晶圆工艺过程

晶圆工艺过程
晶圆工艺过程

漫谈晶圆---讲述沙子转变成晶体及晶圆和用于芯片制造级的抛光片的生产步骤

介绍

高密度和大尺寸芯片的发展需要大直径的晶圆。在上世纪60年代开始使用的是1²直径的晶圆,而现在业界根据90年代的工艺要求生产200毫米直径的晶圆。300 毫米直径的晶圆也已经投入生产线了,而根据SIA的技术路线图,到2007年,300毫米将成为标准尺寸。以后预期会是400毫米或450毫米直径的晶圆。大直径的晶圆是由不断降低芯片成本的要求驱动的。然而,这对晶圆制备的挑战是巨大的。大直径意味着高重量,这就需要更多坚固的工艺设备。在晶体生长中,晶体结构上和电学性能一致性及污染的问题是一个挑战,这些挑战和几乎每一个参数更紧的工艺规格要求共存。与挑战并进和提供更大直径晶圆是芯片制造不断进步的关键。

半导体硅制备

半导体器件和电路在半导体材料晶圆的表层形成,半导体材料通常是硅。这些晶圆的杂质含量水平必须非常低,必须掺杂到指定的电阻率水平,必须是指定的晶体结构,必须是光学的平面,并达到许多机械及清洁度的规格要求。制造IC级的硅晶圆分四个阶段进行:

晶圆制备阶段

**矿石到高纯气体的转变

**气体到多晶的转变

**多晶到单晶,掺杂晶棒的转变

**晶棒到晶圆的制备

半导体制造的第一个阶段是从泥土里选取和提纯半导体材料的原料。提纯从化学反应开始。对于硅,化学反应是从矿石到硅化物气体,例如四氯化硅或三氯硅烷。杂质,例如其他金属,留在矿石残渣里。硅化物再和氢反应(图 3.1)生成半导体级的硅。这样的硅的纯度达99.9999999%,是地球上最纯的物质之一。1它有一种称为多晶或多晶硅(polysilicon)的晶体结构。

晶体材料

材料中原子的组织结构是导致材料不同的一种方式。有些材料,例如硅和锗,原子在整个材料里重复排列成非常固定的结构,这种材料称为晶体(crystals)。

原子没有固定的周期性排列的材料称为非晶或无定形(amorphous)。塑料是无定形材料的例子。

晶胞

对于晶体材料实际上可能有两个级别的原子组织结构。第一个是单个原子的组织结构。晶体里的原子排列在称为晶胞(unit cell)的结构的特定点。晶胞是晶体结构的第一个级别。晶

胞结构在晶体里到处重复。

另一个涉及晶胞结构的术语是晶格(lattice)。晶体材料具有特定的晶格结构,并且原子位于晶格结构的特定点。

在晶胞里原子的数量、相对位置及原子间的结合能会引发材料的许多特性。每个晶体材料具有独一无二的晶胞。硅晶胞具有16个原子排列成金刚石结构(图3.2)。砷化镓晶体具有18个原子的晶胞结构称为闪锌矿结构(图3.3)。

多晶和单晶

晶体结构的第二个级别和晶胞的构成有关。在本征半导体中,晶胞间不是规则的排列。这种情形和方糖杂乱无章的堆起来相似,每个方糖代表一个晶胞。这样排列的材料具有多晶结构。当晶胞间整洁而有规则的排列时第二个级别的结构发生了(图3.4)。那样排列的材料具有单晶结构。

单晶材料比多晶材料具有更一致和更可预测的特性。单晶结构允许在半导体里一致和可预测的电子流动。在晶圆制造工艺的结尾,晶体的一致性对于分割晶圆成无粗糙边缘的晶元是至关重要的(见18章)。

晶圆是制造IC的基本原料

硅是由沙子所精练出来的,晶圆便是硅元素加以纯化(99.999%),接着是将这些纯硅制成长硅晶棒,成为制造积体电路的石英半导体的材料,经过照相制版,研磨,抛光,切片等程序,将多晶硅融解拉出单晶硅晶棒,然后切割成一片一片薄薄的晶圆。我们会听到几寸的晶圆厂,如果硅晶圆的直径越大,代表著这座晶圆厂有较好的技术。另外还有scaling技术可以将电晶体与导线的尺寸缩小,这两种方式都可以在一片晶圆上,制作出更多的硅晶粒,提高品质与降低成本。所以这代表6寸、8寸、12寸晶圆当中,12寸晶圆有较高的产能。当然,生产晶圆的过程当中,良品率是很重要的条件。

晶圆是指硅半导体积体电路制作所用的硅晶片,由于其形状为圆形,故称为晶圆;在硅晶片上可加工制作成各种电路元件结构,而成为有特定电性功能之IC产品。晶圆的原始材料是硅,而地壳表面有用之不竭的二氧化硅。二氧化硅矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.99999999999。晶圆制造厂再将此多晶硅融解,再于融液内掺入一小粒的硅晶体晶种,然后将其慢慢拉出,以形成圆柱状的单晶硅晶棒,由于硅晶棒是由一颗小晶粒在熔融态的硅原料中逐渐生成,此过程称为“长晶”。硅晶棒再经过研磨,抛光,切片后,即成为积体电路工厂的基本原料——硅晶圆片,这就是“晶圆”。

一,晶圆制备关键术语和概念

晶体籽晶

晶胞熔融物

多晶晶体生长

单晶直拉法

晶体定向区熔法

<100>晶面液体掩盖直拉法

<111>晶面晶圆参考面

点缺陷晶圆参考面代码

晶体位错化学机械抛光

原生缺陷背损伤

边缘倒角切片

滑移空位

晶圆术语

1. 器件或叫芯片(Chip, die, device, microchip, bar):这个名词指的是在晶圆表面占大部分面积的微芯片掩膜。

2. 街区或锯切线(Scribe lines, saw lines, streets, avenues):在晶圆上用来分隔不同芯片之间的街区。街区通常是空白的, 但有些公司在街区内放置对准靶, 或测试的结构(见‘Photomasking’一章)。

3. 工程试验芯片(Engineering die, test die):这些芯片与正式器件(或称电路芯片)不同。它包括特殊的器件和电路模块用于对晶圆生产工艺的电性测试。

4. 边缘芯片(Edge die):在晶圆的边缘上的一些掩膜残缺不全的芯片而产生面积损耗。由于单个芯片尺寸增大而造成的更多边缘浪费会由采用更大直径晶圆所弥补。推动半导体工业向更大直径晶圆发展的动力之一就是为了减少边缘芯片所占的面积。

5. 晶园的晶面( Wafer Crystal Plans):图中的剖面标示了器件下面的晶格构造。此图中显示的器件边缘与晶格构造的方向是确定的。

6. 晶圆切面/凹槽( Wafer flats/notches):例如图示的晶圆有主切面和副切面,表示这是一个P 型<100>晶向的晶圆(见第三章的切面代码)。300 毫米晶圆都是用凹槽作为晶格导向的标识。

二,晶体生长方式分类

半导体晶圆是从大块半导体材料切割而来的。那些半导体材料,或叫做晶棒,是从大块的具有多晶结构和未掺杂本征材料生长得来的。把多晶块转变成一个大单晶,给予正确的定向和适量的N型或P型掺杂,叫做晶体生长。

使用三种不同的方法来生长单晶:直拉法、液体掩盖直拉法、区溶法。

1.直拉法(CZ)晶体生长方式概述

大部分的单晶是通过直拉法生长的.设备有一个石英坩埚,由负载高频波的环绕线圈来加热,或由电流加热器来加热。坩埚装载半导体材料多晶块和少量掺杂物。选择掺杂材料来产生N型或P型材料。开始在1415°C把多晶和搀杂物加热到液体状态,接下来籽晶安置到刚接触到液面(叫做熔融物)。籽晶是具有和所需晶体相同晶向的小晶体,籽晶可由化学气相的技术制造。在实际应用中,它们是一片片以前生长的单晶并重复使用。

当籽晶从熔融物中慢慢上升时,晶体生长开始了。籽晶和熔融物间的表面张力致使一层熔融物的薄膜附着到籽晶上然后冷却。在冷却过程中,在熔化的半导体材料的原子定向到籽晶一样的晶体结构。实际结果是籽晶的定向在生长的晶体中传播。在熔融物中的搀杂原子进入生长的晶体中,生成N型或P型晶体。

为了实现均匀掺杂、完美晶体和直径控制,籽晶和坩埚(伴随着拉速)在整个晶体生长过程中是以相反的方向旋转的。工艺控制需要一套复杂的反馈系统,综合转速、拉速及熔融物温度参数。

拉晶分三段,开始放肩形成一薄层头部,接着是等径生长,最后是收尾。直拉法能够生

成几英尺长和直径大到十二英寸或更多的晶体。200毫米晶圆的晶体将会重达450磅,需要花费三天时间生长。

2.液体掩盖直拉法(LEC)

液体掩盖直拉法2用来生长砷化镓晶体。实质上它和标准的直拉法(CZ)一样,但为砷化镓做了重要改进。由于熔融物里砷的挥发性,改进是必须的。在晶体生长的温度条件下,镓和砷起反应,砷会挥发出来造成不均匀的晶体。

对这个问题有两个解决办法。一个是给单晶炉加压来抑制砷的挥发,另一个是液体掩盖直拉法工艺(图3.9)。液体掩盖直拉法使用一层氧化硼(B2O3)漂浮在熔融物上面来抑制砷的挥发。在这个方法中,单晶炉里需要大约一个大气压。

3.区熔法晶体生长方式概述

区熔法晶体生长2是在本文中介绍的技术历史上早期发展起来的几种工艺之一,仍然在特殊需要中使用。直拉法的一个缺点是坩埚中的氧进入到晶体中,对于有些器件,高水平的氧是不能接受的。对于这些特殊情况,晶体必须用区熔法技术来生长以获得低氧含量晶体。

区熔法晶体生长(图3.10)需要一根多晶棒和浇铸在模子里的掺杂物。籽晶熔合到棒的一端。夹持器装在单晶炉里。当高频线圈加热多晶棒和籽晶的界面时,多晶到单晶的转变开始了。线圈沿着多晶棒的轴移动,一点点把多晶棒加热到液相点。在每一个熔化的区域,原子排列成末端籽晶的方向。这样整个棒以开始籽晶的定向转变成一个单晶。

区熔法晶体生长不能够象直拉法那样生长大直径的单晶,并且晶体有较高的位错密度,但不需用石英坩埚会生长出低氧含量的高纯晶体。低氧晶体可以使用在高功率的晶闸管和整流器。

三,单晶硅棒加工成单晶硅抛光硅片工艺流程

加工流程

单晶生长→切断→外径滚磨→平边或V型槽处理→切片

倒角→研磨腐蚀--抛光→清洗→包装

晶棒成长工序:它又可细分为:

1)、融化(Melt Down):将块状的高纯度复晶硅置于石英坩锅内,加热到其熔点1420°C以上,使其完全融化。

2)、颈部成长(Neck Growth):待硅融浆的温度稳定之后,将〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此直径并拉长100-200mm,以消除晶种内的晶粒排列取向差异。

3)、晶冠成长(Crown Growth):颈部成长完成后,慢慢降低提升速度和温度,使颈部直径逐渐加大到所需尺寸(如5、6、8、12吋等)。

4)、晶体成长(Body Growth):不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。

5)、尾部成长(Tail Growth):当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的晶棒。

1.切断:目的是切除单晶硅棒的头部、尾部及超出客户规格的部分,将单晶硅棒分段成切片设备可以处理的长度,切取试片测量单晶硅棒的电阻率含氧量。

切断的设备:内园切割机或外园切割机

切断用主要进口材料:刀片

2.外径磨削:由于单晶硅棒的外径表面并不平整且直径也比最终抛光晶片所规定的直径规格大,通过外径滚磨可以获得较为精确的直径。在晶体生长过程中,整个晶体长度中直径有偏差(图

3.14)。晶圆制造过程有各种各样的晶圆固定器和自动设备,需要严格的直径控制以减少晶圆翘曲和破碎。

直径滚磨是在一个无中心的滚磨机上进行的机械操作。机器滚磨晶体到合适的直径,无需用一个固定的中心点夹持晶体在车床型的滚磨机上。

外径滚磨的设备:磨床

晶体定向,电导率和电阻率检查

在晶体提交到下一步晶体准备前,必须要确定晶体是否达到定向和电阻率的规格要求。

晶体定向(图3.15)是由X射线衍射或平行光衍射来确定的。在两种方法中,晶体的一端都要被腐蚀或抛光以去除损伤层。下一步晶体被安放在衍射仪上,X射线或平行光反射晶体表面到成像板(X射线)或成像屏(平行光)。在成像板或成像屏上的图案显示晶体的晶面(晶向)。在图3.15显示的图案代表<100>晶向。

许多晶体生长时有意偏离重要的<100>和<100>晶面一点角度。这些偏晶向在晶圆制造过程中会带来很多好处,特别是在离子注入工艺中,原因会在工艺应用章中涉及到。

晶棒粘放在一个切割块上来保证晶圆从晶体正确的晶向切割。

由于晶体是经过掺杂的,一个重要的电学性能检查是导电类型(N或P)来保证使用了正确的掺杂物。热点探测仪连接到极性仪用来在晶体中产生空穴或电子(和类型相关),在极性仪上显示导电类型。

进入晶体的掺杂物的数量由电阻率测量来确定,使用四探针仪。见13章此测量技术的描述。在第2章(图2.7)讲到的曲线表示了电阻率和N型P型硅掺杂含量的关系。

由于在晶体生长工艺中掺杂量的变异,电阻率要延着晶体的轴向测量。这种变异导致晶圆进入几个电阻率规格范围。在后面的工序,晶圆将根据电阻率范围分组来达到客户的规格要求。

3.平边或V型槽处理:即滚磨定向指示一旦晶体在切割块上定好晶向,就沿着轴滚磨出一个参考面(图3.16)。这个参考面将会在每个晶圆上出现,叫做主参考面。参考面的位置延着一个重要的晶面,这是通过晶体定向检查来确定的。在制造工艺中,参考面对晶向起可见的参考作用。它用来放置第一步的光刻图案掩膜版,所以芯片的晶向总是沿着一个重要的晶面。

在许多晶体中,在边缘有第二个较小的参考面。第二个参考面对于主参考面的位置是一种代码,它不仅用来区别晶圆晶向而且区别导电类型。这种代码在图3.17中显示。

对于大直径的晶圆,在晶体上滚磨出一个缺口来指示晶向。指方位及指定加工,用以单晶硅捧上的特定结晶方向平边或V型。

处理的设备:磨床及X-RAY绕射仪。

4.切片:指将单晶硅棒切成具有精确几何尺寸的薄晶片。用有金刚石涂层的内圆刀片把晶圆从晶体上切下来(图3.18)。这些刀片是中心有圆孔的薄圆钢片。圆孔的内缘是切割边缘,用金刚石涂层。内圆刀片有硬度,但不用非常厚。这些因素减少刀口(切割宽度)尺寸,也就减少一定数量的晶体被切割工艺所浪费。

对于300毫米直径的晶圆,使用线切割来保证小锥度的平整表面和最少量的刀口损失。

切片的设备:内园切割机或线切割机

晶圆刻号

大面积的晶圆代在晶圆制造工艺中有高价值,区别它们是防止误操作所必需的,并且可以保持精确的可追溯性。使用条形码和数字矩阵码(图3.19)的激光刻号被采用了。3对300毫米的晶圆,激光点是一致认同的方法。

5.倒角或圆边(Edge Profiling)::指将切割成的晶片税利边修整成圆弧形,防止晶片边缘破裂及晶格缺陷产生,增加磊晶层及光阻层的平坦度。

倒角的主要设备:倒角机

6.研磨:指通过研磨能除去切片和轮磨所造的锯痕及表面损伤层,有效改善单晶硅片的曲度、平坦度与平行度,达到一个抛光过程可以处理的规格。半导体晶圆的表面要规则,且没有切割损伤,并要完全平整。第一个要求来自于很小尺度的制造器件的表面和次表面层。它们的尺度在0.5到2微米之间。为了获得半导体器件相对尺寸的概念,想象图3.20的剖面和房子一样高,大概8英尺,在那个范围内,在晶圆的工作层都存在顶部一到二英寸或更小的区域。

平整度是小尺寸图案是绝对的必要条件(见11章)。先进的光刻工艺把所需的图案投影到晶圆表面,如果表面不平,投影将会扭曲就象电影图像在不平的银幕上没法聚焦一样。

研磨的设备:研磨机(双面研磨)

主要原料:研磨浆料(主要成份为氧化铝,铬砂,水),滑浮液。

7.腐蚀:指经切片及研磨等机械加工后,晶片表面受加工应力而形成的损伤层,通常采用化学腐蚀去除。

腐蚀的方式:(A)酸性腐蚀,是最普遍被采用的。酸性腐蚀液由硝酸(HNO3),氢氟酸(HF),及一些缓冲酸(CH3COCH,H3PO4)组成。

(B)碱性腐蚀,碱性腐蚀液由KOH或NaOH加纯水组成。

8.抛光:指单晶硅片表面需要改善微缺陷,从而获得高平坦度晶片的抛光。最终的抛光步骤是一个化学腐蚀和机械磨擦的结合。晶圆装在旋转的抛光头上,下降到抛光垫的表面以相反的方向旋转。抛光垫材料通常是有填充物的聚亚安酯铸件切片或聚氨酯涂层的无纺布。二氧化硅抛光液悬浮在适度的含氢氧化钾或氨水的腐蚀液中,滴到抛光垫上。

碱性抛光液在晶圆表面生成一薄层二氧化硅。抛光垫机以持续的机械磨擦作用去除氧化物,晶圆表面的高点被去除掉,直到获得特别平整的表面。如果一个半导体晶圆的表面扩大到10000英尺(飞机场跑道的长度),在总长度中将会有正负2英寸的平整度偏差。

获得极好平整度需要规格和控制抛光时间、晶圆和抛光垫上的压力、旋转速度、抛光液颗粒尺寸、抛光液流速、抛光液的PH值、抛光垫材料和条件。

化学机械抛光是业界发展起来的制造大直径晶圆的技术之一。在晶圆制造工艺中,新层的建立会产生不平的表面,使用CMP以平整晶体表面。在这个应用中,CMP被翻译成化学机械平面化(Planarization)。

背处理

在许多情况下,只是晶圆的正面经过充分的化学机械抛光。背面留下从粗糙或腐蚀到光亮的外观。对于某些器件的使用,背面可能会受到特殊的处理导致晶体缺陷,叫做背损伤。背损伤产生位错的生长辐射进入晶圆,这些位错起象是陷阱,俘获在制造工艺中引入的可移动金属离子污染。这个俘获现象又叫做吸杂(图3.22)。背面喷沙是一种标准的技术,其它的方法包括背面多晶层或氮化硅的淀积。

双面抛光

对大直径晶圆许多要求之一是平整和平行的表面。许多300毫米晶圆的制造采用了双面抛光,以获得局部平整度在25´25毫米测量面时小于0.25微米到0.18微米的规格要求。4缺点是在后面的工序中必须使用不划伤和不污染背面的操作技术。

抛光的设备:多片式抛光机,单片式抛光机。

抛光的方式:粗抛:主要作用去除损伤层,一般去除量约在10-20um;

精抛:主要作用改善晶片表面的微粗糙程度,一般去除量1um以下

主要原料:抛光液由具有SiO2的微细悬硅酸胶及NaOH(或KOH或NH4OH)组成,分为粗抛浆和精抛浆。

9.清洗:在单晶硅片加工过程中很多步骤需要用到清洗,这里的清洗主要是抛光后的最终清洗。清洗的目的在于清除晶片表面所有的污染源。

清洗的方式:主要是传统的RCA湿式化学洗净技术。

主要原料:H2SO4,H2O2,HF,NH4HOH,HCL

晶圆评估

在包装以前,需要根据用户指定的一些参数对晶圆(或样品)进行检查。图3.24列举了一个典型的规格要求。

主要的考虑是表面问题如颗粒,污染和雾。这些问题能够用强光或自动检查设备来检测出。

氧化

晶圆在发货到客户之前可以进行氧化。氧化层用以保护晶圆表面,防止在运输过程中的划伤和污染。许多公司从氧化开始晶圆制造工艺,购买有氧化层的晶圆就节省了一个生产步骤。氧化工艺在第7章解释。

包装

虽然花费了许多努力生产高质量和洁净的晶圆,但从包装方法本身来说,在运输到客户的过程中,这些品质会丧失或变差。所以,对洁净的和保护性的包装有非常严格的要求。包装材料是无静电、不产生颗粒的材料,并且设备和操作工要接地,放掉吸引小颗粒的静电。晶圆包装要在洁净室里进行。

晶圆外延

尽管起始晶圆的质量很高,但对于形成互补金属氧化物半导体(CMOS)器件而言还是不够的,这些器件需要一层外延层。许多大晶圆供应商有能力在供货前对晶圆外延。此器件技术在16章中讨论。

损耗产生的原因

多晶硅--单晶硅棒

多晶硅加工成单晶硅棒过程中:如产生损耗是重掺埚底料、头尾料则无法再利用,只能当成冶金行业如炼铁、炼铝等用作添加剂;如产生损耗是非重掺埚底料、头尾料可利用制成低档次的硅产品,此部分应按边角料征税。

重掺料是指将多晶硅原料及接近饱和量的杂质(种类有硼,磷,锑,砷。杂质的种类依电阻的N或P型)放入石英坩埚内溶化而成的料。

重掺料主要用于生产低电阻率(电阻率<0.011欧姆/厘米)的硅片。

损耗:单晶拉制完毕后的埚底料约15%。

四,晶体定向研究

对于一个晶圆,除了要有单晶结构之外,还需要有特定的晶向(crystal orientation)。通过切割如图3.4的单晶块可以想象这个概念。在垂直平面上切割将会暴露一组平面,而角对角切割将会暴露一个不同的平面。每个平面是独一无二的,不同在于原子数和原子间的结合能。每个平面具有不同的化学、电学和物理特性,这些特性将赋予晶圆。晶圆要求特定的晶体定向。

晶面通过一系列称为密勒指数的三个数字组合来表示。如图3.5有两个简单的立方晶胞嵌套在XYZ坐标中。两个在硅晶圆中最通常使用的晶向是<100>和<111>晶面。晶向描述成1-0-0面和1-1-1面,括弧表示这三个数是密勒指数。

<100>晶向的晶圆用来制造MOS器件和电路,而<111>晶向的晶圆用来制造双极型器件和电路。砷化镓晶体只能沿<100>晶面切割。

注意在图3.6<100>晶面有一个正方形,而<111>晶面有一个三角形。当晶圆破碎时这些定向会如图3.6展现出来。<100>晶向的晶圆碎成四方形或正好90度角破裂。<111>晶向的晶圆碎成三角形。

晶体定向(图3.15)是由X射线衍射或平行光衍射来确定的。在两种方法中,晶体的一端都要被腐蚀或抛光以去除损伤层。下一步晶体被安放在衍射仪上,X射线或平行光反射晶体表面到成像板(X射线)或成像屏(平行光)。在成像板或成像屏上的图案显示晶体的晶面(晶向)。在图3.15显示的图案代表<100>晶向。

许多晶体生长时有意偏离重要的<100>和<100>晶面一点角度。这些偏晶向在晶圆制造过程中会带来很多好处,特别是在离子注入工艺中,原因会在工艺应用章中涉及到。

晶棒粘放在一个切割块上来保证晶圆从晶体正确的晶向切割。

五,晶体和晶圆质量

半导体器件需要高度的晶体完美。但是即使使用了最成熟的技术,完美的晶体还是得不到的。不完美,叫做晶体缺陷,会产生不平均的二氧化硅膜生长、差的外延膜的淀积、晶圆里不均匀的掺杂层及其它问题而导致工艺问题。在完成的器件中,晶体缺陷会引起有害的电流漏出,可能阻止器件在正常电压下工作。有三类重要的晶体缺陷:

1. 点缺陷

2. 位错

3. 原生缺陷

点缺陷

点缺陷的来源有两类。一类来源是由晶体里杂质原子挤压晶体结构引起应力所致;第二类来源称为空位,在这种情况下,有某个原子在晶体结构的位置上缺失了。

空位是一种发生在每一个晶体里的自然现象。不幸的是空位无论在晶体或晶圆加热和冷却都会发生,例如在制造工艺过程中。减少空位是低温工艺背后的一个推动力。

位错

位错是在单晶里一组晶胞排错位置。这可以想象成在一堆整齐排列的方糖中有一个排列和其它的发生了微小的偏差。

位错在晶圆里的发生由于晶体生长条件和晶体里晶格应力,也会由于制造过程中的物理损坏。碎片或崩边成为晶格应力点会,产生一条位错线,随着后面的高温工艺扩展到晶圆内部。位错能通过表面一种特殊的腐蚀显示出来。典型的晶圆具有每平方厘米200到1000的位错密度。

腐蚀出的位错出现在晶圆的表面上,形状代表了它们的晶向。<111>的晶圆腐蚀出三角形的位错,<100>的晶圆出现方形的腐蚀坑(图3.6)。

原生缺陷

在晶体生长中,一定的条件会导致结构缺陷。有一种叫滑移,参考图3.13沿着晶体平面的晶体滑移。另一个问题是孪晶,这是一个从同一界面生长出两种不同方向晶体的情形。这两种缺陷都是晶体报废的原因。

晶圆生产工艺与流程介绍

晶圆的生产工艺流程介绍 从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序) :晶棒成长--> 晶棒裁切与检测--> 外径研磨--> 切片--> 圆边--> 表层研磨--> 蚀刻--> 去疵--> 抛光--> 清洗--> 检验--> 包装 1.晶棒成长工序:它又可细分为: 1).融化( Melt Down ) 将块状的高纯度复晶硅置于石英坩锅内,加热到其熔点1420°C 以上,使其完全融化。 2).颈部成长( Neck Growth ) 待硅融浆的温度稳定之后,将〈1.0.0 〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm 左右),维持此直径并拉长100-200mm ,以消除晶种内的晶粒排列取向差异。3).晶冠成长( Crown Growth ) 颈部成长完成后,慢慢降低提升速度和温度,使颈部直径逐渐加大到所需尺寸(如5、6、8、12 吋等)。4).晶体成长( Body Growth ) 不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。 5).尾部成长( Tail Growth ) 当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的

晶棒。 2.晶棒裁切与检测( Cutting & Inspection ) 将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3.外径研磨( Surface Grinding & Shaping ) 由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4.切片( Wire Saw Slicing ) 由于硅的硬度非常大,所以在本工序里,采用环状、其内径边缘镶嵌有钻石颗粒的薄片锯片将晶棒切割成一片片薄片。 5.圆边( Edge Profiling ) 由于刚切下来的晶片外边缘很锋利,硅单晶又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。 6.研磨( Lapping ) 研磨的目的在于去掉切割时在晶片表面产生的锯痕和破损,使晶片表面达到所要求的光洁度。 7.蚀刻( Etching ) 以化学蚀刻的方法,去掉经上几道工序加工后在晶片表面因加工应力而产生的一层损伤层。 8.去疵( Gettering ) 用喷砂法将晶片上的瑕疵与缺陷感到下半层,以利于后序加工。

晶圆制程的多尺度和多物理场仿真解读

晶圆制程的多尺度和多物理场仿真 中仿科技公司(简称CnTech)是多物理场耦合分析软件COMSOL Multiphysics中国地区的独家代理商。本文基于东京电子股份有限公司(TEL)研发中心模拟晶圆制造工艺的成功故事,向大家介绍COMSOL Multiphysics强大的多物理场耦合计算功能。 半导体晶圆的制造牵涉到大量的工艺,涵盖从米到纳米量级的多尺度和多物理场,经过对能够综合各种模拟环境的工具的寻找,最终定位于COMSOL Multiphysics。 - by Jozef Brcka of the TEL Technology Center (Albany, NY) 简介 对半导体制造过程的最优化设计,是一项艰巨的任务,因为需考虑很多因数对整体的影响。首先,在复杂的等离子环境下处理并加工材料和薄膜;其次,在制造工艺过程中,必须处理好流场和反应气体混合物,这对于静态或高频电磁场,以及中间态介质的耦合而言,都必须得到全面的考虑。以晶圆加工为例,放置晶圆的反应器的特征尺度通常是大于一米,同时还必须考虑到发生于纳米级的分子运动。更进一步地,工艺工程师和设计者感兴趣的时间尺度可从千分之一秒至数个小时。 在过去,由于对基础物理与化学现象未得到彻底的了解,晶圆的制造和工艺设备的设计大部分需依赖经验公式。纵使在各种研究机构中开发出专门的方程来执行模拟,但通常需要使用者精通这些工具,才能顺利地操作,况且这些方程通常也是通过简化几何或经验公式推导出来的。在建模不当的情况,要处理复杂的化学环境、热或电磁场问题,并预测出对工艺过程实际出现的情况,只能不断从错误中尝试,这样不仅耗费了大量的金钱,即使得到原理性的结果也需要相当长的时间。如果能够在数值模拟软件中建立正确的模型,则仅仅需要几天时间即可测试几十个案例,以最快的速度让新工艺上线。 COMSOL Multiphysics是由瑞典的COMSOL公司开发的“全球第一款真正的多物理场耦合分析软件”,作为一个大型有限元计算仿真平台,它可以实现多尺度、多物理场的直接全耦合数值模拟。适用于模拟科学和工程领域的各种物理过程,对任意多物理场得到高度精确的数值仿真。在全球得到了日益广泛的应用,多次被NASA技术杂志评为“本年度最佳上榜产品”。在很多公司的技术革新中表现出强劲的实力。 本文以东京电子股份有限公司(TEL),在美国纽约州Albany的TEL研发中心利用COMSOL Multiphysics成功地仿真晶圆加工工艺来说明这款软件的建模理念和思路。

【半导体研磨 精】半导体晶圆的生产工艺流程介绍

?从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 晶棒成长--> 晶棒裁切与检测--> 外径研磨--> 切片--> 圆边--> 表层研磨--> 蚀刻--> 去疵--> 抛光--> 清洗--> 检验--> 包装 1 晶棒成长工序:它又可细分为: 1)融化(Melt Down) 将块状的高纯度复晶硅置于石英坩锅内,加热到其熔点1420°C以上,使其完全融化。 2)颈部成长(Neck Growth) 待硅融浆的温度稳定之后,将〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此直径并拉长 100-200mm,以消除晶种内的晶粒排列取向差异。 3)晶冠成长(Crown Growth) 颈部成长完成后,慢慢降低提升速度和温度,使颈部直径逐渐加大到所需尺寸(如 5、6、8、12吋等)。 4)晶体成长(Body Growth) 不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。 5)尾部成长(Tail Growth) 1

当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的晶棒。 2 晶棒裁切与检测(Cutting & Inspection) 将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3 外径研磨(Su rf ace Grinding & Shaping) 由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4 切片(Wire Saw Sl ic ing) 由于硅的硬度非常大,所以在本工序里,采用环状、其内径边缘镶嵌有钻石颗粒的薄片锯片将晶棒切割成一片片薄片。 5 圆边(Edge Profiling) 由于刚切下来的晶片外边缘很锋利,硅单晶又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。 ? 6 研磨(Lapping) 研磨的目的在于去掉切割时在晶片表面产生的锯痕和破损,使晶片表面达到所要求的光洁度。 7 蚀刻(Etching) 1

光刻和晶圆级键合技术在3D互连中的研究

光刻和晶圆级键合技术在3D互连中的研究 作者:Margarete Zoberbier、Erwin Hell、Kathy Cook、Marc Hennemayer、Dr.-Ing. Barbara Neuber t,SUSS MicroTec 日益增长的消费类电子产品市场正在推动当今半导体技术的不断创新发展。各种应用对增加集成度、降低功耗和减小外形因数的要求不断提高,促使众多结合了不同技术的新结构应运而生,从而又催生出诸多不同的封装方法,因此可在最小的空间内封装最多的功能。正因如此,三维集成被认为是下一代的封装方案。 本文将探讨与三维互连技术相关的一些光刻挑战。还将讨论三维封装使用的晶圆键合技术、所面临的各种挑战、有效的解决方案及未来发展趋势。 多种多样的三维封装技术 为了适应更小引脚、更短互连和更高性能的要求,目前已开发出系统封装(SiP)、系统芯片(SoC)和封装系统(SoP)等许多不同的三维封装方案。SiP即“单封装系统”,它是在一个IC封装中装有多个引线键合或倒装芯片的多功能系统或子系统。无源元件、SAW/BA W滤波器、预封装IC、接头和微机械部件等其他元件都安装在母板上。这一技术造就了一种外形因数相对较小的堆叠式芯片封装方案。 SoC可以将所有不同的功能块,如处理器、嵌入式存储器、逻辑心和模拟电路等以单片集成的方式装在一起。在一块半导体芯片上集成系统设计需要这些功能块来实现。通常,So C设计与之所取代的多芯片系统相比,它的功耗更小,成本更低,可靠性更高。而且由于系统中需要的封装更少,因而组装成本也会有所降低。 SoP采用穿透通孔和高密度布线以实现更高的小型化。它是一种将整个系统安装在一个芯片尺寸封装上的新兴的微电子技术。过去,“系统”往往是一些容纳了数百个元件的笨重的盒子,而SoP可以将系统的计算、通信和消费电子功能全部在一块芯片上完成,从而节约了互连时间,减少了热量的产生。 最近穿透硅通孔(TSV)得到迅速发展,已成为三维集成和晶圆级封装(WLP)的关键技术之一。三维TSV已显现出有朝一日取代引线键合技术的潜力,因此它可以使封装尺寸进

红外检测晶圆键合质量系统说明书

红外检测晶圆键合质量系统说明书 ? 概述 该系统是用于晶圆键合过程后的质量检测系统。能够提供给使用者快速、精确的无损界面检测图像。该系统具有很强的通用性,不仅适用于硅-硅、玻璃-硅或者玻璃-玻璃晶圆键合,还适用于GaAs 、InP 等半导体晶圆。该系统克服了X 射线投射法和扫面声学显微探测法费时费力、系统复杂和成本昂贵的特点。最大能检测的晶圆直径为200mm ,满足绝大多数科研和生产所需。该系统具有高效、实时、无损、低成本、结果清晰的特点,是实时检测空洞和键合过程的理想手段。 ? 特点 1.红外光源以提供高的检测质量 2.键合晶圆对的自动成像 3.高灵敏度CCD 以提供高分辨率、高对比度图像 4.微米级的检测精度 5.可检测的最大晶圆直径为200mm 6.搭载不同波长的滤波片可以检测绝大多数的晶圆材料 7.基于计算机的图像获取软件 8.支持Windows/Linux 系统,集成多种二次开发工具 ? 工作原理 图1 检测系统结构图 对于理想晶体来说,光是否透射晶体取决于光子的能量和晶体材料的禁带宽度: g E hc />λ 对于硅的禁带宽度为1.12eV ,故其透射光最小波长为1.1μm 。如果两片晶圆的键合界面存在未键合区域,则入射光在上下表面两次反射后形成相干光,经红外摄像机处理后,会在显示器上出现明暗交替的干涉条纹。如果未键合区域面积较大且间隙高度不大,则会出现很多较大的干涉条纹;当键合界面处间隙较大时,入射光无法形成干涉现象,在图片上的对应

位置将只能出现颜色较暗的图案。因此,根据键合片的红外透射图像,就可以检测到键合圆片的缺陷状态及分布。根据干涉的圈数还可以定量的计算出空洞的大小。 产生暗条纹,应满足: λλ21212+= m nd ),2,1,0( =m 其中n 为空洞中介质的折射率,d 为空洞高度,m 为干涉环数,λ为所用红外光的波长。若已知n 、m 、λ,则可得: n n m d 44λλ+ = ),2,1,0( =m 图2 未键合区域光线反射图 图3 红外透射干涉图 检测系统主要有四个部分:光源部分、工作台部分、红外相机部分和计算机部分。测试系统的结构如图1所示,主要部分包括:底座、盒体、白炽灯、匀光片、待检测圆片、滤光片、放大镜头和红外摄像机。不同尺寸的晶圆成像距离不同,镜头和晶圆间距离的调节可以通过改变横梁的高度和改变摄像机的焦距来实现。 盒体设计如图4所示。采用4光源,以获得较为均匀一致的光强分布,避免不均匀光强对观测结果的影响。为了获得较高对比度的图像和适应不同尺寸晶圆的成像,通常需要调节功率调节器以使照明系统提供的光强可控制。低光强的图像对比度较高,而高光强的图像分辨率更高。 图4 盒体结构图 图5 检测系统实物图 红外相机镜头滤光片横梁待检测圆片匀光片盒 体白 炽灯底 座红外相机镜头滤光片横梁待检测圆片匀光片盒体 白炽灯底座 红外相机 镜头 滤光片横梁待检测圆片匀光片盒体白炽灯底座红外相机镜头 滤光片横梁待检测圆片 匀光片盒体白炽灯底座电源供应 功率调节器 盒体

晶圆封装测试工序和半导体制造工艺流程0001

盛年不重来,一日难再晨。及时宜自勉,岁月不待人 盛年不重来,一日难再晨。及时宜自勉,岁月不待人 A.晶圆封装测试工序 一、IC检测 1. 缺陷检查Defect Inspection 2. DR-SEM(Defect Review Scanning Electro n Microscopy) 用来检测出晶圆上是否有瑕疵,主要是微尘粒子、刮痕、残留物等问题。此外,对已印有电路图案的图案晶圆成品而言,则需要进行深次微米范围之瑕疵检测。一般来说,图案晶圆检测系统系以白光或雷射光来照射晶圆表面。再由一或多组侦测器接收自晶圆表面绕射出来的光线,并将该影像交由高功能软件进行底层图案消除,以辨识并发现瑕疵。 3. CD-SEM(Critical Dime nsioi n Measureme nt) 对蚀刻后的图案作精确的尺寸检测。 二、IC封装 1. 构装(Packaging) IC构装依使用材料可分为陶瓷(ceramic )及塑胶(plastic )两种,而目前商业应用上则以塑胶构装为主。以塑胶构装中打线接合为例,其步骤依序为晶片切割( die saw)、黏晶(die mount / die bond)、焊线(wire bon d)、圭寸胶(mold )、剪切/ 成形(trim / form )、印字(mark )、电镀(plating )及检验(inspection )等。 (1) 晶片切割(die saw ) 晶片切割之目的为将前制程加工完成之晶圆上一颗颗之晶粒(die )切割分离。举例来说:以 0.2微米制程技术生产,每片八寸晶圆上可制作近六百颗以上的64M微量。 欲进行晶片切割,首先必须进行晶圆黏片,而后再送至晶片切割机上进行切割。切割完后之 晶粒井然有序排列于胶带上,而框架的支撐避免了胶带的皱褶与晶粒之相互碰撞。 (2) 黏晶(die mou nt / die bo nd ) 黏晶之目的乃将一颗颗之晶粒置于导线架上并以银胶(epoxy)粘着固定。黏晶完成后之导线 架则经由传输设备送至弹匣( magazi ne )内,以送至下一制程进行焊线。 ⑶焊线(wire bond ) IC构装制程(Packaging )则是利用塑胶或陶瓷包装晶粒与配线以成集成电路( Integrated Circuit ;简称IC),此制程的目的是为了制造出所生产的电路的保护层,避免电路受到机械

晶圆级键合技术的最新发展

晶圆级键合技术的最新发展 2011-11-24 19:37:28 来源:SUSS MicroTec 评论:0点击:179 晶圆片键合应用于MEMS工业已达数十年时间,业界有责任建立标准规范,设定气密性、键合强度、缺陷检测、批量生产设备。而高级CMP工艺、硅垂直深孔刻蚀、金属填充互联技术的发展将促使CMOS工业继续进步。MEMS 和CMOS生产制造技术的交叉彻底变革了整个市场。 Shari Farrens 博士 晶圆键合部-首席科学家 SUSS MicroTec 1. 引言 晶圆级MEMS(微电子机械系统)键合技术应用于生产加速度计、压力传感器和陀螺仪等领域已数十年。汽车工业一直以来都是这些MEMS器件的主要最终用户。但近期例如手机和游戏机产业的需求导致MEMS消费类产品市场爆发性增长,使得这一行业发生了巨大变化。最重大的变化可能就是更大的市场和更低的成本要求。同时,集成MEMS 器件和CMOS控制器或其它IC部件的需求,使得该技术研究开始转向关注怎样才能制造这些器件。 MEMS的晶圆级键合方式以往主要为阳极键合和玻璃浆料键合。这两种键合方式在产品使用寿命期间,都具有十分良好的气密性,并且对于上游制造方面的严苛要求如颗粒沾污和表层形貌,都具有相对良好的适应性。然而,这些方法并不能解决极限尺寸、集成度和垂直封装的问题。 2. 高级MEMS 键合要求 新型MEMS芯片需要满足更小产品尺寸的要求。实现这一目标最合适的方式应当是金属封装技术。相比其它材料,金属具有更低的透气性,因此可以提供更好的气密等级。金属密封材料在晶圆片上占用更小的面积,晶圆也就可以容纳更多的器件,所以在提高气密性的同时,微机械部件的实际尺寸也减小了。 金属密封技术的另一个特点是,它为芯片提供了电通路。所以在设计芯片时可以引入垂直互联金属层,实现晶圆堆叠和先进封装技术,从而进一步减小芯片尺寸,降低成本。 3. 金属键合技术 金属键合技术大体上可以分为两类:非熔化型扩散法以及自平坦化(熔化)共熔晶反应。在运用这两种技术时,可以根据所希望的技术参数和要求,分别选取适合的金属系。 金属扩散键合,是一种典型的热压力键合。首先,使金或铜沉积到需要连接的部件表面,然后将部件相互对准后置入精密晶圆键合机,如SUSS MicroTec公司的CB200中。键合机控制腔室内气氛,加热加压将部件键合到一起。扩散键合是物质界面间原子相互混合的结果,键合结果气密性极好。 对于表面粗糙度和形貌都符合一定要求的器件,扩散键合是一种很好的选择。键合中,金属层并不熔化,因此必须与需要键合的表面紧密接触,对于粗糙表面、表面有颗粒或其它表面缺陷的情况,这种键合方式就不合适了。 在共熔晶键合过程中,两种金属熔合为合金并固化。可用于共熔晶键合的金属材料有AuSi,、AuSn、AuGe、CuSn、AlGe,以及其它一些不常用的合金材料。共熔晶键合过程中,基片上的金属层在被称为共熔温度Te的特定温度下相互熔合。合金沉积当量或金属层厚度决定了合金的合金温度Te。金属共熔后发生了数个重要的工艺变化。 首先,金属材料熔化会导致金属层在结合面加速混合和消耗。这提供了一个良好的控制反应,可以形成均匀界面。其次,金属形成流体状态,这样在界面上,包括任何表面异形区域都可以自平坦化。 最后,共熔晶键合的重点是在重新凝固后使混合物形成晶体结构,从而获得很高的热稳定性。因此在任何时候T>Te 时,晶圆键合中的合金过程并不会由于一定的合金比例成分而结束,而是在界面处形成一个更稳定的熔融金相。

半导体工艺主要设备大全

清洗机超音波清洗机是现代工厂工业零件表面清洗的新技术,目前已广泛应用于半导体硅片的清洗。超声波清洗机“声音也可以清洗污垢”——超声波清洗机又名超声波清洗器,以其洁净的清洗效果给清洗界带来了一股强劲的清洗风暴。超声波清洗机(超声波清洗器)利用空化效应,短时间内将传统清洗方式难以洗到的狭缝、空隙、盲孔彻底清洗干净,超声波清洗机对清洗器件的养护,提高寿命起到了重要作用。CSQ系列超声波清洗机采用内置式加热系统、温控系统,有效提高了清洗效率;设置时间控制装置,清洗方便;具有频率自动跟踪功能,清洗效果稳定;多种机型、结构设计,适应不同清洗要求。CSQ系列超声波清洗机适用于珠宝首饰、眼镜、钟表零部件、汽车零部件,医疗设备、精密偶件、化纤行业(喷丝板过滤芯)等的清洗;对除油、除锈、除研磨膏、除焊渣、除蜡,涂装前、电镀前的清洗有传统清洗方式难以达到的效果。恒威公司生产CSQ系列超声波清洗机具有以下特点:不锈钢加强结构,耐酸耐碱;特种胶工艺连接,运行安全;使用IGBT模块,性能稳定;专业电源设计,性价比高。反渗透纯水机去离子水生产设备之一,通过反渗透原理来实现净水。 纯水机清洗半导体硅片用的去离子水生产设备,去离子水有毒,不可食用。 净化设备主要产品:水处理设备、灌装设备、空气净化设备、净化工程、反渗透、超滤、电渗析设备、EDI装置、离子交换设备、机械过滤器、精密过滤器、UV紫外线杀菌器、臭氧发生器、装配式洁净室、空气吹淋室、传递窗、工作台、高校送风口、空气自净室、亚高、高效过滤器等及各种配件。 风淋室:运用国外先进技术和进口电器控制系统,组装成的一种使用新型的自动吹淋室.它广泛用于微电子医院\制药\生化制品\食品卫生\精细化工\精密机械和航空航天等生产和科研单位,用于吹除进入洁净室的人体和携带物品的表面附着的尘埃,同时风淋室也起气的作用,防止未净化的空气进入洁净区域,是进行人体净化和防止室外空气污染洁净的有效设备. 抛光机整个系统是由一个旋转的硅片夹持器、承载抛光垫的工作台和抛光浆料供给装置三大部分组成。化学机械抛光时,旋转的工件以一定的压力压在旋转的抛光垫上,而由亚微米或纳米磨粒和化学溶液组成的抛光液在工件与抛光垫之间流动,并产生化学反应,工件表面形成的化学反应物由磨粒的机械作用去除,即在化学成膜和机械去膜的交替过程中实现超精密表面加工,人们称这种CMP为游离磨料CMP。 电解抛光电化学抛光是利用金属电化学阳极溶解原理进行修磨抛光。将电化学预抛光和机械精抛光有机的结合在一起,发挥了电化学和机构两类抛光特长。它不受材料硬度和韧性的限制,可抛光各种复杂形状的工件。其方法与电解磨削类似。导电抛光工具使用金钢石导电锉或石墨油石,接到电源的阴极,被抛光的工件(如模具)接到电源的阳极。 光刻胶又称光致抗蚀剂,由感光树脂、增感剂(见光谱增感染料)和溶剂三种主要成分组成的对光敏感的混合液体。感光树脂经光照后,在曝光区能很快地发生光固化反应,使得这种材料的物理性能,特别是溶解性、亲合性等发生明显变化。经适当的溶剂处理,溶去可溶性部分,得到所需图像(见图光致抗蚀剂成像制版过程)。光刻胶广泛用于印刷电路和集成电路的制造以及印刷制版等过程。光刻胶的技术复杂,品种较多。根据其化学反应机理和显影原理,可分负性胶和正性胶两类。光照后形成不可溶物质的是负性胶;反之,对某些溶剂是不可溶的,经光照后变成可溶物质的即为正性胶。利用这种性能,将光刻胶作涂层,就能在硅片表面刻蚀所需的电路图形。基于感光树脂的化学结构,光刻胶可以分为三种类型。①光聚合型,采用烯类单体,在光作用下生成自由基,自由基再进一步引发单体聚合,最后生成聚合物,具有形成正像的特点。②光分解型,采用含有叠氮醌类化合

【CN110047911A】一种半导体晶圆、键合结构及其键合方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910324533.8 (22)申请日 2019.04.22 (71)申请人 武汉新芯集成电路制造有限公司 地址 430205 湖北省武汉市东湖开发区高 新四路18号 (72)发明人 周云鹏 郭万里 胡杏 黄宇恒  (74)专利代理机构 北京集佳知识产权代理有限 公司 11227 代理人 党丽 王宝筠 (51)Int.Cl. H01L 29/06(2006.01) H01L 23/544(2006.01) H01L 21/18(2006.01) (54)发明名称 一种半导体晶圆、键合结构及其键合方法 (57)摘要 本发明提供一种半导体晶圆、键合结构及其 键合方法,该半导体晶圆将与其他晶圆进行晶圆 级键合,在该晶圆中,在顶层覆盖层中形成有与 互连结构电连接的键合垫,同时,在该顶层覆盖 层中形成有键合对准图形,该键合对准图形的图 案由设置于顶层覆盖层中的点阵组成。这样,由 于键合对准图形设置于顶层覆盖层中,顶层覆盖 层之上将不再覆盖其他的材料层,提升键合设备 对键合对准图形的识别能力,增大了键合制程工 艺对准窗口,同时,键合对准图形的图案由点阵 组成,更易于键合孔工艺集成,且避免制造工艺 中碟陷等缺陷的产生。权利要求书1页 说明书6页 附图2页CN 110047911 A 2019.07.23 C N 110047911 A

权 利 要 求 书1/1页CN 110047911 A 1.一种半导体晶圆,其特征在于,包括: 半导体衬底; 衬底上的器件结构,以及所述器件结构的互连结构; 覆盖所述互连结构的顶层覆盖层; 设置于所述顶层覆盖层中且与所述互连结构接触连接的键合垫; 设置于所述顶层覆盖层中的键合对准图形,所述键合对准图形的图案由设置于顶层覆盖层中的点阵组成。 2.根据权利要求1所述的晶圆,其特征在于,所述键合对准图形的图案由多个子图形组成,且所述键合对准图形为中心对称图形。 3.根据权利要求2所述的晶圆,其特征在于,多个所述子图形中的一部分构成环绕图案,另一部分构成内置图案,所述内置图案设置于环绕图案中。 4.根据权利要求3所述的晶圆,其特征在于,所述环绕图案为一个多边形的子图形。 5.根据权利要求3所述的晶圆,其特征在于,所述环绕图案为多个条形子图形构成的多边形图案。 6.根据权利要求2所述的晶圆,其特征在于,所述键合对准图形包括多个区域,相邻区域中的子图形具有不同的延伸方向。 7.根据权利要求1-6中任一项所述的晶圆,其特征在于,所述晶圆包括阵列排布的芯片区,所述器件结构形成于所述芯片区,所述键合对准图形形成于所述芯片区之间的切割道上。 8.根据权利要求1-6中任一项所述的晶圆,其特征在于,所述点阵中的各点为圆形柱、椭圆形柱或方形柱。 9.一种键合结构,其特征在于,包括多个晶圆,所述多个晶圆沿垂直于晶圆方向键合在一起,所述多个晶圆中的至少一个为权利要求1-8中任一项所述的晶圆。 10.一种晶圆的键合方法,其特征在于,包括: 提供待键合晶圆,所述待键合晶圆为如权利要求1-8中任一项所述的半导体晶圆; 利用所述待键合晶圆中的键合对准图形进行对准; 进行待键合晶圆与另一晶圆的键合。 2

晶圆(Wafer) 制程工艺学习

晶圆(Wafer)制程工藝學習 晶圆(Wafer)的生产由砂即(二氧化硅)开始,经由电弧炉的提炼还原成冶炼级的硅,再经由盐酸氯化,产生三氯化硅,经蒸馏纯化后,透过慢速分解过程,制成棒状或粒状的「多晶硅」。一般晶圆制造厂,将多晶硅融解后,再利用硅晶种慢慢拉出单晶硅晶棒。一支85公分长,重76.6公斤的8吋硅晶棒,约需2天半时间长成。经研磨、拋光、切片后,即成半导体之原料晶圆片。光学显影 光学显影是在光阻上经过曝光和显影的程序,把光罩上的图形转换到光阻下面的薄膜层或硅晶上。光学显影主要包含了光阻涂布、烘烤、光罩对准、曝光和显影等程序。小尺寸之显像分辨率,更在 IC 制程的进步上,扮演着最关键的角色。由于光学上的需要,此段制程之照明采用偏黄色的可见光。因此俗称此区为黄光区。 干式蚀刻技术 在半导体的制程中,蚀刻被用来将某种材质自晶圆表面上移除。干式蚀刻(又称为电浆蚀刻)是目前最常用的蚀刻方式,其以气体作为主要的蚀刻媒介,并藉由电浆能量来驱动反应。 电浆对蚀刻制程有物理性与化学性两方面的影响。首先,电浆会将蚀刻气体分子分解,产生能够快速蚀去材料的高活性分子。此外,电浆也会把这些化学成份离子化,使其带有电荷。 晶圆系置于带负电的阴极之上,因此当带正电荷的离子被阴极吸引并加速向阴极方向前进时,会以垂直角度撞击到晶圆表面。芯片制造商即是运用此特性来获得绝佳的垂直蚀刻,而后者也是干式蚀刻的重要角色。 基本上,随着所欲去除的材质与所使用的蚀刻化学物质之不同,蚀刻由下列两种模式单独或混会进行: 1. 电浆内部所产生的活性反应离子与自由基在撞击晶圆表面后,将与某特定成份之表面材质起化学反应而使之气化。如此即可将表面材质移出晶圆表面,并透过抽气动作将其排出。 2. 电浆离子可因加速而具有足够的动能来扯断薄膜的化学键,进而将晶圆表面材质分子一个个的打击或溅击(sputtering)出来。 化学气相沉积技术 化学气相沉积是制造微电子组件时,被用来沉积出某种薄膜(film)的技术,所沉积出的薄膜可能是介电材料(绝缘体)(dielectrics)、导体、或半导体。在进行化学气相沉积制程时,包含有被沉积材料之原子的气体,会被导入受到严密控制的制程反应室内。当这些原子在受热的昌圆表面上起化学反应时,会在晶圆表面产生一层固态薄膜。而此一化学反应通常必须使用单一或多种能量源(例如热能或无线电频率功率)。

晶圆生产工艺与流程介绍

晶圆生产工艺与流程介 绍 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

晶圆的生产工艺流程介绍从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 晶棒成长-->晶棒裁切与检测-->外径研磨-->切片-->圆边-->表层研磨-->蚀刻-->去疵-->抛光-->清洗-->检验-->包装 1.晶棒成长工序:它又可细分为: 1).融化(MeltDown) 将块状的高纯度复晶硅置于石英坩锅内,加热到其熔点1420°C以上,使其完全融化。 2).颈部成长(NeckGrowth) 待硅融浆的温度稳定之后,将〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此直径并拉长100-200mm,以消除晶种内的晶粒排列取向差异。 3).晶冠成长(CrownGrowth) 颈部成长完成后,慢慢降低提升速度和温度,使颈部直径逐渐加大到所需尺寸(如5、6、8、12寸等)。 4).晶体成长(BodyGrowth) 不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。 5).尾部成长(TailGrowth)

当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的晶棒。 2.晶棒裁切与检测(Cutting&Inspection) 将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3.外径研磨(SurfaceGrinding&Shaping) 由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。4.切片(WireSawSlicing) 由于硅的硬度非常大,所以在本工序里,采用环状、其内径边缘镶嵌有钻石颗粒的薄片锯片将晶棒切割成一片片薄片。 5.圆边(EdgeProfiling) 由于刚切下来的晶片外边缘很锋利,硅单晶又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。 6.研磨(Lapping) 研磨的目的在于去掉切割时在晶片表面产生的锯痕和破损,使晶片表面达到所要求的光洁度。 7.蚀刻(Etching)

晶圆生产工艺流程介绍

晶圆生产工艺流程介绍 1、表面清洗 2、初次氧化 3、CVD(Chemical Vapor deposition)法沉积一层Si3N4(Hot CVD或LPCVD)。 (1)常压CVD(Normal Pressure CVD) (2)低压CVD(Low Pressure CVD) (3)热CVD(Hot CVD)/(thermal CVD) (4)电浆增强CVD(Plasma Enhanced CVD) (5)MOCVD(Metal Organic CVD)&分子磊晶成长(Molecular Beam Epitaxy) (6)外延生长法(LPE) 4、涂敷光刻胶 (1)光刻胶的涂敷 (2)预烘(pre bake) (3)曝光 (4)显影 (5)后烘(post bake) (6)腐蚀(etching) (7)光刻胶的去除 5、此处用干法氧化法将氮化硅去除 6、离子布植将硼离子(B+3)透过SiO2膜注入衬底,形成P型阱 7、去除光刻胶,放高温炉中进行退火处理 8、用热磷酸去除氮化硅层,掺杂磷(P+5)离子,形成N型阱 9、退火处理,然后用HF去除SiO2层 10、干法氧化法生成一层SiO2层,然后LPCVD沉积一层氮化硅 11、利用光刻技术和离子刻蚀技术,保留下栅隔离层上面的氮化硅层 12、湿法氧化,生长未有氮化硅保护的SiO2层,形成PN之间的隔离区 13、热磷酸去除氮化硅,然后用HF溶液去除栅隔离层位置的SiO2,并重新生成品质更好的SiO2薄膜,作为栅极氧化层。 14、LPCVD沉积多晶硅层,然后涂敷光阻进行光刻,以及等离子蚀刻技术,栅极结构,并氧化生成SiO2保护层。 15、表面涂敷光阻,去除P阱区的光阻,注入砷(As)离子,形成NMOS的源漏极。用同样的方法,在N阱区,注入B离子形成PMOS的源漏极。 16、利用PECVD沉积一层无掺杂氧化层,保护元件,并进行退火处理。 17、沉积掺杂硼磷的氧化层 18、?镀第一层金属 (1)薄膜的沉积方法根据其用途的不同而不同,厚度通常小于1um。 (2)真空蒸发法(Evaporation Deposition) (3)溅镀(Sputtering Deposition) 19、光刻技术定出VIA孔洞,沉积第二层金属,并刻蚀出连线结构。然后,用PECVD法氧化层和氮化硅保护层。20、光刻和离子刻蚀,定出PAD位置 21、最后进行退火处理,以保证整个Chip的完整和连线的连接性

红外检测晶圆键合质量系统说明书

红外检测晶圆键合质量系统说明书 ?概述 该系统是用于晶圆键合过程后的质量检测系统。能够提供给使用者快速、精确的无损界面检测图像。该系统具有很强的通用性,不仅适用于硅-硅、玻璃-硅或者玻璃-玻璃晶圆键合,还适用于GaAs、InP等半导体晶圆。该系统克服了X射线投射法和扫面声学显微探测法费时费力、系统复杂和成本昂贵的特点。最大能检测的晶圆直径为200mm,满足绝大多数科研和生产所需。该系统具有高效、实时、无损、低成本、结果清晰的特点,是实时检测空洞和键合过程的理想手段。 ?特点 1.红外光源以提供高的检测质量 2.键合晶圆对的自动成像 3.高灵敏度CCD以提供高分辨率、高对比度图像 4.微米级的检测精度 5.可检测的最大晶圆直径为200mm 6.搭载不同波长的滤波片可以检测绝大多数的晶圆材料 7.基于计算机的图像获取软件 8.支持Windows/Linux系统,集成多种二次开发工具 ?工作原理

待检测圆片 白炽灯 图1 检测系统结构图 对于理想晶体来说,光是否透射晶体取决于光子的能量和晶体材料的禁带宽度: g E hc />λ 对于硅的禁带宽度为1.12eV ,故其透射光最小波长为1.1μm 。如果两片晶圆的键合界面存在未键合区域,则入射光在上下表面两次反射后形成相干光,经红外摄像机处理后,会在显示器上出现明暗交替的干涉条纹。如果未键合区域面积较大且间隙高度不大,则会出现很多较大的干涉条纹;当键合界面处间隙较大时,入射光无法形成干涉现象,在图片上的对应位置将只能出现颜色较暗的图案。因此,根据键合片的红外透射图像,就可以检测到键合圆片的缺陷状态及分布。根据干涉的圈数还可以定量的计算出空洞的大小。 产生暗条纹,应满足: λλ21212+=m nd ),2,1,0( =m 其中n 为空洞中介质的折射率,d 为空洞高度,m 为干涉环数,λ为所用红外光的波长。若已知n 、m 、λ,则可得: n n m d 44λλ+= ),2,1,0( =m

半导体晶圆处理制程

晶圆处理制程 基本晶圆处理步骤通常是晶圆先经过适当的清洗(Cleaning)之后,送到热炉管(Furnace )内,在含氧的环境中,以加热氧化(Oxidation)的方式在晶圆的表面形成一层厚约数百个的二氧化硅层,紧接着厚约1000到2000的氮化硅层将以化学气相沈积Chemical Vapor Deposition;CVP)的方式沈积(Deposition)在刚刚长成的二氧化硅上,然后整个晶圆将进行微影(Lithography)的制程,先在晶圆上上一层光阻(Photoresist),再将光罩上的图案移转到光阻上面。接着利用蚀刻(Etching)技术,将部份未被光阻保护的氮化硅层加以除去,留下的就是所需要的线路图部份。接着以磷为离子源(Ion Source),对整片晶圆进行磷原子的植入(Ion Implantation),然后再把光阻剂去除(Photoresist Scrip)。制程进行至此,我们已将构成集成电路所需的晶体管及部份的字符线(Word Lines),依光罩所提供的设计图案,依次的在晶圆上建立完成,接着进行金属化制程(Metallization),制作金属导线,以便将各个晶体管与组件加以连接,而在每一道步骤加工完后都必须进行一些电性、或是物理特性量测,以检验加工结果是否在规格内(Inspection and Measurement);如此重复步骤制作第一层、第二层...的电路部份,以在硅晶圆上制造晶体管等其它电子组件;最后所加工完成的产品会被送到电性测试区作电性量测。 根据上述制程之需要,FAB厂内通常可分为四大区: 1)黄光本区的作用在于利用照相显微缩小的技术,定义出每一层次所需要的电路图,因为采用感光剂易曝光,得在黄色灯光照明区域内工作,所以叫做「黄光区」。 2)蚀刻经过黄光定义出我们所需要的电路图,把不要的部份去除掉,此去除的步骤就> 称之为蚀刻,因为它好像雕刻,一刀一刀的削去不必要不必要的木屑,完成作品,期间又利用酸液来腐蚀的,所 以叫做「蚀刻区」。 3)扩散本区的制造过程都在高温中进行,又称为「高温区」,利用高温给予物质能量而产生运动,因为本区的机台大都为一根根的炉管,所以也有人称为「炉管区」,每一根炉管都有不同的作用。 4)真空本区机器操作时,机器中都需要抽成真空,所以称之为真空区,真空区的机器多用来作沈积暨离子植入,也就是在Wafer上覆盖一层薄薄的薄膜,所以又称之为「薄膜区」。在真空区中有一站称为 晶圆允收区,可接受芯片的测试,针对我们所制造的芯片,其过程是否有缺陷,电性的流通上是否 有问题,由工程师根据其经验与电子学上知识做一全程的检测,由某一电性量测值的变异判断某一 道相关制程是否发生任何异常。此检测不同于测试区(Wafer Probe)的检测,前者是细部的电子 特性测试与物理特性测试,后者所做的测试是针对产品的电性功能作检测。

晶圆生产工艺与流程介绍精编WORD版

晶圆生产工艺与流程介绍精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

晶圆的生产工艺流程介绍从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 晶棒成长?-->?晶棒裁切与检测?-->?外径研磨?-->?切片?-->?圆边?-->?表层研磨?-->?蚀刻?-->?去疵?-->?抛光?-->?清洗?-->?检验?-->?包装 1.晶棒成长工序:它又可细分为: 1).融化(Melt?Down) 将块状的高纯度复晶硅置于石英坩锅内,加热到其熔点1420°C以上,使其完全融化。2).颈部成长(Neck?Growth) 待硅融浆的温度稳定之后,将〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此直径并拉长100-200mm,以消除晶种内的晶粒排列取向差异。 3).晶冠成长(Crown?Growth) 颈部成长完成后,慢慢降低提升速度和温度,使颈部直径逐渐加大到所需尺寸(如5、6、8、12寸等)。 4).晶体成长(Body?Growth)

不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。 5).尾部成长(Tail?Growth) 当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的晶棒。 2.晶棒裁切与检测(Cutting?&?Inspection) 将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3.外径研磨(Surface?Grinding?&?Shaping) 由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4.切片(Wire?Saw?Slicing) 由于硅的硬度非常大,所以在本工序里,采用环状、其内径边缘镶嵌有钻石颗粒的薄片锯片将晶棒切割成一片片薄片。 5.圆边(Edge?Profiling) 由于刚切下来的晶片外边缘很锋利,硅单晶又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。

用于下一代3DIC的晶圆熔融键合技术

用于下一代3DIC的晶圆熔融键合技术 在晶圆熔融键合技术上的最新进展已显示了它在提升键合对准精度上的能力在过去的30年中,尺寸缩小和摩尔定律已成为硅平面工艺领域推动成本降低的主要动力。在这期间,主要的技术进步都已在CMOS工艺中获得了应用。最近的一些技术进展已经变得极其复杂,包括有多重光刻图形化、新的应变增强材料和金属氧化物栅介质等。尽管在工程和材料科学上已经取得了这些重大的成就,经常被预测的所谓阻碍半导体产业发展的“红砖墙”还是很快会再一次出现,需要采取措施来加以应对。事实上,一些半导体供应商指出经济性上的“红砖墙”在采用22nm技术节点时就已经出现,继续缩小尺寸已经不能降低单位晶体管的成本。如今,越来越难以找到一种解决方案来满足在增加器件性能的同时又能降低成本的要求。 光刻尺寸的进一步缩小会相应增加IC制造的复杂性,并且必须要使用日益昂贵的光刻设备,同时也会引入更多的图形化工序。3DIC集成提供了一种能在满足下一代器件性能/成本需求的同时,又避免了采用进一步缩小光刻尺寸的解决路径。在另一方面,3DIC集成还使半导体业界可以继续使用具有较低复杂性的工艺,在保持一个较为宽松栅长的情况下来提升芯片的性能,而这些都不需要增加额外的成本。 尽管对于3DIC集成的初步展望还是有些模糊,但还是对它的一些集成途径来进行了分类,以在第三个维度上对未来的发展做出清晰的观察。目前3DIC集成所处的状态有点类似于穿越阿尔卑斯山脉,可以有不同的选项来越过山脉区域:明智地利用山谷;更加直接但也更危险地攀登和翻越;花大力气修建隧道来进行穿越。最终最为经济的工艺路线将会是组合了所有这三种途径的结合体。在3DIC 领域我们看到现在正在出现一种类似的工艺过程,一些3D器件是在工艺制造过程的中期(MEOL)来形成立体结构的,而另一些是在工艺制造过程的后期(BEOL)通过芯片叠层来实现的。在未来,一些3D堆叠工序也将会向工艺上游推进而在工艺制造过程的前期(FEOL)中来完成。制造商会依据目标器件的类型、市场的规模和工艺的复杂程度来选择究竟采用何种工艺路线。3DIC集成最具有成本优势的方法应该是上述这三种工艺路线的结合。这就是说,未来对于很多应用场合,在前道制造工艺(FEOL)中实现实现3DIC集成将具有更大的潜力来帮助降低成本、提升性能和提高能耗效率。 前道工艺(FEOL)目前仍然被看作为一个纯粹的平面工艺,它是在硅衬底材料上实现器件的功能/性能。然而,许多具有创新性的工艺和材料,例如SiGe和其他材料的外延层,已经引入到前道工艺(FEOL)中来提升器件的性能。因此,平面和3D堆叠的界限已经开始变得模糊,并且这也为异质器件集成(例如制作在存储器上的存储器,制作在逻辑器件上的存储器等等)的广泛应用和发展铺平了道路。 图1. 在前道工艺(FEOL)中实现不同3D集成结构的对比 图1列出了在前道工艺(FEOL)中实现不同3D集成结构的概览。第一种集成方案是逐层进行外

相关文档
最新文档