浅谈过圆上一点求圆的切线的方法

浅谈过圆上一点求圆的切线的方法
浅谈过圆上一点求圆的切线的方法

浅谈过圆上一点求圆的切线的方法

近日在带领学生复习《圆的方程》一章时,遇到这样一个问题:已知圆的方程为x2+y2=25,求过点(3,4)的圆的切线方程。本人通过一种简易的方法通过口算即得出答案:3x+4y-25=0.求解圆的切线方程的问题,是高考的考点,也是平时学习的重点,求圆的切线过程比较复杂,运算麻烦,所以容易出错,是学生比较头疼的一个问题,在求圆的切线问题中有两种情况,一种是求过圆外一点求圆的切线,另一种种情况是求经过圆上一点求圆的切线方程问题,本人对第二种情况进行了归纳、推导,得出快速求解的方法,此方法针对高三学生应对高考中此类问题有实际意义,故介绍如下。

设圆的标准方程为(x-a)2+(y-b)2=r2,经过圆上一点(x0,y0)的切线方程是什么?,我们把圆的方程写成(x-a)(x-a)+(y-b)(y-b)=r2形式,把其中一个x换成x0,一个y换成y0,则得到(x0-a)(x-a)+(y0-b)(y-b)=r2,然后整理成直线方程的一般形式即得到所求切线的方程。此法在学生高考中快速解决求圆上点的切线问题提供了一个途径,学生可应用此法快速解决选择题,填空题,或者用它来检验分析解答题的答案是否正确。此方法的特点是速度快,不易错,容易上手。

下面就上面介绍的方法的理论依据进行推导:先从简单情况入手,当a=0,b=0时,那么圆的圆心在原点上,圆的方程为x2+y2= r2,设点(x0,y0)在圆上,如上图所示,那么经过这个点的直径与切线互相垂直,两者斜率互为负倒数即K直径=y0/ x0,

K切线=—x 0/ y 0,又因为切线过点(x0,y0),根据点斜式直线方程得:

(y— y0)=—x 0/ y 0(x— x0),整理得方程x0 x+ y0 y=x02+ y 02,由于点(x0,y0)在圆上且圆心在原点,所以x02+ y 02=r2,由此我们得到所求切线方程为x0 x+ y0 y=r2,即我们所讨论的方法的特殊形式(圆心在原点)。在此基础上,我们又推想圆心不在原点的圆的切线方程的推导方法,设圆的方程为(x-a)2+(y-b)2=r2,求经过圆上一点(x0,y0)的切线方程,我们以(a,b)为坐标原点建立新坐标系x‘o‘y‘,新坐标系与原坐标系的坐标之间关系为x‘=x-a,y‘=y-b,则(x0,y0)在新坐标系中的坐标为(x0‘,y0‘),x0‘=x0-a,y0‘=y0-b,在新坐标系中圆的方程为x‘2+y‘2= r2,根据第一种情况推导出结论:经过(x0‘,y0‘)点的切线方程为x0‘x‘+y0‘y‘= r2,然后根据坐标之间的关系转换到原坐标系方程为(x0-a)(x-a)+(y0-b)(y-b)=r2。

以上推导方法的原理为过圆上点的切线与过该点的直径互相垂直,通过垂直直线间的斜率关系K1K2=-1可以得到切线的斜率,然后应用点斜式求解直线方程,第二种情况是在第一种情况的基础上,借助坐标变换得出的,在新坐标系中构建出第一种情况的模型,然后利用坐标变换还原到原来的坐标系中,这种方法化简了推导过程,解决了运算的困难,取得深入浅出的效果。

证明圆的切线方法

证明圆的切线方法 我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有: 一、若直线l 过⊙O 上某一点A ,证明l 是⊙O 的切线,只需连OA ,证明OA ⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1 如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D ,交AC 于E ,B 为切点的切线交OD 延长线于F. 求证:EF 与⊙O 相切. 证明:连结OE ,AD. ∵AB 是⊙O 的直径, ∴AD ⊥BC. 又∵AB=BC , ∴∠3=∠4. ∴BD=DE ,∠1=∠2. 又∵OB=OE ,OF=OF , ∴△BOF ≌△EOF (SAS ). ∴∠OBF=∠OEF. ∵BF 与⊙O 相切, ∴OB ⊥BF. ∴∠OEF=900. ∴EF 与⊙O 相切. 说明:此题是通过证明三角形全等证明垂直的 ⌒ ⌒

例2 如图,AD 是∠BAC 的平分线,P 为BC 延长线上一点,且PA=PD. 求证:PA 与⊙O 相切. 证明一:作直径AE ,连结EC. ∵AD 是∠BAC 的平分线, ∴∠DAB=∠DAC. ∵PA=PD , ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB , ∴∠1=∠B. 又∵∠B=∠E , ∴∠1=∠E ∵AE 是⊙O 的直径, ∴AC ⊥EC ,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA ⊥PA. ∴PA 与⊙O 相切. 证明二:延长AD 交⊙O 于E ,连结OA ,OE. ∵AD 是∠BAC 的平分线, ∴BE=CE , ∴OE ⊥BC. ∴∠E+∠BDE=900. ∵OA=OE , ∴∠E=∠1. ∵PA=PD , ∴∠PAD=∠PDA. 又∵∠PDA=∠ BDE, ⌒ ⌒

圆的切线性质定理

圆的切线的判定与性质 【知识点精析】 1. 直线与圆有三种位置关系,其中直线与圆只有唯一的公共点,叫直线与圆相切,这个公共点叫切点。这条直线叫圆的切线。 2. 圆的切线的判定与性质: (1)判定:经过半径外端并且垂直于这条半径的直线是圆的切线。 判定一条直线是圆的切线需要满足以下两个条件:①经过半径外端②垂直于半径 (2)圆的切线的性质:圆的切线垂直于过切点的半径。 注意:应用圆的切线性质时,需指出切线和切点,才可推出垂直的结论。 例如:已知如图,PO是∠APB的平分线,以O为圆心的圆与PA相切于点C。 3. 切线长定理: (1)切线长定义:从圆外一点向圆作切线,这点与切点的线段长叫切线长。 圆外一点向圆只能做两条切线,因此有两条切线长。 (2)切线长性质 从圆外一点向圆所引的两条切线长相等,并且这点与圆心的连线平分两条切线所夹的角。 例如:从圆外一点引圆的两条切线,若两切线的夹角为60°,两切点的距离为12求圆半径 (3)三角形的内切圆:对比三角形的外接圆来学习三角形的内切圆 三角形的外接圆:经过三角形三个顶点的圆叫三角形的外接圆 三角形外接圆的圆心叫三角形的外心 三角形的外心到三角形三个顶点的距离相等 三角形的外心是三角形三边中垂线的交点 三角形的内切圆:与三角形三边都相切的圆叫三角形的内切圆 三角形内切圆的圆心叫三角形的内心 三角形的内心到三角形三边的距离相等 三角形的内心是三角形三角平分线的交点 【解题方法指导】 一切线长定理的计算 例1. 已知如图:在Rt△ABC中,∠C=90°,点C在AC上,CD为⊙O直径,⊙O切AB于E,若BC=5,AC=12,求⊙O的半径 B C 2 在△ABC中,若∠C=90°,∠A=30°,AC=3,则内切圆半径为____________。 二等腰三角形在证明切线中的巧用 例3、如图7-53,AB为⊙O的直径,C为⊙O上一点,AD和过C点切线互相垂直,垂足为D.

证明圆的切线的两种常用方法教案

证明圆的切线的两种常用方法 一、教学目的要求: 1.知识目的: (1)掌握切线的判定定理. (2)应用切线的判定定理证明直线是圆的切线,掌握圆的切线证明问题中辅助线的添加方法. 2.能力目的: (1)培养学生动手操作能力. (2)培养学生观察、探索、分析、总结、推理论证等能力. 3.情感目的: 通过直观教具的演示和指导学生动手操作的过程,激发学生学习几何的积极性。 二、教学重点、难点 1.重点:切线的判定定理. 2.难点:圆的切线证明问题中,辅助线的添加方法. 三、教学过程: (一)复习引入 回答下列问题:(口述) 1.直线和圆有哪三种位置关系?这三种位置关系是如何定义?如何判定的? 2.什么叫做圆的切线?根据这个定义我们可以怎样来判定一条直

线是不是一个圆的切线? ①与圆有唯一公共点的直线是圆的切线. ②与圆心的距离等于半径的直线是圆的切线. ③经过半径外端并且垂直于这条半径的直线是圆的切线. (要求学生举手回答,教师用教具演示) (二)新课讲解 证明直线与圆相切是一类常见题目,解决这类问题常用的方法有两种。 方法一、连接半径,证明垂直 若图形中已给出直线与圆的公共点,但未给出过点的半径,则可先连结过此点的半径,再证其与直线垂直。 例1 如图(1)所示,在△ABC中,AB=AC,以AB为直径作圆交于BC于D,作DE⊥AC于E。求证:DE为⊙O的切线。 证明:连结OD ∵OB=OD ∴∠B=∠ODB ∵AB=AC ∴∠B=∠C ∴∠ODB=∠C ∵DE⊥AC ∴∠C+∠CDE=90° ∴∠ODB+∠CDE=90°

∴∠ODE=90°,即DE⊥OD ∴DE是⊙O的切线。 例2 如图(2)所示,AB是⊙O的直径,过A点作⊙O的切线,在切线上任取一点C,连结OC交⊙O于D,连结BD并延长交AC 于E,求证:CD是△ADE外接圆的切线。 证明:取AE的中点F,连结FD。 ∵AB为直径, ∴AD⊥BD ∵FD=FE(=FA) ∴∠FED=∠FDE ∵∠CDE=∠BDO=∠B ∠FEB+∠B=90° ∴∠FDE+∠CDE=90° 即FD⊥CD ∴CD是△ADE的外接圆的切线。 方法二、作垂线,证明半径 若图形中未给出直线与圆的公共点,则需先过圆心作该直线的垂线,再证垂足到圆心的距离等于半径。 例3 如图(3)所示,已知AB是⊙O的直径,AC⊥L于C,BD ⊥L于D,且AC+BD=AB。求证:直线L与⊙O相切。 证明:过O作OE⊥L于E。 ∵AC⊥L,BD⊥L,

圆证明切线的练习题

圆证明切线的练习题 1. 如图,AB是⊙O的直径,⊙O交BC的中点 于D,DE⊥AC,E是垂足. 求证:DE是⊙O的切线;如果AB=5,tan∠B=的长. 2.如图,△ABC中,AB=AE,以AB为直径作⊙O交BE 于C,过C作CD⊥AE于D, 1C ,求CE B DC的延长线与AB的延长线交于点P . 求证:PD是⊙O的切线;若AE=5,BE=6,求DC的长. 3.在Rt△ABC 中,∠C=90 ? , BC=9, CA=12,∠ABC的平分线 BD交AC于点D, DE⊥DB交AB于点E,⊙O是△BDE的外接圆, 交BC于点F 求证:AC是⊙O的切线; 联结EF,求 4.已知:如图,△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O交AC于点D,交BC于点E,EF⊥AC于F交AB的延长线于G. 求证:FG是⊙O的切线;求AD的长.

证明: 1 A EF 的值. AC 5.如图,点A、B、F在?O上,?AFB?30?,OB的延长线交直线AD于点D,过点 B作BC?AD于C,?CBD?60?,连接AB. 求证:AD是?O 的切线; 若AB?6,求阴影部分的面积. 6.已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O上的一点,且AD平分∠FAE,ED⊥AF交AF 的延长线于点C.判断直线CE与⊙O的位置关系,并证明你的结论; A 若AF∶FC=5∶3,AE=16,求⊙O的直径AB的长. 7.如图,以等腰?ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE?AC,垂足为E.求证:DE为⊙O的切线; 8.如图,已知R t△ABC,∠ABC=90°,以直角边 AB为直径作O,交斜边AC于点D,连结BD.

求圆的切线方程的几种方法

1 求圆的切线方程的几种方法 在直线与圆的位置关系中,相切是一个重要的位置关系.众所周知,在圆上的点可以作一条直线与该圆相切,过圆外一点可以作二条直线与该圆相切.本文就如何求圆的切线方程的方法展开讨论,供同学们参考. 1.利用几何性质来求切线方程 当直线与圆相切时,圆心到直线的距离等于半径.因此,利用点到直线的距离公式即可以求出切线方程. 例1 已知圆C 的方程是x 2+(y -1)2=4,圆外一点P (3,2),求经过点P 且与圆C 相切的直线方程. 解:当过P 的直线的斜率不存在时,显然不是圆的切线. 设所求的直线的斜率为k ,直线方程为y -2=k (x -3), 化为一般形式为kx -y -3k +2=0. 由于直线与圆相切,故圆心到直线的距离d 等于半径2,即 d =|-1-3k +2|k 2+1=|3k -1|k 2+1 =2, 解得k =3±265 . 所以切线方程为y -2=3±265 (x -3). 点评:求切线方程时,点到直线的距离公式相当重要,不能记错.设直线方程时,一定要考虑直线的斜率不存在时的情况,避免漏解. 2.利用方程的判别式来求切线方程 当直线与圆相切时,直线与圆只有一个公共点,此时圆的方程与直线联立,利用判别式等于零即可以求出切线方程. 例2 已知圆C 的方程是x 2+(y -1)2=4,圆外一点P (2,2),求经过点P 且与圆C 相切的直线方程. 解:当过P 的直线的斜率不存在时,直线x =2是圆的切线. 当过P 的直线的斜率存在时,设所求的直线方程为y -2=k (x -2). 直线方程与圆的方程联立,整理,得(1+k 2)x 2+2k (1-2k )x +4k 2-4k -3=0, 因为直线与圆只有一个公共点,故Δ=4k 2(1-2k )2-4(1+k 2)(4k 2-4k -3)=0. 解得k =-34 . 所以所求的切线方程是x =2或y -2=-34 (x -2). 点评:利用判别式求解时计算量比较大,本题注意不能漏解了x =2. 3.利用垂直关系求切线方程 当已知切点时,我们可以利用圆心与切点的连线与直线垂直、斜率之积为-1来求出切线方程. 例3 已知圆C 的方程是x 2+(y -1)2=4,求以P (3,2)为切点的切线方程. 解:由已知得圆心O (0,1),点P 在圆C 上,显然x =3不是圆的切线. 设切线方程为l :y -2=k (x -3). 由直线OP ⊥l 得k ·k OP =-1,所以k =-1k OP =-3. 所以切线方程为y -2=-3(x -3)即y =-3x +5. 点评:由直线垂直求出切线的斜率,可以避免繁杂的计算. 小结:在求圆的切线方程时,先判断切线方程有几条,再是注意特殊情况(如斜率不存在),三是注意使用哪种方法计算最简捷.

圆的切线的证明复习(教案)

专题复习----圆的切线证明教案 积石山县吹麻滩中学秦明礼 一、温习梳理 1、切线的定义:直线和圆有公共点时,这条直线叫圆的切线。 2、切线的性质:圆的切线于过切点的半径。 3、切线的判定:⑴和圆只有公共点的直线是圆的切线。 ⑵到圆心距离半径的直线是圆的切线。 ⑶经过半径的外端并且于这条半径的直线是圆的切线。 4、证明直线与圆相切,一般有两种情况: ⑴已知直线与圆有公共点,则连,证明。 ⑵不知直线与圆有公共点,则作,证明垂线段的长等于。

二、课前检测: 1.如图,AC为⊙O直径,B为AC延长线上的一点,BD交⊙O于点D, ∠BAD=∠B=30° (1)求证:BD是⊙O的切线; (2)请问:BC与BA有什么数量关系?写出这个关系式,并说明理 由。 三、活动于探究: 1.如图,已知CD是△ABC中AB边上的高,以CD为直径的⊙O分别交CA、CB于点E、F,点G是AD的中点.求证:GE是⊙O的切线.

2.已知:如图,在△ABC 中,AB =AC ,以AB 为直径作⊙O 交BC 于D , DE ⊥AC 于E .求证:DE 是⊙O 的切线. 3.如图,点O 在∠APB 的平分线上,⊙O 与PA 相切于点C . (1) 求证:直线PB 与⊙O 相切; (2) PO 的延长线与⊙O 交于点E .若⊙O 的半径为3,PC=4.求弦CE 的长.

4.如图,RT ?ABC 中,∠ABC=90O ,以 AB 为直径作⊙O 交边于点D ,E 是BC 边的中点,连接DE . (1)求证:直线DE 是⊙O 的切线; (2)连接OC 交DE 于点F ,若OF=CF , 求tan ∠ACO 的值. 四、反馈检测: 如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC . 求证:DE 是⊙O 的切线. 五、小结回顾: 1、本节课我们学习了:圆的切线的判定。 2、证明圆的切线的基本思路是:如果切点已知,需连接圆心做半径,证明半径和要证的切线垂直即可。而要证明垂直则需三种方法——平行、互余、全等。 B C E B A O F D

证明圆的切线方法

证明圆的切线方法 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

证明圆的切线方法 我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 证明:连结OE,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=BC, ∴∠3=∠4. ⌒⌒ ∴BD=DE,∠1=∠2. 又∵OB=OE,OF=OF, ∴△BOF≌△EOF(SAS). ∴∠OBF=∠OEF. ∵BF与⊙O相切, ∴OB⊥BF. ∴∠OEF=900. ∴EF与⊙O相切. 说明:此题是通过证明三角形全等证明垂直的 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC.

∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E, ∴∠1=∠E ∵AE是⊙O的直径, ∴AC⊥EC,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA⊥PA. ∴PA与⊙O相切. 证明二:延长AD交⊙O于E,连结OA,OE. ∵AD是∠BAC的平分线, ⌒⌒ ∴BE=CE, ∴OE⊥BC. ∴∠E+∠BDE=900. ∵OA=OE, ∴∠E=∠1. ∵PA=PD, ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE, ∴∠1+∠PAD=900 即OA⊥PA. ∴PA与⊙O相切 说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用.例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切. 证明一:连结OD. ∵AB=AC, ∴∠B=∠C. ∵OB=OD, ∴∠1=∠B.

圆的切线之经典练习题

圆的切线之----- A 班经典练习题 班级 姓名 一、选择题: 1、“圆的切线垂直于经过切点的半径”的逆命题是( ) A 、经过半径外端点的直线是圆的切线; B 、垂直于经过切点的半径的直线是圆的切线; C 、垂直于半径的直线是圆的切线; D 、经过半径的外端并且垂直于这条半径的直线是圆的切线。 2、如图,在Rt △ABC 中,∠A =900,点O 在BC 上,以O 为圆心的⊙O 分别与AB 、AC 相切于E 、F , 若AB =a ,AC =b ,则⊙O 的半径为( ) A 、ab B 、 ab b a + C 、b a ab + D 、2 b a + 3、如图,正方形ABCD 中,AE 切以BC 为直径的半圆于E ,交CD 于F ,则CF ∶FD =( ) A 、1∶2 B 、1∶3 C 、1∶4 D 、2∶5 4、如图,过⊙O 外一点P 作⊙O 的两条切线PA 、PB ,切点分别为A 、B ,连结AB ,在AB 、PB 、PA 上分别取一点D 、E 、F ,使AD =BE ,BD =AF ,连结DE 、DF 、EF ,则∠EDF =( ) A 、900-∠P B 、900- 21∠P C 、1800-∠P D 、450-2 1 ∠P ? 第3题图 O F E D C B A ? 第4题图 P O F E D B A ?第6题图 C O E D B A 二、填空题: 5、已知PA 、PB 是⊙O 的切线,A 、B 是切点,∠APB =780,点C 是⊙O 上异于A 、B 的任一点,则∠ACB = 。 6、如图,AB ⊥BC ,DC ⊥BC ,BC 与以AD 为直径的⊙O 相切于点E ,AB =9,CD =4,则四边形ABCD 的面积为 。 7、如图,⊙O 为Rt △ABC 的内切圆,点D 、E 、F 为切点,若AD =6,BD =4,则△ABC 的面积为 。 8、如图,已知AB 是⊙O 的直径,BC 是和⊙O 相切于点B 的切线,过⊙O 上A 点的直线AD ∥OC , 若OA =2,且AD +OC =6,则CD = 。

圆切线证明的方法

切线证明法 切线的性质定理: 圆的切线垂直于经过切点的半径 切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径. 【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD =OB ,点C 在圆上,∠CAB =30o.求证:DC 是⊙O 的切线. 思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90o即可. 证明:连接OC ,BC . ∵AB 为⊙O 的直径,∴∠ACB =90o. ∵∠CAB =30o,∴BC =2 1 AB =OB . ∵BD =OB ,∴BC = 2 1 OD .∴∠OCD =90o. ∴DC 是⊙O 的切线. 【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线. 【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接OC ,弦AD ∥OC .求证:CD 是⊙O 的切线. 思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明CD 是⊙O 的切线,只要证明∠ODC =90o即可. 图1 A 图2

证明圆的切线的七种常用方法

证明圆的切线的七种常用方法 类型1、有公共点:连半径,证垂直 方法1、勾股定理逆定理法证垂直 1.如图,⊙O的直径AB =12,点P 是AB 延长线上一点,且PB =4,点C是⊙O上一点,PC=8. 求证:PC是⊙O的切线. 方法2、特殊角计算法证垂直 2. 如图,△ABC内接于⊙O,∠B =60°,CD是⊙O 的直径,点P是CD延长线上一点,且AP=AC. (1)求证:P A是⊙O的切线; (2)若PD=5,求⊙O的直径. 方法3、等角代换法证垂直 3.如图,在Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E. 求证:DE是⊙O的切线. 方法4、平行线性质法证垂直 4.如图,已知四边形OABC的三个顶点A,B,C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB,AO的延长线于点D,E,AE交半圆O于点F,连接CF,且∠E=30°, 点B是︵ AC的中点. (1)判断直线DE与半圆O的位置关系,并说明理由; (2)求证:CF=OC; (3)若⊙O的半径是6,求DC的长. A B P O C A C B P D O A E B D O C A O F E C D B

方法5、全等三角形法证垂直 5.如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,交OC 的延长线于点F ,连接BF . 求证:BF 是⊙O 的切线. 类型2、无公共点:作垂直,证半径 方法6、角平分线性质法证半径 6.如图,在Rt △ABC 中,∠B =90°,∠BAC 的平分线交BC 于点D ,E 是AB 上一点,DE =DC ,以点D 为圆心,BD 长为半径作OD ,AB =5,EB =2. (1)求证:AC 是OD 的切线; (2)求线段AC 的长. 方法7、全等三角形法证半径 7.如图,四边形ABCD 中,∠A =∠ABC =90°,AD +BC =CD ,以AB 为直径作⊙O . 求证:⊙O 与边CD 相切. A O B C D F A B C D E A O B C D

证明圆的切线经典例题1

证明圆的切线方法及例题 证明圆的切线常用的方法有: 一、若直线l 过⊙O 上某一点A ,证明l 是⊙O 的切线,只需连OA ,证明OA ⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1 如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D ,交AC 于E ,B 为切点的切线交OD 延长线于F. 求证:EF 与⊙O 相切. 证明:连结OE ,AD. ∵AB 是⊙O 的直径, ∴AD ⊥BC. 又∵AB=BC , ∴∠3=∠4. ∴BD=DE ,∠1=∠2. 又∵OB=OE ,OF=OF , ∴△BOF ≌△EOF (SAS ). ∴∠OBF=∠OEF. ∵BF 与⊙O 相切, ∴OB ⊥BF. ∴∠OEF=900. ∴EF 与⊙O 相切. 说明:此题是通过证明三角形全等证明垂直的 例2 如图,AD 是∠BAC 的平分线,P 为BC 延长线上一点,且PA=PD. ⌒ ⌒

求证:PA 与⊙O 相切. 证明一:作直径AE ,连结EC. ∵AD 是∠BAC 的平分线, ∴∠DAB=∠DAC. ∵PA=PD , ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB , ∴∠1=∠B. 又∵∠B=∠E , ∴∠1=∠E ∵AE 是⊙O 的直径, ∴AC ⊥EC ,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA ⊥PA. ∴PA 与⊙O 相切. 证明二:延长AD 交⊙O 于E ,连结OA ,OE. ∵AD 是∠BAC 的平分线, ∴BE=CE , ∴OE ⊥BC. ∴∠E+∠BDE=900. ∵OA=OE , ∴∠E=∠1. ∵PA=PD , ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE, ∴∠1+∠PAD=900 ⌒ ⌒

中考数学专题复习圆压轴八大模型题-圆外一点引圆的切线和直径的垂线

圆压轴题八大模型题(六) 泸州市七中佳德学校 易建洪 引言:与圆有关的证明与计算的综合解答题,往往位于许多省市中考题中的倒数第二题 的位置上,是试卷中综合性与难度都比较大的习题。一般都会在固定习题模型的基础上变化与括展,本文结合近年来各省市中考题,整理了这些习题的常见的结论,破题的要点,常用技巧。把握了这些方法与技巧,就能台阶性地帮助考生解决问题。 类型5 圆外一点引圆的切线和直径的垂线 如图, 点P 是⊙O 外的一点,过点P 作PA 与⊙O 相切于点A ,PO ⊥BO 于点O ,交AB 于点C. (1)求证:CP =AP ; (2)延长BO 交⊙O 于点D ,连结AD ,过点P 作PE ⊥AB 于点E ,找出与△BOC 相似的三角形. (3)若⊙O ,OC =1,求PA 的长. 【分析】(1)如图3连接OA 得OA =OB ,∴∠OAB =∠B ,由等角的余角相等得∠PCA =∠PAC ,∴ PC =P A. (2)由∠APE =∠CPE =∠B 得:△BOC ∽△BAD ∽△PCE ≌△PAE . (3)在Rt △OPA 中,设PC =PA =x ,则有(x +1)2 =1+x 2 .解得PA =x =2. 基本图形及其变式图 1. 如图1~6,PA 与圆O 相切于点A ,PD ⊥BO (或BO 的延长线)于点D ,直线AB 与PD 相 O P C B A P P A O C B 图1 图3 图2 D E A B C P O

交于点C ,求证:PA =P C. 【典例】 (2018湖北随州)如图,AB 是⊙O 的直径,点C 为⊙O 上一点,CN 为⊙O 的切线,OM ⊥AB 于点O ,分别交AC 、CN 于D 、M 两点. (1)求证:MD =MC ; (2)若⊙O 的半径为5,AC =4,求MC 的长. 【分析】(1)连接OC ,利用切线的性质证明即可; (2)根据相似三角形的判定和性质以及勾股定理解答即可. 解:(1)连接OC ,∵CN 为⊙O 的切线, ∴OC ⊥CM ,∠OCA +∠ACM =90°, ∵OM ⊥AB ,∴∠OAC +∠ODA =90°, ∵OA =OC ,∴∠OAC =∠OCA , ∴∠ACM =∠ODA =∠CDM , ∴MD =MC ; E A B C P O O P C B A D A B C P O 图(3) 图(4) 图(5) 图(6) 图6-1 图a

浅谈过圆上一点求圆的切线的方法

浅谈过圆上一点求圆的切线的方法 近日在带领学生复习《圆的方程》一章时,遇到这样一个问题:已知圆的方程为x2+y2=25,求过点(3,4)的圆的切线方程。本人通过一种简易的方法通过口算即得出答案:3x+4y-25=0.求解圆的切线方程的问题,是高考的考点,也是平时学习的重点,求圆的切线过程比较复杂,运算麻烦,所以容易出错,是学生比较头疼的一个问题,在求圆的切线问题中有两种情况,一种是求过圆外一点求圆的切线,另一种种情况是求经过圆上一点求圆的切线方程问题,本人对第二种情况进行了归纳、推导,得出快速求解的方法,此方法针对高三学生应对高考中此类问题有实际意义,故介绍如下。 设圆的标准方程为(x-a)2+(y-b)2=r2,经过圆上一点(x0,y0)的切线方程是什么?,我们把圆的方程写成(x-a)(x-a)+(y-b)(y-b)=r2形式,把其中一个x换成x0,一个y换成y0,则得到(x0-a)(x-a)+(y0-b)(y-b)=r2,然后整理成直线方程的一般形式即得到所求切线的方程。此法在学生高考中快速解决求圆上点的切线问题提供了一个途径,学生可应用此法快速解决选择题,填空题,或者用它来检验分析解答题的答案是否正确。此方法的特点是速度快,不易错,容易上手。 下面就上面介绍的方法的理论依据进行推导:先从简单情况入手,当a=0,b=0时,那么圆的圆心在原点上,圆的方程为x2+y2= r2,设点(x0,y0)在圆上,如上图所示,那么经过这个点的直径与切线互相垂直,两者斜率互为负倒数即K直径=y0/ x0, K切线=—x 0/ y 0,又因为切线过点(x0,y0),根据点斜式直线方程得: (y— y0)=—x 0/ y 0(x— x0),整理得方程x0 x+ y0 y=x02+ y 02,由于点(x0,y0)在圆上且圆心在原点,所以x02+ y 02=r2,由此我们得到所求切线方程为x0 x+ y0 y=r2,即我们所讨论的方法的特殊形式(圆心在原点)。在此基础上,我们又推想圆心不在原点的圆的切线方程的推导方法,设圆的方程为(x-a)2+(y-b)2=r2,求经过圆上一点(x0,y0)的切线方程,我们以(a,b)为坐标原点建立新坐标系x‘o‘y‘,新坐标系与原坐标系的坐标之间关系为x‘=x-a,y‘=y-b,则(x0,y0)在新坐标系中的坐标为(x0‘,y0‘),x0‘=x0-a,y0‘=y0-b,在新坐标系中圆的方程为x‘2+y‘2= r2,根据第一种情况推导出结论:经过(x0‘,y0‘)点的切线方程为x0‘x‘+y0‘y‘= r2,然后根据坐标之间的关系转换到原坐标系方程为(x0-a)(x-a)+(y0-b)(y-b)=r2。 以上推导方法的原理为过圆上点的切线与过该点的直径互相垂直,通过垂直直线间的斜率关系K1K2=-1可以得到切线的斜率,然后应用点斜式求解直线方程,第二种情况是在第一种情况的基础上,借助坐标变换得出的,在新坐标系中构建出第一种情况的模型,然后利用坐标变换还原到原来的坐标系中,这种方法化简了推导过程,解决了运算的困难,取得深入浅出的效果。

专题:《切线的证明技巧》

专题:《切线的证明技巧》 [方法技巧]连半径,证垂直或作垂直,证半径是证明直线是圆的切线的常用方法。 -、有公共点→连半径,证垂直 1、已知△ABC为⊙O的内接三角形,∠BCE=∠BAC,求证:CE是⊙O的切线。 方法点拔:借助角度转换证垂直 2、如图,⊙O的弦AD=4,BD=8,AD⊥BD,C是BD延长线上一点,CD=2,求证:AC是⊙O的切线。 方法点拔:借助角度转换证垂直 C

3、如图,AB 是⊙O 的直径,AE 是⊙O 的切线,切点为A ,OE 平行于弦BC 。求证:CE 是⊙O 的切线。 方法点拔:借助全等证垂直 O E A B C 二、无公共点→作垂直,证半径 方法点拔:借助角平分线性质证d=R 4、如图△ABC 中,CA=CB ,D 为AB 中点,以 D 为圆心的圆与 AC 相切于点E ,求证:BC 与⊙O 相切。 D A B C E

5、如图,四边形ABCD中,∠A=∠ABC=90°,AD+BC=CD,求证:以AB为直径的圆与CD相切。 D A O B C

[课后练习] 1.(2015?湖北模拟)如图,已知R t△ABC,∠ABC=90°,以直角边AB为直径作O,交斜边AC于点D,连接BD.取BC的中点E,连接ED,试证明ED与⊙O相切. 2.如图,PA为⊙O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交于点D,与PA的延长线交于点E.求证:PB为⊙O的切线; D C O B P E A 3.(2015?武汉校级模拟)如图所示.P是⊙O外一点.PA是⊙O的切线.A是切点.B 是⊙O上一点.且PA=PB,连接AO、BO、AB,并延长BO与切线PA相交于点Q.求证:PB是⊙O的切线;

过圆锥曲线外一点作圆锥曲线的切线及原理

过双曲线外一点作双曲线的切线及原理 作法:① P 为双曲线外任一点,以P 为圆心2PF 为半径作圆1C ,以1F 为圆心 2a 为半径作圆2C ,圆12,C C 交于点M ;(12,F F 为双曲线的两焦点,2a 为双曲线的实轴长) ② 取2F M 的中点D ,连PD 交1MF 于T 。 同样道理可以作出双曲线另一条切线。下面证明PD 是双曲线的切线,T 是切点。 证明:首先证明T 在双曲线上:在圆1C 上,D 是弦2MF 的中点,则2PD MF ⊥,所以 2TM TF =; 在圆2C 上,112F M TM FT a =-=,则212TF TF a -=,所以 T 在双曲线上。 再证T 是切点:过T 引PD 的垂线TS ,则2//TS MF ,所以2NTS TF M ∠=∠, 12STM F MF ∠=∠, 又由于22TMF TF M ∠=∠,所以MTS NTS ∠=∠,有双曲线的光学性质知TS 是双曲线在T 点处的法线,由于PD ⊥TS ,因此PD 是双曲线的切线,T 是切点。

过椭圆外一点作椭圆的切线及原理 作法:① P 为椭圆外任一点,以P 为圆心2PF 为半径作圆1C ,以1F 为圆心 2a 为半径作圆2C ,圆12,C C 交于点,M N ; (12,F F 为椭圆的两焦点,2a 为椭圆的长轴长) ② 取2F M 的中点D ,连PD 交1MF 于T 。 同样道理可以作出另一条切线。下面证明PD 是椭圆的切线,T 是切点。 证明:首先证明T 在椭圆上:在圆1C 上,D 是弦2MF 的中点,则2PD MF ⊥,所以2TM TF =;在圆2C 上,112F M FT TM a =+=,那么122TF TF a +=,所以 T 在椭圆上。 再证T 是切点:过T 引PD 的垂线TS ,则2//TS MF ,所以1 2FTS TMF ∠=∠, 22STF TF M ∠=∠,又由于22TMF TF M ∠=∠,所以12FTS F TS ∠=∠,有椭圆的光学性质知TS 是椭圆在T 点处的法线,由于PD ⊥TS ,因此PD 是椭圆的切线,T 是切点。

圆的切线证明(终审稿)

圆的切线证明 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

C E A B O P 圆的切线证明 1(2011中考).如图,PA为⊙O的切线,A为切点,过A作 OP的垂线AB,垂足为点C,交⊙O于点B,延长BO与⊙O交 于点D,与PA的延长线交于点E,(1)求证:PB 为⊙O的切 线; 2 已知⊙O 中,AB是直径,过B 点作⊙O的切线,连结CO,若AD∥OC交⊙O于 D,求证:CD是⊙O的切线。 3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M求证:DM与⊙O相 切. 4(2008年厦门市)已知:如图,中,,以为直径的交于 点,于点. D

(1)求证:是的切线; 5已知:如图⊙O是△ABC的外接圆,P为圆外一点,PA∥BC,且A为劣弧的中点,割线PBD过圆心,交⊙0于另一点D,连结CD. (1)试判断直线PA与⊙0的位置关系,并证明你的结论. (2)当AB=13,BC=24时,求⊙O的半径及CD的长. 6如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.(1)求证:AC是⊙O的切线;(2)求弦BD的 长;(3)求图中阴影部分的面积. 7.(2010北京中考)已知:如图,在△ABC中,D是AB边上一 点,圆O过D、B、C三点,DOC=2ACD=90。 (1) 求证:直线AC是圆O的切线; (2) 如果ACB=75,圆O的半径为2,求BD的长。

8、(2011?北京)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点 D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线; 9 已知⊙O的半径OA⊥OB,点P在OB的延长线上,连结AP交⊙O于D,过D作⊙O的切线CE交OP于C,求证:PC=CD。 10(2013年广东省9分)如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦 BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E. (1)求证:∠BCA=∠BAD;(3)求证:BE是⊙O的切线。

圆的切线专题(好)

直线与圆的位置关系 这条半径垂直于切线. (2) 要证明一条直线是圆的切线:①如果直线经过圆上某一点,则需要连接这点和圆心得到辅助线半径,在证明所作半径垂直于这条直线,(已知公共点,连半径证垂直);②如果条件中直线与圆的公共点没有确定,那么应过圆心做直线的垂线,得垂线段,在证明这条垂线段的长等于半径. (未知公共点,作垂线证半径) 切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 切线长定理:从圆外一点可以引圆的两条切线,切线长相等.这一点与圆心的连线平分两条切线的夹角. 三角形内切圆:与三角形各边都相切的圆. 三角形的内心:三角形内切圆的圆心.这个三角形叫做这个圆的外切三角形.三角形的内心是三角形三条 内角平分线的交点,它到三角形三边的距离相等. 精品例题展示 1. 已知,如图,?ABC 内接于⊙O ,AB 是一条非直径的弦,∠CAD=∠B,试判断AD 与⊙O 的位置关系,并说明理由.【反之成立吗】 2.已知:如图,PA 、PB 是⊙O 的切线,切点是A 、B ,Q 为弧AB 上一点, 过Q 点作⊙O 的切线,交PA 、PB 于E 、F 点,已知PA=12 cm ,∠P =700(1)求?PEF 的周长;(2)求∠EOF 的度数. 3. ?ABC 的内切圆的半径为r ,?ABC 的周长为l ,求?ABC 的面积S. 变式题:如图,在?ABC 中,I 是内心,∠BIC =1100,求∠A. 4. 如图,等腰梯形ABCD 的上底为4,下底为10,⊙O 是该梯形的内切圆,与

各边的切点分别为M 、N 、G 、H ,内切圆⊙O 的半径为2,P 为⊙O 上的一点, EF 是过P 的⊙O 的切线,分别交AB 于E ,BC 于F ,求?BEF 的周长 5. 已知:如图,⊙O 是ABC Rt ?的内切圆,∠C =900. (1)若AC =12cm ,BC=9cm,求⊙O 的半径r ; (2)若AC=b,BC=a ,AB=c,求⊙O 的半径r. 6. 已知:如图,⊙O 内切于等腰梯形ABCD ,切点分别是E 、H 、F 、G ,AB ∥DC,AD=BC. (1) 求证:线段EF 是⊙O 的直径; (2) 求证:∠AOD =900 ; (3)若AB=a 2,DC=2b ,求此梯形的面积S. 练习: 1.如图,⊙O 内切于△ABC 三边与E,D,F,若∠EOF=70°,则∠A= . 2.在Rt △ABC 中,∠C=90°,若AC=BC=4,则△ABC 的内心和外心的距离为 。 3.如图,一圆内切四边形ABCD,且AB=16,CD=10,则四边形的周长为 。 4.如图梯形ABCD 中,AD ∥BC,DC ⊥BC,AB=8,BC=5,若以AB 为直径的⊙O 与DC 相切于E ,DC= . 5. ⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为R ,当d 、R 是关于x 的方程0862 =+-x x 的两根, 直线l 与⊙O 的位置关系是 ;若⊙O 的圆心到直线l 的距离d 与⊙O 的半径R 为关于x 的方程022 =+-m x x 的根,且直线l 与⊙O 相切,则m 的值是 . 6.(2005年山西省)如图,⊙O 的半径为1,圆心O 在正三角形的边AB?上沿图示方向移动. 当⊙O 移动到与AC 边相切时,OA 的长为多少? 7.(武汉市)如图5,BC 为半⊙O 的直径,点D 是半圆上一点,过点D 作⊙O 的切线AD ,BA⊥DA 于A ,BA 交半圆于E ,已知BC=10,AD=4,那么直线CE 与以点O 为圆心,52 为半径的圆的位 置关系是________. 8.已知一正方形的内切圆半径为1,那么这个正方形与它的内切圆及外接圆的面积的比为[ ] A.4∶π∶2π B.4∶2π∶π C.4∶2π∶1 D.4∶1∶2 9.在圆外切四边形ABCD 中,AB ∶BC ∶CD ∶AD 只可能是[ ] A.2∶3∶4∶5 B.3∶4∶6∶5 C.5∶4∶1∶3 D.3∶4∶2∶5 10. 如图,两个圆的圆心都为O ,大圆的弦AB 、AC 分别和小圆相切于点D 和E.

(完整版)证明切线的两种方法

证明切线的两种方法 朱元生 判定直线与圆相切是有关圆的问题中经常会遇到的问题,现将常用的两种思路与方法说明如下: 一、运用判定定理是证明切线最常用的方法,即如果直线与圆有交点,则连接交点与圆心得半径,只要证明这条半径与该直线垂直即可.这种方法可简单概括为:连半径,证垂直. 例1 如图1,在△ABC 中,AB=AC,以AB 为直径的⊙O 交BC 于点D,过点D 作DE ⊥AC 于E. 求证:DE 是⊙O 的切线. 分析:由题设可知,DE 与⊙O 有交点D,要证明DE 是⊙O 的切线,只要连接OD,证明OD ⊥DE 即可. 证明:连接OD. ∵OB=OD, ∴∠OBD=∠ODB. ∵AB=AC, ∴∠ABC=∠ACB. ∴∠ODB=∠ACB. ∴OD ∥AC. ∴∠ODE=∠DEC. ∵DE ⊥AC, ∴∠DEC=900. ∴∠ODE=900, 即OD ⊥DE . ∴DE 是⊙O 的切线. 二 、当不明确直线与圆的交点个数或交点的位置时,可以经过圆心作直线的垂线,然后证明圆心到直线的距离等于圆的半径即可.这种方法可简单概括为:作垂线,证半径. 例2 如图2,在Rt △AOB 中,AO=53,BO=56,以点O 为圆心,6为半径作⊙O. 求证:AB 是⊙O 的切线. 分析:由题设知,⊙O 与直线AB 是独立的,既没有指明交点个数,也没有指明交点位置,这时要证明AB 是⊙O 的切线,只能证明圆心O 到直线AB 的距离等于圆的半径6即可. 证明:过点O 作OC ⊥AB 于点C. 在Rt △AOB 中,AO=53,BO=56,由勾股定理,得 AB=()()1556532222=+=+OB OA . 根据三角形面积公式,得OB OA OC AB ?=?2 121. ∴OC=615 5653=?=?AB OB OA . ∴点O 到直线AB 的距离等于⊙O 的半径. ∴AB 是⊙O 的切线. [牛刀小试] 如图3,,点O 是等腰三角形ABC 底边BC 的中点,若AB 是⊙O 的切线,试证明AC 也是⊙O 的切线. 提示: 设点D 为AB 与⊙O 的切点,连接OD,过点O 作OE ⊥AC 于点E,证明OE=OD 即可. 图3

过圆外一点的切线方程的几种求法

过圆外一点的切线方程的几种求法 摘要过圆x-a■+y-b■=r■外一点px■,y■作圆的切线有两条,求切线方程可从五个方面入手:相切的定义;相切的几何意义;转化与化归;三角参数;坐标平移转化。 关键词圆;切线;转化;化归;参数;平移 众所周知过已知圆圆上一点有且只有一条切线,而且可以利用公式直接写切线方程。那么,过圆x-a■+y-b■=r■ 外一点px■,y■作圆的切线有两条,如何求切线方程呢?下面以一道习题来分析: 例:从点p-2,-1向圆x■+y■-4x+2y+1=0引切线,求切点坐标与切线方程。 解法一:判别式法。不妨设切线的斜率存在,记作k , 那么过点p-2,-1 的直线方程为:y+1=kx+2, 由y+1=kx+2 x■-4x+y+1■=0,得1+k■x■+4k■-1x+4k■=0 由直线与圆相切有,△=16k■-1-16k■1+k■=0,解得k=±■ 此时切点的横坐标为x=-■=1,将x=1代入圆的方程,解得y=-1+■, 即切点坐标为1,-1+■,1,-1-■ 。 将k=±■代入,得两条切线方程为:x-■y+2-■=0,x+■y+2+■=0。 点评:此法从相切的定义得到(有且只有一个公共点)。但要注意,若求得的k值只有一个,再验证斜率不存在且过点p-2,-1的直线是否为切线。 解法二:几何法。圆的方程化为x-2■+y+1■=4,圆心C(2,-1)。设切线的斜率为k (存在时),则过点p-2,-1的直线方程为y+1=kx+2,即y-kx-2k+1=0。由平面几何知识,圆心C(2,-1)到切线的距离等于圆半径,所以d=■=2。解得k=±■。将k=±■代入切线方程,得两条切线方程为x-■y+2-■=0,x+■y+2+■=0。将切线方程y+1=±■(x+2)代入圆的方程,得x-2■+■x+2■=4,解得x=1,再代入切线方程,得y=-1±■ ,所以切点坐标为-1,-1+■,1,-1-■。 点评:利用相切的几何意义(圆心到直线距离等于半径)。若求得的值只有一个,再验证斜率不存在且过点p-2,-1的直线是否为切线。就求切线方程而言,较解法一可减少运算量,值得重视。当然法一,法二都是我们最容易想到的方法。 解法三:转化与化归法。设切点坐标为A(x1,y1),为圆上一点那么利用

相关文档
最新文档