概率分布列及期望专题

概率分布列及期望专题
概率分布列及期望专题

概率分布列及期望专题

类型一、独立重复试验

例1、某一中学生心理咨询中心服务电话接通率为4

3,某班3名同学商定明天分别就同一问题询问该服务中心.且每人只拨打一次,求他们中成功咨询的人数ξ的分布列及其期望.

练习:根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立.

(I)求该地1位车主至少购买甲、乙两种保险中的l 种的概率;

(Ⅱ)X 表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X 的期望.

类型二、超几何分布

例2、研究性学习小组要从6名(其中男生4人,女生2人)成员中任意选派3人去参加某次社会调查.

(1)在男生甲被选中的情况下,求女生乙也被选中的概率;

(2)设所选3人中女生人数为ξ,求ξ的分布列及数学期望.

类型三、耗用子弹数型

例3、某射手有3发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列.

练习、某次篮球联赛的总决赛在甲队与乙队之间角逐,采用七局四胜制,即若有一队先胜四场,则此队获胜,比赛就此结束.由于天气原因场地最多使用6次,因甲、乙两队实力相当,每场比赛获胜的可能性相等,问需要比赛的次数ξ的分布列及期望。

类型四、取得合格品以前已取出的不合格品数的分布列

例4、一批零件中有3个合格品与3个不合格品.安装机器时,从这批零件中任取一个.如果每次取出的不合格品不再放回去,求在取得合格品以前已取出的不合格品数的分布列.

练习、在医学生物试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小

孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.若用ξ表示剩余果蝇的数量,求ξ的分布列与期望.

类型五、古典概型求概率

例5、某市公租房房屋位于A.B.C三个地区,设每位申请人只申请其中一个片区的房屋,且申请其中任一个片区的房屋是等可能的,求该市的任4位申请人中:(Ⅰ)若有2人申请A片区房屋的概率;(Ⅱ)申请的房屋在片区的个数的ξ分布列与期望。

练习、单位组织4个部门的职工旅游,规定每个部门只能在韶山,张家界,衡山3个景区中选一个,假设各个部门选择每个景区是等可能的。 (1)求恰好有2个景区有部门选择的概率(2)求被选取景区个数ξ的分布列与期望。

过关训练:

1、随机变量X 的分布列如下:

其中a ,b ,c 2、离散型随机变量X 的概率分布规律为()(1)

a P x n n n ==

+ (n =1,2,3,4),其中a 是常数,则P (12<X <52

)的值为( ) A.23 B.34 C.45 D.56 3、设ξ是服从二项分布B (n ,p )的随机变量,又E (ξ)=15,D (ξ)=454

,则n 与p 的值为( ) A .60,34 B .60,14 C .50,34 D .50,14

4、袋中装有10个红球、5个黑球.从中随机抽出3个球.若抽取的红球数用ξ表示,则随机变量ξ的期望为

5、设随机变量ξ服从正态分布N (0,1),若P (ξ>1)=p ,则P (-1<ξ<0)=( )

A.12+p

B.12

-p C .1-2p D .1-p 6、已知X ~N (μ,σ2),P (μ-σ

7、甲、乙两地都位于长江下游,根据天气预报的纪录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为( )

A.0.6 B.0.7C 0.8 D.0.66

8、甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是()

①P(B)=2

5;②P(B|A1)=

5

11;③事件B与事件A1相互独立;

④A1,A2,A3是两两互斥的事件;

A.②④B.①③C.②③D.①④

9、某公园有P,Q,R三只小船,P船最多可乘3人,Q船最多可乘2人,R船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )

A.36种B.18种C.27种D.24种

10、某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________.

分布列及数学期望经典复习

分布列及数学期望经典复习

————————————————————————————————作者:————————————————————————————————日期:

作业:分布列练习 【时间:60分钟】 1.从装有3个白球,4个红球的箱子中,随机取出了3个球,恰好是2个白球,1个红球的概率是( ).A.错误!未定义书签。 B.错误!未定义书签。 C.错误!未定义书签。 D.错误!未定义书签。 2.设X 是一个离散型随机变量,其分布列为: ?则q 等于( ).A.1 B .1±错误!未定义书签。 C.1-错误! D.1+错误!未定义书签。 3.设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X =0)等于( ).A .0 B. 错误! C.错误!未定义书签。 D.错误! 4.在15个村庄有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于错误!未定义书签。的是( ). A.P(X=2) B.P(X ≤2) C .P (X=4) D.P (X ≤4) 5.随机变量X的概率分布规律为P (X =n )=\f(a,n(n +1))(n=1,2,3,4),其中a 是常数,则P 错误!未定义书签。的值为( ).A.\f(2,3) B .错误!未定义书签。 C .错误!未定义书签。 D.错误!未定义书签。 二、填空题 6.已知随机变量X 只能取三个值x1,x 2,x3,其概率依次成等差数列,则公差d 的取值范围是________. 7.设随机变量X等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么n =________. 8.口袋中有5只球,编号为1,2,3,4,5,从中任意取3只球,以X 表示取出的球的最大号码,则X 的分布列为________. 三、解答题 9.某商店试销某种商品20天,获得如下数据: 试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率; X -1 0 1 P 0.5 1-2q q 2 日销售量(件) 0 1 2 3 频数 1 5 9 5

概率与离散型随机变量分布列

概率与离散型随机变量分布列 类型一 学会踩点 [例1] (高考原题·山东青岛诊断)(本题满分12分)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表: 过6公里的概率分别为14,1 3,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13. (1)求甲、乙两人所付乘车费用不相同的概率; (2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望. 解:(1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为1 4, 1 3,(2分) 则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=1 3.(3分) 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=2 3.(6分) (2)由题意可知,ξ=6,7,8,9,10. 且P (ξ=6)=14×13=1 12, P (ξ=7)=14×13+12×13=1 4. P (ξ=8)=14×13+14×13+12×13=1 3. P (ξ=9)=12×13+14×13=1 4. P (ξ=10)=14×13=1 12,(10分)

所以ξ的分布列为 则E(ξ)=6×1 12+7× 1 4+8× 1 3+9× 1 4+10× 1 12=8.(12分) 评分细则:得分点及踩点说明 (1)第(1)问采用对立事件求概率,必须有计算甲、乙两人所付乘车费用相同的概率P1的内容,否则扣3分; (2)第(2)问中缺少ξ的可能取值6,7,8,9,10,者扣1分; (3)第(2)问中,直接得P(ξ=6)=1 12,P(ξ=7)= 1 4,P(ξ=8)= 1 3,P(ξ=9)= 1 4,P(ξ =10)=1 12和分布列者扣4分; (4)计算E(ξ)无计算过程扣1分. 1.(高考原题·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下: (1) (2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值. 解:(1)设A表示事件“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故 P(A)=0.2+0.2+0.1+0.05=0.55.

61随机变量的概率分布、期望与方差1

如皋市薛窑中学2011届高三理科数学一轮复习 61随机变量的概率分布、期望与方差 【考点解读】 离散型随机变量及其分布列:A;超几何分布:A;条件概率及相互独立事件:A; n次独立重复试验的模型及二项分布:B;离散型随机变量的均值与方差:B 【复习目标】 1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。 2?了解超几何分布及其导出过程,并能进行简单的应用。 3?了解条件概率和两个事件相互独立的概念( 对条件概率的应用题不作要求 )。 4 ?理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。 5?了解取有限值的离散型随机变量的均值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。 活动一:基础知识 1. 随机变量: 1) 定义: _________________________________________________________ 。 2) ____________________________________ 表示方法:。 2. 随机变量分布列的定义: 假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,① 称①为随机变量X 的概率分布列,简称X的分布列 3. 概率分布表 将①用表的形式表示如下: 4. 分布列的性质: 概率分布列中P(i 1,2L n)满足以下两个条件: (1) ______________________________ (2) ______________________________ 5. 两点分布 如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布. 其概率分布表为: 其中丨min{ M , n},且n N,M N,n,M,N N .称分布列

高三数学分布列和期望

课时考点19 统计-----随机变量的分布列和期望 高考考纲透析: 等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差 高考风向标: 离散型随机变量的分布列、期望和方差 热点题型1 n 次独立重复试验的分布列和期望 [样题1] (2005年高考·全国卷II ·理19) 甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001) 本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力。解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4 比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=33 0.60.40.28+= 比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜。因而 P (ξ=4)=2230.60.40.6C ???+22 30.40.60.40.3744C ???= 比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜。因而 P (ξ=5)=222 40.60.40.6C ???+22240.40.60.40.3456C ???= 所以ξ的概率分布为 ξ的期望E ξ=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.0656 变式新题型1.(2005年高考·卷·理19)袋子A 中装有若干个均匀的红球和白球,从A 中 摸出一个红球的概率是3 1 . (Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率. (Ⅱ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i) 求恰好摸5次停止的概率; (ii )记5次之(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ. 解:(Ⅰ) 33 35 12140333243 C ???????= ? ?????

概率和分布列提纲(答案)

概率、随机变量及其分布列 1.概率 (1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别。(2)了解两个互斥事件的概率加法公式。(3)理解古典概型及其概率计算公式。(4)了解条件概率。 2.两个事件相互独立,n次独立重复试验 (1)了解两个事件相互独立的概念;(2)理解n次独立重复试验的模型并能解决一些实际问题; 3.离散型随机变量及其分布列 (1)理解取有限个值的离散随机变量及其分布列的概念。(2)理解二项分布,并解决一些简单问题。 4.离散型随机变量的均值、方差 (1)理解取有限个值的离散型随机变量的均值、方差的概念; (2)能计算简单离散型随机变量的均值、方差,并能解决一些实际问题。 要点考向1:古典概型 考情聚焦:1.古典概型是高考重点考查的概率模型,常与计数原理、排列组合结合起来考查。2.多以选择题、填空题的形式考查,属容易题。 考向链接:1.有关古典模型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数,这常常用到计数原理与排列、组合的相关知识。 2.在求基本事件的个数时,要准确理解基本事件的构成,这样才能保证所求事件所包含的基本事件数的求法与基本事件总数的求法的一致性。 3.对于较复杂的题目,要注意正确分类,分类时应不重不漏。 基本知识点: 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m n 总是接近 某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作() P A. 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率;4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1 P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 一次试验连同其中可能出现的每一个结果(事件A 6.等可能性事件:如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相 等,那么每个基本事件的概率都是1 n 7.等可能性事件的概率公式及一般求解方法:如果一次试验中可能出现的结果有n个,而且

概率分布与数学期望

概率分布与数学期望

例谈离数型随机变量概率分布与数学期望 数学期望=每个个数X每个它的概率,再相加从2008年全国各省市高考数学试题中,概率统计考题,可谓“军书十二卷,卷卷有爷名”,显然它是高考的必考内容,特别是离散型随机变量概率分布与数学期望内容的考题分布极为广泛,确实是一个重要考点,但纵观其解法,可以归纳为定义法、公式法、分析法与变量推理法四种,2009年考生务必对上述四种解题方法引起高度重视,本文就其命题特点,解题规律作专题阐述,以飨读者。 一、定义法求解概率分布与数学期望 定义法即根据随机事件的概率、随机变量、概率分布、数学期望的定义求解概率分布与数学期望的方法。 可使用本法解题的考题,一般以古典离散型概率为特征,它可直接利用排列组合的加法原理与乘法原理写出离散型随机变量概率的计算式,进而求得随机变量各值条件下的概率分布与数学期望。此类题型解题思路明确,利用定义法求解,其方法容易掌握。

例1,(08浙江理)一个袋中装有若干个大小相同的黑球,白球和红球.已知从袋中任意摸出1 ;从袋中任意摸出2个球,得到黑球的概率是2 5 . 个球,至少得到1个白球的概率是7 9 (1)若袋中共有10个球,(1)若袋中共有10个球,(ⅰ)求白球的个数;(ⅱ)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望Eξ. (2)求证:从袋中任意摸出2个球,至少得到1 .并指出袋中哪种颜色的个黑球的概率不大于7 10 球个数最少. 分析:本题是以古典概率为题材的高考题,由于从袋中摸球是有回放地摸球,且每次摸球都是互相独立的,系互不影响事件,所发生的概率是等可能的。故可根据概率定义,利用排列组合计算方法求解随机变量各值的概率。 解:袋中共有10个球,且至少得到1个白球7,设其中有X个白球,我们将至少得到的概率为 9 7,又∵P(A)一个白球的事件为A,则P(A)= 9

分布列和数学期望教师版

分布列和数学期望教师版 随机变量的分布列和期望 高考考纲透析: 等可能性的事件的概率,互斥事件有一个发生的概率,相互独立事件同时发生的概率,独立重复试验、离散型随机变量的分布列、期望和方差 高考风向标: 离散型随机变量的分布列、期望和方差 热点题型1 n 次独立重复试验的分布列和期望 [样题1] (2005年高考·全国卷II ·理19) 甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6.本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛互间没有影响.令ξ为本场比赛的局数,求ξ的概率分布和数学期望.(精确到0.0001) 本题考查离散型随机变量分布和数学期望等概念,考查运用概率知识解决实际问题的能力。解:单局比赛甲队胜乙队的概率为0.6,乙队胜甲队的概率为1-0.6=0.4 比赛3局结束有两种情况:甲队胜3局或乙队胜3局,因而P (ξ=3)=33 0.60.40.28+= 比赛4局结束有两种情况:前3局中甲队胜2局,第4局甲队胜;或前3局中乙队胜2局,第4局乙队胜。因而 P (ξ=4)=2230.60.40.6C ???+2230.40.60.40.3744C ???= 比赛5局结束有两种情况:前4局中甲队胜2局、乙队胜2局,第5局甲胜或乙胜。因而 P (ξ=5)=22240.60.40.6C ???+22240.40.60.40.3456C ???= 所以ξ的概率分布为 ξ的期望E ξ=3×P (ξ=3)+4×P (ξ=4)+5×P (ξ=5)=4.0656 变式新题型1.(2005年高考·浙江卷·理19)袋子A 中装有若干个均匀的红球和白球,从A 中摸出一个红球的概率是3 1. (Ⅰ) 从A 中有放回地摸球,每次摸出一个,共摸5次,求恰好有3次摸到红球的概率. (Ⅱ) 从A 中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i) 求恰好摸5次停止的概率; (ii )记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布列及数学期望E ξ. 解:(Ⅰ) 33 3512140333243C ???????= ? ????? (Ⅱ)(i )222 4121833381C ???????= ? ????? (ii)随机变量ξ的取值为0,1,2,3,; 由n 次独立重复试验概率公式()()1n k k k n n P k C p p -=-,得

分布列、期望与方差

第十三章 分布列、期望与方差 【回顾与思考】 1.两点分布:对于一个随机试验,如果它的结果只有两种情况,则可以用随机变量0η=,1来描述这个随机试验的结果。如果发生的概率为p ,则不发生的概率为p -1,这时,称η服从两点分布,其中p 称为__________。其分布列为: 期望=ηE _______;方差=ηD ________。 2.超几何分布:()k n k M N M n N C C P X k C --==,0,1,,k m = ,其中=m ___________。 3.二项分布:在n 次独立重复试验中,事件A 发生的次数X 服从二项分布,记为_________。 ()(1,0,1,2k k n k n P X k C p q q p k -===-=,…)n ,表示______________________,二项 分布的分布列为: 期望为______________;方差为_________________。 4.正态分布: (1)正态曲线:如果总体密度曲线(当样本容量无限增大,分组的组距无限缩小,那么频 率分布折线图就会无限接近于一条光滑曲线,即为总体密度曲线)是或近似地是以下函数 2 22)(,21)(σμσμσ π?-- = x e x ,),(+∞-∞∈x 的图象,式中的实数σμ,)0(>σ是参数,分 别是总体的平均数与标准差。正态曲线具有以下性质: ① 曲线在____轴的上方,与____轴不相交;② 曲线关于直线______ 对称; ③ 曲线在的最高点的横坐标______;④ 当μx 时,曲线_____,并且当曲线向左、右两边无限延伸时,以_____轴为渐近线,向它无限靠近。 ⑤ 当μ一定时,σ越大,曲线越“矮胖”,表示总体越分散;σ越小,曲线越“瘦高”,表示 总体的分布越集中。 (2)若随机变量X 在),[b a 内取值的概率等于该区间上正态曲线与____轴、直线_____、______ 所围成曲边梯形的面积(即dx x b X a P b a )()(,σμ?? = ≤<),则称随机变量X 服从正 态分布。记为__________________。 记住:①=+≤<-)(σμσμX P _________;② =+≤<-)22(σμσμX P ________;③ =+≤<-)33(σμσμX P _________. 从理论上讲,服从正态分布的随机变量X 的取值范围是R ,但实际上X 的取值在区间)3,3(σμσμ+-外的可能性微乎其微,在实际问题中常常认为它是不会发生的。因此, 往往认为服从正态分布的随机变量X 的取值范围是)3,3(σμσμ+- ,这就是σ3原则。 在企业管理中,经常应用这个规则进行产品质量检查和工艺生产过程控制。 说明:“小概率事件”通常指发生的概率小于______的事件。

概率及分布列.

六.平均(非平均分组问题除法策略 例6.(1 6本不同的书平均分成3堆,每堆2本共有多少分法? (2将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法? (3某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年 级的两个班级且每班安排2名,则不同的安排方案种数为______ 七.元素相同问题隔板策略 例七.有10个相同的球,分给7个不同的盒子,每个盒子至少一个球,有多少种分配方案? 练习:1.10个相同的球装5个盒中,每盒至少一个球,共有多少装法? 2. x+y+z+w+h=10,求这个方程的正整数解的组数. 3.x+y+z+w=100求这个方程的自然数解的组数 八.实际操作穷举(着色策略 例八.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法? 1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有____ 种? 2.给图中区域涂色,要求相邻区域不同色,现有4种可选颜色,则不同的着色方法有____种. 九.定序问题倍缩(空位、插入策略

例9.7人排队,其中甲乙丙3人顺序一定共有多少种不同的排法 练习:10人身高各不相等,排成前后两排,每排5人,要求从左至右身高逐渐增加,共有多少排法 十.排列组合混合问题先选后排策略 例11.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法. 一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有________ 种 1、设ξ是服从二项分布B(n,p的随机变量,又E(ξ=15,D(ξ=45 4,则n与p 的值为( A.60,3 4B.60, 1 4C.50, 3 4 D.50, 1 4 2、已知袋中装有6个白球、2个黑球,从中任取3个球,则取到白球个数ξ的

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

数学期望与分布列专题

离散型随机变量的数学期望 称E(X)= 切七+…曲+…7竹为随机变帚K 的均 侑或数学期犁,它反映了离散型随机变最取值的士均 水平. A.丄 B. 1 C. — D.— 18 9 9 20 鱸析由分布列的件质, 可得2x+3x+7x+2x+3r^x=l f 几芹=/. A E(X)=0X2xHX 3E 2 X 7x+3 X 2工+4 X 3JT +5JC 20 =40x= — 9 2.已知某一随机变量占的槪率分布列如F, M 日门= 电3, !(|陆的值为 (C ) J B.6 C. 7 D.B 解析 由分布列性虞知,0?&+O.1+U 0. 4. :? E? 4X0.5+aX0. 1+9X0, 4-6,3, :,a-l. 某中学组建了 A 、B 、C 、D 、E 五个不同 的社团组织,为培养学生的兴趣爱好 必须参加,且只能参加一个社团 ?假定某班级的甲、乙、丙三名学生对这五个社团的选择是 ,要求每个学生

等可能的. (1) 求甲、乙、丙三名学生参加五个社团 的所有选法种数; (2) 求甲、乙、丙三人中至少有两人参加同一社团的 概率; (3) 设随机变量E为甲、乙、丙这三名学生参加A社 团的人数,求E的分布列与数学期望. 有一批产品,其中有12件正品和4件次品,从中任取3件,若E表示取到次品的个 数 E(E )=_ 某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量E 选出的志 表示愿者中女生的人数,则数学期望E(E)=_ 袋中有相同的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当 两种颜色的球都被摸到时,即停止摸球,记随机变量E为此时已摸球的次数,求: (1)随机变量E的概率分布列; (2)随机变量E的数学期望与方差

分布列、期望与方差(答案).doc

【目标与要求】(1) (2) (3) 2. R = 0,1,7, 其中"7 = 第十三章第一节排列与组合 执笔:李建军 审核:理数学备考小组 了解排列与组合的定义; 理解排列与组合数的性质,计算简单的排列与组合数; 解决与排列与组合有关的应用题。 1.两点分布:对于一个随机试验,如果它的结果只有两种情况,则可以用随机变量〃 =0, 1来 描述这个随机试验的结果。如果发生的概率为p,则不发生的概率为1-p,这时,称〃服 从两点分布,其中〃称为 0其分布列为: 期望En=;方差Dn=o 厂k 厂〃一A 超几何分布:P (X = k )= w V’ Cv 3.二项分布:在〃次独立重复试验中,事件*发生的次数X 服从二项分布,记为 p(X =k) = C ;pkq'i(q = \— p,k = &,\,2, ???〃),表示,二项 分布的分布列为: 期望为玖=;方差为。 4.正态分布: (1)正态曲线:如果总体密度曲线(当样本容量无限增大,分组的组距无限缩小,那么频 率分布折线图就会无限接近于一条光滑曲线,即为总体密度曲线)是或近似地是以下函数 1 —(")2 G (-00,4-00)的图象,式中的实数〃,b (b>0)是参数,分 别是总体的平均数与标准差。正态曲线具有以下性质: ①曲线在—轴的上方,与—轴不相交;②曲线关于直线 对称; ③ 曲线在的最高点的横坐标 ______ :④ 当x〃时?,曲线 ____ , 并且当曲线向左、右两边无限延伸小j,以 ______ 轴为渐近线,向它无限靠近。 ⑤ 当# 一定时,越大,曲线越“矮胖”,表示总体越分散;CT 越小,曲线越“瘦高”,表示 总 体的分布越集中。 (2)若随机变量X 在[Q ,。)内取值的概率等于该区间上正态曲线与—轴、直线、 所围成曲边梯形的面积(即P0VX Jb ) = y :(p”Q(x )djc ),则称随机变量X 服从正 态分布。记为。 记住:①P ("-o < X < “ + cr )= __________ ;② F (“一2。< X

《分布列的基本性质型概率题》参考答案

【湖南省历年高考试题】 (2011湖南18试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率. (1)求当天商店不进货的概率; (2)记X 为第二天开始营业时该商品的件数,求X 的分布列和数学期望. 解析:(1)记当天商店销售i 件该商品为事件i A ,0,1,2,3i =.当天商店不进货为事件B , 则01153 ()()().202010 P B P A P A =+= += (2)由题意知, X 的可能取值为2,3. 151(2)();204P X P A ====0231953 (3)()()().2020204 P X P A P A P A ==++=++= 故X 的数学期望为311 23.444 EX =?+?= 【备考点津】该题型注重考查与生活生产有关的实际问题的理解能力,在运算能力方面的考 查比超几何分布型、二项分布型及独立事件型概率题要求要低. 【高考仿真试题】 1.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的(1)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望; (2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过 2.5分钟的概率.(注:将频率视为概率) 解析:(1)由已知得251055,3045,y x ++=+=所以15,20.x y ==则 153(1),10020P X == =303( 1.5),10010P X ===251 (2),1004P X === 201101 ( 2.5),(3).100510010 P X P X ======

随机变量的分布列与数学期望

随机变量的分布列与数学期望 1.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立. (I)求该地1位车主至少购买甲、乙两种保险中的l种的概率; (Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X的期望. 2.红队队员甲、乙、丙与蓝队队员A、B、C 进行围棋比赛,甲对A、乙对B、丙对C各一盘。已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立。 (Ⅰ)求红队至少两名队员获胜的概率;(Ⅱ)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望Eξ。 3.为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:

(1)已知甲厂生产的产品共98件,求乙厂生产的产品数量; (2)当产品中的微量元素x,y满足x≥175且y≥75时,该产品为优等品,用上述 样本数据估计乙厂生产的优等品的数 量; (3)从乙厂抽出的上述5件产品中,随即抽取2件,求抽取的2件产品中优等品 数 的分布列及其均值(即数学期望). 4.本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算)。有人独立来该租车点则车骑游。各租一车一次。设甲、乙不超过两小 ;两小时以上且不超时还车的概率分别为11, 42 ;两人租车时过三小时还车的概率分别为11, 24 间都不会超过四小时。

高考理科数学专题十一概率与统计第三十五讲离散型随机变量的分布列、期望与方差

第三十五讲离散型随机变量的分布列、期望与 方差 、选择题 该群体的 10位成员中使用移动支付的人数, DX 2.4,P(X 4) P(X 6),则 p = (2018 浙江)设 0 p 1,随机变量 的分布列是 则当 p 在 (0,1)内增大时, 若 0 p 1 p 2 1 ,则 2 随机抽取 i i 1,2 个球放入甲盒中. 二、填空题 5.(2017 新课标Ⅱ)一批产品的二等品率为 0.02 ,从这批产品中每次随机取一件,有放回地抽取 100次, 专题十 概率与统计 1. (2018 全国卷Ⅲ ) 某群体中的每位成员使用移动支付的概率都为 p ,各成员的支付方式相互独 立, X 为 A .0.7 B .0.6 C . 0.4 D .0.3 2. 3. A . D( )减小 C . D( )先减小后增大 2017浙江)已知随机变量 i 满足 P( 1) B . D . p i D( D( , P( )增大 ) 先增大后减小 i 0) p i , i =1, 2. 4. A .E( 1)E( 2),D( 1) E( 2), 2), D( D( 1)>D( 1)>D( 2014 浙江)已知甲盒中仅有 1 个球且为红球,乙盒中有 m 个红球和 n 个篮球 2) 2) m 3,n 3 从乙盒中 a)放入 i 个球后,甲盒中含有红球的个数记为 i i 1,2 ; b)放入 i 个球后,从甲盒中取 1 个球是红球的概率记为 p i i 1,2 .则 A . p 1 p 2,E 1 E 2 B . p 1 p 2,E E 2 C . p 1 p 2,E 1 E 2 D . p 1 p 2,E E 2

期望与分布列高考试题精选

期望与分布列高考试题精选 一.解答题(共20小题) 1.某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图: 以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件 数. (Ⅰ)求X的分布列; (Ⅱ)若要求P(X≤n)≥0.5,确定n的最小值; (Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个? 2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立. (Ⅰ)求甲在4局以内(含4局)赢得比赛的概率; (Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望). 3.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立. (Ⅰ)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率; (Ⅱ)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E (X)及方差D(X).

4.在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如表: 300500 作物产量 (kg) 概率0.50.5 610 作物市场 价格(元 /kg) 概率0.40.6 (Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列; (Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.5.现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答. (Ⅰ)求张同学至少取到1道乙类题的概率; (Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立.用X表示张同学答对题的个数,求X 的分布列和数学期望. 6.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ)求取出的4张卡片中,含有编号为3的卡片的概率. (Ⅱ)在取出的4张卡片中,红色卡片编号的最大值设为X,求随机变量X的分布列和数学期望. 7.某水产品经销商销售某种鲜鱼,售价为每公斤20元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失3元.根据以往的销售情况,按[50,150),[150,250),[250,350),[350,450),[450,550]进行分组,得到如图所示的频率分布直方图.

概率分布列及期望专题

概率分布列及期望专题 类型一、独立重复试验 例1、某一中学生心理咨询中心服务电话接通率为4 3,某班3名同学商定明天分别就同一问题询问该服务中心.且每人只拨打一次,求他们中成功咨询的人数ξ的分布列及其期望. 练习:根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立. (I)求该地1位车主至少购买甲、乙两种保险中的l 种的概率; (Ⅱ)X 表示该地的l00位车主中,甲、乙两种保险都不购买的车主数.求X 的期望. 类型二、超几何分布 例2、研究性学习小组要从6名(其中男生4人,女生2人)成员中任意选派3人去参加某次社会调查. (1)在男生甲被选中的情况下,求女生乙也被选中的概率; (2)设所选3人中女生人数为ξ,求ξ的分布列及数学期望. 类型三、耗用子弹数型 例3、某射手有3发子弹,射击一次命中概率为0.9,如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的分布列.

练习、某次篮球联赛的总决赛在甲队与乙队之间角逐,采用七局四胜制,即若有一队先胜四场,则此队获胜,比赛就此结束.由于天气原因场地最多使用6次,因甲、乙两队实力相当,每场比赛获胜的可能性相等,问需要比赛的次数ξ的分布列及期望。 类型四、取得合格品以前已取出的不合格品数的分布列 例4、一批零件中有3个合格品与3个不合格品.安装机器时,从这批零件中任取一个.如果每次取出的不合格品不再放回去,求在取得合格品以前已取出的不合格品数的分布列.练习、在医学生物试验中,经常以果蝇作为试验对象.一个关有6只果蝇的笼子里,不慎混 入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.若用ξ表示剩余果蝇的数量,求ξ的分布列与期望. 类型五、古典概型求概率 例5、某市公租房房屋位于A.B.C三个地区,设每位申请人只申请其中一个片区的房屋,且申请其中任一个片区的房屋是等可能的,求该市的任4位申请人中:(Ⅰ)若有2人申请A 片区房屋的概率;(Ⅱ)申请的房屋在片区的个数的ξ分布列与期望。

概率分布列

随机变量及其分布、数学期望、方差 1. 已知(1,2),(,)a b x y =-=, (Ⅰ)若x 是从1,0,1,2-四个数中任取的一个数,y 是从1,0,1-三个数中任取的一个数,求a b ⊥的概率. (Ⅱ)若x 是从区间[1,2]-中任取的一个数, y 是从区间[1,1]-中任取的一个数,求,a b 的夹角是锐角的概率. 2. 为了控制甲型H1N1流感病毒传播,我市卫生部防疫部门提供了批号分别为1、2、3、4的4个批号疫苗,供全市所辖的三个区市民注射,为便于观察,每个区只能从中任选一个批号的疫苗进行接种. (I )求三个区中恰好有两个区选择的疫苗批号相同的概率; (II )记三个区中选择疫苗批号相同的区的个数为ξ,求ξ的数学期望. 3. 学校准备从中选出4人到社区举行的大型公益活动进行采访,每选出一名男生,给其所在小组记1分,每选出一名女生则给其所在小组记2分,若要求被选出的4人中理科组、文科组的学生都有. (Ⅰ)求理科组恰好记4分的概率? (Ⅱ)设文科男生被选出的人数为ξ,求随机变量ξ的分布列和数学期望E ξ. 4. 某超市为促销商品,特举办“购物有奖100﹪中奖”活动.凡消费者在该超市购物满10元,享受一次摇奖机会,购物满20元,享受两次摇奖机会,以此类推.摇奖机的结构如图所示,将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中,落入A 袋为一等奖,奖金为2元,落入B 袋为二等奖,奖金为1元.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是 1 2 . (Ⅰ)求摇奖两次,均获得一等奖的概率; (Ⅱ)某消费者购物满20元,摇奖后所得奖金为X 元,试求X 的分布列与期望; (Ⅲ)若超市同时举行购物八八折让利于消费者活动(打折后不再享受摇奖),某消费者刚好消费20元,请问他是选择摇奖还是选择打折比较划算. A B

2020年江苏省高考数学专项训练-真题解析-专题21 概率分布与数学期望-2020年江苏省高考数学命题规律大揭秘

高考冲刺 提分必备 2020年江苏省高考数学专项训练-真题解析 专题21 概率分布与数学期望 【真题感悟】 1、【2019年江苏,23】在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =?, {(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n N *==∈L 令n n n n M A B C =U U .从集合M n 中任取两 个不同的点,用随机变量X 表示它们之间的距离. (1)当n =1时,求X 的概率分布; (2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示). 【答案】(1)见解析;(2)见解析. 【解析】 (1)当1n =时,X 的所有可能取值是12 X 的概率分布为22667744 (1),(C 15C 15 P X P X == ====, 22662222 (2),(C 15C 15 P X P X == ====. (2)设()A a b , 和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法; ②若01b d ==,, 则AB =≤所以X n > 当且仅当AB =此时0 a c n ==,或 0a n c ==, ,有2种取法; ③若02b d ==, ,则AB ≤3n ≥ n ≤,所以X n >当 且仅当AB =0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,, 则AB =≤所以X n > 当且仅当AB =此时0 a c n ==,或 0a n c ==, ,有2种取法.

分布列

分布列 1.某商店试销某种商品20天,获得如下数据: 日销售量(件)0123 频数1595 试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。 (Ⅰ)求当天商品不进货的概率; (Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期型。

2.以下茎叶图记录了甲、乙两组个四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X表示。 (Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差; (Ⅱ)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望。 (注:方差,其中为,,…… 的平均数)

3.某产品按行业生产标准分成8个等级,等级系数X依次为1,2,……,8,其中X≥5为标准A,X≥为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准 (I)已知甲厂产品的等级系数X1的概率分布列如下所示: 5678 P0.4a b0.1 且X1的数字期望EX1=6,求a,b的值; (II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3533855634 6347534853 8343447567 用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望. (III)在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由. 注:(1)产品的“性价比”=; (2)“性价比”大的产品更具可购买性. 解:本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想,满分13分。

相关文档
最新文档