生物质利用技术

生物质利用技术
生物质利用技术

生物质利用技术

世界上生物质能源的开发利用技术,长期以来主要是采用直接燃烧,尽管经过不断的技术改造,利用效率仍很低。为了提高效率、方便运输、贮存如多功能使用生物质能源,减少直接燃烧造成的环境污染,近几十年来,不少国家,尤其是经济发达国家,大力研究、开发利用生物质转型优化的能源技术,也就是将低品位的生物质能源转变成液体、气体、固化、电力等形式的优质新能源的技术以及高效节能技术,并开发种植“石油”植物,增加生物质能源的资源储备。

一、生物质热解综合技术

该项技术是生物质在反应器中完全缺氧或只提供有限氧和不加催化剂条件下,高温分解为生物炭、生物油和可燃气的热化学反应过程。可热解的生物质非常广泛,农业、林业和加工时废弃的有机物,都可以作为热解的原料。生物质热解后,其能量的80%-90%转化为较高品位的燃料,有很高的商业价值。农业、林业废弃生物质热解产生的固体和液体燃料燃烧时不冒黑烟,废气中含硫量低,燃烧残余物很少,减少了对环境的污染。分选后的城市垃圾和废水处理生成的污泥经热解后,体积大为缩小,臭味、化学污染和病原菌被除去在消除公害的同时,获得了能源。

热裂解工艺有以下3种类型。

1、慢速热解(烧炭法):主要用于烧木炭业。将木材放在种型式的窑内,在隔绝空气的情况下,加热烧成木炭。一个操作期一般要几天,可得到原料重量30%- 35%的木炭,烧木炭法也称木材干馏或碳化。低温干馏的加热温度为50 0-580℃,中温干馏温度为660-750℃,高温干馏温度为900-1100℃。

2、常规热解:是将生物质原料通过常规热解的装置,一般要经过几个小时的热解,可得到原料重量20%-25%的生物炭、10%-20%的生物油。

3、快速热解:是将磨细的生物质原料在快速热解装置中进行,过程经历的时间很短,只有几秒钟,热解产物中生物油的比率明显提高,一般可以达到原料重量的40%-60%,快速热解过程需要的热量以热解产生的部分气体为热源供应。

另外,国内外正在研究“闪激加热”热解气化技术,加热速率越高,热解所获得的气态和液态的燃料产品率越高。

热解所用原料和工艺不同,所得生物炭、生物油和燃料气3种产品的比率及其热值也有差异。

二、生物质液化技术

该技术是以生物质为原料,制取液体燃料的工艺。将生物质转化为液体燃料使用,是有效利用生物质能的最佳途径。其转换方法可分为热化法、生化法、机械法和化学法。生物质液化的主要产品是醇类和生物柴油。

醇类是含氧的碳氢化合物,其分子式为R-OH,其中R表示烷基。常用是甲醇和乙醇。甲醇可用木质纤维素经蒸馏获得,亦可将生物质气化产物一氧化碳与氢经催化反应合成。生产甲醇的原料比较便宜,但设备投资较大。乙醇可由生物质热解产物乙炔与乙烯合成制取,但能

耗太高,采用生物质经糖化发酵制取方法较经济可行。一般情况下,乙醇生产成本的60%以上为原料所占。因此选用廉价原料对降低乙醇成本很重要。制取乙醇的原料主要有两类,一类是本质纤维原料,另一类是含糖丰富的植物原料,也可选用农业废弃物,如高梁秸、玉米秸、制糖废渣等。

乙醇作为燃料使用已有很久的历史,1900年英国就出现了以乙醇为燃料的内燃机。70年代以来的能源危机使乙醇燃料又得到发展,据统计,世界上有上千万辆汽车用汽油混合乙醇为燃料。

生物柴油是动植物油脂加定量的醇,在催化剂作用下经化学反应,生成性质近似柴油的酯化燃料。生物柴油可代替柴油直接用于柴油发动机上,也可与柴油掺混使用。生物质液体燃料的可再生性和低污染性使期成为良好的替代能源,作为动力燃料和发电能源有持久的生命力,但目前仍受到石油市场的左右。

巴西利用甘蔗大规模生产乙醇作汽车燃料,以替代进口石油,节约外汇。僵已建有480多家加工厂,年产乙醇127亿升,乙醇汽车累计量达530多万辆。美国利用玉米、马铃薯等生产乙醇,以1:10的比例渗入汽油作汽车燃料,1993年有39个工厂,年产11亿加仑乙醇,每吨玉米可产40加仑乙醇。

三、生物质气化技术

世界上研究应用生物质气化技术发展较快,主要有热解气化技术和厌氧发酵生产沼气技术等。

1、热解气化技术。国外以不同种类的生物质为原料,大都采用压力燃烧气化技术以驱动燃气轮机,还有发生炉煤气甲烷化,流化床气化炉或固定床气化炉热解气化等技术。美国、日本、加拿大、瑞典等国的气化技术已能大规模生产水煤气。

2、厌氧发酵生产沼气,是有机物在厌氧条件下被微生物分解发酵生成一种可燃性气体——沼气,又称生物气。其主要成分是甲烷,含量占60%左右。每立方米沼气的热值相当于1公斤煤的热量。

沼气是1776年由意大利物理学家A??沃尔塔在沼泽发现的。1781年法国人L?穆拉根据沼气产生的原理,将简易沉淀池改造成世界上第一个沼气发生器。但是,资本主义国家在发展工业化、城市化过程中,走了一条“先污染后治理”的路子,对沼气并未引起重视,直至20世纪七八十年代,才越来越引起世界各国的重视。不论是研究、开发、利用厌氧消化技术和大型沼气工程处理城市、工业污泥和垃圾,既治理了污染,又获得了能源。

四、生物质发电技术

1、生物质发电。对于以生物质资源为原料进行发电,工业发达国家已有成熟的技术设备,并形成一定的生产规模。美国采用这种生物质能转型优化方式有三种技术的支持:一是能源林生产技术,包括种子选型、培育和种植。美国利用退耕或轮作的土地种植能源作物,包括树和草,因为这类土地种树或草只需要很少的化肥、农药和管理费用,有利于改良土壤结构,保护水土资源,改善生态环境。二是有专用的加工设备,包括秸秆打捆机、粉碎机、木材削

片、整树粉碎等设备和专用的运输工具等。三是生产设备,主要是燃烧炉、蒸汽发电装置等。而毛里求斯、哥斯达黎加等国则大量使用蔗渣发电。

1998年12月英国首座利用特殊培育的柳树为燃料的发电厂在西约克郡奠基。这座新型发电厂使用的主要燃料是生长速度很快的矮柳。该柳树3-4年便可成材。柳树的种植和采伐将使用轮作方式,采伐后立即种植,保证电厂能获得持续的燃料供应。除了柳树外,电厂还可使用农业和渔业废物作为燃料。

2、垃圾发电。随着城市化和食品、医药等工业的发展,城市垃圾迅速增加,许多城市面临着垃圾围城的困扰,大量垃圾堆放占用土地、污染环境。而卫生掩埋、焚化、就也燃烧、堆肥、填低洼地及任意倾弃,衍生出二次污染,危害生态环境和人们的健忘。随着科学技术进步,现代垃圾中被认定为可回收的成分越来越多,因而发达国家,加强了利用垃圾发电的技术研究、开发与应用。

通常的垃圾发电技术是将垃圾投入焚烧炉中燃烧,由垃圾燃烧产生的热量制造蒸汽驱动蒸汽轮机发电。垃圾中含有大量的盐分和氯乙烯等物质,燃烧后会产生一种含有氯元素的气体,这种气体在温度达到300℃时就会严重腐蚀锅炉及管道,所以发电用蒸汽的温度只能控制在250℃左右。通常垃圾发电技术的发电效率只能达到10%-15%,普通火力发电的发电效率则在40%左右,因而这样的垃圾发电技术普及和实用的难度大。

美国皮内拉斯的垃圾发电站年发电量为100亿kw.h,每周可处理120多万吨的垃圾,垃圾燃烧后的废渣用于铺路。荷兰政府也拨出巨款设计建造若干大型垃圾发电站。

日本首座“超级垃圾发电机组”于1996年11月,在群马县榛名町正式试运行。这种“超级垃圾发电技术”的特点是采用蒸汽轮机的同时增设燃气轮机,利用烯气轮机产生的热将锅炉产生的250℃左右的蒸汽温度提高到400℃。由于蒸汽温度得到大幅度提高,发电效率可上升到31%。据测算,如果将日本全国每天产生的垃圾全部用于发电,每天可发电6000万kWh.,相当于100座中型火力发电站的发电能力。

环保专家认为,由于大幅度提高垃圾发电效率的技术不断开发成功,垃圾发电将有可能迅速发展,它不仅可以解决垃圾处理场地不足的问题,还可以化害为得,减少环境污染,并可望成为很有潜力的电力来源。

五、生物质固化成型技术

生物质固化成型技术是将经过粉碎、具有一定粒度的生物质,放入挤压成型机中,在一定压力和温度的作用下,制成棒状、块状或粒状物的加工工艺。成型燃料热性能优于木材,与中质混煤相当,而且点火容易,便于运输和贮存。I

生物质压制成型技术把农、林业中的废弃物转化成能源,使资源得到综合利用,并减少了对环境的污染。成型燃料可作为生物质气化炉、高效燃烧炉和小型锅炉的燃料,也可以进一步炭化,作为冶金、化工等行业的还原剂、添加剂等。

生物质热压致密成型机理,主要是木质素起胶粘剂的作用。木质素在植物组织中有增强细胞壁和粘合纤维的功能,属非晶体,有软化点,当温度达到70-110℃ 时,粘合力开始增加,在200-300℃时发生软化、液化。此时再加以一定的压力,并维持一定的热压滞留时间,可使木质素与纤维致密粘接,遂使大部分物料变开,冷却后生物质即可固化型。另外,粉碎的

生物质颗粒互相交织,也增加了成物强度。

压制成型机的基本结构用于生物质致密成型的设备,主要有螺旋挤压式、活塞冲压式和环模滚压式几种类型。

六、种植“石油”作物技术

据专家预测,地球上的石油资源仅够维持到21世纪30年代。为了满足现代化生活的需求,目前世界各国在注意节约能源的同时,积极寻找石油的替代能源,而选育种植石油作物,用植物油替代石油是一个重要途径。其主要方法有以下两个方面。`

1、在一些经济发达国家,通过扩大种植甘蔗、甜高梁、甜菜、甘薯以及速生林,提高产品产量,通过对这些农、林产品采用热解技术制取液体燃料。1997年10月在德国召开国际燃料研讨会上,有关学者建议,利用基因技术,选育优良品种,提高油菜籽产量,加工榨取大量菜籽的脂肪酸含量和抗病害能力,增加油菜籽产量,加工榨取大量菜籽油,从自然条件来看,目前比较现实的是开发植物油,它是一种可再生能源,可替代石油。从车辆制造方面看,采用像菜籽油这样的植物燃料,不需要对现有的汽车发动机结构作大的改动,在制造技术方面也不存在在的困难。从生态效果来看,采用植物燃料的汽车所排放的废气将远低于汽油,因此对生态环境较有利;此外对人体健康也不易产生直接的危害。

2、开发新的石油作物。人类为寻找石油的替代能源,选育出了高光效的石油植物。据报道,植物界,可有于制成石油品种很多,不少乔木、灌木、草类、藻类等都含有极可观的天然炼油物质。

巴西的一种香胶树,半年之内每棵树可分泌出20-30kg胶汁,不必提炼即可作燃料。在美国加州农场发现的野生黄鼠草,每公顷产量可提炼出1000kg石油,人工种植时产油可达6000kg;美国加州大学培育的石油草,含碳氢化合物的白色乳状液,稍加提炼便可以得到石油;美国还在其西海岸附近的海域中培育出一种巨型海藻,一昼夜可长60厘米,其含油量很高。日本的一个科研小组宣布,他们成功地从一种淡水藻类中提出取出了石油。这种藻类在吸收二氧化碳进行光合作用的过程中体内蓄集了石油,它不仅对二氧化碳的吸收率高,而且其石油生成能力远远超过预想的程度。提取出的石油不仅发热量高、而且氮、硫含量少。这种淡水藻广泛分布在世界各地的湖泊沼泽中。

诺贝尔奖得主美国的卡尔教授早在1984年已开发出首个人工石油种植场,而且得到每公顷120-140桶石油的收成。他的成就推动了全球石油植物研究,美国已有一个上百万平方米的速生林提炼石油。英国也批准兴建一所石油植物园,而瑞士制订出一个利用植物石油,取代全国半数石油耗量的计划。

2020年公需科目当代科学技术前沿知识(200道题大全)

当代科学技术前沿知识(共50题,共100分) 一. 单项选择题(共20题,共40分) 1.我国的载人飞船被命名为:()。[2分] A“水星” B“猎户座” C“” D“神舟” 2.下列不属于纳米材料的是()。[2分] A纳米线 B纳米球 C石墨烯 D金刚石 3.分布式可再生能源技术不包括以下哪项:()。[2分] A太阳能光伏发电 B地热能利用 C太阳能热发电 D核电技术 4.据估算,真菌病害已使主要粮食作物的产量在全球围每年减少()亿吨,损失的粮食每年

可多养活6亿人。[2分] A0.5 B0.75 C1.0 D1.25 5.()是以基因组学、分子生物学知识和分子生物学技术为基础,融入工程学思想,将“自下而上”的“设计合成”的研究理念与系统生物学在“组学”基础上建立的“自上而下”的“综合分析”的研究理念相结合,具有巨大科学创新和应用潜力的新兴交叉学科。[2分] A合成生物学 B精准医学 C再生医学 D预防医学 6.当前,()已成为全球新一轮科技革命和产业变革的着力点,成为新一代信息技术的聚焦点,推动经济社会各领域从数字化、网络化向智能化加速跃升。[2分] A新材料技术 B新一代人工智能 C新生物技术 D新能源技术 7.()年11月24日,设施通过国家验收,标志着我国唯一的国家级野生生物种质资源库项

目建设全面完成。[2分] A1949 B1979 C2009 D2019 8.以下哪个国家或地区不面临严重的水资源压力:()。[2分] A巴西 B中国东部 C北非 D阿拉伯地区 9.()是世界第一台速度超过每秒10亿亿次的超级计算机。[2分] A天河二号 B神威?太湖之光 C顶点 D山脊 10.机器学习是指通过()在机器上训练模型,并利用模型进行分析决策与行为预测的过程。[2分] A数据 B算法

生物质的生物转化与利用

食品技术进展讲座报告

【摘要】生物质的生物转化与利用在生物质能源开发、生物质材料制备和生物活性药物制取等领域已取得了丰厚的研究成果,本文以上几个方面进行了综述,并对生物质资源生物转化的方式与途径进行了分析。 【关键词】生物质生物转化生物能源生物材料生物活性药物 【前言】建立在石油、煤炭及天然气等化石资源基础上的现代化学工业,一度成为满足人类生活和保障社会经济发展的重要基础工业。但由于化石资源的过度开发与利用累计的效应,相继也出现了诸多问题,化石资源储量的有限性,诱发了化石资源的渐趋枯竭问题;化石资源转化过程中产生的环境污染物,导致区域性和全球性环境、生态问题;另外,众多由化石资源而来的化学合成品的不可降解性,使用之后的残留物成为危害环境的世界性公害。为控制或减少化石资源的使用、降低环境和生态成本,各国政府纷纷颁布政策法规,鼓励开发利用可再生资源,尤其是生物质资源[1],因此生物质资源的转化与利用也成为当今各国化学化工领域研究的热点问题 [2]。从理论上讲,生物质资源的转化与利用主要有以下4种方式:生物质资源的物理转化与利用、生物质资源的物理化学转化与利用、生物质资源的化学转化与利用和生物质资源的生物转化与利用。实践证明,前3种方式都不同程度地存在着转化与利用条件苛刻、资源利用率较低和环境污染等问题,而生物质资源的生物转化与利用的条件比较温和,并能实现多级循环利用,不仅不会对环境造成危害,而且还有利于改善已经被破坏了的环境与生态。本文主要从生物质资源的生物转化与利用在生物质能源开发、生物质材料制备和生物活性药物制取等领域研究现状进行了概述和前瞻。 【正文】 1 生物质生物转化生物质能源 生物质资源是由生物直接或间接利用绿色植物光合作用而形成的有机物。它包括所有的植物、动物或微生物,以及由这些生物产生的排泄物和代谢物。各种生物质资源中都含有能量,可以转化为能与环境协调发展的可再生能源,即生物质能。利用生物转化技术能将生物质资源转化为各种洁净的“含能体能源”,如沼气、燃料乙醇、生物氢和生物油等。因此,对生物质资源生物转化能源的研究成为目前能源研究领域的重要课题。 1.1生物质资源生物转化沼气[3]-[6] 沼气是有机物在厌氧条件下经微生物分解发酵而生成的一种可燃性气体。主要原料:人畜禽粪便、秸秆、农业有机废弃物、农副产品加工的有机废水、工业废水、城市污水和垃圾、水生植物和藻类等有机物质。 在各种可供开发的生物质资源中,农作物秸秆是最为丰富的一种富含有机质(80%—90%的生物质资源)。早在20世纪80年代,我国以植物秸秆为发酵原料生产沼气的技术就在户用沼气池中有过应用,后来由于产气效果不理想及出料难等问题没有解决而逐渐停滞。近年来,随着生物技术的进步以及农业主产区秸秆资源的过剩和部分地区农民就地焚烧秸秆带来环境问题,植物秸秆生物转化沼气研究重新引起重视。以沼气为纽带综合开发利用生物质资源的途径,即种、养、沼、加工业相结合的物质循环模式是最有实效的,三个效益(经济、社会、生态环境)的观点是开发农业废弃物资源化全过程的出发点和归宿。[3] 如今的沼气建设重点是由户用沼气池转移到大中型沼气池,沼气工程以产气为主要发展为处理有机废弃物治理环境,沼气残留综合利用为主。在沼气残留物综合利用的研究中,要从单纯的有机肥效果向饲料添加剂和提取生物粪活性物质发展。用高科技方法研究沼气工作的设计、设备、发酵工艺及综合利用。使之成

国内外生物医药前沿科技发展趋势

国内外生物医药前沿科技发展趋势 王萍姚恒美 上海图书馆上海科学技术情报研究所 2005 年全球生物技术产业总产值达到633 . 1 亿美元,研发投入达到232 亿美元,年增长率为11%。其中生物医药依然是生物技术中最引人注目的领域。研究人员在药物设计、疫苗研究、抗体工程、新型药物输送技术等方面已取得众多突破。尽管目前我国在生物医药产业规模上仍落后于欧美等发达国家,但近年来在癌症治疗、蛋白质、免疫学等生物医药研究领域取得了长足的进步,成果屡次登上《科学》、《自然》等顶级国际权威期刊,并受到生物医药企业的高度关注。 一、国内外生物医药前沿技术发展趋势 药物设计 以核酸为靶的药物设计重要研发领域主要涉及两个方面:一方面是反义核酸、核酶与三链DNA的设计及其在医药领域的应用;另一方面是以核酸为靶的小分子药物研发。 目前全球约有20 余家公司在从事反义核苷酸的研究与开发,其中有23 种试用于临床,其中 4 种已进入三期临床试验阶段。反义核酸药物主要研发方向包括抗癌抑癌、抗耐药、免疫类、细胞因子类、抗病毒等。目前,反义药物方面己取得重大进展,第一代产品(Eyetech 公司用于抑制老年人眼疾的Macugen )己有上市,第二代反义产品也己形成。核酶具有高度特异性,作为抗病毒基因治疗的新型分子,受到了广泛的重视,被认为是抗病毒基因治疗方案设计中重要探索方向。2004 年 6 月,美国宾夕法尼亚州立医学院开发出了一种抗乙肝病毒的SNIPAA盒式微型载体。该类研究在国内已有开展,中科院微生物研究所自2001 年起开展“核酶介导的果树抗类病毒基因工程”的研究。R 卜A干扰不仅可以深入揭示细胞内基因沉默的机制,而且还可以作为后基因时代基因功能分析的有力工具,广泛用于包括功能基因学、药物靶点筛选、细胞信号传导通路分析、疾病治疗等等,近年来已成为遗传学、药理学的重要研究手段。目前中国科学家也己纷纷开展了该项研究,国家自然科学基金等已立项支持。 疫苗研究 以美国为例,疫苗的需求每年增长8 . 6 % ,到2008 年时市值将达74 亿美元,到2013 年疫苗市值将达91 亿美元。其中先进技术应用趋向包括异质基础加强结种技术、蛋白质调控技术、类病毒技术、转基因技术等。美国细胞基因系统工程公司应用基因技术研制出一种新型的肺癌疫苗G 一V AX ,被视为运用修改过基因的活体细胞治疗癌症上的一个重要突破。 抗体工程 抗体分子是生物学和医学领域用途最为广泛的蛋白分子,通过细胞工程、基因工程等技术制备的多克隆抗体、单克隆抗体、基因工程抗体可广泛应用在疾病诊断、治疗及科学研究等领

2020年专业技术人员公需科目《当代科学技术前沿知识》试题与答案

2020年专业技术人员公需科目《当代科学技术前沿 知识》试题与答案 一、单项选择题(共20题,共40分) 1. 信息材料旨在实现信息的产生、发射、传输、接收、获取、存储和显示等功能使用,下列属于信息材料的是() A.第三代半导体材料 B.超大容量信息存储材料 C.先进磁性材料 D.激光晶体 参考答案 答案:ABC 2. 目前,以疫苗为主的生物治疗目前在全球迅速发展,下列哪些属于以疫苗为主的生物治疗()。 A、T细胞激活与调节 B、树突状细胞疫苗 C、溶癌病毒治疗 D、T细胞过继转移 参考答案 答案:ABCD 3. ( ) 指的是利用量子叠加或量子纠缠来获得更高灵敏度和分辨率的新型传感器。 A、生物传感器 B、位移传感器

C、红外传感器 D、量子传感器 参考答案 答案:D 4. 量子材料指的是由于其自身电子遵循的量子力学规律而产生奇异物理特性的材料,下列不属于量子材料的是( )。 A.石墨烯 B.铜氧化物高温超导体 C.铁基超导体 D.锂离子电池 参考答案 答案:D 5. 2009年,科技部、中共中央组织部、工业和信息化部三部委联合启动国家 农村农业信息化示范省建设工作。以下哪个省市未被列入先期示范工作中:()。 A、山东 B、湖南 C、江苏 D、安徽 参考答案 答案:C 6. 目前,全球固体废物领域技术创新最为活跃的国家是以下哪个国家:()。 A、美国 B、德国

C、日本 D、中国 参考答案 答案:D 7. ()有望成为继药物治疗、手术治疗后的第三种疾病治疗途径。 A、精准医学 B、再生医学 C、预防医学 D、康复医学 参考答案 答案:B 8. 关于重大慢性病的说法,不正确的是()。 A.重大慢性病多为终身性疾病,很难根治 B.并发症危害大,疾病后期的致死致残率高 C.对人类健康和发展造成了极大的负面影响 D.不会造成经济损失 参考答案 答案:D 9. 深海生物资源主要是指生活在海洋大陆坡和洋底水深( )之间,具有开发利用价值的生物。 A.小于200米 B.200~3000米 C.3000~5000米

生物质能的开发与利用

摘要:针对生物质能源的开发利用对于中国发展的重大意义,从生物质能源的概念入手,简明概述了生物质能特点,利用及利用途径,以及开发利用生物质能对中国的意义。 关键词:生物质能源;开发;利用;意义 20世纪70年代以来,面对常规矿物能源的日益枯竭和环境的逐渐恶化,世界许多国家将目光逐渐转移到了具备可再生、环保、可转化等优点的生物质能源上。改革开放以后,中国也逐步迈上了发展生物质能源的轨道。进入21世纪,谁能把握住生物质能源开发利用的先机,谁将在未来的国际竞争中立于不败之地。因此,应该提高对发展生物质能源重要性的认识,为顺利开展生物质能源的开发利用创造有利环境。 1 生物质能源的概念 生物质是一种通过大气,水,大地以及阳光有机协作产生的可持续性资源。生物质如果没有通过能源或物质方式被利用,将被微生物分解成水,二氧化碳以及热能散发掉。 生物质产业是指利用可再生或循环的有机物质,包括农作物、树木、能源作物和其他植物及其残体、畜禽粪便、有机废弃物等为原料,进行生物基产品、生物燃料和生物能源生产的产业。 生物质能是以生物质为载体的能量,即通过植物光合作用把太阳能以化学能形式在生物质中存储的一种能量形式。碳水化合物是光能储藏库,生物质是光能循环转化的载体,生物质能是惟一可再生的碳源,它可以被转化成许多固态、液态和气态燃料或其它形式的能源,称为生物质能源。煤炭、石油和天然气等传统能源也均是生物质在地质作用影响下转化而成的。所以说,生物质是能源之源。 2.生物质能的特点 1) 可再生性 生物质能属可再生资源,生物质能由于通过植物的光合作用可以再生,与风能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用; 2) 低污染性 生物质的硫含量、氮含量低、燃烧过程中生成的SOX、NOX较少;生物质作为燃料时,由于它在生长时需要的二氧化碳相当于它排放的二氧化碳的量,因而对大气的二氧化碳净排放量近似于零,可有效地减轻温室效应; 3) 广泛分布性 缺乏煤炭的地域,可充分利用生物质能; 4) 生物质燃料总量十分丰富 生物质能是世界第四大能源,仅次于煤炭、石油和天然气。根据生物学家估算,地球陆地每年生产1000~1250亿吨生物质;海洋年生产500亿吨生物质。生物质能源的年生产量远远超过全世界总能源需求量,相当于目前世界总能耗的10倍。我国可开发为能源的生物质资源到2010年可达3亿吨。随着农林业的发展,特别是炭薪林的推广,生物质资源还将越来越多 3.生物质能的利用 生物质能一直是人类赖以生存的重要能源,它是仅次于煤炭、石油和天然气而居于世界能源消费总量第四位的能源,在整个能源系统中占有重要地位。有关专家估计,生物质能极有可能成为未来可持续能源系

对碳材料的认识

浅谈碳材料 09材料化学(2)200930750201 陈永豪 从这次的化学前沿课程中,我初步地了解有关碳材料的知识,并且对它的应用产生了一定的兴趣。于是我课后查找了其它相关资料,总结自己对碳材料的一些理解,以下是我的学习成果: 碳材料是以煤、石油和它们的加工产物等有机物作为主要原料,经过一系列加工处理所制得的非金属材料,主要成分是碳。 碳材料的结构可以从堆积方式、和对称性等多个角度来划分。从堆积方式可以分为石墨、玻璃碳、碳纤维和炭黑等。从晶体学角度而言可划分为晶体和无定形。从对称性来分类可分为非对称、点对称、轴对称和面对称等。 21世纪,碳材料已发展成为一大类品种繁多、用途广泛、功能优异的材料,大量应用于冶金、化工、机械、电子、电器、航空、核能、医药等工业领域和生物工程、文体器材等民用方面,成为国民经济不可缺少的材料。 现今,人们主要花更多的时间和精力去研究新型碳材料,发掘功能更为强大的碳材料,为我们的生活和生产带来意想不到的效果,实现我们曾经的梦想。目前,研究较多和应用比较广泛的新型生物质碳材料有各种生物质碳纤维、生物质活性碳纤维、生物质碳分子筛。 以丰富的生物质资源开发研制新型碳材料将能缓解由于化石资源的枯竭而带来的工业和民用材料的短缺问题,能最大程度的降低各种碳材料的生产成本,加快推进新型碳材料的应用领域。因此,今后生物质碳材料的研究应该着重于:(1)在兼顾环保的前提下,加大开发各种生物质资源如木、竹、藤、农业废弃物等为原料的新型生物质碳材料的研究开发力度;(2)重点研究开发复合化、高性能、应用广的生物质碳料,如离子交换生物质碳纤维,提高生物质资源的使用价值;(3)综合应用各种生物质原料,开发具有多种生物质原料的碳材料,如竹木、竹藤等混合碳材料。随着生物质碳材料研究的深入和加工技术的发展以生物质为原料的新型碳材料必将给材料科学的发展带来新的革命。 可以毫不夸张地说,20世纪的最后几十年是硅的时代,迎面而来的,则是碳材料的时代。

2020公需科目当代科学技术前沿知识(共50题,共100分)100题V

当代科学技术前沿知识共100题 一.单项选择题(共20题 ,共40分) 1、我国的载人飞船被命名为: (D)。[2分] A“水星” B“猎户座” C“东方“ D“神舟” 2、下列不属于纳米材料的是(D)。[2分] A纳米线 B纳米球 C石墨烯 D金刚石 3、分布式可再生能源技术不包括以下哪项: (D)。[2分] A太阳能光伏发电 B地热能利用 C太阳能热发电 D核电技术 4、据估算,真菌病害已使主要粮食作物的产量在全球范围内每年减少(D) 亿吨,损失的粮食每年可多养活6亿人。[2分] A 0.5 B 0.75

D 1.25 5、(A)是以基因组学、分子生物学知识和分子生物学技术为基础,融入工程学思想,将“自下而上”的“设计合成”的研究理念与系统生物学在“组学”基础上建立的“自上而下”的“综合分析”的研究理念相结合,具有巨大科学创新和应用潜力的新兴交叉学科。[2分] A合成生物学 B精准医学 C再生医学 D预防医学 6、当前, (B)已成为全球新-轮科技革命和产业变革的着力点,成为新一代信息技术的聚焦点,推动经济社会各领域从数字化、网络化向智能化加速跃升。[2分] A新材料技术 B新-代人工智能 C新生物技术: D新能源技术 7、(C) 年11月24日,设施通过国家验收,标志着我国唯一的国家级野生生物种质资源库项目建设全面完成。[2分] A 1949 B 1979

D 2019 8.以下哪个国家或地区不面临严重的水资源压力:(A)。[2分] A巴西 B中国东部 C北非 D阿拉伯地区 9、(D) 是世界第一台速度超过每秒10亿亿次的超级计算机。[2分] A天河二号 B神威太湖之光 C顶点 D山脊 10、机器学习是指通过(D) 在机器上训练模型,并利用模型进行分析决策与行为预测的过程。[2分] A数据 B算法 C算力 D数据和算法 11.以下哪点不是我国水资源分布情况的特点: (A)。[2分] A人均占有量高 B南方水多

生物质能及其利用

生物质能及其利用 1 生物质能的概述 生物质能(biomass energy ),就是太阳能以化学能形式贮存在生物质中的能量形式,即以生物质为载体的能量。它直接或间接地来源于绿色植物的光合作用,可转化为常规的固态、液态和气态燃料,取之不尽、用之不竭,是一种可再生能源,同时也是唯一一种可再生的碳源。 生物质能的原始能量来源于太阳,所以从广义上讲,生物质能是太阳能的一种表现形式。目前,很多国家都在积极研究和开发利用生物质能。生物质能蕴藏在植物、动物和微生物等可以生长的有机物中,它是由太阳能转化而来的。有机物中除矿物燃料以外的所有来源于动植物的能源物质均属于生物质能,通常包括木材、及森林废弃物、农业废弃物、水生植物、油料植物、城市和工业有机废弃物、动物粪便等。 2 生物质能的分类 2.1 林业资源 林业生物质资源是指森林生长和林业生产过程提供的生物质能源,包括薪炭林、在森林抚育和间伐作业中的零散木材、残留的树枝、树叶和木屑等;木材采运和加工过程中的枝丫、锯末、木屑、梢头、板皮和截头等;林业副产品的废弃物,如果壳和果核等 2.2 农业资源 农业生物质能资源是指农业作物(包括能源作物);农业生产过程中的废弃物,如农作物收获时残留在农田内的农作物秸秆(玉米秸、高粱秸、麦秸、稻草、豆秸和棉秆等);农业加工业的废弃物,如农业生产过程中剩余的稻壳等。能源植物泛指

各种用以提供能源的植物,通常包括草本能源作物、油料作物、制取碳氢化合物植物和水生植物等几类。 2.3生活污水和工业有机废水 生活污水主要由城镇居民生活、商业和服务业的各种排水组成,如冷却水、 1 洗浴排水、盥洗排水、洗衣排水、厨房排水、粪便污水等。工业有机废水主 要是酒精、酿酒、制糖、食品、制药、造纸及屠宰等行业生产过程中排出的废水等,其中都富含有机物。 2.4城市固体废物 城市固体废物主要是由城镇居民生活垃圾,商业、服务业垃圾和少量建筑业垃圾等固体废物构成。其组成成分比较复杂,受当地居民的平均生活水平、能源消费结构、城镇建设、自然条件、传统习惯以及季节变化等因素影响。 2.5 畜禽粪便 畜禽粪便是畜禽排泄物的总称,它是其他形态生物质(主要是粮食、农作物秸 秆和牧草等)的转化形式,包括畜禽排出的粪便、尿及其与垫草的混合物。2.6沼气 沼气就是由生物质能转换的一种可燃气体,通常可以供农家用来烧饭、照明。 3 生物质能的特点 3.1可再生性 生物质能属可再生资源,生物质能由于通过植物的光合作用可以再生,与风 能、太阳能等同属可再生能源,资源丰富,可保证能源的永续利用;

生物质基炭材料的结构调控及其电化学性能研究

生物质基炭材料的结构调控及其电化学性能研究新型电化学储能装置的发展对于减少化石燃料的消耗以及间歇性可再生能源的高效利用起着非常重要的作用。其中,超级电容器由于具有功率密度高、循环寿命长、安全系数高等独特的优点,在储能系统、混合动力和电动汽车以及消费类电子产品等领域中,已经得到了广泛的应用。在各种超级电容器电极材料中,炭材料以其丰富的比表面积、可调节的多孔结构以及良好的导电性而受到人们的广泛关注。 其中,生物质基炭材料具有独特的天然孔道结构、可调的物理化学性质、环境友好并且价格低廉,赋予了其人工材料难以比拟的优异性能。炭材料的比表面积、孔性结构和石墨化度,直接影响其电化学性能。此外,炭材料的原料成本、制备工艺、对环境的影响也是影响碳基超级电容器发展的因素。 因此,开发高性能、低成本的炭材料对推动超级电容器的发展具有重要的作用。本文主要利用生物质的天然孔道结构来制备具有不同形貌特征的多孔炭材料;针对生物质基炭材料普遍存在的结构单一和石墨化程度低,以及传统活化剂腐蚀性强等缺点,开发多种新型催化剂对炭材料的结构进行设计和优化,实现同步活化和石墨化的目的;探索了其作用机理,研究了不同结构特征的炭材料对其电化学性能的影响,为合理利用生物质结构制备多孔石墨化碳材料提供了新思路。主要包括以下研究内容:(1)利用生物质木屑天然的微管束结构,在不使用任何催化剂和模板剂的条件下,通过直接碳化生物质制备了碳微米管,得到的三维碳微米管(CMB)是由直径介于2.9619.74μm的平行管道组成的,较大的孔道有利于电解液的储存和离子的快速传输。 通过采用电化学沉积的方法,纳米结构的MnO2均匀地附着在

《生物质能源转化及利用》课程教学大纲

《生物质能源转化及利用》课程教学大纲 课程名称:生物质能源转化及利用 课程代码:400+ 学分/学时:3学分/51学时 开课学期: 适用专业:热能与动力工程,新能源科学与工程 先修课程:工程热力学、流体力学、传热学 后续课程: 开课单位:机械与动力工程学院 一、课程性质和教学目标 课程性质:生物质能源转化及利用是热能与动力工程、新能源科学与工程等专业的一门新兴应用技术基础课程。 教学目标:生物质能是目前世界上继石油、煤炭、天然气之后的第四大能源,也是今后可再生能源技术的主要利用对象。生物质能也是唯一可储存的可再生能源,而且生物质可以转化为固体燃料、液体燃料和气体燃料,是唯一可全面替代化石能源,在未来建设低碳能源体系和可持续发展社会中将起到十分关键的作用。对我国目前社会经济高速发展、城镇化不断扩大的历史阶段,存在大量的废弃秸秆和城市生活垃圾的清洁处理和资源化利用问题,所以开发利用生物质能不仅是解决化石能源不可持续的问题,也是解决我国社会经济发展所面临的迫切问题,掌握生物质能源转化的基本原理,熟悉生物质能利用技术,是能源工作者必须具备的基本素质,也是作为工程技术人员和管理人员必须具备的基本知识。 本课程由课程知识和课程大作业两部分组成。课程知识以生物质资源、生物质前处理技术、生物质能源转化技术及多元化利用为主线,介绍生物质能基本特征、转化途径及基本原理、利用系统构建等,同时介绍我国在开发利用生物质能方面所面临的问题,以及国际上生物质能发展趋势。课程大作业以我国能源体系为背景,结合我国生物质资源分布的特点和利用问题,针对特定区域的用能需求,提出因地制宜的生物质能利用方案和相应的政策支持,使学生不仅活学活用所学过的基本知识,而且养成全面系统地分析问题和解决问题的综合能力,以及创新思维能力。 二、课程教学内容及学时分配 1.课程知识部分 概述:(3学时)

生物质转化为清洁能源(中英文)剖析

热解系统 申请人弗兰克·帕索罗布尔斯,CA(美国) 发明者弗兰克·帕索罗布尔斯,CA(美国) 应用编号: 14/105,832 归档时间2013年12月13日 餐厨垃圾高效裂解生产清洁燃气技术本发明公开了用于垃圾热解的系统和方法,系统包括一个主要反应和次要反应。合成气的 主要干馏热解产生,然后混合随着助燃空气并点燃,在反应下,产生能量。碳进入二次反应并通过一个气闸舱从系统排出。

热解系统 工作原理 [001]本发明涉及一种用于热解废物的热解过程中回收热量的系统和方法。 发明背景 [002]废材料,目前不断增加的处理问题。 [003]在过去,垃圾和有毒废物往往被烧毁。然而,由于政府和监管标准的提高,致癌的空气排放潜在着对公众健康的影响,如电池和燃烧传播有毒物质的风险,垃圾焚烧已普遍被抛弃。 [004]在我们的努力下,以热解过程,将提供低排放的燃烧安全和允许从燃烧热取代焚烧垃圾的回收率。 [005]发明参考,描述了一个系统的废物热解。该系统包括一个热氧化裂解装置,联合一个堆栈单元。热解装置包括第一罐布置在燃烧室和设置燃烧室外面二反应。燃烧室供给热量,该粉体的废物是通过第一罐输送。热氧化剂氧化热解气体从第一罐和堆栈单元提供一个方法将热解分析气体通过热氧化。从燃烧室的烟气排放到大气中。 总结 [006]本发明的特征用于裂解系统,包括裂解装置裂解单元的改进,热氧化装置,和一个堆栈单元,例如,在美国专利中所描述的类型为6758150号。如上所述,在热解系统的发明,为防止合成气在排气管中形成堵塞热解装置和烟气排出,气体从热解装置中排出,以恢复它们的热量,并消除烟气对环境的排放。热解装置的这些和其他功能的增强,在商业过程中使用的红外活性,可能会增加热解系统,包括热解装置的能量产率。 [007]一方面,本发明的特征包括热解装置(一)燃烧室包含一个或多个燃烧器的配置产生热烟气;(b)主要的反应,设置在燃烧室,配置为至少部分地裂解原料送到反应,从而产生合成气;和(c)混合室,使合成气和烟气流动。 [008]一些实现可能包括以下几个功能。 [009]该装置可进一步包括(一)烟道气卸管,其具有与燃烧室连通的密封流体连通的第一端,以及与该混合室流体连通的第二端;和(e)设置烟气溢流管内,合成气溢流管具有第一端流体连通的主要反应和流体连通的第二端与混合室。在一些实施方案中,在使用过程中,烟气的救济管道内气体的温度和合成气溢流管在+ / -25华氏度,对烟道气和合成气的温度分别在燃烧室与主罐,合成气卸管外壁和烟道气卸管内壁之间的间隙可以选择这样的流动性,在使用过程中的气体流速约30至60英尺/秒。 [010]某些情况下,长轴的合成气补救设置管道通常垂直于水平面通过一长轴主要反应。烟道气卸管长轴最好也设置一般垂直于水平面,在这种情况下,两管长轴一般可共线,[011]该装置还可包括在混合室中的混合隔板和分配锥,其配置为在混合室中的直接气体。该装置还可包括燃烧作为入口和加力元定位锥下游分布。 [012]该装置还可以包括热氧化室流体连通的混合室和加力系统设置在热氧化室。在某些情况下,一个前与热氧化室流体连通的膨胀室。多个混合隔板可以设置在膨胀室中。风机可设置扩展下游在室内,风机被配置在膨胀室抽真空,热氧化室,混合室。 [013]该装置还可以包括一次反应流体连通的反应和配置从主反应中接收固体残留物。二次反应最好安装在膨胀锡安辊使主要反应和次要反应相对运动。这种安装技术允许二次反应和主要反应是由刚性管道连接。 [014]在另一方面,本发明提供了利用本发明的设备的方法。例如,本发明方法包括(a)提供原料的一个主要的反应,设置在燃烧室中包含一个或多个燃烧器;(b)利用燃烧器产生的热烟气,从而至少部分裂解原料,生成合成气;和(C)绘制的烟道气和合成气进入混合室采用负压的主要反应和燃烧室。 [015]该方法的一些实现可能包括以下几个功能的一个或多个。 [016]该方法可进一步包括通过烟道气卸管排出燃烧室中的烟道气体,该烟道气卸管具有与燃烧室连通的密封流体连通的第一端部D流体连通的第二端与混合室;和(e)排气从合成

新型生物质碳材料的研究进展

新型生物质碳材料的研究进展 摘要: 碳材料是重要的结构材料和功能材料,利用生物质原料制备各种碳材料,可以降低碳材料生产成本,实现碳材料的可持续发展。本文较系统地介绍了新型生物质碳材料的制备方法以及应用前景,总结了近年来国内外生物质碳纤维、生物质活性碳纤维、生物质碳分子筛等碳材料的相关研究报道。 关键词: 生物质;碳纤维;活性碳纤维;碳分子筛 碳材料以其优良的耐热性能、高导热系数、良好化学惰性、高电导率等优点,被广泛应用于冶金、化工、机械、电子、航空等领域。近年来,由于化石资源的短缺,碳材料的发展和应用受到了限制。生物质资源如林业生物质、农业废弃物、水生植物、能源植物等属于可再生资源而成为化石资源的替代品,而且大部分生物质资源都含有丰富的碳元素,成为制备各种碳材料的丰富原料。自碳材料诞生起,以可再生的生物质资源为原料制备各种碳材料一直都是研究者关注的重点.。 1. 新型生物质碳材料 目前,研究较多和应用比较广泛的新型生物质碳材料有各种生物质碳纤维、生物质活性碳纤维、生物质碳分子筛。 1.1 生物质碳纤维 碳纤维是纤维状的碳素材料,含碳量90%以上。它是利用各种有机纤维在惰性气体中、高温状态下炭化而制得。作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工

性,是先进复合材料最重要的增强材料。由于其特有的高比强度、高拉伸模量、低密度、耐高温、抗烧蚀、低热膨胀等特殊性能,已成为发展航天航空等尖端技术和军事工业必不可少的新材料。目前碳纤维制备方法主要有有机纤维法和气相生长法。以各种生物质原料为前驱体的碳纤维,其制备大多采用有机纤维法,即采用不同的有机纤维为原料,经纺丝、氧化、炭化、石墨化、表面处理、上胶、卷绕及包装,分别制得各种不同性能的碳纤维和石墨纤维。 1.2 生物质活性碳纤维 活性碳纤维(activatedcarbonfiber,ACF)是将碳纤维及可炭化纤维经过物理活化、化学活化或两者兼有的活化反应所制得的具有丰富和发达孔隙结构的功能型碳纤维。常使用的活化剂是水蒸气和二氧化碳(CO2)或两者同时使用。活性碳纤维多用作吸附材料、催化剂载体、电极材料等。有别于作为增强体的碳纤维ACF的力学性能并不高,不能用作结构材料件;但由于比一般活性碳有着更为优越的孔隙结构和形态,成为各国积极开发的第三代活性碳吸附材料。1.3生物质碳分子筛 碳分子筛(carbonmolecularsieves,简记CMS)是在20世纪末期发展起来的一种具有较为均匀微孔结构的碳质吸附剂材料。它具有接近被吸附分子直径的楔形狭缝状微孔,能够把立体结构大小有差异的分子分离开来。作为碳质吸附剂,CMS与活性碳在化学组成上并没有本质区别,但是CMS的孔隙率远低于活性碳,其孔隙以微孔为主,微孔孔径分布集中在013~110nm范围内。碳分子筛的吸附分离是基于

生物科学前沿简介

第八讲生物科学前沿简介 一、20世纪生物科学发展的历史回顾 记者:匡先生,在展望生物学绚丽的发展前景之前,您能否简要的回顾20世纪生物学领域所取得的引人注目的成就呢? 匡廷云院士:由于19世纪以来,物理学、化学、地学以及技术科学的理论成就和技术进步,为生物学家认识生物发展规律提供了许多新的手段、方法。所以19世纪末20世纪初,生命科学取得了巨大的发展。在20世纪在生命科学领域有两次革命性的突破。第一次是孟德尔遗传学的再认识和摩尔根的基因论。孟德尔开创了经典遗传学,揭示了生物遗传现象。摩尔根主要用实验手段证明了基因是有序排列在染色体上的。 到了20世纪中叶,迎来第二次突破性进展,即沃森和克里克发现DNA双螺旋结构。沃森是生物学家,当时刚刚在美国拿到博士学位,研究噬菌体,后来到了英国。而克里克是个物理学家,当时在剑桥读Ph.D,用X射线衍射研究蛋白质晶体结构。沃森的贡献是在于确定DNA 两对特异性碱基的配对。克里克的贡献在于他极力主张建立物理模型,从分子、原子之间的距离和角度就可以得到最大限度的变量和稳定条件。特别有规则的双螺旋结构大大减少了变量数目。物理学家和生物学家完美的结合发现了DNA双螺旋结构。这是第二个突破性的里程碑。 图2 玉米籽粒的孟德尔遗传 图3 DNA 双螺旋

DNA双螺旋结构的建立开辟了生物学的新纪元。在这个基础上产生了基因工程、蛋白质工程。因此生物技术的发展对科技的发展对科技的发展、社会的进步的推动力是巨大的。由于分子生物学的发展、信息科学的发展人类才有可能识破自身的基因。在20世纪末大规模的开展人类基因组计划,破译人类的基因全序列。这个计划与曼哈顿原子弹计划、阿波罗登月计划并称20世纪人类三大科学计划。可以说20世纪生物学是飞速发展,取得了巨大的成就,为21世纪生命科学的腾飞打下了坚实的基础。

新能源专业生物质能利用

一、单选题【本题型共5道题】 1.秸秆的沼气产率远高于畜禽粪便,一般畜禽粪便的沼气产率约为45-80?,而秸秆沼气的产率可达()。 A.100-200 ? B.200-300 ? C.300-400 ? D.400-500 ? 用户答案:[C] 得分:0.00 2.以非粮的淀粉和糖类为原料的燃料乙醇生产技术称为()燃料乙醇技术。 A.1代 B.1.5代 C.2代 D.2.5代 用户答案:[B] 得分:6.00 3.到2013年底,全国城市垃圾发电并网装机容量()千瓦,其中,垃圾循环流化床发电约占50%左右。 A.150万 B.260万 C.340万 D.450万 用户答案:[C] 得分:6.00 4.以玉米、小麦等淀粉类原料的生物质乙醇是通过下列哪种技术制备()。

A.燃烧 B.生化法 C.热化学法 D.物理化学法 用户答案:[B] 得分:6.00 5.按照《可再生能源“十二五”规划》和《生物质能发展“十二五”规划》生物质成型燃料发展目标,到2015年,生物质成型燃料年利用量达到(),相应替代化石能源500万吨标准煤。 A.500万吨 B.800万吨 C.1000万吨 D.1300万吨 用户答案:[C] 得分:6.00 二、多选题【本题型共3道题】 1.一般生物柴油的制备方法包括( )。 A.直接混合法 B.微乳液法 C.生物酶转化法 D.高温热解法 E.酯交换法 用户答案:[ABDE] 得分:10.00 2.以下哪些选项属于现代生物质能资源()。

A.农作物秸秆及农产品加工剩余物 B.林业“三剩物”及木材加工剩余物 C.城市及工业废弃物 D.油料作物 E.畜禽粪便 用户答案:[ABE] 得分:3.00 3.关于生物质能以下说法正确的是:()。 A.生物质能即以生物质为载体的能量,直接或间接地来源于植物的光合作用,是太阳能以化学能形式贮存在生物质中的能量 B.总量丰富、易于储运、能量密度较高的清洁能源 C.是唯一一种可再生的碳源 D.可再性生物质是唯一可以储存与运输的可再生能源 E.从改变能源结构的角度,受资源条件的限制,中国生物质能难以从根本上改变能源结构 用户答案:[ABC] 得分:0.00 三、判断题【本题型共5道题】 1.我国对生物质能产业的财税支持政策主要以税收减免为主,其中对燃料乙醇生产企业免征消费税,增值税实行先征后返。 Y.对 N.错 用户答案:[N] 得分:8.00 2.税收优惠政策有效地带动了企业投资生物质混燃发电项目的积极性,是推动生物质混燃发电产业快速发展有效手段。

2020年公需科目当代科学技术前沿知识考题及答案(共250题)1

2020年公需科目《当代科学技术前沿知识》考题及答案250题一、单项选择。 6、当前, (B)已成为全球新-轮科技革命和产业变革的着力点,成为新一代信息技术的聚焦点,推动经济社会各领域从数字化、网络化向智能化加速跃升。[2分] A新材料技术 B新-代人工智能 C新生物技术: D新能源技术 7、(C) 年11月24日,设施通过国家验收,标志着我国唯一的国家级野生生物种质资源库项目建设全面完成。[2分] A 1949 B 1979 C 2009 D 2019 8、以下哪个国家或地区不面临严重的水资源压力:(A)。[2分] A巴西 B中国东部 C北非 D阿拉伯地区 9、(D) 是世界第一台速度超过每秒10亿亿次的超级计算机。[2分] A天河二号 B神威太湖之光 C顶点 D山脊 10、机器学习是指通过(D) 在机器上训练模型,并利用模型进行分析决策与行为预测的过程。[2分] A数据 B算法 C算力 D数据和算法 11.以下哪点不是我国水资源分布情况的特点: (A)。[2分] A人均占有量高 B南方水多 C北方水少 D西部水少 17.以下哪项能力是我国“北斗卫星导航系统”特有的功能: ( D)。[2分] A高精度定位 B高精度导航 C高精度授时 D短报文通信 18.我国首个月球探测计划是: (A)。 [2分] A“嫦娥工程”

B月兔工程 C“高分计划” D“天琴计划” 19.纳米材料分为零维、- 维、= 维和三维材料,石墨烯属于( C) 纳米材料。[2分] A零维 B一维 C二维 D三维 20.下列不是我国暗物质研究的有(B)。[2分] A“悟空”号暗物质粒子探测卫星 B大型地下氙(LUX)实验 C中国暗物质实验( CDEX ) D能猫计划(PANDAX) 12、生物医药材料被许多国家列入关键高技术新材料发展计划,下列不属于生物医药材料研发重点方向的有(B)。 [2分] A组织工程支架材料 B压电材料 C组织修复和替代材料 D人造器官 13、(B) 是标准模型中最后一种被发现的粒子。 [2分] A中微子 B希格斯玻色子 C暗物质 D暗能量 14、区块链技术较早出现在2008年发表的奠基性论文《比特币:一种点对点电子现金系统》中,这篇论文的作者是(D)。[2分] A尼尔金 B弗拉基米尔●奥克斯曼 C查尔斯布里 D中本聪 15、工业革命以来,科学技术飞速发展,全球经济总量不断提升,人类的生活水平快速提高,人口数量爆发式增长。但在繁荣的背后也隐藏着种种危机,由于过度开发利用自然资源,导致了一系列的环境问题,严重威胁人类的生存与发展。以下不属于过度开发利用自然资源而导致的环境问题: (D)。[2分] A气候变化 B水资源短缺 C荒漠化 D人口老龄化 16、2000年9月,在联合国千年首脑会议上,世界各国领导人共同签署了千年发展目标( MDGs),其中千年发展目标不包括以下哪项: (D)。[2分] A消灭极端贫穷和饥饿 B促进男女平等并赋子妇女权利 C普及小学教育

生物质能的开发与利用

生物质能的开发与利用 摘要:随着化石燃料的短缺和其使用时产生的污染问题的加剧,生物质能以其可再生、低污染、分布广泛等特点,日益受到世界各国的重视。本篇论文从生物质能的概念入手,综合国内外对生物质能利用现状分析其优势、利用技术及开发研究前景。 21世纪被誉为是“生物能源时代”,是生物的世纪,是科学技术飞速发展新世纪。可持续发展是当前经济发展的趋势所在,面对化石能源的枯竭和环境的污染,生物能源的开发利用为经济的可持续发展带来了曙光。 (一)新能源之生物质能研究背景 当代社会使用最广泛的能源是煤炭、石油、天然气和水力,特别是石油和天然气的消耗量增长迅速,已占全世界能源消费总量的60%左右。但是,石油和天然气的储量是有限的,许多专家预言,石油和天然气资源将在40年、最多50—60年内被耗尽,而煤炭资源虽然远比石油和天然气资源丰富,但是直接应用煤炭严重污染环境。因此,为避免能源危机的出现,以化石能源为基础的常规能源系统正逐步持久的、多样化的、可以再生的新能源系统过渡。 我国自然资源总量排世界第七位,能源资源总量约4万亿吨标准煤,居世界第三位。在能源领域面临的主要挑战是:(1)人均能源资源占有量不足,且分布不均;(2)人均能源消费量低,单位产值的能耗高;(3)能源构成以煤为主;(4)工业部门消耗能源占有很大的比重;(5)农村能源短缺,以生物质能为主;(6)从能源安全

角度考虑,我国能源面临挑战;(7)能源品种结构不合理,优质能源供应不足;(8)能源工业技术水平有待进一步提高;(9)节能提效工作亟待加强等。 为此已出台的发展可再生能源的相关方钭政策、规章制度:1992年国务院批准的《中国环境发展十大对策》中明确提出,要“因地制宜地开发利用和推广大阳能、风能、地热能、生物质能等新能源”;连续在四个国家五年计划中将生物质能利用技术的研究与应用列为 重点科技攻关项目。国家先后制定了《可再生能源法》、《可再生能源中长期发展规划》、《可再生能源发展“十一五”规划》和《可再生能源产业发展指导目录》、《生物产业发展“十一五”规划》,提出了生物质能发展的目标任务,明确了相关扶持政策。科技部将生物柴油技术列入“十一五”国家863计划和国际科技合作计划。 在众多新能源中,生物质能拥有其独特的“至美”之处——既环保、安全。可再生,在于它是可再生能源领域唯一可以转化为液体燃料的能源。如甜高粱,不仅可以通过能量转换替代化石液体燃料,保障能源安全,同时还能保障粮食安全,而且还能吸收二氧化碳,加工过程中无污染,原料得以物尽其用。 虽然现阶段生物能源的开发利用处于起步阶段,生物能源在整个能源结构中所占的比例还很小,但是其发展潜力不可估量。(二)生物质能概论 生物质是指通过光合作用而形成的各种有机体,包括所有的动植物和微生物。而所谓生物质能(biomass energy ),就是太阳能

生物质硬碳材料的合成

实验三生物质硬碳材料的合成 一、实验目的 1.学习使用管式炉制备生物质硬碳材料; 2.掌握相应电化学测试方法。 二、实验仪器与试剂 实验仪器:管式炉、瓷舟、研钵、玻璃板、刮刀、手套箱、蓝电、电化学工作站;试剂:生物质、Super-P、PVDF、NMP。 三、实验步骤 1、将榴莲内表皮用去离子水洗涤并在80℃的真空干燥箱中充分干燥; 2、在氩气气氛下,将步骤1得到的材料在管式炉中以5℃每分的速率升温到1200℃碳化并保温两小时; 3、将步骤2中得到的材料充分研磨成粉末状,在1M的盐酸溶液中搅拌洗涤12h,随后用去离子水洗涤至中性,并在真空干燥箱中真空干燥,得到钠离子电池负极用生物质硬碳材料。 4、采用涂片法将硬碳材料、super-p、PVDF以质量比8:1:1均匀的与适量NMP 溶剂混合,进行均匀研磨,然后涂覆在铜集流体之上。随后将附有浆料的铜箔的玻璃片放入120°C烘箱中真空烘干24h。 5、按正确的操作步骤将正极壳、负极壳、玻璃纤维隔膜、钠片(直径12 mm*厚度为1 mm)、电解液一起组装成CR2032型纽扣电池。所用的电解液为浓度为1M NaClO4的含5%FEC的PC溶液。 6、将装配好的电池静置24小时,随后用蓝电和电化学工作站测试电池的循环(50mA/g)、倍率(50mA/g、100mA/g、200mA/g、500mA/g、1000mA/g,每个电

流密度下各循环10周)、循环伏安(扫速0.1mV/s、三周)等电化学性能。 四、数据分析 (1)实验在50mA/g电流密度下测得了硬碳材料在1mol/L NaPF6/EC:DEC中的循环性能曲线如图1所示: 图一PC循环曲线 从图中可以看出,硬碳材料在1mol/L NaClO4/EC:DEC 首周放电容量和库伦效率接近0,这是首周SEI 膜形成过程中,电解液在负极界面发生大量分解,

分子生物学前沿技术

分子生物学前沿技术 The Standardization Office was revised on the afternoon of December 13, 2020

激光捕获显微切割Laser capture microdissection (LCM) technology是在不破坏组织结构,保存要捕获的细胞和其周围组织形态完整的前提下,直接从冰冻或石蜡包埋组织切片中获取目标细胞,通常用于从中精确地分离一个单一的细胞。 背景:机体组织包含有上百种不同的细胞,这些细胞各自与周围的细胞、基质、血管、腺体、炎症细胞或相互粘附。在正常或发育中的组织器官内,细胞内信号、相邻细胞的信号以及体液刺激作用于特定的细胞,使这些细胞表达不同的基因并且发生复杂的分子变化。在状态下,如果同一类型的细胞发生了相同的分子改变,则这种分子改变对于疾病的发生可能起着关键性的作用。然而,发生相同分子改变的细胞可能只占组织总体积的很小一部分;同时,研究的目标细胞往往被其它组织成分所环绕。为了对疾病发生过程中的组织损害进行分子水平分析,分离出纯净的目标细胞就显得非常必要。1996年,美国国立卫生院(NIH)国家肿瘤研究所的[2]开发出激光捕获显微切割技术(Laser capture microdissection , LCM ),次年,美国Arcturus Engineering公司成功研制激光捕获显微切割系统,并实现商品化销售。应用该技术可以在显微镜直视下快速、准确获取所需的单一细胞亚群,甚至单个细胞,从而成功解决了组织中细胞异质性问题。这项技术现已成为美国“肿瘤基因组解剖计划”的一项支撑技术[1]。 原理:LCM的基本原理是通过一低能脉冲激活热塑膜———乙烯乙酸乙烯酯(ethylene vinylacetate,EVA)膜(其最大吸收峰接近

相关文档
最新文档