平抛运动常见题型及应用专题

平抛运动常见题型及应用专题
平抛运动常见题型及应用专题

平抛运动常见题型及应用专题

(一)平抛运动的基础知识

1. 定义:水平抛出的物体只在重力作用下的运动。

2. 特点:

(1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。

(2)平抛运动的轨迹是一条抛物线,其一般表达式为c bx ax y ++=2。 (3)平抛运动在竖直方向上是自由落体运动,加速度g a =恒定,所以竖直方向上在相等的时间内相邻的位移的高度之比为5:3:1::321=s s s …竖直方向上在相等的时间内相邻的位移之差是一个恒量2gT s s s s I II II III =-=-。

(4)在同一时刻,平抛运动的速度(与水平方向之间的夹角为?)方向和位移方向(与水平方向之间的夹角是θ)是不相同的,其关系式θ?tan 2tan =(即任意一点的速度延长线必交于此时物体位移的水平分量的中点)。 3. 平抛运动的规律

描绘平抛运动的物理量有0v 、y v 、v 、x 、y 、s 、?、t ,已知这

(二)平抛运动的常见问题及求解思路

关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题,有平抛运动与圆周运动组合的问题、有平抛运动与天体运动组合的问题、有平抛运动与电场(包括一些复合场)组合的问题等。本文主要讨论直接运用平抛运动的特点和规律来求解的问题,即有关平抛运动的常见问题。

1. 从同时经历两个运动的角度求平抛运动的水平速度

求解一个平抛运动的水平速度的时候,我们首先想到的方法,就应该是从竖直方向上的自由落体运动中求出时间,然后,根据水平方向做匀速直线运动,求出速度。

[例1] 如图

过m x 5=有多大?

解析:g

h t 2==

在水平方向上,摩托车能越过壕沟的速度至少为

s m s m t x v /10/5

.050===

2. 从分解速度的角度进行解题

对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。

[例

2] 如图2甲所示,以9.8m/s 的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角θ为?30的斜面上。可知物体完成这段飞行的A.

33解析:(如图2度是始终

直,所以t v 与y v 间的夹角等于斜面的倾角θ。再根据平抛运动的分解可知物体在竖直方向做自由落体运动,那么我们根据y v gt =就可以求出时间t 了。则

y

x

v v =

θtan 所以s m s m v v v x y /38.9/3

18

.930tan tan 0==?

==

θ

根据平抛运动竖直方向是自由落体运动可以写出 gt v y = 所以s g v t y 38

.93

8.9==

=

所以答案为C 。

3. 从分解位移的角度进行解题

对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”)

[例3] 在倾角为α的斜面上的P 点,以水平速度0v 向斜面下方抛出一个物体,落在斜面上的Q 点,证明落在Q 点物体速度α20tan 41+=v v 。

解析:设物体由抛出点P 运动到斜面上的Q 点的位移是l ,所用时间为t ,则由“分解位移法”可得,竖直方向上的位移为αsin l h =;水平方向上的位移为αcos l s =。

又根据运动学的规律可得

竖直方向上22

1gt h =,gt v y =

水平方向上t v s 0=

则0

0222

1tan v v t v gt s h y ===α,αtan 20v v y =

所以Q 点的速度

α202

20tan 41+=+=v v v v y

[例4] 如图3所示,在坡度一定的斜面顶点以大小相同的速度0v 同时水平向左与水平向右抛出两个小球A 和B ,两侧斜坡的倾角分别

为?37和?53

球的运动时间解析:?37和?53都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到

02221tan v gt

t v gt x y ===α

所以有0

1237tan v gt

=?

同理0

2

253tan v gt =

? 则16:9:21=t t

4. 从竖直方向是自由落体运动的角度出发求解

在研究平抛运动的实验中,由于实验的不规范,有许多同学作出的平抛运动的轨迹,常常不能直接找到运动的起点(这种轨迹,我们暂且叫做“残缺轨迹”),这给求平抛运动的初速度带来了很大的困难。为此,我们可以运用竖直方向是自由落体的规律来进行分析。 [例5] 某一平抛的部分轨迹如图4所示,已知a x x ==21,b y =1,c y =2,求0v

解析:A 是匀速直线运动,可设A 到B 、B 到C 的时间为T ,则

T v x x 021==

又竖直方向是自由落体运动, 则 212gT y y y =-=?

代入已知量,联立可得

g

b

c T -=

b

c g a

v -=0 5. 从平抛运动的轨迹入手求解问题

[例6] 从高为H 的A 点平抛一物体,其水平射程为s 2,在A 点正上方高为2H 的B 点,向同一方向平抛另一物体,其水平射程为s 。

过,求屏们换一会很容易,顶点在y 轴上的抛物线,即可设A 、B 两方程分别为

c bx ax y ++=2,c x b x a y '+'+'=2

则把顶点坐标A (0,H )、B (0,2H )、E (2s ,0)、F (s ,0)分别代入可得方程组

???

???

?+-=+-=H x s H y H x s

H y 2242222 这个方程组的解的纵坐标H y 7

6=,即为屏的高。

6. 灵活分解求解平抛运动的最值问题

[例7] 如图6所示,在倾角为θ的斜面上以速度0v 水平抛出一小球,该斜面足

距离的达解析:将

虽然分运动比较复杂一些,但易将物体离斜面距离达到最大的物理本质凸显出来。

取沿斜面向下为x 轴的正方向,垂直斜面向上为y 轴的正方向,如图6所示,在y 轴上,小球做初速度为θsin 0v 、加速度为θcos g -的匀变速直线运动,所以有

θθcos 2)sin (202gy v v y -=- ①

t g v v y θθcos sin 0-=- ②

当0=y v 时,小球在y 轴上运动到最高点,即小球离开斜面的距离达到最大。

由①式可得小球离开斜面的最大距离

θ

θcos 2)sin (2

0g v y H ==

当0=y v 时,小球在y 轴上运动到最高点,它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。由②式可得小球运动的时间为θtan 0

g

v t =

7. 利用平抛运动的推论求解

推论1:任意时刻的两个分速度与合速度构成一个矢量直角三角形。 [例8] 大小分间的夹

与竖角形如1v gt

2又因为?=+90βα,所以βαtan cot = 由以上各式可得gt v v gt 21=,解得211v v g

t = 推论2:任意时刻的两个分位移与合位移构成一个矢量直角三角

[例9] 宇航员站在一星球表面上的某高度处,沿水平方向抛出一个小球,经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为l ,若抛出时初速度增大到两倍,则抛出点与落地点之间的距离为l 3。已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G ,求该星球的质量M 。

解析:设第一次抛出小球,小球的水平位移为x ,竖直位移为h ,如图8所示,构建位移矢量直角三角形有

222l h x =+

若抛出时初速度增大到2倍,重新构建位移矢量直角三角形,如图9所示有,

222)3()2(l h x =+

由以上两式得3

l h =

令星球上重力加速度为g ',由平抛运动的规律得22

1t g h '= 由万有引力定律与牛顿第二定律得

g m R

GMm

'=2

由以上各式解得2

2

332Gt lR M =

推论3:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。

证明:设平抛运动的初速度为0v ,经时间t 后的水平位移为x ,如图10所示,D 为末速度反向延长线与水平分位移的交点。根据平抛运动规律有

水平方向位移t v x 0=

竖直方向gt v y =和22

1gt y = 由图可知,ABC ?与ADE ?相似,则y

DE

v v y =

0 联立以上各式可得2x DE =

该式表明平抛运动的末速度的反向延长线交平抛运动水平位移的中点。

[例10] 如

求在运动过解析:面的距离最示,图中A 求的最远gt v y =,t v x 0=和

θtan 0

=v y

由上述推论3知2

x OA =

据图9中几何关系得θsin AO AB =

即质推论4为α证明:如图13,设平抛运动的初速度为0v ,经时间t 后到达A 点的水平位移为x 、速度为t v ,如图所示,根据平抛运动规律和几何关系:

在速度三角形中0

tan v gt v v y =

=

α

2

[例11] 出时的初tan α又因为α

cos 0

v v t =

所以初动能J E mv E kB kA 1521

9

2120==

=

[例12] 如图15所示,从倾角为θ斜面足够长的顶点A ,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为1v ,球落到斜面上前一瞬间的速度方向与斜面的夹角为1α,第二次初速度2v ,球落在斜面上前一瞬间的速度方向与斜面间的夹角为2α,若12v v >,试比较1α和2α的大小。

A

B

1

v1

v2

C

α

α

2

θ

θ

图15

解析:根据上述关系式结合图中的几何关系可得

θ

θ

αtan

2

)

tan(=

+

所以θ

θ

α-

=)

tan

2

arctan(

此式表明α仅与θ有关,而与初速度无关,因此

2

1

α

α=,即以不同初速度平抛的物体落在斜面上各点的速度方向是互相平行的。

推论5:平抛运动的物体经时间t后,位移s与水平方向的夹角为β,则此时的动能与初动能的关系为)

tan

4

1(2

β

+

=

k

kt

E

E

证明:设质量为m的小球以

v的水平初速度从A点抛出,经时间t到达B点,其速度t v与水平方向的夹角为α,根据平抛运动规律可作出位移和速度的合成图,如图16所示。

图16

由上面推论4可知β

αtan

2

tan=

从图16中看出β

αtan

2

tan

v

v

v

y

=

=

小球到达B点的速度为

β

2

2

2

tan

4

1+

=

+

=v

v

v

v

y

t

所以B点的动能为

)

tan

4

1(

2

1

2

1

2

2

+

=

=mv

mv

E

t

kB

)

tan

4

1(2

β

+

=

k

E

[例13]

力不计

v0

v t

A B

v0

θ

解析:当物体做平抛运动的末速度方向平行于斜面时,物体距斜面的距离最远,此时末速度的方向与初速度方向成?30角,如图17所示

由βαtan 2tan =可得αβtan 2

1tan =

所以当物体距斜面的距离最远时的动能为 J J E E k kt 12)30tan 1(9)tan 41(220=?+?=+=β 根据物体在做平抛运动时机械能守恒有 J J E E k p 3)912(=-=?=?

即重力势能减少了3J

平抛运动是较为复杂的匀变速曲线运动,有关平抛运动的命题也层出不穷。若能切实掌握其基本处理方法和这些有用的推论,就不难解决平抛问题。因此在复习时应注意对平抛运动规律的总结,从而提高自己解题的能力。

【模拟试题】

1. 关于曲线运动,下列叙述正确的是( )

A. 物体之所以做曲线运动,是由于物体受到垂直于速度方向的力(或者分力)的作用

B. 物体只有受到一个方向不断改变的力,才可能做曲线运动

C. 物体受到不平行于初速度方向的外力作用时,物体做曲线运动

D. 平抛运动是一种匀变速曲线运动

2. 关于运动的合成,下列说法中正确的是( ) A. 合速度的大小一定比每个分速度的大小都大 B. 合运动的时间等于两个分运动经历的时间

C. 两个匀速直线运动的合运动一定也是匀速直线运动

D. 只要两个分运动是直线运动,合运动一定也是直线运动

3. 游泳运动员以恒定的速率垂直河岸横渡,当水速突然增大时,对运动员横渡经历的路程、时间发生的影响是( )

A. 路程增加、时间增加

B. 路程增加、时间缩短

C. 路程增加、时间不变

D. 路程、时间均与水速无关

4. 从同一高度、同时水平抛出五个质量不同的小球,它们初速度分别为v 、v 2、v 3、v 4、v 5。在小球落地前的某个时刻,小球在空中的位置关系是( )

A. 五个小球的连线为一条直线,且连线与水平地面平行

B. 五个小球的连线为一条直线,且连线与水平地面垂直

C. 五个小球的连线为一条直线,且连线与水平地面既不平行,也不垂直

D. 五个小球的连线为一条曲线

5. 如图1所示,在匀速转动的圆筒内壁上紧靠着一个物体与圆筒一起运动,物体相对桶壁静止。则( )

A. 物体受到4个力的作用

B. C. D.

6. 间间隔为t ?,那么( )

A. 1v 和2v 的方向一定不同

B. 若2v 是后一时刻的速度,则21v v <

C. 由1v 到2v 的速度变化量v ?的方向一定竖直向下

D. 由1v 到2v 的速度变化量v ?的大小为t g ??

7. 一个物体在光滑水平面上以初速度v 做曲线运动,已知物体在运动过程中只受到水平恒力的作用,其运动轨迹如图2所示,那么,物体在由M 点运动到N 点的过程中,速度大小的变化情况是( )

A. 逐渐增大

B. 逐渐减小

B. 物体做匀速圆周运动的周期一定与角速度成反比

C. 不计空气阻力,水平抛出的物体的运动是匀变速运动

D. 汽车关闭发动机后,继续滑行时的加速度方向与速度方向相同

9. 如图3

的速度必须是(A. 加速拉 10. 将正确的是( A. 甲和乙一定同时落地 B. 乙和丙一定同时落地

C. 甲和乙水平射程一定相同

D. 乙和丙水平射程一定相同

11. 一辆汽车的质量为M ,当它通过拱形桥时,可能因为速度过快而飞离桥面,导致汽车失去控制。所以为了车内车外人的安全,我

处车12. 点,轨为度大小13. 速度v 做匀速直线运动,突然悬点遇到障碍物停下来,小球将做 运动。此刻轻绳受到小球的拉力大小为 。(2/8.9s m g ) 14. 某同学在做“研究平抛物体运动”的实验中,忘记了记录小球

的半径R为何值时小球的水平射程最大?求此水平射程。

【试题答案】

1. ACD

2. BC

3. C

4. A

5. C

6. ABCD

7. D

8. BC

9. B 10. A

11. Rg 12. 19.6;9.8 13. 圆周;l

v m mg 2

+ 14. 2.0

15.(1)m s 20= (2)s m /1.14

16.(1)Rg 5 (2)mg 6

17. 2

H

R =时,S 有最大值;H S =max 18.(1)mg F T 09.1= (2)mg F T 15.1='

高中物理天体运动经典习题

十年高考试题分类解析-物理 1.假设地球是一半径为R 、质量分布均匀的球体。一矿井深度为d 。已知质量分布均匀的球壳对壳内物体的引力为零。矿井底部和地面处的重力加速度大小之比为 A.R d - 1 B.R d +1 C.2)(R d R - D.2 )(d R R - 2.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v 。假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N ,已知引力常量为G,,则这颗行星的质量为 A .mv 2 /GN B .mv 4 /GN . C .Nv 2 /Gm .D .Nv 4 /Gm . 3.(2012·北京理综)关于环绕地球运动的卫星,下列说法正确的是 4A C 5A. B.各小行星绕太阳运动的周期均小于一年 C.小行星带内侧小行星的向心加速度值大于外侧小行星的向心 加速度值 D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值 6.(2012·全国理综)一单摆在地面处的摆动周期与在某矿井底部摆动周期的比值为k 。设地球的半径为R 。假定地球的密度均匀。已知质量均匀分布的球壳对壳内物体的引力为零,求矿井的深度d . 1.(2011重庆理综第21题)某行星和地球绕太阳公转的轨道均可视为圆。每过N 年,该行星会运行到日地连线的延长线上,如题21图所示。该行星与地球的公转半径比为

A .231N N +?? ??? B.23 1N N ?? ?-?? C .3 2 1N N +?? ??? D.32 1N N ?? ?-?? 2(2011四川理综卷第17题)据报道,天文学家近日发现了 一颗距地球40光年的 “超级地球”,名为“55Cancrie ”,该行星绕母星(中心天体)运行的周期约为地球绕太阳运行周期的 1 480 ,母星的体积约为太阳的60倍。假设母星与太阳密度相同,“55Cancrie ”与地球均做匀速圆周运动,则“55Cancrie ”与地球的 A. B. C.1.m 1、m 2、M (M >>m 1,M >>m 2).在C 的万有引力作用下,a 、b 从2运行周期和相应的圆轨道半径,T 0和R 0是 3.(2010,在月球绕地球运行的轨道处由地球引力产生的加速度大小为2g ,则 A .1g a =B .2g a =C .12g g a +=D .21g g a -= 4(2010四川理综卷第17题).a 是地球赤道上一栋建筑,b 是在赤道平面内做匀速圆周运动、距地面9.6×106 m 的卫星,c 是地球同步卫星,某一时刻b 、c 刚好位于a 的正上方(如图甲所示),经48h ,a 、b 、c 的大致位置 是图乙中的(取地球半径R=6.4×106m ,地球表面重力加速度g=10m/s 2 ,π 5.(2010安徽理综)为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”。假设探测器在离火星表面高度分别为h 1和h 2的圆轨道上运动时,周期分别为T 1和T 2。火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G 。仅利用以上数据,可以计算出 A .火星的密度和火星表面的重力加速度

平抛运动常见题型

(一)平抛运动的基础知识 1. 定义:水平抛出的物体只在重力作用下的运动。 2. 特点: (1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。 (2)平抛运动的轨迹是一条抛物线,其一般表达式为 c bx ax y ++=2。 (3)平抛运动在竖直方向上是自由落体运动,加速度g a =恒定,所以竖直方向上在相等的时间内相邻的位移的高度之比为 5:3:1::321=s s s …竖直方向上在相等的时间内相邻的位移之差是一个 恒量2gT s s s s I II II III =-=-。 (4)在同一时刻,平抛运动的速度(与水平方向之间的夹角为?)方向和位移方向(与水平方向之间的夹角是θ)是不相同的,其关系式 θ?tan 2tan =(即任意一点的速度延长线必交于此时物体位移的水平分 量的中点)。 3. 平抛运动的规律 描绘平抛运动的物理量有0v 、y v 、v 、x 、y 、s 、?、t ,已知这八个物理量中的任意两个,可以求出其它六个。

(二)平抛运动的常见问题及求解思路 关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题,有平抛运动与圆周运动组合的问题、有平抛运动与天体运动组合的问题、有平抛运动与电场(包括一些复合场)组合的问题等。本文主要讨论直接运用平抛运动的特点和规律来求解的问题,即有关平抛运动的常见问题。 1. 从同时经历两个运动的角度求平抛运动的水平速度 求解一个平抛运动的水平速度的时候,我们首先想到的方法,就应该是从竖直方向上的自由落体运动中求出时间,然后,根据水平方向做匀速直线运动,求出速度。 [例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过m h25 =,摩托车的速度至少要 .1 x5 =的壕沟,沟面对面比A处低m 有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为

平抛运动的典型例题

平抛运动典型例题 专题一:平抛运动轨迹问题——认准参考系 1、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说确的是( C )A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动 专题二:平抛运动运动性质的理解——匀变速曲线运动(a→) 2、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒(BD ) A.物体的末速度大小一定等于初速度大小的10倍B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m 专题三:平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 3、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其运动轨迹如图所示,不计空气阻力.要使两球在空中相遇,则必须( C ) A.甲先抛出球 B.先抛出球 C.同时抛出两球 D.使两球质量相等 4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是( D ) A.同时抛出,且v1< v2 B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2 D.甲先抛出,且v1< v2

专题四:平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系 ①基本公式、结论的掌握 5、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是( D ) A . B . C . D . 6、作平抛运动的物体,在水平方向通过的最大距离取决于( C ) A.物体所受的重力和抛出点的高度 B.物体所受的重力和初速度 C.物体的初速度和抛出点的高度 D.物体所受的重力、高度和初速度 7、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角满足 ( D ) A.tan φ=sin θ B. tan φ=cos θ C. tan φ=tan θ D. tan φ=2tan θ 8、将物体在h =20m 高处以初速度v 0=10m/s 水平抛出,不计空气阻力(g 取10m/s 2),求: (1)物体的水平射程——————————————————20m (2)物体落地时速度大小————————————————m 510 ②建立等量关系解题

天体运动经典题型分类

万有引力和航天知识的归类分析 一.开普勒行星运动定律 1、开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 2、开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 3、开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。 实例、飞船沿半径为r 的圆周绕地球运动,其周期为T ,如图所示。若飞船要返回地面,可在轨道上某点处将速率降到适当的数值,从而使飞船沿着以地心为焦点的椭圆轨道运行,椭圆与地球表面在某点相切,已知地球半径为R ,求飞船由远地点运动到近地点所需要的时间。 二.万有引力定律 实例2、设想把质量为m 的物体放到地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是 ( ) A 、零 B 、无穷大 C 、 2 R GMm D 、无法确定 小结:F= 2 2 1r m Gm 的适用条件是什么 三.万有引力与航天 (一)核心知识 万有引力定律和航天知识的应用离不开两个核心 1、 一条主线 ,本质上是牛顿第二定律,即万有引力提供天体做圆周运动所需要的向心力。 2、 黄金代换式 GM =g R 2 此式往往在未知中心天体的质量的情况下和一条主线结合使用 (二)具体应用 应用一、卫星的四个轨道参量v 、ω、T 、a 向与轨道半径r 的关系及应用 1、理论依据:一条主线 2、实例分析 如图所示,a 、b 是两颗绕地球做匀速圆周运动的人造卫星,它们距地面 的高度 分别是R 和2R(R 为地球半径).下列说法中正确的是( ) A.a 、b 的线速度大小之比是 2∶1 B.a 、b 的周期之比是1∶2 C.a 、b 的角速度大小之比是3 ∶4 D.a 、b 的向心加速度大小之比是9∶4 小结: 轨道模型: 在中心天体相同的情况下卫星的r 越大v 、ω、a 越小,T 越大,r 相同,则卫星的v 、ω、a 、T 也相同,r 、 v 、ω、a 、T 中任一发生变化其它各量也会变化。 应用二、测量中心天体的质量和密度 1、方法介绍 方法一、“T 、r ”计算法 在知道“T 、r ”或“v 、r ”或“ω、r ”的情况下,根据一条主线均可计算出中心天体的质量,这种方法统称为“T 、r ”计算法。在知道中心天体半径的情况下利用密度公式还可以计算出中心天体的密度。 方法二、“g 、R ”计算法 利用天体表面的重力加速度g 和天体半径R. 2、实例分析 例4:已知万有引力常量G,地球半径R,月球和地球之间的距离r,同步卫星距地面的高度h,月球:绕地球的运转周期T 1,地球的自转周期T 2 , 天体密度故天体质量由于,,2 2G gR M mg R Mm G ==.π43π3 43 GR g R M V M = ==

平抛运动常见题型考点分类总结

平抛运动小结 (一)平抛运动的基础知识 1. 定义:水平抛出的物体只在重力作用下的运动。 2. 特点: (1)平抛运动是一个同时经历水平向的匀速直线运动和竖直向的自由落体运动的合运动。 (2)平抛运动的轨迹是一条抛物线,其一般表达式为c bx ax y ++=2 。 (3)平抛运动在竖直向上是自由落体运动,加速度g a =恒定,所以竖直向上在相等的时间相邻的位移的高度之比为5:3:1::321=s s s …竖直向上在相等的时间相邻的位移之差是一个恒量 2gT s s s s I II II III =-=-。 (4)在同一时刻,平抛运动的速度(与水平向之间的夹角为?)向和位移向(与水平向之间的夹角是θ)是不相同的,其关系式θ?tan 2tan =(即任意一点的速度延长线必交于此时物体位移的水平分量的中点)。 3. 平抛运动的规律 描绘平抛运动的物理量有0v 、y v 、v 、x 、y 、s 、?、t ,已知这八个物理量中的任意两个, (二)平抛运动的常见问题及求解思路 关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题,有平抛运动与圆运动组合的问题、有平抛运动与天体运动组合的问题、有平抛运动与电场(包括一些复合场)组合的问题等。本文主要讨论直接运用平抛运动的特点和规律来求解的问题,即有关平抛运动的常见问题。 1. 从同时经历两个运动的角度求平抛运动的水平速度 求解一个平抛运动的水平速度的时候,我们首先想到的法,就应该是从竖直向上的自由落体运动中求出时间,然后,根据水平向做匀速直线运动,求出速度。 [例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A 处越过m x 5=的壕沟,沟面对面比A 处低m h 25.1=,摩托车的速度至少要有多大?

平抛运动练习题及答案.doc

如对你有帮助,请购买下载打赏,谢谢! 平抛运动规律 一.选择题(不定项): 1、关于平抛运动,下列说法正确的是()A.不论抛出位置多高,抛出速度越大的物体,其水平位移一定越大 B.不论抛出位置多高,抛出速度越大的物体,其飞行时间一定越长 C.不论抛出速度多大,抛出位置越高,其飞行时间一定越长 D.不论抛出速度多大,抛出位置越高,飞得一定越远 2、关于平抛运动,下列说法正确的是()A.是匀变曲线速运动B.是变加速曲线运动 C.任意两段时间内速度变化量的方向相同D.任意相等时间内的速度变化量相等 3、物体在平抛运动过程中,在相等的时间内,下列哪些量是相等的()A.速度的增量B.加速度C.位移D.平均速率 4、做平抛运动的物体,在水平方向通过的最大距离取决于() A.物体的高度和重力B.物体的重力和初速度 C.物体的高度和初速度D.物体的重力、高度和初速度 5、质量为m的物体受到一组共点恒力作用而处于平衡状态,当撤去某个恒力F1时,物体可能做 ( ) A.匀加速直线运动; B.匀减速直线运动; C.匀变速曲线运动; D.变加速曲线运动。 6、物体在做抛体运动中,在相等时间内,下列相等的量是(不计空气阻力).( ) A.速度的增量 B.加速度C.位移 D.动量的增量 7、在高度为h的同一位置上向水平方向同时抛出两个小球A和B,若A球的初速v A大于B球的 初速v B,则下列说法正确的是() A.A球落地时间小于B球落地时间 B.在飞行过程中的任一段时间内,A球的水平位移总是大于B球的水平位移 C.若两球在飞行中遇到一堵竖直的墙,A球击中墙的高度总是大于B球击中墙的高度 D.在空中飞行的任意时刻,A球的速率总大于B球的速率 8、以16m/s的速度水平抛出一石子,石子落地时速度方向与抛出时速度方向成37°角,不计空气阻力,那么石子抛出点与落地点的高度差为________,石子落地时速度是________(g=10m/s2;sin37°=0.6,cos37°=0.8). 9、如图所示,以9.8m/s的水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30°的斜面上,可知物体完成这段飞行的时间是() A 、s B 、s C 、s D、2s 10、 二.填空题 11、从高度为h处以初速度v0水平抛出一物体,测得落地点与抛出点的水平距离为x.如果抛出点的高度降低了 4 3 h,仍要把物体抛到x远处,则水平初速度应为____。 12、做平抛运动的物体如果落地时竖直方向的速率与水平抛出时的速率相等,则它经过的水平距离与抛出点的高度之比是____。 三.实验探究题 13、在“探究平抛运动的运动规律”的实验中,可以描绘出小球平抛运动的轨迹,实验简要步骤如下: A.让小球多次从位置上滚下,在一张印有小方格的纸记下小球碰到铅笔笔尖的一系列位置,如右下图中a、b、c、d所示。 B.按图安装好器材,注意,记下平抛初位置O点和过O点的竖直线。 C.取下白纸以O为原点,以竖直线为y轴建立坐标系,用平滑曲线画平抛运动物体的轨迹。 ⑴完成上述步骤,将正确的答案填在横线上。 ⑵上述实验步骤的合理顺序是。

平抛运动常见题型考点分类归纳

平抛运动小结 (一)平抛运动的基础知识 1. 定义:水平抛出的物体只在重力作用下的运动。 2. 特点: (1)平抛运动是一个同时经历水平向的匀速直线运动和竖直向的自由落体运动的合运动。 (2)平抛运动的轨迹是一条抛物线,其一般表达式为c bx ax y ++=2 。 (3)平抛运动在竖直向上是自由落体运动,加速度g a =恒定,所以竖直向上在相等的时间相邻的位移的高度之比为5:3:1::321=s s s …竖直向上在相等的时间相邻的位移之差是一个恒量 2gT s s s s I II II III =-=-。 (4)在同一时刻,平抛运动的速度(与水平向之间的夹角为?)向和位移向(与水平向之间的夹角是θ)是不相同的,其关系式θ?tan 2tan =(即任意一点的速度延长线必交于此时物体位移的水平分量的中点)。 3. 平抛运动的规律 描绘平抛运动的物理量有0v 、y v 、v 、x 、y 、s 、?、t ,已知这八个物理量中的任意两个,可以求出其它六个。

(二)平抛运动的常见问题及求解思路 关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题,有平抛运动与圆运动组合的问题、有平抛运动与天体运动组合的问题、有平抛运动与电场(包括一些复合场)组合的问题等。本文主要讨论直接运用平抛运动的特点和规律来求解的问题,即有关平抛运动的常见问题。 1. 从同时经历两个运动的角度求平抛运动的水平速度 求解一个平抛运动的水平速度的时候,我们首先想到的法,就应该是从竖直向上的自由落体运动中求出时间,然后,根据水平向做匀速直线运动,求出速度。 [例1] 如图1所示, 处低m h 25.1= 解析:在竖直向上,摩托车越过壕沟经历的时间 s s g h t 5.010 25 .122=?== 在水平向上,摩托车能越过壕沟的速度至少为 s m s m t x v /10/5 .050=== 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度向,则我们常常是“从分解速度”的角度来研究问题。 [例2] 如图2甲所示,以9.8m/s 的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角θ为

高一物理平抛运动常见题型及应用专题

平抛运动常见题型及应用专题 (一)平抛运动的基础知识 1. 定义:水平抛出的物体只在重力作用下的运动。 2. 特点: (1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。 (2)平抛运动的轨迹是一条抛物线,其一般表达式为c bx ax y ++=2。 (3)平抛运动在竖直方向上是自由落体运动,加速度g a =恒定,所以竖直方向上在相等的时间内相邻的位移的高度之比为5:3:1::321=s s s …竖直方向上在相等的时间内相邻的位移之差是一个恒量2gT s s s s I II II III =-=-。 (4)在同一时刻,平抛运动的速度(与水平方向之间的夹角为?)方向和位移方向(与水平方向之间的夹角是θ)是不相同的,其关系式θ?tan 2tan =(即任意一点的速度延长线必交于此时物体位移的水平分量的中点)。 3. 平抛运动的规律 描绘平抛运动的物理量有0v 、y v 、v 、x 、y 、s 、?、t ,已知这八个物理量中的 (二)平抛运动的常见问题及求解思路 关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题,有平抛运动与圆周运动组合的问题、有平抛运动与天体运动组合的问题、有平抛运动与电场(包括一些复合场)组合的问题等。本文主要讨论直接运用平抛运动的特点和规律来求解的问题,即有关平抛运动的常见问题。 1. 从同时经历两个运动的角度求平抛运动的水平速度 [例1] 如图1对面比A 处低h

解析:在竖直方向上,摩托车越过壕沟经历的时间 s s g h t 5.010 25.122=?== 在水平方向上,摩托车能越过壕沟的速度至少为 s m s m t x v /10/5 .050=== 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。 [例2] 如图2甲所示,以9.8m/s 的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角θ为?30 A. s 33解析:斜面垂直、y v y y x v v = θtan 所以s m s m v v v x y /38.9/3 18 .930tan tan 0==? == θ 根据平抛运动竖直方向是自由落体运动可以写出 gt v y = 所以s g v t y 38 .93 8.9== = 所以答案为C 。 3. 从分解位移的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”) [例3] 在倾角为α的斜面上的P 点,以水平速度0v 向斜面下方抛出一个物体,落在斜面上

平抛运动计算题

平抛运动计算题 1.某人从楼顶以20m/s的初速度水平抛出一个小球,最后小球落到地面上.小球在空中运动的 水平位移为40m,不计空气阻力,重力加速度g取10m/s2.求: (1)楼房的高度h; (2)小球落到地面时的速度v的大小; (3)小球的抛出点与落地点之间的距离L. 2.飞机在2000m的高空,以360km/h的速度沿水平航线匀速飞行,飞机在地面上观察者的 正上方投一包裹.(g取10m/s2,不计空气阻力) (1)试比较飞行员和地面观察者所见的包裹的两条轨迹. (2)包裹落地处,离地面观察者多远,离飞机的水平距离多远? (3)求包裹着地时速度的大小和方向. 3. 如图所示,水平台AB距地面CD的高度h=0.8m.有一小 滑块从A点以6.0m/s的初速度在平台上做匀变速直线运动, 并从平台边缘的B点水平飞出,最后落在地面上的D点.已知 AB=2.20m,落地点到平台的水平距离为2.00m.(不计空 气阻力,g取10m/s2)求滑块从A到D所用的时间和滑块与 平台的动摩擦因数. 4.A、B两小球同时从距地面高为h=15m处的同一点抛出,初速度大小均为v0=10m/s.A球竖直向下抛出,B球水平抛出,空气阻力不计,g取10m/s2,求: (1)A球经多长时间落地?(2)A球落地时,A、B两球间的距离是多少? 5. 如图所示,在水平地面上固定一倾角θ=37°、表面光滑的斜面体, 物体A以v1=6 m/s的初速度沿斜面上滑,同时在物体A的正上方,有 一物体B以某一初速度水平抛出.如果当A上滑到最高点时恰好被B 物体击中.(A、B均可看作质点,sin37°=0.6,cos37°=0.8,g取10 m/s2) (1)物体A上滑到最高点所用的时间t; (2)物体B抛出时的初速度v2; (3)物体A、B间初始位置的高度差h.

平抛运动典型例题(含答案)

[例1] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。 解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。 又根据运动学的规律可得 竖直方向上, 水平方向上 , 所以Q点的速度 ?[例2] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A 和B两小球的运动时间之比为多少? 图3 解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到 所以有 同理 则 ? [例3] 如图6所示,在倾角为的斜面上以速度水平抛出一小球,该斜面足够长,则从抛出开始计时,经过多长时间小球离开斜面的距离的达到最大,最大距离为多少? 图6 解析:将平抛运动分解为沿斜面向下和垂直斜面向上的分运动,虽然分运动比较复杂一些,但易将物体离斜面距离达到最大的物理本质凸显出来。 取沿斜面向下为轴的正方向,垂直斜面向上为轴的正方向,如图6所示,在轴上,小球做初速度为、加速度为的匀变速直线运动,所以有 ?① ?② 当时,小球在轴上运动到最高点,即小球离开斜面的距离达到最大。 由①式可得小球离开斜面的最大距离 当时,小球在轴上运动到最高点,它所用的时间就是小球从抛出运动到离开斜面最大距离的时间。由②式可得小球运动的时间为

例4:在平直轨道上以20.5/m s 的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是2.45m .间隔时间为1s .两物体落地点的间隔是2.6m ,则当第一个物体下落时火车的速度是多大?(g 取210/m s ) 分析:如图所示.第一个物体下落以0v 的速度作平抛运动,水平位移0s ,火车加速到下落第二个物体时,已行驶距离1s .第二个物体以1v 的速度作平抛运动水平位移2s .两物体落地点的间隔是2.6m . 解:由位置关系得 1202.6s s s =+- 物体平抛运动的时间 0.7t s '= 由以上三式可得 例5:光滑斜面倾角为θ,长为L ,上端一小球沿斜面水平方向以速度0v 抛出(如图所示),小球滑到底端时,水平方向位移多大? 解:小球运动是合运动,小球在水平方向作匀速直线运动,有 0s v t = ① 沿斜面向下是做初速度为零的匀加速直线运动,有 2 12 L at = ② 根据牛顿第二定律列方程 sin mg ma θ= ③ 由①,②,③式解得s v v == 例6:某一物体以一定的初速度水平抛出,在某1s 内其速度方向与水平方向成37?变成53?,则此物体初速度大小是________/m s ,此物体在1s 内下落的高度是________m (g 取210/m s ) 选题目的:考查平抛物体的运动知识的灵活运用. 解析:作出速度矢量图如图所示,其中1v .2v 分别是ts 及(1)t s +时刻的瞬时速度.在这两个时刻,物体在竖直方向的速度大小分别为gt 及(1)g t +,由矢量图可知: 由以上两式解得017.1/v m s = 9 7 t s = 物体在这1s 内下落的高度 例7如图,跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经过3.0s 落到斜坡上的A 点.已知O 点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m=50kg .不计空气阻力.(取sin37°=0.60,cos37°=0.80;g 取10m/s 2)求: (1)A 点与O 点的距离L ;(2)运动员离开O 点时的速度大小;

平抛运动习题(带答案)

绝密★启用前 2013-2014学年度???学校3月月考卷 试卷副标题 题号一二三四五六总分得分 注意事项: 1.答题前填写好自己的、班级、考号等信息 2.请将答案正确填写在答题卡上 第I卷(选择题) 请点击修改第I卷的文字说明 评卷人得分 一、选择题(题型注释) A.落地前物体每秒的速度增量总是大小相等,向相同 B.物体落地时间与水平初速度的大小有关 C.物体落地时间随抛出点高度的增大而增大 D.物体落地水平位移的大小与抛出点的高度无关 2.如图1所示,物体做平抛运动时,描述物体在竖直向上的速度v y(取向下为正)随时间变化的图像是() 3.飞机水平匀速飞行,从飞机上每隔1s释放一个铁球,先后共释放4个,若不计空气阻力,则() A.在空中任时刻4个铁球总是排成抛物线,它们的落地点是等间距的 B.在空中任时刻4个铁球总是排成一条竖直线,它们落地点是等间距的 C.地面上人看到每个铁球都作匀速直线运动,飞行员看到每个铁球都作平抛运动D.地面上人看到每个铁球都作平抛运动,飞行员看到每个铁球都作自由落体运动4.对于平抛运动,下列条件可以确定初速度的是(不计阻力,g为已知) A.已知水平位移 B.已知下落高度和水平位移 C.已知下落高度 D.已知合位移 5.若以抛出点为起点,取初速度向为水平位移的正向,则下列各图中,能正确描述做

平抛运动物体的水平位移x 的图象是 A B C D 6.一物体以某一速度做平抛运动,在第1秒,第2秒,第3秒的位移大小之比可能为 ( ) A .1:2:3 B .1:5:3 C .1:3:7 D .1:3:5 7.在学习抛体运动的规律后,甲、乙两同学做了一个小实验,甲同学在以大小为v 速 度向西做匀速直线运动火车上相对车厢以大小为u 的速度向东水平抛出一小球,已知v >u ,乙同学站在地面上观察到小球的运动轨迹应是图2所示中的那一幅图(图中箭头 表示列车运动的向)( ) 8.从10m 高的塔上以10m/s 的初速度水平抛出一个子,不计空气阻力,取g =10m/s 2, 子落地时的速度大小是( ) A .s m /210 B .s m /310 C .20m/s D .30m/s 9.平抛一物体,当抛出1s 后它的速度向与水平向成45°角,落地时的速度向与水平向 成60°角,则下列说确的是( ) A .初速度为10 m /s B .落地速度15 m /s C .开始抛出时距地面的高度20 m D .水平射程103 m 10.如图所示,一物体自P 点以初速度l0m /s 做平抛运动,恰好垂直打到倾角为45°的斜面上的Q 点(g=10m/s 2)。则PQ 两点间的距离为 ( ) A .5m B .l0m C .55m D .条件不足,无法求解 11.关于物体做平抛运动,下列说法中正确的 ( ) A .经过时间t 发生的位移向跟t 时刻的速度向相同 B .经过时间t 发生的位移向跟t 时刻的速度向不相同 C .在时间t 发生的速度变化量向跟t 时刻的加速度向相同

平抛运动和圆周运动典型例题

平抛运动、圆周运动 一、 平抛运动 1、定义:平抛运动是指物体只在重力作用下,从水平初速度开始的运动。 2、条件: a 、只受重力; b 、初速度与重力垂直. 3、运动性质:尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g ,因而平抛运动是一个匀变速曲线运动。g a = 4、研究平抛运动的方法:通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。水平方向和竖直方向的两个分运动既具有独立性,又具有等时性. 5、平抛运动的规律 ①水平速度:v x =v 0,竖直速度:v y =gt 合速度(实际速度)的大小:2 2y x v v v += 物体的合速度v 与x 轴之间的夹角为: tan v gt v v x y = = α ②水平位移:t v x 0=,竖直位移22 1gt y = 合位移(实际位移)的大小:22y x s += 物体的总位移s 与x 轴之间的夹角为: 2tan v gt x y == θ 可见,平抛运动的速度方向与位移方向不相同。 而且θα tan 2tan =而θα2≠

轨迹方程:由t v x 0=和2 21gt y =消去t 得到:22 2x v g y =。可见平抛运动的轨迹为抛物线。 6、平抛运动的几个结论 ①落地时间由竖直方向分运动决定: 由2 21gt h = 得:g h t 2= ②水平飞行射程由高度和水平初速度共同决定: g h v t v x 20 0== ③平抛物体任意时刻瞬时速度v 与平抛初速度v 0夹角θa 的正切值为位移s 与水平位移 x 夹角θ正切值的两倍。 ④平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。 证明:2 21tan 20x s s gt v gt =?==α ⑤平抛运动中,任意一段时间内速度的变化量Δv =gΔt,方向恒为竖直向下(与g 同向)。任意相同时间内的Δv 都相同(包括大小、方向),如右图。 二、 V V V ⑥以不同的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速度与斜面的夹角a 相同,与初速度无关。(飞行的时间与速度有关,速度越大时间越长。) 三、 如右图:所以θtan 20 g v t = )tan(v gt v v a x y = = +θ

平抛运动常见题型

(一)平抛运动的基础知识 1. 定义:水平抛出的物体只在重力作用下的运动。 2. 特点: (1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。 (2)平抛运动的轨迹是一条抛物线,其一般表达式为c bx ax y ++=2。 (3)平抛运动在竖直方向上是自由落体运动,加速度g a =恒定,所以竖直方向上在相等的时间内相邻的位移的高度之比为5:3:1::321=s s s …竖直方向上在相等的时间内相邻的位移之差是一个恒量2gT s s s s I II II III =-=-。 (4)在同一时刻,平抛运动的速度(与水平方向之间的夹角为?)方向和位移方向(与水平方向之间的夹角是θ)是不相同的,其关系式θ?tan 2tan =(即任意一点的速度延长线必交于此时物体位移的水平分量的中点)。 3. 平抛运动的规律 描绘平抛运动的物理量有0v 、y v 、v 、x 、y 、s 、?、t ,已知这八个物理量中的任意两个,可以求出其它六个。

(二)平抛运动的常见问题及求解思路 关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题,有平抛运动与圆周运动组合的问题、有平抛运动与天体运动组合的问题、有平抛运动与电场(包括一些复合场)组合的问题等。本文主要讨论直接运用平抛运动的特点和规律来求解的问题,即有关平抛运动的常见问题。 1. 从同时经历两个运动的角度求平抛运动的水平速度 求解一个平抛运动的水平速度的时候,我们首先想到的方法,就应该是从竖直方向上的自由落体运动中求出时间,然后,根据水平方向做匀速直线运动,求出速度。 [例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过m h25 =,摩托车的速度至少要 .1 x5 =的壕沟,沟面对面比A处低m 有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为

平抛运动练习题(含答案)

8.如右图所示,一小球以 v o = 10 m 的速度水平抛出,在落地之前经过 平抛运动练习题 (一)对平抛运动的理解及规律的应用 1. 下列关于平抛运动的说法正确的是: A.平抛运动是匀速运动 B. 平抛运动是匀变速曲线运动 C.平抛运动是非匀变速运动 D.平抛运动在水平方向是匀速直线运动 2. 关于平抛运动,下列说法中正确的是 A.落地时间仅由抛出点高度决定 B. 抛出点高度一定时,落地时间与初速度大 小有关 C. 初速度一定的情况下,水平飞出的距离与抛出点高度有关 D. 抛出点高度一定时,水平飞出距离与初速度大小成正比 3. 甲、乙两球位于同一竖直线上的不同位置,甲比乙高 h ,如图 : 所示,将甲、乙两球分别以 V i 、V 2的速度沿同一方向抛出,不计空 「 气阻力,下列条件中有可能使乙球击中甲球的是 A.同时抛出,且V i < V 2 B. C.甲比乙早抛出,且 V i > V 2 D. 4. 有一物体在高为h 处以初速度 甲比乙后抛出,且 V 1 > V 2 甲比乙早抛出,且 V 1 < V 2 V 0水平抛出,落地时速度为,竖直分速度为 v y , 水平位移为s ,则能用来计算该物体在空中运动的时间的公式有 2 2 A.… B. 比 C. g g 5. 在地面上方某一高处,以初速度 V 。水平抛出一石子,当它的速度由水平方向变 化到与水平方向成 e 角时,石子的水平位移的大小是(不计空气阻力) A V o sin 日 B V 2 cos 日 C V o tan 0 D V O cot 0 ? g ' g ' g ' g 6. 做平抛运动的物体,它的速度方向与水平方向夹角的正切值 化图象,正确的是 n e 2h D. 2h g V y e 随时间t 的变 ° D t 7.以速度V 。水平抛出一球,某时刻其竖直分位移与水平位移相等,以下判断错误 的是 A.竖直分速度等于水平分速度 B. C.运动的时间为2V o g D. 此时球的速度大小为 5 V o 运动的位移是乙细 g

平抛运动的典型例题分类汇编

平抛运动典型例题 一:平抛运动“撞球”问题——判断两球运动的时间是否相同(h 是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 1、在同一水平直线上的两位置分别沿同方向抛出小两小球和,其运动轨迹如图所示,不计空气阻力.要使两球在 空中相遇,则必须 ( ) A .甲先抛出球 B .先抛出球 C .同时抛出两球 D .使两球质量相等 2、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h ,将甲乙两球分别以v 1.v 2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是( ) A .同时抛出,且v 1< v 2 B .甲后抛出,且v 1> v 2 C .甲先抛出,且v 1> v 2 D .甲先抛出,且v 1< v 2 二:平抛运动的基本计算题类型——关键在于对公式、结论的熟练掌握程度;建立等量关系 ①基本公式、结论的掌握 3、一个物体从某一确定的高度以v0 的初速度水平抛出,已知它落地时的速度为v1,那么它的运动时间是( ) A . B . C . D . 4、作平抛运动的物体,在水平方向通过的最大距离取决于( ) A.物体所受的重力和抛出点的高度 B.物体所受的重力和初速度 C.物体的初速度和抛出点的高度 D.物体所受的重力、高度和初速度 5、如图所示,一物体自倾角为的固定斜面顶端沿水平方向抛出后落在斜面上。物体与斜面接触时速度与水平方向的夹角满足 ( )

A.tanφ=sinθ B. tanφ=cosθ

C. tan φ=tan θ D. tan φ=2tan θ 6、将物体在h =20m 高处以初速度v 0=10m/s 水平抛出,不计空气阻力(g 取10m/s 2),求: (1)物体的水平射程 (2)物体落地时速度大小 ②建立等量关系解题 7、如图所示,一条小河两岸的高度差是h ,河宽是高度差的4倍,一辆摩托车(可看作质点)以v 0=20m/s 的水平速度向河对岸飞出,恰好越过小河。若g=10m/s 2,求: (1)摩托车在空中的飞行时间 (2)小河的宽度 8、如图所示,一小球从距水平地面h 高处,以初速度v 0水平抛出。 (1)求小球落地点距抛出点的水平位移 (2)若其他条件不变,只用增大抛出点高度的方法使小球落地点到抛出点的水平位移增大到原来的2培,求抛出点距地面的高度。(不计空气阻力) 9、子弹从枪口射出,在子弹的飞行途中,有两块相互平行的竖直挡板A 、B (如图所示),A 板距枪口的水平距离为s 1,两板相距s 2,子弹穿过两板先后留下弹孔C 和D ,C 、D 两点之间的高度差为h ,不计挡板和空气阻力,求子弹的初速度v 0. 10、从高为h 的平台上,分两次沿同一方向水平抛出一个小球。如右图第一次小球落地在a 点。第二次小球落地在b 点,ab 相距为d 。已知第一次抛球的初速度为 ,求第二次抛球的初速度是多少? 三:平抛运动位移相等问题——建立位移等量关系,进而导出运动时间(t )

平抛运动常见题型考点分类汇总

平抛运动常见题型考点分类汇总

————————————————————————————————作者:————————————————————————————————日期: 2

平抛运动小结 (一)平抛运动的基础知识 1. 定义:水平抛出的物体只在重力作用下的运动。 2. 特点: (1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。 (2)平抛运动的轨迹是一条抛物线,其一般表达式为c bx ax y ++=2 。 (3)平抛运动在竖直方向上是自由落体运动,加速度g a =恒定,所以竖直方向上在相等的时间内相邻的位移的高度之比为5:3:1::321=s s s …竖直方向上在相等的时间内相邻的位移之差是一个恒量2 gT s s s s I II II III =-=-。 (4)在同一时刻,平抛运动的速度(与水平方向之间的夹角为?)方向和位移方向(与水平方向之间的夹角是θ)是不相同的,其关系式θ?tan 2tan =(即任意一点的速度延长线必交于此时物体位移的水平分量的中点)。 3. 平抛运动的规律 描绘平抛运动的物理量有0v 、y v 、v 、x 、y 、s 、?、t ,已知这八个物理量中的任意两个,可以求出其它六个。 运动分类 加速度 速度 位移 轨迹 分运动 x 方向 0v t v x 0= 直线 y 方向 g gt 2 2 1gt y = 直线 合运动 大小 g 220)(gt v + 2220)2 1 ()(gt t v + 抛物线 与x 方向的夹角 ?90 tan v gt = ? 0 2tan v gt = θ (二)平抛运动的常见问题及求解思路 关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题,有平抛运动与圆周运动组合的问题、有平抛运动与天体运动组合的问题、有平抛运动与电场(包括一些复合场)组合的问题等。本文主要讨论直接运用平抛运动的特点和规律来求解的问题,即有关平抛运动的常见问题。 1. 从同时经历两个运动的角度求平抛运动的水平速度 求解一个平抛运动的水平速度的时候,我们首先想到的方法,就应该是从竖直方向上的自由落体运动中求出时间,然后,根据水平方向做匀速直线运动,求出速度。 [例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A 处越过m x 5=的壕沟,沟面对面比A 处低m h 25.1=,摩托车的速度至少要有多大?

《平抛运动》常见题型及应用专题

V o 、V y 、v 、x 、y 、s 、弟、t ,已知这八个物理量中的任意两个,可 以求出其它六个。 (二)平抛运动的常见问题及求解思路 关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题,有平抛运动与圆周运动组 合的问题、有平抛运动与天体运动组合的问题、有平抛运动与电场(包括一些复合场)组合的问题 等。本文主要讨论直接运用平抛运动的特点和规律来求解的问题,即有关平抛运动的常见问题。 1.从同时经历两个运动的角度求平抛运动的水平速度 求解一个平抛运动的水平速度的时候, 我们首先想到的方法,就应该是从竖直方向上的自由 落体运动中求出时间,然后,根据水平方向做匀速直线运动,求出速度。 [例1]如图1所示,某人骑摩托车在水平道路上行驶,要在 A 处越过x=5m 的壕沟,沟面对面比A 处低h = 1.25m ,摩托车的速度至少要有多大? 平抛运动常见题型及应用专题 (一)平抛运动的基础知识 定义:水平抛出的物体只在重力作用下的运动。 特点: (1) 1. 2. 平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运 动。 3. (2) (3) (4) 平抛运动的轨迹是一条抛物线,其一般表达式为 y = ax 2 +bx + c 。 平抛运动在竖直方向上是自由落体运动,加速度 a = g 恒定,所以竖直方向上在相等的时间内 相邻的位移的高度之比为 s : S 2 : S 3 =1: 3:5 ,竖直方向上在相等的时间内相邻的位移之差是 一个恒量 S iii -S ii =Sii - S I =gT 2 。 在同一时刻,平抛运动的速度(与水平方向之间的夹角为 W )方向和位移方向(与水平方向之 间的夹角是日)是不相同的,其关系式tan 护=2ta n 9 (即任意一点的速度延长线必交于此时物体 位移的水平分量的中点)。 平抛运动的规律 描绘平抛运动的物理量有

相关文档
最新文档