乙苯工艺流程说明

乙苯工艺流程说明
乙苯工艺流程说明

2.2 工艺说明

2.2.1工艺特点

技术路线为当今应用广泛、技术成熟可靠、经济合理且无腐蚀无污染的分子筛液相法苯烷基化制乙苯生产技术,所用的分子筛催化剂是AEB 型分子筛催化剂,其主要工艺特点是:

1) 新一代的AEB 型烷基化催化剂(AEB-6)和烷基转移催化剂(AEB-1)活性高、乙苯选择性好,具有优良的稳定性,催化剂再生周期长(5年),预期寿命10年。

2) 反应条件缓和,反应压力约3.5-4.2MPaG ,烷基化反应温度190~240℃,烷基转移反应温度175~235℃;副反应少,产品纯度高,二甲苯含量低,乙苯选择性和收率高,工艺物耗低。

3) 使用多点注乙烯加部分反应物循环的工艺流程,可以采用较低的苯/乙烯比,使乙烯能完全溶解在反应物料中,维持液相反应条件,并控制床层温升在合理范围,确保装置平稳运行。

4) 由于反应条件缓和而且催化剂和反应物料均无腐蚀性,使主要设备可采用碳钢。

5) 催化剂采用器外再生,节省了器内再生设备和时间。

6) 采用合理的换热流程,充分回收利用低温能量,能耗低。

2.2.2反应基理

2.2.2.1 烷基化反应

在一定温度、压力下,乙烯与苯在酸性催化剂上进行烷基化反应生成乙苯,化学方程式如下:

56526242H C H C H C H C ?→?+

同时,生成的乙苯还可以进一步与乙烯反应生成少量二乙苯和更少量的三乙苯,而四乙苯以上的多乙苯很少,方程如下所示:

46252565242)(H C H C H C H C H C ?→?+

363524625242)()(H C H C H C H C H C ?→?+

264523635242)()(H C H C H C H C H C ?→?+

H C H C H C H C H C 65522645242)()(?→?+

6652655242)()(C H C H C H C H C ?→?+

理论上讲,从二乙苯一直到六乙苯都可以生成,但是由于苯环上乙基不断地增加,生成四乙苯、五乙苯、六乙苯的难度加大。这一方面是因为苯环上乙基之间位阻增大,另一方面是因为多乙苯的分子结构越大越妨碍其在催化剂颗粒内的扩散,那么发生进一步反应的机会就越少。所以,实际上生成的四乙苯很少,而五乙苯、六乙苯几乎没有。由于目的产物是乙苯,因此在反应系统中应尽量控制多乙苯的生成,特别是四乙苯以上物质的生成。

除以上的反应外,主要的副反应有乙烯与两个苯环发生耦合反应生成二苯基乙烷,乙烯、苯或芳烃自聚生成多环化合物等重质物。显然,这些物质的生成将降低乙苯产品的收率,增加物耗,因此要最大可能地减少这些副反应的发生。

上述反应是强放热反应,其中乙烯和苯的反应热约为1072.6kJ/ kg 乙苯。反应热将使物料及催化剂床层的温度升高,为使烷基化反应在最佳条件下进行,需采取措施,不断取走多余的热量,控制反应温度和床层温升在合适的范围内。

在反应条件下,乙烯是以气相存在的。由于气相乙烯极易在催化剂上发生聚合反应而生成大分子烯烃或高聚物,一方面增加了物耗,另一方面导致催化剂失活,缩短催化剂寿命。因此,必须使乙烯完全溶解在反应进料中,保证烷基化反应在液相中进行。

虽然可以采用大量苯循环来解决上述问题,但导致分馏系统投资和能耗的增加。因此,为了保证乙烯溶解、控制床层温升,同时满足苯烯比3.0的工艺条件,采用过量苯和部分反应产物循环与多点乙烯进料相结合的方法,既降低了苯烯比、减少了能耗,还可保证物耗没有增加。

2.2.2.2 影响烷基化反应的主要因素

影响烷基化反应的主要因素包括反应温度、苯烯比、乙烯空速和原料杂质。反应压力对催化剂活性、选择性的影响不大。反应压力高,有利于乙烯的溶解,但也不宜太高,否则会增加投资和能耗。因此,应根据维持反应系统完全处于液相状态的要求,确定合适的反应压力。

反应温度是影响反应的重要因素。试验表明,在较低温度下,乙苯选择性高,但是催

化剂的活性较低;随着反应温度升高,催化剂的活性增加,但乙苯选择性下降,当反应温度升到240、250℃时,乙苯选择性反而增加。这是因为在上述条件下,催化剂的烷基转移性能得以发挥,生成的多乙苯又与过量苯转化成为乙苯,提高了乙苯的选择性。值得注意的是,反应温度过高,将使重质物增多,乙苯收率下降。根据以上分析,烷基化反应的温升应控制在适当范围内(小于40℃),以保证最有效地发挥催化剂的活性和稳定性。烷基化反应的正常操作温度是200~245℃。

苯烯比是指反应原料苯与乙烯的摩尔比。试验表明,苯烯比越大,乙苯选择性越高,多乙苯选择性越低;反之,则乙苯选择性下降,多乙苯选择性增加,增加的多乙苯虽然可通过烷基转移反应转化为乙苯,但处理量增大。另外,苯烯比过低,将使生成的重质物增多。因此,苯烯比的大小将直接影响装置的能耗和反应结果。设计的烷基化反应的苯烯比是3.0。

乙烯空速低,有利于提高乙苯的选择性。但催化剂装量大,生产成本高。应根据催化剂的性能,确定适宜的乙烯空速。

原料杂质对烷基化反应的影响主要表现在对催化剂寿命的影响。原料乙烯和苯中的碱性氮化物将占据催化剂的酸性中心,造成催化剂失活,极大地减少催化剂的寿命。通常采用白土对原料苯进行预处理。另外,反应物中少量的溶解水对维持催化剂活性稳定性是有益的,但如果长期使催化剂处于高水含量的反应物中,对催化剂的寿命极为不利。最佳的反应物中水含量是100~200ppm 。因此,必须严格控制原料中的杂质含量。

2.2.2.3 烷基转移反应

烷基化反应中产生的少量多乙苯(主要是二乙苯、三乙苯)可在一定的温度、压力条件和酸性催化剂的作用下,通过与苯发生烷基转移反应,转化成为乙苯,从而提高乙苯收率。其主要方程式如下:

565246252662)(H C H C H C H C H C ?→←+

4625256523635266)()(H C H C H C H C H C H C H C +?→←+

理论上讲,所有的多乙苯都可以进行烷基转移反应,但实际上受分子筛孔道及扩散的限制,四乙苯以上的多乙苯几乎不发生烷基转移反应。

烷基转移反应是可逆的二级反应,接近热力学平衡。由于烷基转移反应的热效应很小,因此反应器催化剂床层中几乎没有温升。同烷基化反应一样,烷基转移反应也是发生在分子

筛催化剂的酸性活性中心上。除了生成乙苯外,还可生成重质化合物,从而导致物耗增加,乙苯收率下降,因此应最大可能地减少副反应的发生。工艺要求烷基转移反应在液相条件下进行。

2.2.2.4 影响烷基转移反应的主要因素

影响烷基转移反应的主要因素包括反应温度、苯与多乙苯分子比、空速和原料杂质。反应压力是根据保证在全液相反应条件下操作来确定的,它对烷基转移反应的结果没有影响。

反应温度是控制催化剂活性的主要工艺参数之一。温度越高,催化剂活性越高。当催化剂逐渐失活时,即烷基转移反应器多乙苯单程转化率下降,可通过逐步提高温度使其活性恢复。设计反应温度的范围是175~235℃。需注意的是:升温可以提高烷基转移反应的速率,但如果升温速度太快,将导致催化剂失活速度加快,使用周期缩短,因此必须严格控制反应温度和升温速度。通常是根据反应系统中多乙苯产量平衡来确定适宜的反应温度。

进料中苯量增加可以获得较高的多乙苯转化率和乙苯选择性。但过多的苯在系统中循环将增加苯塔的负荷,增加能量消耗。设计的烷基转移反应苯与多乙苯分子比为8。

由于烷基转移反应是热力学平衡控制,降低空速,增加反应的停留时间有利于提高多乙苯的转化率。但空速也不宜过低,否则催化剂装量过多,增加了成本。

烷基转移反应时,进料中水含量与反应温度的控制关系密切。如果水含量过高,需要增加反应温度。通常苯中水含量无需控制,但需时常监测,并据此调整反应温度。一般反应进料中的水含量为50~150ppmwt。

2.2.3 工艺流程说明

乙苯单元工艺流程主要包括烷基化反应、烷基转移反应、苯原料精制、乙苯精馏等部分。乙苯单元的工艺原则流程图见附图POSM-10-N-8001~POSM-10-N-8007。

2.2.

3.1 烷基化工艺流程

1) 正常操作工况下的烷基化工艺流程

烷基化反应系统的作用是将苯和乙烯转化为乙苯和多乙苯。

本装置设计的烷基化反应的苯烯比为3.0。为了更好地控制烷基化反应器的温升,保证

乙烯的溶解,减少催化剂的积炭,延长催化剂的使用寿命;以及为了提高烷基化反应的乙苯选择性,烷基化工艺设计采用三反七段加循环的流程。通过调整各段乙烯进料与循环物料的流量,保证乙烯的溶解和各段催化剂床层的温升在适当范围。

设计烷基化反应器为绝热反应器,共三台,第一台反应器中有一段催化剂床层,第二台反应器中有二段催化剂床层。第三台反应器中有四段催化剂床层。要求反应器在足够的压力下操作,以维持反应在全液相状态下进行。

乙烯按一定的比例分成7份,分别进入7段催化剂床层中,原料苯从第一烷基化反应器依次通过第二、第三烷基化反应器,物流的流向均为自下而上。在第二烷基化反应器的出口使部分物流返回到第一烷基化反应器的入口,可增大反应原料对乙烯的溶解,设计第一烷基化反应器与第二、第三烷基化反应器各段乙烯进料之比是1.3186:1.3186:1,三台反应器的温升均小于40℃。

在本工艺设计中,由于苯烯比仅为3.0,烷基化反应系统放出的热量大于需要提供的热量。因此在每台反应器之间设置取热装置,以保证满足适宜的反应条件。第一烷基化反应器的出料用于发生0.45MPaG的蒸汽,第二烷基化反应器的出料先预热烷基化反应原料苯,多余的热量再发生0.45MPaG的蒸汽,第三烷基化反应器中段出料先加热烷基转移反应的进料,再发生0.45MPaG的蒸汽,第三烷基化反应器的出料直接送入乙苯精馏工段。因烷基转移反应温度需要随着催化剂活性的降低而逐渐提升,当反应温度达到235℃时,需将第三烷基化反应器的出口温度提高至245℃,以满足加热烷基转移进料的要求。烷基化反应原料苯来自乙苯精馏工段。正常工况下,烷基化反应原料苯与第二烷基化反应器的出料换热后就能达到第一烷基化反应器入口温度;开工时,则用开停工加热器预热苯进料。来自界外的乙烯被分别送入第一、第二和第三烷基化反应器各段,与苯进行烷基化反应。在第一烷基化反应器、第二烷基化反应器下段和第三烷基化反应器的1、3段,乙烯与苯在反应器外的静态混合器中混合,而第二烷基化反应器上段和第三烷基化反应器的2、4段,乙烯与苯在反应器内混合。

2) 切换工况下的烷基化工艺流程

由于第一烷基化反应器的催化剂受原料杂质的影响最直接,更易失活,为保证装置满足5年的运转周期,设计了第一烷基化反应器可切出更换催化剂的流程(切换流程)。即:将第一烷基化反应器与其余二台反应器隔离,单独更换催化剂。换剂期间,另二台烷基化反应

器仍可继续操作。此时,乙烯与苯分别在第二和第三烷基化反应器中的六段催化剂床层上发生烷基化反应,在苯进料量不变的条件下,通过调整各段乙烯进料与循环物料的流量,乙苯装置操作负荷仍可达到100%。设计切换工况时第二、第三烷基化反应器各段的乙烯进料量之比是1.385:1.385:1:1:1:1,反应器各段的温升约23℃。

2.2.

3.2 烷基转移工艺流程

烷基转移反应系统的作用是将回收的多乙苯转化成目的产物乙苯。烷基转移反应在一台绝热反应器中进行,反应器中有三段催化剂床层。反应器要在足够的压力下操作,以维持反应在全液相状态下进行。

烷基转移反应器的进料包括来自乙苯精馏工段的回收苯和多乙苯混合物。它们经第三烷基化反应器中段出料加热到反应温度后,进入烷基转移反应器发生反应。

原料苯中的水含量对催化剂寿命和反应结果影响较大,需严格控制。

烷基转移反应的反应热很小,整个催化剂床层的温度几乎相同,反应器出料直接送入乙苯精馏工段。

2.2.

3.3 催化剂处理

本装置内不设催化剂再生系统。烷基化催化剂和烷基转移催化剂都采用器外再生方式,再生周期5年。烷基化催化剂的初装量约51.0吨,预留部分待更换的烷基化催化剂约为9.2吨。

每台反应器的催化剂在卸出前,反应器都需经过排放、减压,排净物料(大部分是苯),然后通入过热蒸汽对催化剂进行吹扫,使苯含量小于10ppm,再用约180℃的热氮气吹扫,置换出蒸汽和吸附的水分,最后用空气使催化剂床层降温。

2.2.

3.4 苯原料预处理

由于苯原料中的杂质,特别是碱性氮化物,对催化剂活性及稳定性的影响很大,装置内设有白土处理器和分子筛处理器,以尽量减少杂质的影响,延长催化剂的使用。补充的新鲜苯通过白土处理,脱除碱性氮化物,然后由热的乙苯产品加热至151℃左右,再进入分子筛处理器中,进一步吸附其中的杂质,经分子筛剂处理后的苯送入苯塔回流罐。白土和分子筛剂使用一段时间失效以后,需用0.45MPaG的过热蒸汽和180℃热氮气进行处理,用蒸汽、氮气吹扫、置换后,排放气(氮气)中苯含量应小于10ppm。卸出的白土可回收处理。设计白

土处理器二台,切换操作;分子筛处理器一台。

2.2.

3.5 乙苯精馏

乙苯精馏工段共有四个塔,其中苯塔、乙苯塔、多乙苯塔,用于分离反应产物中的苯、乙苯、多乙苯和残油,脱非芳塔用于除去反应物中的不凝气、水和轻非芳烃。

反应产物中未反应的苯在苯塔塔顶回收,苯塔塔顶蒸汽部分冷凝后产生0.45MPaG蒸汽。苯凝液一部分作为苯塔回流,其余与补充的新鲜苯和脱非芳塔塔釜物料一起返回到第一烷基化反应器。另外,由于塔顶回收苯中水含量超过烷基转移反应工艺的要求,故烷基转移反应的进料苯从苯塔上部第四板抽取。

苯塔回流罐中未冷凝的气体直接送入脱非芳塔底部,塔顶蒸汽经冷凝冷却,非芳烃(富含苯)凝液大部分作为塔的回流,少量的凝液间歇排至芳烃抽提装置回收其中的苯。不凝气(甲烷、乙烷等轻烃)排入火炬管网。原料苯中带入的少量水,从脱非芳塔回流罐的分水包中被分离出来。脱非芳塔塔底物料则返回苯塔回流罐。

苯塔塔底物料送至乙苯塔,塔顶得到合格的乙苯产品。乙苯塔塔顶蒸汽冷凝后产生0.45MPaG蒸汽。乙苯凝液一部分作为乙苯塔回流,另一部分作为乙苯产品经能量回收、并冷却到40℃后,送至乙苯产品储罐。

乙苯塔塔底物料被送至多乙苯塔,从塔顶回收多乙苯。该塔为减压塔,在减压操作条件(40kPaA,148℃)下,塔顶多乙苯蒸汽冷凝冷却后产生0.29MPaG的低压蒸汽,多乙苯凝液一部分作为回流返回塔中,另一部分由多乙苯泵送到烷基转移反应系统进行烷基转移反应。多乙苯产品还可冷却后送至中间罐区的多乙苯罐。多乙苯塔顶冷凝器中部分未冷凝的蒸汽和不凝气经冷凝、冷却后,凝液进入回流罐,不凝气经真空泵排至界外处理。多乙苯塔塔底有少量的高沸物残油排出,经冷却后送往POSM装置重燃料油罐。

苯塔、乙苯塔、多乙苯塔的再沸器都采用4.2MPaG的高压蒸汽作热源,脱非芳塔不需要再沸器。

2.2.4 工艺流程叙述

2.2.4.1烷基化和烷基转移反应

来自界外的乙烯,按一定的比例分成7份,分别送至R-10801进料混合器(M-10801)、R-10802进料混合器(M-10802)、第二烷基化反应器(R-10802)中部、R-10803一段进料混

合器(M-10803)、第三烷基化反应器(R-10803)二段入口,R-10803三段进料混合器(M-10804)、第三烷基化反应器(R-10803)四段入口。各部分乙烯分别由流量调节阀控制,其流量比例是1.3186:1.3186:1.3186:1:1:1:1。

来自苯塔回流罐的烷基化反应原料苯,其流量由流量调节阀控制,在烷基化原料苯换热器(E-10802)中与第二烷基化反应器出料换热后,经E-10801旁路进入R-10801进料混合器。在开工时,E-10801用作原料苯的加热器。第二烷基化反应器(R-10802)的部分出料作为循环物料,经烷基化反应循环泵(P-10801)提压,由流量调节阀控制其流量,与原料苯和乙烯在R-10801进料混合器(M-10801)中充分混合,然后进入第一烷基化反应器(R-10801)。正常操作时,反应器R-10801的入口温度可通过调节E-10802壳程物料的流量来控制,温度为210℃;而开工时,需要调节E-10801的加热蒸汽量。来控制R-10801的入口温度。进入第一烷基化反应器(R-10801)下段的物料自下而上通过催化剂床层并发生反应,出料温度为232℃,经过R-10801出料冷却器(E-10806)冷却至202℃,并产生0.45MPaG的蒸汽,然后与一定量乙烯在R-10802进料混合器(M-10802)中混合。通过调节冷却器E-10806旁路的流量,控制第二烷基化反应器入口温度为200℃。第二烷基化反应器的进料——烷基化液自下而上通过催化剂床层并发生反应,在反应器的中部,物料与进入的乙烯混合,并继续发生反应。因反应放热,反应器R-10802的温度升高约40℃。

第二烷基化反应器(R-10802)的另一部分出料在烷基化原料苯换热器(E-10802)中与原料苯换热,再经R-10802出料冷却器(E-10803)冷却并产生0.45MPaG的蒸汽,达到反应所需温度后,与一定量乙烯在R-10803一段进料混合器(M-10803)中混合。调节E-10803旁路的流量,控制第三烷基化反应器(R-10803)的入口温度为200℃。

混合进料在第三烷基化反应器(R-10803)中自下而上通过第一段催化剂床层并反应,然后与通入的乙烯在器内混合,继续向上通过第二段催化剂床层并发生反应。反应器R-10803一、二段的温度升高约40℃。该部分烷基化反应产物从第三烷基化反应器(R-10803)第二段的出口引出,先进入烷基转移原料加热器(E-10805)加热烷基转移反应原料,再经R-10803中间冷却器(E-10804)冷却,并产生0.45MPaG的蒸汽,然后与一定量乙烯在R-10803三段进料混合器(M-10804)中混合。调节E-10804旁路的流量,控制烷基化混合物在第三烷基化反应器(R-10803)第三段床层的入口温度为200℃。反应物料自下而上通过第三段床层并反应,而且在第三、四段床层之间与通入的乙烯混合、继续进行反应。第三烷基化反应器(R-10803)的出料在压力控制下,送入苯塔(T-10801)。通过控制第三烷基化反应器出口的压

力来保证烷基化反应系统完全处于液相状态。第三烷基化反应器出口压力控制为3.55MPaG。

在切换工况下,部分乙烯与烷基化反应原料苯、以及循环物料(第二烷基化反应器出口的部分物料)混合后,直接进入第二烷基化反应器进行反应,第二和第三烷基化反应器按正常工艺流程操作。

烷基转移反应器(R-10804)的进料包括来自多乙苯塔回流罐(D-10805)的循环多乙苯、苯塔侧线抽出的烷基转移原料苯。多乙苯的进料量采用流量控制,原料苯的流量根据多乙苯的流量采用比值控制。进料混合物在烷基转移原料加热器(E-10805)中与烷基化液换热至所需的温度(初期175℃,末期235℃),然后进入烷基转移反应器(R-10804)。反应器的进料温度通过调节烷基转移原料加热器(E-10805)旁路中烷基转移进料的流量来控制。由于催化剂在生产过程中将缓慢失活,需要不断提高反应温度以维持其活性。反应物料自下而上经过催化剂床层进行烷基转移反应,整个床层的温度几乎相同。烷基转移反应器的出料在压力控制下送入苯塔,通过压力控制来保证烷基转移反应器中的物料完全处于液态。

2.2.4.2 苯原料预处理和乙苯精馏

来自界区外的新鲜苯,需经过白土处理器(R-10805A/B)和分子筛处理器(R-10806)进行原料的预处理,其中的碱性氮化物被吸附。经过处理的新鲜苯与乙苯产品在乙苯/新鲜苯换热器(E-10814)中被加热至151℃后,与苯塔顶冷凝器(E-10809)的出料混合,进入苯塔回流罐。苯塔回流罐(D-10802)的液位与分子筛处理器的出料流量串级控制。

烷基化和烷基转移反应产物经过压力控制阀之后,呈汽液两相状态进入苯塔(T-10801)。苯塔(T-10801)塔顶汽相馏分在苯塔顶冷凝器(E-10809)中部分冷凝,并产生0.45MPaG的蒸汽。来自脱非芳塔(T-10804)塔釜的苯以及经白土和分子筛剂处理的补充新鲜苯,与呈汽液两相的苯塔顶冷凝器(E-10809)的出料在管线中混合,进一步冷凝该物流。两相流进入苯塔回流罐(D-10802)。在苯塔回流罐(D-10802)中汽液分离,一部分凝液在流量控制下经苯塔回流泵(P-10804)送回塔顶作回流,另一部分作为原料苯,在流量控制下,由烷基化原料苯泵(P-10802)送至烷基化原料苯换热器(E-10802),返回烷基化反应系统。苯塔回流罐(D-10802)设有分水包,以收集非正常状况下分离出的游离水,收集的污水先排入地下分液罐,再适时排放到污水处理系统。烷基转移反应的原料苯由烷基转移原料苯泵(P-10803)从苯塔上部第4块板抽出,控制一定的流量与多乙苯在R-10804进料混合器

(M-10805)中混合,进入烷基转移反应系统。苯塔塔顶压力与苯塔顶冷凝器壳程的压力串级控制。需要时,塔顶压力也可与苯塔回流罐的气相出料量串级控制。苯塔再沸器(E-10808)采用4.2MPaG的蒸汽加热,塔灵敏板温度与加热蒸汽流量串级,通过调节蒸汽流量,控制灵敏板的温度。蒸汽凝液送入装置的凝液回收系统。苯塔塔釜液位和塔釜出料流量串级控制,塔釜物料送至乙苯塔。

来自苯塔回流罐(D-10802)的蒸汽在流量控制下进入脱非芳塔(T-10804)的底部。脱非芳塔(T-10804)塔顶蒸汽在脱非芳塔顶空冷器(E-10810)中冷凝冷却至55℃,再在脱非芳塔顶水冷器(E-10811)中冷却至40℃。其流出物进入脱非芳塔回流罐(D-10803),从罐中分出的不凝气排至火炬。因含有少量的游离水,冷却的液体将分为油相和水相。聚集在分水包中的水,在液位控制下排入地下排液罐(D-10811),经地下罐沉降后,用排水泵打到全厂污水处理系统。油相由苯及非芳烃组成,这些非芳是随原料苯带来的,并在脱非芳塔回流罐中逐渐富集。在液位控制下,脱非芳塔回流罐(D-10803)中大部分物料经脱非芳塔顶泵(P-10805),送回塔内作回流。并根据非芳累积量的多少,适时将少量的非芳烃物料(富含苯)由非芳烃输送泵(P-10812)送至界区外,防止系统中非芳烃积累。塔底物料在液位控制下,经脱非芳塔底泵(P-10806)送至苯塔回流罐。塔顶压力采用分程控制器控制,该分程控制器在需要时向火炬中排出不凝气体或补充氮气。

苯塔(T-10801)塔底物料以汽液两相进入乙苯塔(T-10802),塔顶汽相馏分在乙苯塔顶冷凝器(E-10813)中全部冷凝,并产生0.45MPaG蒸汽。E-10813中冷凝的液体进入乙苯塔回流罐(D-10804),经乙苯塔顶泵(P-10807)升压后,一部分凝液作为回流在流量控制下返回乙苯塔塔顶;另一部分为乙苯产品,在乙苯塔回流罐(D-10804)的液位控制下先与补充新鲜苯在乙苯/新鲜苯换热器(E-10814)换热至92℃左右,再经乙苯产品空冷器(E-10816)和乙苯产品冷却器(E-10815)冷却到40℃,送入中间罐区的乙苯产品罐。乙苯塔再沸器(E-10812)采用4.2MPaG的蒸汽加热,塔的灵敏板温度与蒸汽流量串级,通过调节蒸汽的流量来控制灵敏板的温度。蒸汽凝液送入POSM装置的凝液回收系统。乙苯塔塔釜液位和塔釜出料流量串级控制,塔底物料送至多乙苯塔。采用分程控制器控制乙苯塔塔顶压力,该分程控制器在需要时排放不凝气到界外处理(可焚烧)或补充氮气。

乙苯塔塔底物料呈气液两相进入多乙苯塔(T-10803),多乙苯塔是减压塔,由多乙苯塔真空泵(SP-10801)维持真空操作,真空泵以多乙苯作密封介质。采用分程控制器,调节从真空泵出口返回真空泵入口的循环流量或补充氮气以控制多乙苯塔的压力。多乙苯塔真空泵

分离的气相物流经真空密封罐(D-10808)排放到界区外(由工程设计单位结合POSM装置统一考虑);液相物流主要是多乙苯,返回多乙苯塔顶泵(P-10809)的入口。另外,从多乙苯塔顶泵(P-10809)的出口,间歇引出少量多乙苯经多乙苯密封液冷却器(E-10823)冷却后,作为循环液供真空系统使用。

多乙苯塔塔顶汽相馏分在多乙苯塔顶冷凝器(E-10818)中冷凝冷却至148℃左右,并产生0.29 MPaG的低压蒸汽,冷凝液进入多乙苯塔回流罐(D-10805)。多乙苯塔顶冷凝器中部分未冷凝的蒸汽和不凝气,在多乙苯塔尾气冷凝器中经冷却水冷却至40℃后,冷凝液进入回流罐,一部分多乙苯在流量控制下由多乙苯塔顶泵(P-10809)送回多乙苯塔作回流;其余的多乙苯在流量控制下,由多乙苯泵(P-10810)送回烷基转移反应系统。在多乙苯塔回流罐(D-10805)液位的控制下,合格的多乙苯物料经多乙苯产品冷却器(E-10821)冷却后排至中间罐区多乙苯储罐。

多乙苯塔再沸器(E-10817)是降膜式蒸发器。塔底物料由多乙苯塔底泵(P-10808)提压,一部分物料在流量控制下进入多乙苯塔再沸器,用4.2MPaG的蒸汽进行加热,冷凝后的蒸汽凝液在多乙苯塔再沸器(E-10817)壳程液位的控制下,送入POSM装置的凝液回收系统。多乙苯塔塔釜液位与多乙苯塔再沸器液位串级,控制塔釜液位恒定。另一部分塔底物料通过残油冷却器(E-10820)冷却,送至POSM装置的重燃料油罐中,灵敏板温度与塔釜残油出料流量串级调节。

在非正常操作中产生的不合格物料,或在开、停工期间各设备倒空所排出的物料,都进入有机物冷却器(E-10822),经冷却水冷却后,送到中间罐区的不合格乙苯罐。

当原料苯中水含量很低(小于50ppm)时,需启动水泵(P-10813)向烷基化反应系统中补充脱盐水,以维持一定的水含量。

2.2.4.3 乙苯中间罐区

乙苯中间罐区包括有二台乙苯产品罐,一台不合格乙苯罐和一台多乙苯罐。其中不合格乙苯罐用于开停工期间不合格物料的储存。如果因漏水等事故装置临时停车时,装置的物料可排到不合格乙苯罐中切水。多乙苯罐用于存放多乙苯,可通过调节送入和排出多乙苯的量,对烷基转移反应系统起到一定的缓冲作用。装置中产生的少量残油可作为燃料油,送至POSM装置的重燃料油罐中。本装置不单设残油罐。

上述中间罐均设在POSM中间罐区,不属于本装置设计范围。

2.2.5 主要工艺条件

2.2.5.1 烷基化和烷基转移反应

烷基化反应和烷基转移反应的操作条件分别列于表2.13和表2.14中。

表2.13 烷基化反应操作条件

项目

第一烷基化

反应器R-10801

第二烷基化

反应器R-10802

第三烷基化

反应器R-10803

入口温度,℃210 200 200/206 出口温度,℃232 241 240/245 出口压力,MPaG ~4.24 ~4.04 3.55 乙烯平均重量空速,h-1 0.434

苯/烯分子比 3.0

乙烯流量,kg/h 3669 3669×2 2782×4 苯和芳烃流量, kg/h 249444 253113 197040

表2.14 烷基转移反应操作条件

项目烷基转移反应器R-10804

反应温度, ℃175~235

出口压力, MPaG 2.6

体积空速(以进料计), h-1 1.71~1.97

苯/二乙苯分子比8

2.2.5.2 乙苯精馏

乙苯精馏系统的操作条件列于表2.15中。

表2.15 乙苯精馏系统操作条件

设备名称项目

苯塔

T-10801

乙苯塔

T-10802

多乙苯塔

T-10803

脱非芳塔

T-10804

塔顶压力, MPaG 0.735 0.13 43 kPaA 0.12 塔顶温度, ℃169 170 155 100 塔底温度, ℃246 231 235~240 110

塔回流量,kg/h 232500(初期)/

247500(末期)

83500 8462 15373

生产工艺流程图及说明

(1)电解 本项目电解铝生产采用熔盐电解法:其主要生产设备为预焙阳极电解槽,项目设计采用大面六点进电SY350型预焙阳极电解槽。铝电解生产所需的主要原材料为氧化铝、氟化铝和冰晶石,原料按工艺配料比例加入350KA 预焙阳极电解槽中,通入强大的直流电,在945-955℃温度下,将一定量砂状氧化铝及吸附了电解烟气中氟化物的载氟氧化铝原料溶解于电解质中,通过炭素材料电极导入直流电,使熔融状态的电解质中呈离子状态的冰晶石和氧化铝在两极上发生电化学反应,氧化铝不断分解还原出金属铝——在阴极(电解槽的底部)析出液态的金属铝。 电解槽中发生的电化学反应式如下: 2323497094032CO Al C O Al +?-+℃ ℃直流电 在阴极(电解槽的底部)析出液态的金属铝定期用真空抬包抽出送往铸造车间经混合炉除渣后由铸造机浇铸成铝锭。电解过程中析出的O 2同阳极炭素发生反应生成以CO 2为主的阳极气体,这些阳极气体与氟化盐水解产生的含氟废气、粉尘等含氟烟气经电解槽顶部的密闭集气罩收集后送到以Al 2O 3为吸附剂的干法净化系统处理,净化后烟气排入大气。被消耗的阳极定期进行更换,并将残极运回生产厂家进行回收处置。吸附了含氟气体的截氟氧化铝返回电解槽进行电解。 电解槽是在高温、强磁场条件下连续生产作业,项目设计采用大面六点进电SY350型预焙阳极电解槽,是目前我国较先进的生产设备。电解槽为6点下料,交叉工作,整个工艺过程均自动控制。电解槽阳极作业均由电解多功能机组完成。多功能机组的主要功能为更换阳极、吊运出铝抬包出铝、定期提升阳极母线、打壳加覆盖料等其它作业。 (2)氧化铝及氟化盐贮运供料系统 氧化铝及氟化盐贮运系统的主要任务是贮存由外购到厂的氧化铝和氟化盐 ,并按需要及时将其送到电解车间的电解槽上料箱内。

生产工艺流程图和工艺描述

生产工艺流程图和工艺描述 香肠工艺流程图 辅料验收原料肉验收 原料暂存肥膘解冻 精肉解冻水切丁辅料暂存分割热水漂洗1 漂洗2 加水绞肉 肠衣验收、暂存(处理)灌装、结扎 (包括猪原肠衣和蛋白肠衣) 咸水草、麻绳验收、暂存浸泡漂洗3 冷却 内包装 装箱、入库 出货

香肠加工工艺说明 加工步骤使用设备操作区域加工工艺的描述与说明 原料肉验收、暂存化验室、仓库 按照原料肉验收程序进行,并要求供应商 提供兽药残留达标保证函及兽医检疫检 验证明 辅料验收、暂 存 化验室、仓库按验收规程进行验收肥膘验收、暂 存 化验室、仓库按验收规程进行验收肠衣验收化验室按验收规程进行验收 肠衣处理腊味加工间天然猪肠衣加工前需用洁净加工用水冲洗,人造肠衣灌装前需用洁净加工用水润湿 咸水草、麻绳 验收 化验室按验收规程进行验收暂存仓库 浸泡腊味加工间咸水草、麻绳加工前需用洁净加工用水浸泡使之变软 解冻解冻间肉类解冻分 割间 ≤18℃、18~20h恒温解冻间空气解冻 分割分割台、刀具肉类解冻分 割间 将原料肉筋键、淋巴、脂肪剔除、并分割 成约3cm小肉块 加工步骤使用设备操作区域加工工艺的描述与说明 漂洗2 水池肉类解冻分 割间 加工用水漂洗,将肉的污血冲洗干净 绞肉绞肉机肉类解冻分 割间 12℃以下,采用Φ5mm孔板 肥膘切丁切丁机肉类解冻分 割间 切成0.5cm长的立方

漂洗1 水池肉类解冻分 割间 水温45-60℃,洗去表面游离油脂、碎肉 粒 灌装、结扎灌肠机香肠加工间按产品的不同规格调节肠体长度,处理量800~1200kg/h ,温度≦12℃ 漂洗3 水池香肠加工间水温45~60℃,清洗肠体表面油脂、肉碎 冷却挂肠杆预冷车间12℃下冷却0.5~1小时,中心温度≦25℃ 内包装真空机、电子 秤、热封口机 内包装间 将待包装腊肠去绳后按不同规格称重,装 塑料袋、真空包装封口 装箱、入库扣扎机、电子 秤 外包装间、成 品仓库 将真空包装的产品装彩袋封口,按不同规 格装箱、核重、扣扎放入成品库并挂牌标 识。

乙苯主要工业生产方法及其危险性分析

乙苯主要工业生产方法及其危险性分析 安全071 李锦洋 摘要:本文概括介绍了工业上乙苯的主要生产方法及对其中危险性的分析 关键词:工业生产、乙苯、烷基化、工艺技术、危险性 乙苯是生产苯乙烯的中间产品,少量的乙苯也用于溶剂、稀释剂以及生产二乙基苯等。目前在工业生产中,除极少数(≯4 %)乙苯来源于重整轻油C8芳烃馏份抽提外,其余90%以上是在适当催化剂存在下由苯与乙烯烷基化反应来制取。 1工业生产乙苯工艺 到目前为止,工业上乙苯主要由苯与乙烯的烷基化反应来生产的。由烷基化制乙苯的工艺至今经历了三个阶段,即由三氯化铝为催化剂的烷基化反应路线,以ZSM - 5沸石为催化剂的气相烷基化法以及由Y - 沸石为催化剂的液相法制乙苯工艺路线。近几年来,国内也开展了以沸石为催化剂生产乙苯的研究,并显示了良好的工业前景。同时,催化蒸馏技术制乙苯的研究也取得了进展。 1.1法 法采用的是典型的Friedel - Crafts工艺,用配合物为催化剂。反应的副产物主要为二乙苯和多乙苯,有液相法和均相法之分。 1.1.1 液相法 传统的液相法是DOW化学公司于1935年开发的最早的乙苯生产工艺,在工业生产中占有重要地位。国外多家化学公司都在此基础上开发了自己的技术(Basf 、Shell 、Monsanto 、UCC 等) 。其中,使用最广泛的是UCC/ Badger工艺。 传统的液相法使用- HCl催化剂,溶解于苯、乙苯和多乙苯的混合物中,生成络和物。该络和物在烷基化反应器中与液态苯形成两相反应体系,同时通入乙烯气体,在温度130℃以下,常压至0.15MPa下发生烷基化反应,生成乙苯和多乙苯,同时,多乙苯和乙苯发生烷基转移反应。反应器中乙烯与苯摩尔比为0.30~0.35 ,乙烯转化率接近100%,烷基化反应收率为97.5%。催化剂、苯、多乙苯循环使用,每吨乙苯副产焦油1.8~2.7kg。此反应中苯的烷基化反应和多乙苯的烷基转移反应在一台反应器中完成。为限制多乙苯的生成,必须控制乙烯与苯的比例。工业生产装置控制乙烯与苯的分子比为0.3~0.4 左右。反应产物的平衡组成只与反应混合物中烷基和苯核有关。工艺流程见图1。 1.1.2 均相法 由于传统的法存在着污染腐蚀严重及反应器内两个液相等问题,1974年Monsanto/ Lummus公司提出了均相法。该工艺通过控制乙烯的投料,使催化剂的用量减少到处于溶解度范围内,使反应可以在均一的液相中进行,提高了乙苯的产率。反应温度为160~180℃,压力0.6~0.8MPa ,乙烯与苯的摩尔比为0.8。均相法进料乙烯浓度范围可为15%~100%。当用稀乙烯为原料时,原料气中、、C和O均需净化至质

原材料使用及生产工艺流程说明

原材料使用及生产工艺流程说明 第一章:原材料明细 婴儿纸尿裤、纸尿片的组成材料主要为:非织造布、进口原生纯木浆、高分子吸水树脂(SAP)、湿强纸、仿布防漏流延膜、热熔胶、左右腰贴、前腰贴、弹性PU等。 一.原材料使用要求:所有原材料外观应洁净,无油污、脏污、蚊虫、异物;并且符合环保要求;无毒、无污染、材料可降解;卫生指标符合GB15979 《一次性使用卫生用品卫生标准》规定要求。 二.原材料使用明细: 非织造布:主要用于产品的面层、直接与婴儿皮肤接触、可选的材料有无纺布或竹炭纤维; 进口原生木浆:主要作用是快速吸收尿液;可选材料主要为原生针叶木浆。已经考察的品牌有美国的石头、白玉、惠好、IP、瑞典的女神、俄罗斯的布阔等; 高分子吸水树脂:主要作用是吸收、锁住水分;主要选择日本住友和德国巴斯夫; 湿强纸:卫生包装用纸,含有湿强剂;主要用于包覆绒毛浆和SAP的混合物,便于后续工艺以及防止吸收体分解; 仿布防漏流延膜:主要用作产品的底层;防止尿液渗漏污染衣物或床上用品;主要参考的材料是台湾的复合透气流延膜; 热熔胶:用于任意两种材料的复合;主要选用德国汉高的产品或国民淀粉; 左右腰贴和前腰贴:主要用于婴儿纸尿裤上、让产品具备一定的形状;主要采用美国3M公司产品; 弹性PU:主要作用是让产品更贴身、防止尿液后漏;首选产品为美国3M 弹性PU 。 第二章:工艺流程

一.工艺流程 木浆拉毛——SAP添加——湿强纸包覆——吸收体内切——面层复合——前腰贴复合——底膜复合——左右贴压合——主体折合——产品外切——三折——成品输送——包装——装箱——检验入库——结束 二.流程说明 木浆拉毛:原生木浆经过专用设备拉毛成为绒毛浆;才具备快速吸水的能力; SAP添加:准确控制SAP的施加量,使其均匀混合在绒毛浆里,增加吸收体的吸水速度;利用SAP的锁水特性使混合物吸水后不会反渗; 湿强纸包覆:为了工艺的流畅性以及吸收体的整体性,利用湿强纸的特性对绒毛浆和SAP的混合物进行包覆; 吸收体内切:对经过湿强纸包覆的混合装物体进行分切;使其具备吸收体的形状; 面层复合:将面层材料(无纺布或竹炭纤维)用热熔胶复合在吸收体上,是吸收体不直接与皮肤接触; 前腰贴复合:在底膜和吸收体符合前,为了工艺的流畅性首先把前腰贴复合在底膜上; 底膜复合:利用热熔胶将底膜复合在吸收体上; 左右贴压合:利用压力将左右贴复合在底膜和面层上; 主体折合:将吸收体以外的部分折合在吸收体上,方便后续工艺进行; 产品外切:根据产品规格对产品进行分切; 三折:对分切后的产品进行折合,方便后续包装; 成品输送:将分切后的产品输送到包装部位; 包装:将三折后的产品按照一定的数量装入包装袋; 装箱:将包装后的产品装入纸箱。 检验入库:入库前对产品进行最后一次检验;合格后入库。 流程结束!

包装机械生产工艺流程图及说明

钣金件工艺 机加工生产加工工艺 钣金车间工艺要求流程 (1)钣金车间可根据图纸剪板下料,在相应位置冲孔和剪角剪边。以前工序完成后进行折弯加工;第一步必须进行调整尺寸定位,经检查后进行下一步折弯工艺。折弯后经检查合格组焊;组焊要求必须在工装和模型具下进行组焊。根据图纸要求焊接深度和点处焊接。焊点高度不得超过设计要求、焊机工艺要求;2mm以下必须用二氧化碳保护焊和氩弧焊接。不锈钢板必须用氩弧焊。焊接件加工成形后进行校整,经检查符合图纸要求后进行下一步打磨拉丝。打磨必须以

量角样板进行打磨,不得有凸出和凹缺。拉丝面光吉度必须按图纸要求进行。 (2)外协碳钢件表面处理喷漆工艺要求:喷沙或氧化面积不得小于总面积的95%,除去沙和氧化液进行表面防锈喷漆和电镀处理。经底部处理后再进行表漆加工,表漆加工必须三次进行完成。喷塑厚度不得小于0.35mm。钣金件经检验合格后进厂入半成品库待装。 (3)入库件摆放要求:小件要求码齐入架存放。大件必须有间隔层,可根据种类整齐存放。 机加件加工流程: (1)机加工件工艺要求;原材料进厂由质检部进行检验,根据国家有关数据进行检测,进厂材料必须检测厚度、硬度、和其本几何尺寸。 (2)下料;根据图纸几何尺寸加其本加工量下料,不得误差太大。 (3)机床加工;根据零件图纸选择基本定位面进行粗加工、精加工,加工几何尺寸保留磨量。 (4)铣床加工;根据零件图纸选择基本刀具装入刀库,在加工过程中注意更换刀库刀具,工件要保整公差。 (5)钳工;机加件加工完成后根要求进行画线钳工制做,在加工过程中必须用中心尖定位。大孔首先打小孔定位再用加工大孔。螺纹加工要在攻丝机进加工,不得有角度偏差。螺纹孔加工后螺栓要保

球团工艺简介及生产流程图

烧结厂球团工艺简介及生产流程图 德晟金属制品有限公司烧结厂建设1座12m 2竖炉,利用系数 6.3t/m 2?h ,年产酸性球团矿60万t 。 车间组成及工艺流程 1.1 车间组成 车间组成:配料室、烘干机室、润磨室、造球室、生筛室、转运站、焙烧室、带冷机通廊、成品缓冲仓、风机房、煤气加压站、软水站、高低压配电室等。 1.2 工艺流程 工艺流程图见付图 1.2.1 精矿接受与贮存 竖炉生产主要原料为磁铁矿精粉,对铁精粉化学成分要求是 精矿进料采用汽车输送,汽车将精矿粉卸到下沉式精矿堆场,经抓斗吊运至配料仓。 进厂铁精粉化学成分 名称 TFe( %) Feo (%) SiO2(%) S(%) 粒度(-200mm ) 磁铁矿 份 ≥65 ≤23 ≤7 ≤0.2 ≥85

1.2.2膨润土接受与贮存 竖炉对膨润土化学成分要求是: 进厂膨润土化学指标 名称 吸水率(2h) ∕% 吸蓝量 (100g膨润土∕g) 膨胀容(2g 膨润土∕ml) 粒度 (-200mm) 水分 (%) 钠基膨 润土 ≥400 ≥30 15 ≥95 ≤10 袋装膨润土用汽车运入,储存在膨润土库,由库内设的电葫芦将袋装 膨润土运至膨润土配料仓平台,由人工抖袋将膨润土卸到膨润土配料仓。 1.2.3配料系统 配料矿槽采用单列配置,4个精矿配料仓,容积100m3,储量8.8h,三用一备;2个膨润土仓,膨润土仓为一用一备。配料室为地 下结构。采用自动重量配料,根据设定的给料量和铁精粉与膨润土的 配比,自动调节给料量。铁精粉通过仓下2m圆盘给料机和配料皮带 秤配料。膨润土通过螺旋给料机和螺旋秤配入皮带。圆盘给料机和螺 旋给料机采用变频控制。并且尽量做到铁精矿与膨润土两料流首尾重合。在配料室膨润土落料点处和膨润土设抽风除尘,采用布袋除尘器, 布袋除尘器采用反吹清灰方式。 设置铁精粉仓库和膨润土库。铁精粉仓库能容纳约9天的用量, 下沉式结构,铁精粉采用抓斗吊上料,设置2台10t抓斗吊。膨润土 库用来堆放袋装膨润土,膨润土设电葫芦环形轨道由电葫芦将袋装膨

【完整版】10万吨年乙苯脱氢制苯乙烯装置工艺设计与实现可行性方案

10万吨/年乙苯脱氢制苯乙烯装置工艺设计方案 前言 本设计的内容为10万吨/年乙苯脱氢制苯乙烯装置,包括工艺设计,设备设计及平面布置图。

本设计的依据是采用低活性、高选择性催化剂,参照鲁姆斯(Lummus)公司生产苯乙烯的技术,以乙苯脱氢法生产苯乙烯。苯乙烯单体生产工艺技术:深度减压,绝热乙苯脱氢工艺乙苯脱氢反应在绝热式固定床反应器中进行,其特点是:转化率高,可达55%,选择性好,可达90%。特殊的脱氢反应器系统:在低压(深度真空下)下操作以达到最高的乙苯单程转化率和最高的苯乙烯选择性。该系统是由蒸汽过热器、过热蒸汽输送管线和反应产物换热器组成,设计为热联合机械联合装置。整个脱氢系统的压力降小,以维持压缩机入口尽可能高压,同时维持脱氢反应器尽可能低压,从而提高苯乙烯的选择性,同时不损失压缩能和投资费用。 所需要的催化剂用量和反应器体积较小,且催化剂不宜磨损,能在高温高压下操作,内部结构简单,选价便宜。在苯乙烯蒸馏中采用一种专用的不含硫的苯乙烯阻聚剂。它经济有效且能使苯乙烯焦油作为燃料清洁地燃烧。 工业设计的优化和设备的良好设计可使操作无故障,从而可减少生产波动. 本设计装置主要由脱氢反应和精馏两个工序系统所组成。原料来自乙苯生产装置或原料采购部门,循环水、冷冻水、电和蒸汽来由公用工程系统提供,生产出的苯乙烯产品到成品库。 此设计过程中,为了计算方便,忽略了一些计算过程,故有一定的误差,另由于计算时间比较仓促,有些问题不能够直接解决。设计中有不少错误之处,请指导老师予以批评指正,多提出宝贵意见。 苯乙烯设计任务书 一、设计题目:年产10万吨苯乙烯的生产工艺设计

生产工艺流程示意图和工艺说明

AHF生产工艺流程示意图和工艺说明 干燥的萤石粉经螺旋机进入斗式提升机、卸入萤石粉储仓,再由储仓定时加入萤石计量斗,经电子秤,变频调节螺旋输送机将萤石粉定量送入反应器。 来自硫酸储槽的98%硫酸经电磁流量计、调节阀调节流量送至H2SO4吸收塔吸收尾气中的HF,而后进入洗涤塔洗涤反应气体夹带的粉尘及其夹带的重组分,然后进入混酸槽。发烟硫酸经电磁流量计、调节阀调节流量与98%硫酸配比计量后一并送至混酸槽。在混酸槽中经过混合,使SO3与98%硫酸中的水分及副反应水分充分反应,达到进料酸中水含量为零,而后进入反应器。进入反应器的萤石和硫酸严格控制配比,在加热的条件下氟化钙和硫酸进行反应。反应所需热量由通过转炉夹套的烟道气提供。烟道气来自燃烧炉由煤气燃烧产生。煤气发生炉产生的煤气经管道输送至燃烧炉。离开回转反应炉夹套的烟道气经烟道气循环风机大部分循环回燃烧炉,少量烟道气经烟囱排空。反应系统为微负压操作,炉渣干法处理。 反应生成的粗氟化氢气体,首先进入洗涤塔除去水分、硫酸和粉尘。洗涤塔出来的气体经粗冷器将其大部分水分、硫酸冷凝回洗涤塔。粗冷后的气体经HF水冷、一级冷凝器和二级冷凝器将大部分HF 冷凝,冷凝液流入粗氟化氢中间储槽;未凝气为SO2、CO2、SiF4、惰性气体及少量HF进入H2SO4吸收塔,用硫酸吸收大部分HF后进入尾气处理系统。粗HF凝液自粗HF中间储槽定量进入精馏塔,塔底为重组分物料,返回洗涤酸循环系统,塔顶HF经冷凝后进入脱气塔,从脱气塔底部得到无水氟化氢经成品冷却器冷却后进入AHF检验槽,分

析合格后进入AHF 储槽,后送至充装工序灌装槽车或钢瓶出售。从脱气塔顶排出的低沸物和部分未凝HF 气一起进入H 2SO 4吸收塔,在此大部分HF 被硫酸吸收。工艺尾气经水洗、碱洗后,除去尾气中的SiF 4及微量HF ,生成氟硅酸,废气经洗涤处理后达标排放。生产装置采用DCS 集散控制系统。 其化学反应过程如下: CaF 2+H 2SO 4?→? 2HF ↑+CaSO 4 (1) SiO 2+4HF ?→? SiF 4+2H 2O (2) SiF 4+2HF ?→ ?H 2SiF 6 (3) CaCO 3+H 2SO 4 ?→ ?CaSO 4+H 2O +CO 2 (4) ·生产采取的工艺技术主要包括7个生产装置 萤石干燥单元 萤石给料计量单元 酸给料计量单元 反应单元 精制单元 尾气回收单元 石膏处理单元 附:生产工艺流程示意图 ↓ ↓

啤酒生产流程图及说明

啤酒生产工艺流程 啤酒生产工艺流程可以分为制麦、糖化、发酵、包装四个工序。现代化的啤酒厂一般已经不再设立麦芽车间,因此制麦部分也将逐步从啤酒生产工艺流程中剥离。) 一个典型的啤酒生产工艺流程图如下(不包括制麦部分): 注:本图来源于中国轻工业出版社出版管敦仪主编《啤酒工业手册》一书。 图中代号所表示的设备为: 1、原料贮仓 2、麦芽筛选机 3、提升机 4、麦芽粉碎机 5、糖化锅 6、大米筛选机 7、大米粉碎机 8、糊化锅 9、过滤槽 10、麦糟输送 11、麦糟贮罐 12、煮沸锅/回旋槽 13、外加热器 14、酒花添加罐 15、麦汁冷却器 16、空气过滤器 17、酵母培养及添加罐 18、发酵 罐 19、啤酒稳定剂添加罐 20、缓冲罐 21、硅藻土添加罐 22、硅藻土过滤机 23、啤酒精滤机 24、清酒罐 25、洗瓶机 26、灌装机 27、杀菌机 28、贴标机 29、装箱机 (一)制麦工序 大麦必须通过发芽过程将内含的难溶性淀料转变为用于酿造工序的可溶性糖类。大麦在收获后先贮存2-3月,才能进入麦芽车间开始制造麦芽。 为了得到干净、一致的优良麦芽,制麦前,大麦需先经风选或筛选除杂,永磁筒去铁,比重去石机除石,精选机分级。 制麦的主要过程为:大麦进入浸麦槽洗麦、吸水后,进入发芽箱发芽,成为绿麦芽。绿麦芽进入干燥塔/炉烘干,经除根机去根,制成成品麦芽。从大麦到制成麦芽需要10天左右时间。 制麦工序的主要生产设备为:筛(风)选机、分级机、永磁筒、去石机等除杂、分级设备;浸麦槽、发芽箱/翻麦机、空调机、干燥塔(炉)、除根机等制麦设备;斗式提升机、螺旋/刮板/皮带输送机、除尘器/风机、立仓等输送、储存设备。 (二)糖化工序 麦芽、大米等原料由投料口或立仓经斗式提升机、螺旋输送机等输送到糖化楼顶部,经过去石、除铁、定量、粉碎后,进入糊化锅、糖化锅糖化分解成醪液,经过滤槽/压滤机过滤,然后加入酒花煮沸,去热凝固物,冷却分离 麦芽在送入酿造车间之前,先被送到粉碎塔。在这里,麦芽经过轻压粉碎制成酿造用麦芽。糊化处理即将粉碎的麦芽/谷粒与水在糊化锅中混合。糊化锅是一个巨大的回旋金属容器,装有热水与蒸汽入口,搅拌装置如搅拌棒、搅拌桨或

工艺流程说明及工艺原则简图.doc

一、工艺流程说明 1、循环水场工艺流程说明 循环水经凉水塔冷却后,水温降至28℃以下,流入冷却水池,液面控制在工艺指标范围内,冷却水池与吸入水池连通,经吸入水池至循环水泵入口,循环水泵启动正常后,管网压力达到(0.35~0.45)MPa,将循环冷却水送到用水装置相关冷换设备,与热流工艺介质进行热量交换,换热后的冷却水本身温度升高变成热水,温度小于38℃,此时的循环热水靠自身余压被送回到凉水塔顶部,由布水管道喷淋到塔内填料上,空**由塔底进入塔内,并被塔顶风机抽吸上升,与落下的水滴和填料上的水膜相遇进行热交换,水滴和水膜则在下降过程中逐渐降温,当到达冷水池时,水温正好降到符合要求的指标内。 为了提高循环水水质,降低循环水浊度,在循环水泵出口管线上接出管线作为全自动高效过滤罐的入口,循环冷却水进入旁滤罐滤量为循环水量的(1~5)%,入口浊度小于50mg/L,出口浊度小于5mg/L。经过旁滤罐过滤后循环冷却水入循环水泵吸入水池。 为了控制循环水的水质指标,控制冷水池液位,满足工艺指标要求,还需对系统补充一定量的冷却水和排出一定量的排污水。 2、一次水工艺流程说明 望花水厂工业净水经2036表计量后入一次水池或北水源地下井水经泵打入一次水池后,控制液位在正常指标内,水池内的水经格栅入水泵入口,经泵升压后,管网压力达到(0.38~0.5) MPa后,经地下环状管网送到各生产车间和其他单位。 3、一净水工艺流程说明 望花水厂工业净水经2037计量表后,入漩流反应池,在入口管线与计量泵打入的絮凝剂溶液混合后入漩流反应池进行充分混合、反应形成较大的矾花,其中一部分沉降下来,排泥时由排泥管排出。另一部分随水流入斜管沉淀池,在斜管沉淀池内由下向上流动,流经斜管填料使大部分矾花沉降下来,出水经集水槽汇到集水堰后,经出水管注入地下水池,用泵将合格的水送往动力车间作为脱盐水的原料水。沉降下来的那部分沉泥,汇集在池的底部,在排泥时由排泥管排出。 4、消防泵房工艺流程说明 消防泵房为半地下式,水泵为自灌式引水启动。非消防状态管网压力时刻控制在正常指标内。消防水池与泵吸入口相连,消防水泵出口分东西两路,中间设有连通阀。东西两侧地下消防管线与全厂地下环状消防水管网相连,输送至每个消火栓、每一个消防水炮、每一个消防水鹤。 消防水池设高低液位指示与报警,当水池水位处于低液位时,开启补水阀补水,当达到最高水位时,关闭补水阀。消防泵房内设置稳压泵,稳压泵出口设压力指示及低限报警,并与高压消防水泵进行连锁控制。稳压泵将消防水管网压力稳定在(0.8~1.1)MPa,当发生火灾时,由于开启消火栓或消防水炮使管网压力下降,当压力降至小于0.8 MPa时,自动启动高压消防水泵,使管网压力达到(0.7~1.2)MPa。消防泵房内集水池设高低液位指示和报警并与污水泵进行连锁控制。消防水泵压力超过1.4 MPa时,报警并自动停泵。

乙苯催化脱氢合成苯乙烯的工艺流程

二、乙苯催化脱氢合成苯乙烯的工艺流程 脱氢反应: 强吸热反应; 反应需要在高温下进行; 反应需要在高温条件下向反应系统供给大量的热量。 由于供热方式不同,采用的反应器型式也不同。 工业上采用的反应器型式有两种: 一种是多管等温型反应器,是以烟道气为热载体,反应器放在加热炉内,由高温烟道气,将反应所需要的热量通过管壁传递给催化剂床层。 另一种是绝热型反应器,所需要的热源是由过热水蒸气直接带入反应系统。 采用这两种不同型式反应器的工艺流程,主要差别: 脱氢部分的水蒸气用量不同; 热量的供给和回收利用方式不同。 (一)多管等温反应器脱氢部分的工艺流程 反应器构成: 是由许多耐高温的镍铬不锈钢钢管组成; 或者内衬以铜锰合金的耐热钢管组成; 管径为100~185mm; 管长为3m; 管内装填催化剂; 管外用烟道气加热(见图4-9,P182)。

多管等温反应器脱氢部分的工艺流程图见图4-10(P182)所示。 反应条件及流程: 1.原料乙苯蒸气和一定量的水蒸气混合; 2.预热温度(反应进口):540℃; 3.反应温度(反应出口):580~620℃; 4.反应产物冷却冷凝: 液体分去水后送到粗苯乙烯贮槽; 不凝气体含有90%左右的H 2,其余为CO 2和少量C 1及C 2 可作为燃料气,也可以用作氢源。 5.水蒸气与乙苯的用量比(摩尔比)为6~9:1; (等温反应器脱氢,水蒸气仅作为稀释剂用)。 6.讨论: (1)等温反应器:要使反应器达到等温,沿反应器的反应管传热速率的改变,必须与反应所需要吸收热量的递减速率的改变同步。 (2)一般情况下,出口温度可能比进口温度高出几十度(传递给催化剂床层的热量,大于反应时需要吸收的热量。) (3)催化剂床层的最佳温度分布以保持等温为好。 尾气放空烟道气排 冷却水 阻聚剂循环烟道气配比蒸汽 水燃料雾化 蒸 汽粗笨乙烯至精馏工段 12345 671图4-10 多管等温反应器乙苯脱氢工艺流程 1-脱氢反应器;2-第二预热器;3-第一预热器;4-热交换器;5-冷凝器; 6-粗乙苯贮槽;7-烟囱;8-加热炉

工艺流程说明书

工艺说明书 工艺流程说明 由空气压缩工序、反应工序、蒸汽发生工序和甲醛吸收工序组成。 1)压缩工序 新鲜空气通过空气过滤器进入罗茨鼓风机升压,风机出口气与吸收二塔(碱洗水洗2塔)顶部循环尾气混合后送到反应工序。 2)反应工序 从罐区来的原料甲醇先送到甲醇贮罐,再通过甲醇泵进入甲醇蒸发器,在此与甲醛循环泵送来的吸收二塔的甲醛循环溶液进行热交换,甲醇吸热而汽化,同时与风机来的气体相混合形成原料气体。原料气体再经过甲醇过热器过热后,进入主反应器。 原料气在这个固定床反应器的铁钼催化剂上发生反应后,生成甲醛反应气。该气体首先经过甲醇蒸发器管间,通过与原料混合气换热而自身冷却,然后进入吸收工序。 3)蒸汽发生工序 当甲醇、空气和水蒸气的原料混合进入反应器,在银催化剂上发生催化剂作用而生成甲醛时,其主要反应是氧化,脱氢反应。 甲醇氧化反应在200℃左右开始进行,因此经预热进入反应器的原料混合器,必须用电热器点火燃烧,当催化床温度升至200℃左右,反应开始缓慢进行,它是一个放热反应,放出的热量使催化床随着温度的升高至使氧化反应不断加快,所以,点火后催化床的温度升高非常迅速。甲醇脱氢反应在低温时几乎不进行,当催化床温度达600℃左右,反应成为生成醛的主要反应之一。脱氢反应是一个强吸热反应,故有反应的发生。对控制催化床的温度升高是有利的。脱氢反应是一个可逆反应,所谓可逆反应就是甲醇脱氢生成醛的同时,甲醛与氢也可向生成甲醇的方向进行,这类反应在化学反应中可用可逆符号来代替的。当原料混合气中的氧与脱氢反应生成的氢化合为水时,可使脱氢反应不断向生成甲醛的方向移动,从而提高了甲醇的转化率。

反应放出的热量,除抵消脱氢所需的热量,反应气体升温和反应器向周围环境的散去热量外,还有剩余。因此生产上不仅不需要外界供热,而且还必须在原料混合气中引进水蒸汽,利用水蒸汽的升温带热作用,将多余的热量从反应系统中移去,使反应能正常进行下去。此外,在反应器中还发生下列副反应。 4)甲醛吸收工序 来自甲醛蒸发器被冷凝的气进入吸收一塔,吸收一塔顶部出来的未被吸收气体进入吸收二塔。工艺水由管网供入,从吸收二塔顶部进入,与气相逆流接触进行甲醛吸收。吸收二塔底部出来的液体由甲醛循环泵经甲醛预热器和甲醛循环冷却器冷却后进入吸收一塔上段及中段,该甲醛液与甲醇蒸发器换热冷却后的甲醛反应气逆流接触得到甲醛溶液,并用甲醛循环泵在该塔下段循环,同时从甲醛循环泵采出一股甲醛溶液经冷却后作为产品送至甲醛装置的中间罐区甲醛溶液贮槽。 吸收二塔顶出来的尾气,一股返回风机入口,另一股进入尾气锅系统处理,处理过的尾气,完全能达到环境保护的要求,由烟囱在高处排放。

生产工艺流程图和工艺说明

1 9 10 12 2 11 13 3 14 4 15 5 16 17 8 7 6 18 至提升机工艺流程设备编号及名称 编号名称 1 永磁筒 2 圆筒初清筛 3 电动三通 4 锤片粉碎机 5 吸尘罩 6 栅筛 7 下料斗 8 斗式提升机 9 风帽 10 组合脉冲除尘器 11 叶轮式闭风机 12 双轴桨叶混合机 13 自动闸门 14 料位器 15 手动闸门 16 螺旋喂料器 17 电子秤 18 刮板输送机 工艺流程图

19 23 20 24 21 25 22 26 工艺流程设备编号及名称编号名称 19 环模制粒机 20 空压机 21 双层冷却器 22 对辊破碎机 23 振动分级筛 24 离心通风机 25 离心集尘器 26 自动打包机 集尘袋

生产流程图工艺说明 一.原料粉碎 需粉碎原料经栅筛除去较大杂质后,投放到下料斗经吸尘罩吸,其目的是降低粉尘浓度。由提升机送到永磁筒除去磁性铁杂质,再经圆筒初清筛得到合格的原料经粉碎储备仓进入粉碎机粉碎至需要大小粒度的粉料 小学少先队组织机构 少先队组织由少先队大队部及各中队组成,其成员包括少先队辅导员、大队长、中队长、小队长、少先队员,为了健全完善我校少先队组织,特制定以下方案: 一、成员的确定 1、大队长由纪律部门、卫生部门、升旗手、鼓号队四个组织各推荐一名优秀学生担任(共四名),该部门就主要由大队长负责部门内的纪律。 2、中、小队长由各班中队公开、公平选举产生,中队长各班一名(共11名),一般由班长担任,也可以根据本班的实际情况另行选举。小队长各班各小组先选举出一名(共8个小组,就8名小队长)然后各班可以根据需要添加小队长几名。 3、在进行班级选举中、小队长时应注意,必须把卫生、纪律部门的检查学生先选举在中、小队长之内,剩余的中、小队长名额由班级其他优秀学生担任。 4、在班级公开、公平选举出中、小队长之后,由班主任老师授予中、小队长标志,大队长由少先队大队部授予大队长标志。 二、成员的职责及任免 1、大、中、小队长属于学校少先队组织,各队长不管是遇见该班的、外班的,不管是否在值勤,只要发现任何人在学校内出现说脏话、乱扔果皮纸屑、追逐打闹、攀爬栏杆、乱写乱画等等一些违纪现象,都可以站出来制止或者报告老师。 2、班主任在各中队要对中、小队长提出具体的责任,如设置管卫生的小队长,管纪律的小队长,管文明礼貌的、管服装整洁的等等,根据你班的需要自行定出若干相应职责,让各位队长清楚自己的职权,有具体可操作的事情去管理,让各位队长成为班主任真正的助手,让学生管理学生。各中队长可以负责全班的任何违纪现象,并负责每天早上检查红领巾与校牌及各小队长标志的佩戴情况。 3、大、中、小队长标志要求各队长必须每天佩戴,以身作则,不得违纪,如有违纪现象,班主任可根据中、小队长的表现撤消该同学中、小队长的职务,另行选举,大队长由纪律、卫生部门及少先队大队部撤消,另行选举。 4、各班中、小队长在管理班级的过程中负责,表现优秀,期末评为少先队部门优秀干部。

工艺设计说明书-格式

设计说明书一般格式 一、设计题目(要求:简明扼要,紧扣主题) ××××××××××项目(主题目) 例如:高压法聚乙烯生产工艺设计 ————设计生产能力100万T/a 二、工艺设计的一般项目及内容 1. ×××××××工艺设计说明书(工艺设计的总情况说明,必做部分,也是学生重点掌握的内容和工作程序。在工业设计过程中往往与可行性研究报告一起作为申报项目的资料。也为工业生产装置的初步设计提供基础资料。一般包括以下10个方面的问题) 1.1概述 1.1.1 项目的来源(原因说明,如国家级项目?省级项目?市级项目?国 外引进项目?技改项目?新上项目?新产品项目?节能项目?环保项目? 对于学生来讲,可有自选项目?老师科研项目?校企联合项目?学校或老师指定项目?); 1.1.2 ×××××项目的国内外生产(技术)工艺现状(就本项目或产品 或技术的国内外工艺现状,以正式发表的技术或公开的资料为依据,至少要有3个不同的国家或研究院所或企业的现状说明,并比较其优劣性); 1.1.3 本工艺技术的特点(较详细的说明本工艺、技术的优缺点,重点在 优点。包括理论原理、技术成熟程度、设备情况、工艺过程、安全问题、环保问题、经济效益、与其他技术工艺相比所具有的优点以及发展前景等); 1.1.4 项目承担单位概述(对于实际工程项目应包括三个方面:一是该技 术工艺研究单位或技术转让单位的情况;二是承担设计单位的情况;三是项目建设单位的情况。对于学生来讲可简述学校的情况或选择一个实际单位或虚拟单位); 1.1.5 其它需要说明的问题(是指在整个设计过程中可能遇到或用到的有

关情况。如项目承担单位的地理环境、气候环境、资源优势、技术优势、产业优势、公用工程优势以及供应和销售优势等。) 1.2 生产规模及产品质量要求 1.2.1 生产规模(即设计规模。一般可以是产品的产出规模;也可以是原料的需用规模。如:20万吨/年离子膜烧碱生产工艺设计《20万吨烧碱产品》;500万吨/年原油常减压生产工艺设计《原料石油为500万吨》;); 1.2.2 产品质量要求(即生产的产品质量标准,一般也包括副产品的质量标准。原则上,有高标准不得采用低标准。如首选国家标准,再有部颁标准、行业标准、地方标准、企业标准。也可选择国际通用标准或国外先进标准。没有标准不得生产,如需先制订企业标准等。学生设计可假象一个标准,但依据必须充分); 1.2.3 副产品的种类、质量指标(说明副产品的种类及其数量或吨位。质量要求与产品相同); 1.2.4 其它需要说明的问题(是指在整个设计过程中可能遇到或用到的有关情况。如产品或副产品的国内外质量现状、技术要求、环保要求、ISO质量体系要求、欧洲Rosh体系要求等。); 1.3 工艺设计依据 1.3.1 本工艺设计的文件依据(各种上报文件、上级批文、资金担保文件、 土地使用或征用文件、专利依据、技术转让或成果证明等资料。); 1.3.2 ×××××的技术依据(技术理论原理、工艺原理、技术可行性、 主要技术指标或技术条件等。如对于有机合成方面可从反应机理、催化剂技术、反应设备、自动控制等方面说明); 1.3.3 原材料来源(质量指标)及经济技术指标(主要包括原材料的质量 要求,可按照产品质量标准说明;经济技术指标是指原材料消耗、收率、转化率、产率、经济效益分析等); 1.3.4 承担单位的基础条件说明(即项目承担单位在生产装置、加工工程、技术条件、人员条件、公用工程等与生产技术有关的基础条件说明); 1.3.5 其他未尽事宜的说明(是指在整个工艺设计过程中可能遇到或用到 的有关情况。如产品或副产品的国内外生产工艺现状、工艺技术要求、环保工艺要求等。); 1.4××××××生产制度及开工时数的说明

乙苯生产方法

乙苯生产方法 1 前言 乙苯是重要的化工原料,主要用于脱氢生产苯乙烯,少量的乙苯也用于溶剂、稀释剂以及生产二乙基苯等。当前,全世界乙苯产量已达约2000万吨,其中99%的乙苯用于生产苯乙烯。 中石化安庆分公司原油加工能力500万吨/年,拥有常减压蒸馏、催化裂化、催化裂解、延迟焦化、催化重整等主要生产装置。其中催化(裂解)干气中含有大量的乙烯,目前都作为燃料消耗,没有进行经济有效的利用。 利用催化(裂解)干气中乙烯制备乙苯,进而生产苯乙烯,充分利用炼厂干气中的乙烯资源,是提高资源利用率,增加企业经济效益的一条有效途径。本文对安庆分公司催化干气中的乙烯资源,以及由稀乙烯制备乙苯的工艺技术路线进行了专门讨论。 2 干气中乙烯资源及利用 炼厂干气主要来源于石油的二次加工过程,如催化裂化、催化裂解、延迟焦化、加氢裂化等,其主要成份为氢气、甲烷、乙烯、乙烷以及少量C3/C4烃类。 安庆分公司的炼油装置结构中,拥有具有先进工艺的140万吨/年催化裂化装置和70万吨/年催化裂解装置。其中,140万吨/年催化裂化装置采用中国石油化工科学研究院开发的多产丙烯和清洁汽油的MIP-CGP新技术;催化裂解装置具有气体产率大、烯烃含量高的特点,其干气产率超过相同规模催化裂化装置的两倍,乙烯浓度也明显高于常规催化裂化。两套催化装置副产大量富含乙烯的干气。在炼油500万吨/年加工负荷情况下,催化裂化和催化裂解装置所产干气中乙烯量约3万吨/年。 干气中乙烯资源的回收利用,国内外都十分重视,已经开发的回收炼厂干气中乙烯的技术主要有深冷分离法、双金属盐络合吸收法、溶剂抽提法、膨胀机法、吸附法,此外还有干气直接制乙苯技术。 从目前国内外对干气中稀乙烯利用的技术开发情况来看,由于将乙烯通过分离提纯再行利用的方法投资较大,经济性差,因此稀乙烯的利用倾向于将稀乙烯直接加工,这方面的技术开发则集中于乙苯/苯乙烯的生产。 国外在上世纪70年代就开发了利用稀乙烯直接烃化制乙苯的工艺技术。国内于上世纪90年代开发成功干气稀乙烯制乙苯技术,此后,该技术经过不断改进,目前已发展到第三代。因此,利用干气中乙烯制乙苯,成为干气中稀乙烯利用方向的首选。 3 利用干气中的乙烯制乙苯工艺路线 目前在工业生产中,乙苯大都采用苯和乙烯催化烷基化法合成,少量从石油化工产品和煤焦油中分离而得。石油热裂解和重整产品中的C8馏份含有质量分数为10%-30%的乙苯,煤焦油混合二甲苯馏份中含有质量分数为10%左右的乙苯。因此,约有2%左右的乙苯是通过C8馏份的分离来生产的,其余90%以上是在适当催化剂存在下由苯与乙烯烷基化反应来制取。由苯和乙烯进行Friedel-Crafts烷基化合成的反应式为: C6H6+C2H4→C6H5C2H5 3.1 国外利用干气中的乙烯制乙苯工艺技术

产品说明书和加工工艺流程 干辣椒

连云港每日食品有限公司 干辣椒说明书和加工工艺流程 一、产品说明书 1、产品名称:干辣椒 2、包装类型:内真空袋包装外纸箱。 3、预期用途:食用,销往亚洲和欧美等国家和地区。 4、保存及运输条件:常温保存。 5、产品质量标准:具有本品应有的特征,正常红,无着色剂。大小均匀,色泽均一,干净无杂质,无霉烂果、病虫果。花皮果≤5%、破损果≤5%,含水率≤17%。 6、产品规格:长度3cm以上 二、加工工艺流程 原料验收—挑选—微波干燥杀菌—冷却—挑选—称重装袋—抽真空封口包装—金属探测——装箱—入库保管—出货 1、原料验收:查验随车单核实数量、产地、车号等来源的合法性, 按批次抽查,查验干椒形状、大小、均匀度、洁净度、杂质、 不完善椒(黑斑椒、黄白椒、不熟椒、破碎椒、虫蛀椒、霉变 椒、异品种椒)、水分等。其中不完善椒比例在5%以内,水分 17%以内,对于不合格品上报公司按比例折扣。 2、挑选:挑选原料中异杂物、不完善椒。 3、微波干燥杀菌:挑选好的原料通过微波干燥杀菌设备进行二次

干燥,同时利用微波杀除附着的虫卵、微生物等病菌。 4、冷却:通过微波干燥杀菌机后进行自然冷却至常温。 5、挑选:装袋前二次挑选,再次剔除不完善椒及色泽差椒、异杂 物等。 6、称重装袋、真空包装:按客户要求重量称重装袋,抽真空包装。 7、金属探测:包装好的成品通过金属探测器后无问题才可装箱。 (Fe:1.5 Sus:2.0,每1小时进行一次灵敏度检测) 8、装箱入库保管:按客户要求数量装入外纸箱,标明重量,入库 保管,做好标识。 9、出货:出货前进行二次抽检,发现问题立即上报返工或其他处 理。

新生产工艺管理流程图与文字说明

生产工艺管理流程 生产技术部接到产品开发需求后,进行产品开发策划并起草设计开发任务书,经公司领导审批后,业务部门根据产品设计开发任务书准备纸、油墨、印版、烫金等生产材料及生产工艺设备的准备工作,材料、设备准备完成后,安排在印刷车间进行上机打样;打样过程中,由生产技术部组织业务、品质、车间等部门对打样结果进行评审,打样评审通过后,由生产技术部进行送样、签样工作(送中烟技术中心材料部),若签样不合格,需重新进行打样准备;签样完成后,生产技术部根据打样情况形成临时技术标准,品质部形成检验标准,印刷车间根据临时技术标准进生试机生产,生产产品由生产技术部送烟厂进行上机包装测试(若包装测试不通过,生产技术部需重新调整临时技术标准重新试机生产),包装测试通过后,生产技术部根据试机生产时情况形成技术标准。当月生产需求时,生产技术部按生产组织程序进行组织生产,并同时下达技术标准,印刷车间根据生产技术标准,进行工艺首检,确认各项工艺指标正确无误,进行材料及设备的准备工作,各项工作准备完成后按技术标准要求进行工艺控制,生产技术部对整个生产运行过程进行监督,当工艺运行不符合要求时,通知生产技术部进行工艺调整。生产结束后,进入剥盒、选盒工序,经过挑选的烟标合格的按成品入库程序进行入库,不合格的产品按不合格程序进行处理。

产品工艺管理流程图 业务部生产技术部印刷车间品质部输出记录 接到设计 更改需求 段 阶 } 改 更 计 设 { 发 开 吕 产 不通过 不通过 通过 接到设计 开发需求 产品开发策划 打样准备 送样、签样 通过 不通过 形成技术标 准(临时) 审批不通过 上机打样 形成检验标准 设计开发项目组成立 通知 产品开发任务书 段 阶 制 控 艺 工 产 生 送客户包装测试■试生产 ■ 形成技术标准 <接到生 产需求 组织生产 下达工艺标准工艺首检 材料准备设备准备 工艺监督过程质量监督 工艺改进不通过运行判定 成品质量监督 是合格 成品入库 结束 不合格 控制程序 过程检验记录 工艺检查记录表, 匚工艺记录表 工艺运行控制 剥盒、选盒 烟用材料试验评价 报告 印刷作业指导书 生产工作单 换版通知单 生产操作记录表 工艺更改通知单 成品检验记录

苯乙苯精馏塔工艺设计

绍兴文理学院化学化工学院 《化工设计》报告 苯-乙苯精馏塔工艺设计 应化092班钱武 09114514(19) 2012

目录 第1节设计任务书............................................ 错误!未定义书签。(一)设计题目................................................ 错误!未定义书签。(二)操作条件................................................ 错误!未定义书签。(三)塔板类型................................................ 错误!未定义书签。(四)工作日.................................................. 错误!未定义书签。(五)主要物性数据............................................ 错误!未定义书签。第2节方案设计............................................... 错误!未定义书签。方案设计...................................................... 错误!未定义书签。方案简介...................................................... 错误!未定义书签。第3节物料衡算............................................... 错误!未定义书签。进料组成:.................................................... 错误!未定义书签。全塔的物料衡算:.............................................. 错误!未定义书签。相对挥发度:.................................................. 错误!未定义书签。理论塔板数和进料板确定 ........................................ 错误!未定义书签。实际板数和实际进料位置确定 .................................... 错误!未定义书签。第4节塔体工艺尺寸计算 ....................................... 错误!未定义书签。操作压力的计算................................................ 错误!未定义书签。塔体工艺尺寸计算............................................. 错误!未定义书签。第5节各接管的设计 .......................................... 错误!未定义书签。进料管........................................................ 错误!未定义书签。釜残液出料管.................................................. 错误!未定义书签。回流液管...................................................... 错误!未定义书签。塔顶产品出口管................................................ 错误!未定义书签。第6节热量衡算.............................................. 错误!未定义书签。塔顶冷却水用量................................................ 错误!未定义书签。塔釜饱和蒸汽用量.............................................. 错误!未定义书签。第7节辅助设备的计算及选型 ................................... 错误!未定义书签。冷凝器的选择................................................. 错误!未定义书签。再沸器的选择................................................. 错误!未定义书签。

相关文档
最新文档