瓷有绝缘陶瓷、介电陶瓷、压电陶瓷、半导体陶瓷、敏感陶瓷、磁性陶瓷、生物陶瓷和结构陶瓷等,下面将介绍几种主要的功能陶瓷及其应用。 3.1 绝缘陶瓷

生物陶瓷材料的分类

惰性生物陶瓷材料 生物惰性陶瓷主要是指化学性能稳定,生物相容性好的陶瓷材料。这类陶瓷材料的结构都比较稳定,分子中的键力较强,而且都具有较高的机械强度、耐磨性以及化学稳定性。主要由氧化物陶瓷、非氧化物陶瓷以及陶材组成。其中,以Al、Mg、Ti、Zr 的氧化物应用最为广泛。 早在1969 年,Talbert[2]就将不同孔隙率的颗粒状Al2O3 陶瓷作为永久性可移植骨假体,植入成年杂种狗的股骨中进行实验,发现多晶氧化铝陶瓷对包括生物环境在内的任何环境都呈现惰性及其优越的耐磨损性和高的抗压强度。使氧化铝陶瓷材料成为最早获得临床应用的生物惰性陶瓷材料。目前氧化铝陶瓷材料已经应用于人造骨、人工关节及人造齿根的制作方面。 氧化铝陶瓷植入人体后,体内软组织在其表面生成极薄的纤维组织包膜,在体内可见纤维细胞增生,界面无化学反应,多用于全臀复位修复术及股骨和髋骨部连接[3]。单晶氧化铝陶瓷的机械性能更优于多晶氧化铝,适用于负重大、耐磨要求高的部位。但是由于Al2O3 属脆性材料,冲击韧性较低,且弹性模量和人骨相差较大,可能引起骨组织的应力,从而引起骨组织的萎缩和关节松动,在使用过程中,常出现脆性破坏和骨损伤,且不能直接与骨结合。 目前,国外有关学者通过各种方法,使Al2O3 陶瓷在韧性和相容性方面取得了显著提高[4],如在陶瓷表面涂上骨亲和性高的陶瓷,特别是能和骨发生化学结合的磷灰石,已经制造出更加先进的人工关

节。通过相变或微裂等方法,使材料内部产生微裂纹,只要微裂纹的尺寸足够小,则均匀分布的微裂纹会起到应力分散的作用。也可以提高材料的韧性[5]。 近年,氧化锆陶瓷由于其优良的力学性能,尤其是其远高于氧化铝瓷的断裂韧性,使其作为增强增韧第二相材料在人体硬组织修复体方面取得了较大研究的进展。Hench[6]报道,部分稳定氧化锆陶瓷的抗弯强度可达100 MPa,断裂韧性可达15MPa·m- 1/2。 但惰性生物陶瓷在体内被纤维组织包裹或与骨组织之间形成纤维组织界面的特性影响了该材料在骨缺损修复中的应用,因为骨与材料之间存在纤维组织界面,阻碍了材料与骨的结合,也影响材料的骨传导性,长期滞留体内产生结构上的缺陷,使骨组织产生力学上的薄弱。 2 生物活性陶瓷材料 生物活性陶瓷包括表面生物活性陶瓷和生物吸收性陶瓷,又叫生物降解陶瓷。生物表面活性陶瓷通常含有羟基,还可做成多孔性,生物组织可长入并同其表面发生牢固的键合;生物吸收性陶瓷的特点是能部分吸收或者全部吸收,在生物体内能诱发新生骨的生长。生物活性陶瓷有生物活性玻璃(磷酸钙系),羟基磷灰石陶瓷,磷酸三钙陶瓷等几种。 2.1 羟基磷灰石陶瓷 羟基磷灰石(hydroxyapatite),简称HAp,化学式为Ca10(PO4)6(OH)2,属表面活性材料,由于生物体硬组织(牙齿、骨)

生活中的陶瓷材料及运用

生活中的陶瓷材料及应用 姓名:学号:专业:班级:2011级01班 【摘要】随着社会的进步,人们对材料的要求也越来越高,这种表现不仅表现在对科学研究领域,也表现在人们的日常生活当中。材料的进步很大程度上推动了社会的进步,而社会的需求反过来也有力的推进了材料科学的发展。拿陶瓷材料来说,陶瓷材料已经贯穿了人类的历史,并且随着历史不停的发展,在材料科学领域崭露头角。 【关键字】陶瓷;材料;发展;应用 说到陶瓷,首先我们先要了解什么是陶瓷?陶瓷材料又是什么?原来的陶瓷就是指陶器和瓷器的通称。也就是通过成型和高温烧结所得到的成型烧结体。传统的陶瓷材料主要是指硅铝酸盐。刚开始的时候人们对硅铝酸盐的选择要求不高,纯度不大,颗粒的粒度也不均一,成型压强不高。这时得到陶瓷称为传统陶瓷。后来发展到纯度高,粒度小且均一,成型压强高,进行烧结得到的烧结体叫做精细陶瓷。 接下来的阶段,人们研究构成陶瓷的陶瓷材料的基础,使陶瓷的概念发生了很大的变化。陶瓷内部的力学性能是与构成陶瓷的材料的化学键结构有关,在形成晶体时能够形成比较强的三维网状结构的化学物质都可以作为陶瓷的材料。这重要包括比较强的离子键的离子化合物,能够形成原子晶体的单质和化合物,以及形成金属晶体的物质。他们都可以作为陶瓷材料。其次人们借鉴三维成键特点发展了纤维增强复合材料。更进一步拓宽了陶瓷材料的范围。因此陶瓷材料发展成了可以借助三维成键材料的通称陶瓷材料可以分为两大类,一类是传统的陶瓷材料,另一类是近代的新型陶瓷材料它们都在人们的日常生活中有着重要的作用。 中国人早在约公元前8000-2000年(新石器时代)就发明了陶器。陶瓷材 料大多是氧化物、氮化物、硼化物和碳化物等。常见的陶瓷材料有粘土、氧化铝、高岭土等。陶瓷材料一般硬度较高,但可塑性较差。除了在食器、装饰的使用上,在科学、技术的发展中亦扮演重要角色。陶瓷原料是地球原有的大量资源黏土经过淬取而成。而粘土的性质具韧性,常温遇水可塑,微干可雕,全干可磨;烧至 700度可成陶器能装水;烧至1230度则瓷化,可完全不吸水且耐高温耐腐蚀。 其用法之弹性,在今日文化科技中尚有各种创意的应用。 传统陶瓷与现代陶瓷中国传统习惯上,常常以红色代表吉祥与富贵,而且釉里红的呈色稳重,敦厚,既壮丽,又朴实,这都是深受人们喜悦乐用的因素。烧成后的特点是沉着,热情。这些在日常生活用品中都随处可见。 新型的陶瓷材料是比传统陶瓷材料更加优异的新一代陶瓷材料。主要以高纯、超细人工合成的无机化合物为原料,采用精密控制工艺烧结而制成。其成分主要为氧化物、氮化物、硼化物和碳化物等。由于陶瓷材料的重要性,现代出现了陶瓷工程学。陶瓷工程是使用无机非金属材料制造物体的科学技术。陶瓷工程的研究范围包括对原材料的提纯、对需要的化学成分的研究和生产以及对产物的结构、成分和性质的研究。根据用途不同,特种陶瓷材料可分为结构陶瓷、工具陶瓷、功能陶瓷。

对陶瓷材料的认识及应用

对陶瓷材料的认识及应用 物电学院无机非金属材料工程1班 姓名:学号: 其实对于陶瓷,大家都不会陌生,最简单说来,我们每天上课的教室地板、厕所马桶,以及经常见到的家庭摆设用品都是陶瓷材料的。既然陶瓷材料如影随形,深入了解也理所当然。 所谓陶瓷,原来是指陶器和瓷器的通称。也就是通过成型和高温烧结所得到的成型烧结体。传统的陶瓷材料主要是指硅铝酸盐。这也就是传统陶瓷。后来,人们研究构成陶瓷的陶瓷材料的基础,使陶瓷的概念发生了很大的变化。陶瓷内部的力学性能是与构成陶瓷的材料的化学键结构有关,在形成晶体时能够形成比较强的三维网状结构的化学物质都可以作为陶瓷的材料。这重要包括比较强的离子键的离子化合物,能够形成原子晶体的单质和化合物,以及形成金属晶体的物质。他们都可以作为陶瓷材料。其次人们借鉴三维成键的特点发展了纤维增强复合材料。更进一步拓宽了陶瓷材料的范围。因此陶瓷材料发展成了可以借助三维成键的材料的通称。这样甚至将玻璃也从某种意义上纳入了陶瓷的范畴。 从此研究陶瓷的结构和性能的理论也得到了展开:陶瓷材料,内部微结构(微晶晶面作用,多孔多相分布情况)对力学性能的影响得到了发展。材料(光,电,热,磁)性能和成形关系,以及粒度分布,胶着界面的关系也得到发展,陶瓷应当成为承载一定性能物质存在形态。这里应该和量子力学,纳米技术,表面化学等学科关联起来。陶瓷学科成为一个综合学科。 一、结构陶瓷 这种陶瓷主要用于制作结构零件。机械工业中的一些密封件、轴承、刀具、球阀、缸套等,都是频繁经受摩擦而易磨损的零件,用金属和合金制造有时也是使用不了多久就会损坏,而先进的结构陶瓷零件就能经受住这种“磨难”。 因此,从另一种意义上讲,陶瓷材料很大程度上代替了很多金属材料在人们的生产生活中起了相当大的作用。 二、电子陶瓷 在电子工业中能够利用电、磁性质的陶瓷,称为电子陶瓷。 电子陶瓷是通过对表面、晶界和尺寸结构的精密控制而最终获得具有新功能的陶瓷。在能源、家用电器、汽车等方面可以广。电子陶瓷解决了一些金属材料不能解决的抗磁抗高温的性能从而得到广泛的应用。

功能陶瓷材料的分类及发展前景

功能陶瓷材料的分类及发展前景 功能陶瓷是指在应用时主要利用其非力学性能的材料,这类材料通常具有一种或多种功能。如电、磁、光、热、化学、生物等功能,以及耦合功能,如压电、压磁、热电、电光、声光、磁光等功能。功能陶瓷已在能源开发、空间技术、电子技术、传感技术、激光技术、光电子技术、红外技术、生物技术、环境科学等领域得到广泛应用。 1.电子陶瓷 电子陶瓷包括绝缘陶瓷、介电陶瓷、铁电陶瓷、压电陶瓷、热释电陶瓷、敏感陶瓷、磁性材料及导电、超导陶瓷。根据电容器陶瓷的介电特性将其分为6类:高频温度补偿型介电陶瓷、高频温度稳定型介电陶瓷、低频高介电系数型介电陶瓷、半导体型介电陶瓷、叠层电容器陶瓷、微波介电陶瓷。其中微波介电陶瓷具有高介电常数、低介电损耗、谐振频率系数小等特点,广泛应用于微波通信、移动通信、卫星通信、广播电视、雷达等领域。 2.热、光学功能陶瓷 耐热陶瓷、隔热陶瓷、导热陶瓷是陶瓷在热学方面的主要应用。其中,耐热陶瓷主要有Al2O3、MgO、SiC等,由于它们具有高温稳定性好,可作为耐火材料应用到冶金行业及其他行业。隔热陶瓷具有很好的隔热效果,被广泛应用于各个领域。 陶瓷材料在光学方面包括吸收陶瓷、陶瓷光信号发生器和光导纤维,利用陶瓷光系数特性在生活中随处可见,如涂料、陶瓷釉。核工业中,利用含铅、钡等重离子陶瓷吸收和固定核辐射波在核废料处理方面广泛应用。陶瓷还是固体激光发生器的重要材料,有红宝石激光器和钇榴石激光器。光导纤维是现代通信信号的主要传输媒介,具有信号损耗低、高保真性、容量大等特性优于金属信号运输线。 透明氧化铝陶瓷是光学陶瓷的典型代表,在透明氧化铝的制造过程中,关键是氧化铝的体积扩散为烧结机制的晶粒长大过程,在原料中加入适当的添加剂如氧化镁,可抑制晶粒的长大。其可用作熔制玻璃的坩埚,红外检测窗材料,照明灯具,还可用于制造电子工业中的集成电路基片等。 3.生物、抗菌陶瓷 生物陶瓷材料可分为生物惰性陶瓷和生物活性陶瓷,生物陶瓷除了用于测量、诊断、治疗外,主要是用作生物硬质组织的代用品,可应用于骨科、整形外科、口腔外科、心血管外科、眼科及普通外科等方面。抗菌材料主要应用于家庭用品、家用电器、玩具及其他领域,

生活中的陶瓷材料及其应用

生活中的陶瓷材料及其应用 【摘要】陶瓷材料在我们的生活中早已应用到了各个方面,比如塑料、木材、水泥三大传统基本材料,陶瓷材料是用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它具有高熔点、高硬度、高耐磨性、耐氧化等优点。可用作结构材料、刀具材料,由于陶瓷还具有某些特殊的性能,又可作为功能材料。随着社会的进步,人们对材料的要求也越来越高,这种表现不仅表现在对科学研究领域,也表现在人们的日常生活当中。材料的进步很大程度上推动了社会的进步,而社会的需求反过来也有力的推进了材料科学的发展。拿陶瓷材料来说,陶瓷材料已经贯穿了人类的历史,并且随着历史不停的发展,在材料科学领域崭露头角。 【关键字】陶瓷材料应用发展 陶瓷材料分为普通陶瓷材料和特种陶瓷材料,普通陶瓷材料采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。特种陶瓷材料采用高纯度人工合成的原料,利用精密控制工艺成形烧结制成,一般具有某些特殊性能,以适应各种需要。根据其主要成分,有氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、金属陶瓷等;特种陶瓷具有特殊的力学、光、声、电、磁、热等性能。其特点有力学性能、热性能、电性能、化学性能、光学性能,根据用途不同,特种陶瓷材料可分为结构陶瓷、工具陶瓷、功能陶瓷。 而我们专业是地理信息系统与其陶瓷材料的联系真的不多,所以在这里就不详细的指出了。陶瓷材料在工程上的应用要数工程塑料了目前,主要的工程塑料制品已有10多种,其中聚酸胺、聚甲醛、聚磷酸酯、改性聚苯酸和热塑性聚酯被称为五大工程塑料.它们的产量较大.价格一般为传统通用塑料的2—6倍.而聚摧硫酸等特种工程塑料的价格为通用塑料的5一10倍。以塑料代替钢铁、木材、水泥三大传统基本材料,可以节省大量能源、人力和物力。陶瓷材料也可合成橡胶的开发利用,由于生产合成橡胶的原料丰富,其良好的性能又可以满足当代科技发展对材料提出的某些特殊要求,所以合成橡胶出现几十年来,品种已很丰富,一般可将其分为通用合成橡胶和特种合成橡胶两类。通用合成橡胶性能与天然橡胶相似,用于制造一般的橡胶制品,如各种轮胎、传动带、胶管等工业用品和雨衣、胶鞋等生活用品。特种合成橡胶具有耐高温、耐低温耐酸碱等优点,多用于特殊环境和高科技领域,如航空、航天、军事等方面。陶瓷材料在合成纤维的开发利用方面合成纤维的品种有几十种,但最常见的是六大种:聚酸胺纤维、涤纶、腈纶、丙纶、维纶、氨纶。高分子合成材料具有质量小、绝缘性能好等特点,所以发展很快,但又都有先天不足,即它们都在不同程度上对氧、热和光有敏感性。但是,随着高技术的迅速发展,高分子合成材料的大军必将在经济生活中扮演举足轻重的角色。陶瓷材料中已崛

功能陶瓷材料总复习题

功能陶瓷材料总复习 绪论 什么是功能陶瓷?常见的功能陶瓷的分类、特性与用途。 1定义:指具有电、磁、光、声、超导、化学、生物等特性,且具有相互转化功能的一类陶瓷。 2、分类:电容器陶瓷、压电、铁电陶瓷、敏感陶瓷、磁性陶瓷、导电、超导陶瓷、生物与抗菌陶瓷、发光与红外辐射陶瓷、多孔陶瓷。 3、特性:性能稳定性高、可靠性好、资源丰富、成本低、易于多功能转化和集成化等 4用途:在自动控制、仪器仪表、电子、通讯、能源、交通、冶金、化工、精密机械、航空航天、国防等部门均发挥着重要作用。举例:电容器陶瓷、谐振器元器件基材料、压电式动态力传感器、压电式振动加速度传感器。 介电陶瓷 以感应的方式对外电场作出响应,即沿着电场方向产生电偶极矩或电偶极矩的改变,这类材料称为电介质 各种极化机制以及频率围。 极化机制:电子极化、离子极化、偶极子极化、空间电荷极化 频率围: 铁电体, 晶体在某温度围具有自发极化Ps,且自发极化Ps的方向能随外电场而取向,称为铁电体。 材料的这种性质称为铁电性。 电畴:铁电体中自发极化方向一致的微小区域 铁电体的特性:铁电体特性包括电滞回线Hysteresis loop、电畴Domains、居里点Tc及居 里点附近的临界特性。 电滞回线:铁电体的P滞后于外电场E而变化的轨迹(如图

居里点Tc:顺电相T铁电相的转变温度 T>Tc 顺电相TTc存在Ps和电滞回线。 频率色散(Frequency Dispersion) 高介电常数,大的应变 复合钙钛矿:晶胞中某一个或几个晶格位置被2种以上离子所占据 /辭眩,才才(附必… 〃'一Mg2打Z0, M笔屁强… B”一Nb=TF 严… Pb(Mg l/3Nb2J3)O3尸风2也N% M 介电陶瓷的改性机理。 1、居里区与相变扩:热起伏相变扩、应力起伏相变扩、成分起伏相变扩散、结构起伏相

功能陶瓷的简介

功能陶瓷的简单介绍 功能陶瓷是具有电、磁、声、光、热、化学及生物体特性,具有相互转化功能的陶瓷。它主要是利用纳米技术使陶瓷的性能发生改变的。 热学功能陶瓷、生物功能陶瓷、化学功能陶瓷、电磁功能陶瓷、光学功能陶瓷,还是在涂层/薄膜和复合材料死当今比较主要的几种功能陶瓷。 生物功能陶瓷 在生物功能陶瓷方面: 利用纳米技术生产的纳米抗菌材料有三类:一类Ag+系抗菌材料(当高价银离子与细菌接触时使细菌体内的蛋白质变性。);第二类是是ZnO,Tio2:等光触媒型纳米抗菌材料(通过催化反应,将细菌的尸体分解得一干二净,一般还有除臭,自洁,防霉,防锈,高效防老化,全能净化空气,自造“负离子雨林”气候等功能);第三类是C-18A纳米蒙脱土等无机材料。将前两类加人陶瓷中可制成对病菌、细菌有强的杀菌和抑菌作用的陶瓷产品。北京陶瓷厂和日本东陶机器株式会社合资生产的高档卫生洁具“TOTO”产品,即是应用这一技术生产的具有抗菌性能的卫生洁具。生物陶瓷材料亦可作为作为无机生物医学材料,且没有毒副作用,与生物组织有良好的生物相容性、耐腐蚀性等优点,已越来越爱人们的重视。 主要有以下几种活性材料; (1)羟基磷灰石生物活性材料。人工听小骨羟基磷灰石听小骨临床应用效果优于其它各种听小,具有优良的声学性质,平均提高病人的听力20-30db。在特定语言频率范围提高45-60db。微晶与人体及生物关系密切,在生物和医学中已有成功应用,利用ha 微晶能使细胞内部结构发生变化,抑制癌细胞生长和增殖,可望成为治疗癌症的“新药”。(2)磷酸钙生物活性材料。磷酸钙又称生物无机骨水泥,是一种广泛用于骨修补和固定关节的新型材料。有望部分取代传统的pm-ma有机骨水泥。国内研究抗压强度已达到60mpa以上;磷酸钙陶瓷纤维:磷酸钙陶瓷纤维具有一定机械强度和生物活性,可用于无机骨水泥的补强及制务有机与无机复合型植入材料。 (3)磁性材料。生物磁性陶瓷材料主要为治疗癌症用磁性材料,植入肿瘤灶内,在外部交变磁场的作用下,产生磁滞热效应,导致磁性材料区域内局部温度升高,借以杀死肿瘤细胞,抑制肿瘤的发展。

生物功能陶瓷的应用

生物功能陶瓷简介 摘要:材料是社会技术进步的物质基础与先导,现代高技术的发展,更是紧密依赖与材料的发展。生物陶瓷不仅具有不锈钢塑料所具有的特性,而且具有亲水性、能与细胞等生物组织表现出良好的亲和性。生物陶瓷除用于测量、诊断治疗等外,主要是用作生物硬组织的代用材料,可用于骨科、整形外科、牙科、口腔外科、心血管外科、眼外科、耳鼻喉科及普通外科等方面。 关键词:生物功能陶瓷介绍生物陶瓷性能口腔陶瓷应用展望 引言:生物功能陶瓷以医疗为目的,具备完成某种生物功能时应该具有的一系列性能,如:承受或传递负载功能、控制血液或体液流动功能、电、光、声传导功能、填充功能。近年来器官移植取得巨大进展,但有难题:排异、器官来源、法律、伦理等。因此医学界对生物医学材料和人工器官的要求日益增加。生物陶瓷应运而生为解决人类的健康问题带来福音。 生物功能陶瓷的介绍 1.生物惰性陶瓷材料 生物惰性陶瓷主要是指化学性能稳定,不发生或发生极小反应且生物相溶性好的陶瓷材料。这类陶瓷材料的结构都比较稳定,分子中的键力较强,而且都具有较高的机械强度,耐磨性以及化学稳定性,它主要有氧化铝陶瓷、单晶陶瓷、氧化锆陶瓷、玻璃陶瓷等。应用于临床的为高密度、高纯度Al2O3陶瓷,它有良好的生物相容性、优良的耐磨性、化学稳定性、高的机械强度。当Al2O3陶瓷的平均晶粒<4μm;:纯度超过99.7%时,其抗弯强度可达500MPa,因此能用于牙根、颌骨、髋关节及其他关节和骨的修复和置换。特种碳材料也在临床应用中获得相当的成功,它具有良好的生物相容性,特别是抗凝血性能显著,模量低,摩擦系数小,韧性好,因此耐磨和抗疲劳。在临床中广泛应用于心血管外科,如心脏瓣膜、缝线、起搏器电极等。 2.生物活性陶瓷材料

新型陶瓷材料的应用与发展

新型陶瓷材料的应用与发展摘要:本文首先简单介绍了传统陶瓷材料向现代新型陶瓷材料转变的过程,新型陶瓷材料克服了传统陶瓷本身内部的缺陷,故使其性能大大提高,扩大了应用领域。然后论述了新型陶瓷材料分为结构陶瓷和功能陶瓷,以及它们耐高温、生物相容性能、电磁性、质量轻等特性及各自的应用领域,重点讨论了新型陶瓷材料在航空航天、军事、生物工程、电子工业等的应用,最后简单说明了新型陶瓷材料的近况和发展趋势。 关键字:新型陶瓷材料应用发展 引言:在当今科技高度发展的工业社会,每一项工业化的成就都与材料科学、材料的制造及实际使用有着密不可分的关联,它使得某些新的科学设想、构思及生产过程得以实现。离开了材料科学与材料工业,世界上的许多科学创造和发明都是难以实现或达到的。陶瓷材料是继金属材料,非金属高分子材料之后人们所关注的无机非金属材料中最重要的一种,因为它同时兼有金属和高分子材料两者的共同优点,此外在不断的改性过程中,已使它的易碎裂的性能有了很大的改善。因此,它的应用领域和各类产品都有一个十分明显的提高。 1.传统陶瓷材料到新型陶瓷材料的演变 陶瓷一词(Ceramics) 来源于古希腊Keramos 一词,意为地球之神。传统的陶瓷材料含意很广泛,它主要指铝、硅的氮化物,碳化物,玻璃及硅酸盐类。虽然传统陶瓷具有一定的耐化学腐蚀特性和较高的电阻率、熔点高,可耐高温,硬度高,耐磨损,化学稳定性高,不腐蚀等优点。但它也存在着塑料变形能力差,易发生脆性破坏和不易加工成型等缺点,这些原因大大地限制了在工业的应用范围,特别是在机械工业上的应用。而在电器上的应用也主要局限在高压电瓷瓶及其绝缘体部件等少数几个方面。 为此人们开展对传统的陶瓷材料进行改性研究和有关材料的人工合成开发,现代合成技术已经能够通过物理蒸发溅射(Vapor processing) 溶液法(Aqueous precipitation) 溶胶—凝胶技术(Solgel-technology) 及其它先进技术改造传统陶瓷或人工合成极少缺陷的陶瓷材料,其中较为重要的有Si3N4 ,A12O3 等。合成的陶瓷材料与传统陶瓷材料相比,它的性能大大提高,与其它材料相比,在同样强度下这些材料具有良好的化学、热、机械及摩擦学(tribology)特性。它质轻,可以耐高温,硬度高,抗压强度有时超过金属及合金,具有较强的抗磨性和化学隋性、电及热的绝缘性都相当好,特别是由于采用纯净材料,消除了缺陷( eliminate-defects) , 它的易脆性( brittleness) 得到了极大的改善,因此其应用,特在现代机械业的应用日益广泛。目前巳有大量的新型陶瓷材料被用于工业高温抗磨器件、机械基础元器件,除此之外,电子及电信行业,生物医疗器件乃至于陶瓷记忆材料,超导陶瓷等应用都与新型陶瓷材料的研制与开发有关。 2.新型陶瓷材料特性与分类 新型陶瓷材料按照人们目前的习惯可分为两大类,即结构陶瓷(Structural ceramics)(或工程陶瓷)和功能陶瓷( Functional ceramics),将具有机械功能、热功能和部分化学功能的陶瓷列为结构陶瓷,而将具有电、光、磁、化学和生物体特性,且具有相互转换功能的陶瓷列为功能陶瓷。随着科学技术的发展,各种超为基数和符合技术的运用,材料性能和功能相互交叉渗透,确切分类已经逐渐模糊和淡化。根据现代科学技术发展的需要,通过对材料结构性能的设计,新型陶瓷材料的各种特性得到了充分的体现。 3.新型陶瓷的应用与发展 新型陶瓷是新型无机非金属材料, 也称先进陶瓷、高性能陶瓷、高技术陶瓷、精细陶瓷, 为什么能得到高速发展, 归纳起来有四方面原因:①具有优良的物理力学性能、高强、高硬、耐磨、耐腐蚀、耐高温、抗热震而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能, 某些性能远远超过现代优质合金和高分子材料, 因而登上新材料革命的主角地位, 满足现代科学技术和经济建设的需要。②其原料取于矿土或经合成而得, 蕴藏量十分丰富。③产品附加值相当高, 而且未来市场仍将持续扩展。④应用十分广泛, 几乎可以渗透到各行各业。 3.1应用领域 功能陶瓷主要在绝缘、电磁、介电以经济光学等方面得到广泛应用;结构陶瓷除了耐低膨胀、耐磨、耐腐蚀外,还有重量轻、高弹性、低膨胀、电绝缘性等特性。因而在很多领域得到应用应该是以陶瓷燃气轮机为代表的耐高温陶瓷部件陶瓷广泛用于道具及模具等耐磨零件,这方面的应用主要是利用陶瓷的高硬度、低磨耗性、低摩擦系数等特性。另一方面,陶瓷材料具有其他材料所没有的高刚性、重量轻、耐蚀性等特性,从而被有效地应用在精密测量仪器和精密机床等上面。另外,因为陶瓷材料具有很好的化学稳定性和耐腐蚀性,在生物工程以及医疗等方面也得到广泛的应用。下面将分几方面来介绍新型陶瓷材料的应用领域。 1)航空航天材料:陶瓷基复合材料(Ceramic Matrix Composites) 当前耐高温材料已经成为航天先进材料中的由此岸优先发展方向,材料在高温下的应用对航天技术特别是固体火箭等领域具有极其重要的推动作用。随着航空技术的发展气体涡轮机燃烧室中燃气的温度要求越来越高,并更紧密地依赖于高温材料的研究开发,而先进陶瓷及其陶瓷基复合材料具有耐高温、耐磨损、耐腐蚀质量轻等优异性能,是最具有希望代替金属材料用于热端部件的候选材料[4]。为此世界各国开展对陶瓷发动机的研究工作。美、欧、日等越来越多的人体涡轮机设计者们开始用陶瓷基复合材料来制作旋转件和固定件。当前对高温结构陶瓷的研究主要集中于Sic、Si3N4、Al2O3和ZrO2等,尤其以Si3N4高温结构陶瓷最引人注目。这类陶瓷的综合性能较突出,它们有良好的高温强度,已经在航空涡轮发动机等方面得到了应用,非常适用于制作航天发动机

主要功能陶瓷器件现状及趋势

MLCC:积层陶瓷晶片电容(Multiplayer Ceramic Chip Capacitors) 称雄电容器市场 MLCC(多层陶瓷电容器)是各种电子、通讯、信息、军事及航天等消费或工业用电子产品的重要组件。MLCC由于其小体积、结构紧凑、可靠性高及适于SMT技术等优点而迅猛发展。目前,电容器市场无论从数量上还是市场潜力上来看都以陶瓷电容器份额最大。 全球MLCC产量随着IT产业的发展而不断增长,国内产量占全球产量的比例近年来也有较大的增长,我国已经逐渐成为世界MLCC的制造大国。 目前MLCC的国际上的发展趋势是微型化、高比容、低成本、高频化、集成复合化、高可靠性的产品及工艺技术。 当前MLCC需求的热点主要集中在手机、P4主板、DVD、数码相机和PS2游戏机等。手机对MLCC的要求特点是:数量大、尺寸小、质量高。在手机应用领域里,日商凭借技术上的绝对优势基本垄断市场。国内企业在手机配套实力明显不足。 片式陶瓷电感器: 电感元件发展方向 多层片式电感类元件包括了一大类具有叠层式介质/线圈结构的新型电子元件,是电感类元件发展的方向,也是三大类无源片式元件中技术含量最高的一大类。目前,这类元件已形成了规模相当大的产业和近百亿美元的国际市场。片式电感器的主要应用领域包括移动通信、计算机、音像产品、家电、办公自动化等。大屏幕彩电等新型家电产品也是片式电感器的重要应用领域。预计在今后若干年中,随着第三代移动通信技术、数字电视、高速计算机、蓝牙产品等新一代数字化电子产品的推出和世界各国EMI控制标准的相继制定,对各种片式电感类元件,特别是抗EMI类片式电感元件的需求将急剧上升。因此从整体上看,片式电感器的市场前景将十分看好。 片式电感器的生产企业主要分布在日本、美国、欧洲、韩国、我国的台湾和珠江三角洲地区。日本是生产片式电感器最早的国家,TDK、村田、Tokin和太阳诱电都是具有大规模生产能力的厂商。其中TDK占全球片式电感市场的32%,村田的市场占有率是18%,太阳诱电为16%。 目前片式电感器元件发展的主要趋势是:抗电磁干扰成为片式电感类材料的主要应用领域; 高感量和大功率;高频化;集成化。 片式微波电容器: 快速渗透通信领域 陶瓷电容器除在技术上继续向小尺寸、大容量、介质薄层化方向发展外,高频化也是一个重要的发展方向。为了满足通信设备的高频化对电子元器件的强劲需求,高电流承载能力的

相关文档
最新文档