无线电接收机

无线电接收机
无线电接收机

无线电接收机

无线电接收机是一种从天线接收到信号并通过滤波、放大处理,最后通过解调和解码,用于在声音、图片、数字数据、测量值、导航定位等方面的消费电子设备。

在消费电子中,无线电和无线电接收器常常是专门用于为广播服务的无线电传输的声音信号设计的接收器- 历史上首次大规模市场的无线应用。

无线电接收器的类型:

不同类型的无线电接收机可包括:

?消费类音频和高保真音频接收器和AV接收器使用的家用立体声音响听众和家庭影院系统爱好者。

?通信接收器,作为一个无线电通信链路组成的高稳定性和性能可靠等特点来使用。

?简单的晶体收音机(也被称为水晶集)是使用无线电波接收的功率来操作的。

?卫星电视接收机,用于接收从地球同步轨道通信卫星的电视节目。

?专门用途的接收机,如允许远程测量和报告资料的遥测接收机。

?测量接收机(另外:测量接收器)是校准实验室级的,用于测量广播电台的信号强度,电磁干扰辐射发射电子产品,以及射频衰减器校准和信号发生器设备。

?扫描仪是专门接收器,可以自动扫描两个或多个离散的频率,当他们发现其中一个信号时就停止,然后继续扫描其它频率直到扫描到最初传播的频率为止。它们主要用于监测甚高频和超高频无线电系统。

?互联网无线电装置

消费类音频接收器

在家庭音响系统的上下文中,术语“接收器”往往是指一个调谐器,前置放大器和功率放大器在同一机箱中的组合。高保真音频爱好者将喜欢这样的设备作为一个综合接收器,而一个单一的机箱,就是只实现三个组成部分的功能之一的分立元件。一些音频纯粹主义者还是喜欢这三个独立单元的——调谐器,前置放大器和功率放大器,但集成接收器,一些年来,一直是听音乐的主流选择。第一个集成立体声接收器是由哈曼卡顿公司制作的,并在1958年上市。虽然它的业绩平平,但它代表了一个“多合一”接收器概念的突破,并迅速提高设计且逐步使接收机成为市场的主体。许多无线电接收器还包括一个扬声器。

高保真音响家庭影院

今天,A V接收器是一个高保真或家庭影院系统的常用组成部分。接收器通常是一个复杂的家庭影院,提供了一个可选择输入系统的不同音频元件,如唱盘,激光盘播放机和录像机,磁带录像机(如视频盒式录像机)和视频组件(DVD播放机和录像机,视频游戏机,和电视机)。

随着乙烯基塑料光盘的下降,现代接收机往往省略有单独要求输入的唱盘。其他所有常见的音频/视频组件可以使用同一线路电平输入中的任何录音回放的接收器,不论它们是如何标记(在每个输入处写上“名称”主要是为了方便用户。)例如,一个有“辅助”输入插孔的CD播放机,在它的输入插孔旁边同样标上“CD”字样。

有些接收机也可以提供给信号处理器,去处理音乐厅中的听觉问题。在今天,数字音频的S/PDIF输出和USB连接也非常普遍。家庭影院接收器在消费电子产品领域中,包括了无线电接收器和其他功能:控制,声音处理和功率放大。独立的无线电接收器,通常在消费电子产品中作为调谐器而熟知。

一些现代集成接收机可以输出音频给几个扬声器和一个附加频道的重低音扬声器,通常包括连接的耳机。接收器的价格差别很大,并支持立体声或环绕声。一个专用的纯音频听力(双声道立体声)高品质的接收器可相对便宜,好的可以300美元或更少可以买到。由于现代的接收器是纯粹的无运动部件电子设备,与像唱盘和磁带录像机机电设备不同,它们往往提供很多年的无故障服务。近这几年来,装在一个盒子里的家庭影院已经变得很普遍,这往往集成了环绕声的DVD播放机功能的接收器。用户只需将它连接到电视机,或许其他组件,或者一套扬声器中。

便携式收音机

便携式收音机,包括典型的单声道,接收AM,FM或短波广播频段的简单晶体管收音机。调频和调幅收音机有时包括某些特征的便携式DVD/CD,MP3等光盘,和USB接口播放机,以及磁带播放机/录像机。

调幅/调频立体声汽车收音机可以是单独仪表安装的组件,或是汽车娱乐系统中的一个特定部分。

一个大型手提收录机(或便携式立体声录放机)那时间也有时被看作一个Ghettoblaster或Jambox,或者(在欧洲部分地区)作为一种“无线电盒式”——一个更大的便携式立体声系统常用一个较高水平的音量在广播站播放和记录音乐。

自供电的便携式收音机,如用于发展中国家或作为一个应急包的一部分的发条收音机。

早期发展

而麦克斯韦是第一个证明电磁波的存在,1887年一名叫波浪海因里希·赫兹的德国人展示了用火花隙设备传送与接收无线电波或“赫兹电波”,是他们第一次提出的,这个实验并没有被赫兹跟进。实际应用的无线通信技术和远程控制技术是被日基齐特士拉完成的

世界上第一个无线电接收器(雷雨寄存器)是由亚历山大斯捷潘诺维奇波波夫设计的,这是首次在1896年的俄洲展览中看到。他是第一个证实电磁(无线电)波的实际应用,虽然他并不在意为他的发明申请专利。

一种作为检波用的装置成为了无线电信号接收的基础。第一个使用无线电波探测装置的是一名法国人爱德华Branly,奥利弗洛奇在1898年给赫兹荣誉演讲时推广它,洛奇也作出了检波改进。当时许多实验者认为,这些新波可以用来进行远距离通信并使无线电接收和发射装置取得重大改善。1895年马可尼首次展示了可行的无线电系统,在1901年12月达到大西洋的无线电通信。该荣誉奖项是有争议的,因为他后来发现使用该设备和当时持有其他实验者的设计专利。

超外差式收音机

到了二十世纪二十年代,调谐射频接收机代表着一个重大的改进在先前的性能应用方面,它仍然缺乏一些新应用方面的需要。为了使接收器的技术来满足的需要赋予它一个新的一些想法开始浮出水面。其中之一是一种直接转换接收器的新形式。这里有一个内部或本地振荡器采用与输入信号激荡产生声音信号可通过音频放大器放大。

接下来的一代接收机技术是一种新型的接收机称为超外差式收音机,或超音速外差接收机。一名叫卢利维的法国人用调查了改善接收机选择性的方法,在做这个时,他发明了一种互动机制的信号,转换到较低频率带宽的滤波器就可以做得更窄。另外一个好处是,在变频处的低频率下获得较大的增益,而且没出现什么问题破坏振荡的条件。

为开发具有固定中频放大器接收器和过滤器的想法是美国的艾德温?阿姆斯特朗想出来。在1918年在欧洲为美国远征队工作时,阿姆斯特朗认为,如果输入信号是一个可变频率振荡器(“本地振荡器”)混合,那么在较低频率时可以使用固定调谐放大器。阿姆斯特朗的原接收器总共有八个真空管组成。几个调谐电路可以级联,以改善选择性,并成为一个固定的频率,他们也并非全都是符合彼此需要改变设置。该滤波器可以预置,可以做正确的调整。阿姆斯特朗并非是唯一的人在想出超外差接收机方面。亚历山大迈斯纳在德国比阿姆斯特朗早提出这个想法6个月,但迈斯纳在实践中没有证明出他的想法,所以他没有开发出一个超

外差收音机,因此,这项发明专利是阿姆斯特朗的。

超外差接收机性能需要的增加,首先发生在北美,到了20世纪20年代后期大多数收音机都是超外差接收机。然而,在欧洲的广播电台数量直到后期才开始迅速上升,即便如此,20世纪30年代中期,欧洲的所有接收设备几乎都使用了超外差的原理。1926年,四极真空管的引入,使性能得到进一步的改善。

今天的收音机融入了可喜的现代科学技术,具有低功耗,高性能,集成到很小块的电路中,无线电接收机的基本原理都是基于超外差接收机原理。

调频接收机的主要技术指标

1.工作频率范围

接收机可以接受到的无线电波的频率范围称为接收机的工作频率范围或波段覆盖。接收机的工作频率必须与发射机的工作频率相对应。如调频广播收音机的频率范围为88~108MH,是因为调频广播收音机的工作范围也为88~108MHz

2.灵敏度

接收机接收微弱信号的能力称为灵敏度,通常用输入信号电压的大小来表示,接收的输入信号越小,灵敏度越高。调频广播收音机的灵敏度一般为5~30uV。

3.选择性

接收机从各种信号和干扰中选出所需信号(或衰减不需要的信号)的能力称为选择性,单位用dB(分贝)表示dB数越高,选择性越好。调频收音机的中频干扰应大于50dB。

4.频率特性

接收机的频率响应范围称为频率特性或通频带。调频机的通频带一般为200KHz。

5.输出功率

接收机的负载输出的最大不失真(或非线性失真系数为给定值时)功率称为输出功率。

参考文献

?通信接收机,第三版,乌尔里希属罗德,杰里惠特克,希尔,纽约,2001年,书号0-07-136121-9

浅谈无线电监测系统中接收机的选择

浅谈无线电监测系统中接收机的选择北京中星世通电子科技有限公司谭涛 现代无线电监测系统是由天线、接收机、测向机、记录设备及软件和控制系统等基本单元组成。其中接收机是监测系统的核心。系统的性能主要是由接收机决定。选择专业、高性能的接收机,能有效保证监测系统的各项指标,实现各种功能。因此,在建设一个无线电监测系统时,如何选择接收机是至关重要的。 不同类型的接收机,它们的用途不同,其设计中重点、生产要求也就不同。通信接收机、测量接收机和干扰测量接收机,虽然从结构上都是三级超外差式,但其指标却有很大差别,价格也相差几倍至几十倍。 ITU对用于无线电监测的接收机性能有明确的要求。这些要求既有理论依据,也是对监测工作实践的科学总结。我们在选择接收机时,应认真遵循这些要求。否则,会出现意想不到的问题。例如,在90年代初,有厂家利用通信接收机(如R7000)设计生产监测测向系统。该系统在理想的标准场地进行测试时,都能达到指标要求。但在实际工作环境中,遇到密集的无线寻呼信号时,就无法正常工作。问题就出在这种接收机的动态范围不能适应无线电监测实际工作的要求。 当前,有人看到某些实验室仪器的几个高性能指标(如高的频率稳定度和高的功率测量精度),想利用这些仪器代替接收机,组成无

线电监测系统,这是有很大风险的。的确,在早期无线电监测系统组成方案中,有过以接收机为核心和以频谱仪为核心的两种模式。但经过实践应用的验证,现在都选择以接收机为核心设备组建监测系统了。我们应全面遵循ITU的要求,而不是偏重某些指标而忽视了应用环境。应该看到,测量接收机和频谱仪虽然在结构上有相似之处,但却有本质上的区别,他们各自都为适应特定的工作环境和克服各自遇到的难点,进行了长期的研究和攻关,都体现了各自领域的科技成果。 为了进一步说明这个问题,我们选择一种RF信号分析仪(NI PXI5660)和典型的监测接收机(RS EM050),从以下几方面进行比较。 一、 根据应用定位,它们是用途不同、使用环境不同、设计理念不同及制造要求也不相同的两种不同类型的产品。它们在各自的应用领域具有各自的优势 1. EM050是德国R/S公司专门针对无线电监测业务需求设计、生产的,专业级的无线电监测接收机,具有以下显著特征: (1)该产品是根据国际电联(ITU)对监测接收机的基本要求,应用软件无线电技术设计、开发的专业级数字式接收机; (2)作为专业级接收机,在其设计理念上,充分考虑了复杂的电磁环境和要对大小悬殊(差别达100dB,即10万倍)的各类无线电信号进行搜索、测量和监听的实际应用要求,从整机总体设计上,兼顾了高灵敏度和高抗扰度特性,通过苛刻设计的频率合成器(频率转换时间1ms,10kHz处相位噪声≤120dBc/Hz等)实现快速搜索(扫

无线监测接收机

无线监测接收机 无线监测接收机是无线电频谱监测的重要工具,是无线电管理工程师的眼睛和耳朵。通过监测接收机可了解到空中无线电频谱信号的场强、频率、带宽、调制、频率占用度等重要信息,以供无线电管理工程师进行分析、判断,并作出进一步的决策。 由于肩负着从纷繁复杂的无线电波中抓取特定信号的重任,监测接收机的电子电路一般都做了相应的优化设计,配备了输入预选器等特殊单元,加强了信号解调、分析能力,并且在灵敏度、线性度、互调IP2/IP3相位噪声等重要指标上超出其他的通用无线接收设备。 无线接收设备包括测试接收机、频谱分析仪和监测接收机。无线接收设备是基于不同的理念,针对不同的任务来设计的,它们在功能上也各有特点。对于测试接收机和频谱分析仪而言,因为许多监测功能是不必要的,所以它们某些特性或者很弱或者干脆没有,如:FSCAN、MSCAN 、全景、静噪、驻留时间等特性。以下简单介绍监测接收机的性能。 1、监测接收机模块框图 监测接收机包括预选器、前端(信号部分)、合成器(第一本振、第二本振、第三振)、中频部分、内置测试设备、处理器和接口等主要模块(见EB200模块框图)。 这里着重提一提预选器。无线电监测接收机是专门为了监测天空中复杂拥挤的无线电波而设计的专业设备,其与频谱仪的一个显著的差别就是配有高性能的预选器,这个预选器提高了接收机在拥挤的频谱环境中选收无线电信号的能力。以R&S公司的EM550接收机为例,它的预选器由20-1500MHz的跟踪滤波器+1500-2300MH z带通滤波器+2300-3600MHz的带通滤波器组成。跟踪滤波器一般由YIG滤波器构成,其中心频率可在极宽的频带范围内滑动,滤波带宽一般为中心频率的10%。跟踪滤波器是目前的技术水平下性能最好的选择滤波器,它也是代表了接收机设备档次的一个重要标志。 预选器位于接收机的最前端,与天线输入口相连。预选器主要提供前置放大、

驾驶台无线电设备的检测

驾驶台无线电设备的检测 驾驶台无线电设备的检测 摘要:本文结合自己的教学和船上工作经验,依据船舶规范和公约要求,对船舶驾驶台上无线电设备的日常检测进行了全面总结,正确的掌握这些方法对于提高船舶的安全营运水平有较大的意义。 关键词:船舶无线电检测 1.驾驶台上无线电设备的外部检查1 . 1罗经甲板检查 ①检查天线的布置是否合理,天线外观状况是否良好。②罗经甲板上所有电缆应用金属扎带沿支架绑扎,电缆进入各设备入口应用填料密封。③检查VDR和EPIRB固定位置周围上方空间无遮挡物。④查看桅杆及其上附连设备的总体状况是否良好。⑤天线的检查:M/HF 天线由SSB无线电话收发天线和DSC无线电话数字选择呼叫天线组成。天线周围应有围栏防护并标识高压危险,发射天线馈线应绝缘。雷达天线安装位置必须考虑到工作距离和盲区的因素,工作盲区不得大于 50 米。如果船舶配置两台雷达,应尽可能将S 波段雷达装在上,而X 波段雷达装在下面。AIS天线由VHF天线和AIS-GPS天线组成,它的VHF天线其安装位置的水平面360度内应无障碍物,并应在水平方向距离导体结构2米以上。AIS的VHF天线应安全地远离雷达、发射机等类似的高功率源天线,AIS的VHF 天线与船舶VHF电话天线应在水平方向上间隔10米或在垂直方向上间隔2 米。GNSS天线:应在水平360度仰角5度至90度范围内无连续障碍物,桅、支架等障碍物不应在较大的水平角度范围内遮盖天线。天线应远离雷达、INMARSAT系统等高功率发射机发射波束3米。 1 . 2驾驶室外两侧的检查 ①核查左右舷灯状况,角度是否正确,背面无光黑漆是否有破坏。 ②室外两侧舵角指示器、螺旋桨转速指示器、喇叭、BNWAS复位按钮、电罗经复示器等是否正常。注意露天电气设备的应满足防水等级 IP44。 1 . 3无线电资料配备检查

无线电波的发射与接收

第一章无线电波的发射与接收 我们在物理学的学习中知道,通有交流电的导线,会在它周围产生变化的磁场,变化的磁场又能在它周围引起变化的电场,而变化的电场还将在它周围更远的空间引起变化的磁场。这种不断交替变化,由近及远传播的电磁场就叫电磁波。无线电技术中使用的电磁波叫无线电波。 无线电广播、电视广播都是利用无线电波进行传播信号的。现代通讯离不开无线电波。本章将介绍无线电波的波长、频率、波段划分,以及它的发射与接收。 第一节无线电波的波长、频率与波段划分 一、无线电波波段的划分 表1-1无线电波波段的划分 理论和实验都可以证明,无线电波在真空中的传播速度跟实验测得的光速相等,即 C=3.0×108m/s 无线电波在一个振荡周期T内传播的距离叫做波长。波长、频率和无线电波传播速度c的关系为 λ=c/f

式中:λ一无线电波的波长,单位m ; c 一无线电波的传播速度,单位m/s; f 一无线电波的频率,单位H Z 无线电波的波长从不到一毫米到几十千米(频率范围由几十千赫到几十万兆赫)。通常根据波长〔频率)把无线电波划分成几个波段,如表1-1所示。 二、无线电波的传播 无线电波是横波,即电场和磁场的方向都跟波的传播方向垂直。在无线电波中各 处 的电场强度和磁感应强度的方向也总是互相垂直的,如图1-1所示。不同波长的电磁波,传播特性不相同;其传播方式大致可分为地波、天波和空间波三种形式。 (一)地波 沿地球表面空间向外传播的无线电波叫地波,如图1-2(a)所示。波具有衍射特性,当无线电波的波长大于或相当于山坡、建筑物等障碍物的尺寸时,它可以绕过障碍物继续向前传播。 地球是导体,地波沿地面传播时,地球表面因电磁感应而产生感应电流,因此要消耗能量,并且能量损耗随频率升高而增大。考虑到能量损失,只有中、长波才利用地波方式传播。由于地波传播稳定可靠,在超远 程无线电通讯和导航等方面多采用中长波。 图1-1无线电波传播示意图 (二)天波 依靠电离层的反射作用传播的无线电波叫做天波,如图1-2(b 〕所示。在地球表面的大气层中,大约在60km 到400km 的范围内,由于太阳光的照射,气体分子分解为带正电的离子和自由电子,这就是电离层。电离层一方面可以反射无线电波,反射本领随频率增大而减小。实践表明,波长短于10m 的微波会穿过电离层飞向宇宙,它只能反射短波或波长更长的无线电波。电离层另一方面要吸收无线电波,吸收本领随频率减小而增大,中波和中短波一部分被吸收,因此,只有短波多采用天波方式传播。 天波传播受外界影响较大,它与电离层强度、太阳辐射强度等多种因素有关,.由于这些原因,收音机夜晚收到的电台比白天多, (三)空间波 沿直线传播的无线电波叫做空间波,它包括由发射点直接到达接收点的直射波和经地面反射到接收点的反射波,如图1-2(C 〉所示。

智能无线电监测网系统解决方案

一、智能无线电监测网系统解决方案 目前,各省市无线电监测网建设所面临的异构系统难以整合、监测手段被动低效、业务决策缺乏依据、指挥调度流程不畅等难题依然存在。华日公司的智能监测网系统,通过整合各类已建的固定监测站(含小型站)、移动监测站及网格化监测系统资源,并增补适当的智能化监测设备,对现有监测软件进行升级改造,形成全时全域频谱监测能力,同时结合云计算和大数据技术,大大提升了整个监测网的管理运行自动化水平,为无线电管理工作模式带来了巨大变化。 大数据时代的智能监测网系统,可为智慧无线电管理提供诸多有力的支撑: ●监测网运行模式从临时被动任务执行转向长时主动数据收集; ●数据采集从手工碎片化转向自动连续化; ●提高设备使用效率,降低设备闲置率; ●增强监测网管理能力,减轻运维人员工作压力; ●从单维监测数据分析转向多维频谱管理决策; ●干扰处置、考试保障、重大活动保障等的异常预警和全程支持; ●可根据工作需要,通过软件动态改变系统工作模式和工作内容。 系统能力 1)全域监测设施联合作业能力 智能监测网的核心运行基础是通过面向服务中间件和标准的接口规范实现对来自于不同厂商的监测系统的整合,并提供统一的设备控制、数据管理和分析界面,形成监测一体化平台,从而盘活全网资源,提升异构系统联合作业的能力。当重大活动或突发事件发生时,这种能力将大为突破现有监测系统在监测资源调度上的瓶颈。

2)保障系统可靠运行的智能网络管理能力 伴随精细化管理的需要,大量新型监测设备接入系统,使监测网的规模和运维难度日益增大。华日智能网络管理系统可以以网络拓扑和地理分布为视点,对站点环境、站点设备、网络流量、设备资源消耗等进行监控,能对在网站点进行统一的监测任务调度、遥控开关机、设备自检,并提供基于设备自检和网络检测的故障告警和基于7X24小时电磁环境数据采集分析的设备数据异常预警,从而系统运维带来极大便利。 3)监测网自动运行能力 除支持常规监测功能外,智能监测网全网均在系统后台服务器的调度下,根据频谱监测数据自动化分析的需要,7X24小时不间断执行各类电磁环境数据、信号特征数据、多模式组合定位数据等的采集任务,并将所获取的数据自动分类压缩汇入各类专题数据库中。移动监测站、可搬移设备、无人升空监测平台等设备的数据也可在线或离线汇入系统。这种“大小结合,移动补盲”的联合作业模式,在大幅降低监测站人员工作量的同时极大提高了监测设备的利用率,使无线电管理机构更实时严密地掌握所辖区域的完整电磁态势。 4)海量监测数据存储能力 随着监测站的增多与全时全域电磁环境数据采集模式的建立,全网积累的数据量将会有爆发式增长,对数据存储和处理模式都提出了巨大的挑战。华日智能监测网依托成熟、安全、可靠的云存储与云计算服务,采用虚拟化存储等技术,可适应海量电磁环境数据大规模存储的需求,减轻用户在数据存储设备运维方面的压力,并在对应用层屏蔽了数据物理存储位置信息的同时为各类业务系统提供统一的数据服务,形成无线电管理云数据库,使数据应用具有更好的弹性,能满

基于51单片机串行通信的无线发射极和接收机设计

基于51单片机串行通信的无线发射极和接收机设计---- 1 概述 1.1 课题的目的、背景和意义 最近几年来,由于无线接入技术需求日益增大,以及数据交换业务(如因特 网、电子邮件、数据文件传输等)不断增加,无线通信和无线网络均呈现出指数增 加的趋势。有力的推动力无线通信向高速通信方向发展。然而,工业、农业、车载 电子系统、家用网络、医疗传感器和伺服执行机构等无线通信还未涉足或者刚刚涉 足的领域,这些领域对数据吞吐量的要求很低,功率消耗也比现有标准提供的功率 消耗低。此外,为了促使简单方便的,可以随意使用的无线装置大量涌现,需要在 未来个人活动空间内布置大量的无线接入点,因而低廉的价格将起到关键作用。为 降低元件的价格,以便这些装置批量生产,所以发展了一个关于这种网络的标准方案。Zigbee就是在这一标准下一种新兴的短距离、低功耗、低数据传输的无线网 络技术,它是一种介于无线标记技术和蓝牙之间的技术方案。 对于这种短距离、低功耗、低数据传输无线技术,它不仅在工业、农业、军 事、环境、医疗等传统领域有着巨大的应用价值,未来应用中还可以涉及人类日常 生活和社会生产活动的所有领域。由于各方面的制约,这种技术的大规模商业应用 还有待时日,但已经显示出了非凡的应用价值,相信随着相关技术的发展和推进, 一定会得到更广泛应用。 1.2国内外无线技术相关现状及Zigbee现状 无线通信从固定方式发展为移动方式,移动通信发展至今大约经历了五个阶段: 第一阶段为20年代初至50年代初,主要用于舰船及军有,采用短波频及电子 管技术,至该阶段末期出现才出现150MHVHF单工汽车公用移动电话系统MTS。

ITU-RSM1837-1建议书-测量无线电监测接收机三阶交调截取点IP3

ITU-R SM.1837-1 建议书 (08/2013)测量无线电监测接收机三阶交调截取点(IP3)电平的测试程序 SM 系列 频谱管理

ii ITU-R SM.1837 建议书 前言 无线电通信部门的职责是确保卫星业务等所有无线电通信业务合理、平等、有效、经济地使用无线电频谱,不受频率范围限制地开展研究并在此基础上通过建议书。 无线电通信部门的规则和政策职能由世界或区域无线电通信大会以及无线电通信全会在研究组的支持下履行。 知识产权政策(IPR) ITU-R的IPR政策述于ITU-R第1号决议的附件1中所参引的《ITU-T/ITU-R/ISO/IEC的通用专利政策》。专利持有人用于提交专利声明和许可声明的表格可从http://www.itu.int/ITU-R/go/patents/en获得,在此处也可获取《ITU-T/ITU-R/ISO/IEC的通用专利政策实施指南》和ITU-R专利信息数据库。 ITU-R 系列建议书 (也可在线查询http://www.itu.int/publ/R-REC/en)) 系列标题 BO 卫星传送 BR 用于制作、存档和播出的录制;电视电影 BS 广播业务(声音) BT 广播业务(电视) F 固定业务 M 移动、无线电定位、业余和相关卫星业务 P 无线电波传播 RA 射电天文 RS 遥感系统 S 卫星固定业务 SA 空间应用和气象 SF 卫星固定业务和固定业务系统间的频率共用和协调 SM 频谱管理 SNG 卫星新闻采集 TF 时间信号和频率标准发射 V 词汇和相关问题 说明:该ITU-R建议书的英文版本根据ITU-R第1号决议详述的程序予以批准。 电子出版 2014年,日内瓦 ITU 2014 版权所有。未经国际电联书面许可,不得以任何手段复制本出版物的任何部分。

无线电监测设施测试验证工作规定试行

精心整理 工业和信息化部 关于印发《无线电监测设施测试验证工作 规定(试行)》的通知 工信部无〔2017〕283号 各省、自治区、直辖市无线电管理机构,国家无线电监测中心,各相关单位: 心(以下统称无线电监测设施使用单位)使用的各类无线电监测设施在系统选型、建设验收、日常使用等全生命周期内的测试验证工作,适用本规定。 第四条国家无线电管理机构负责统筹协调无线电监测设施测试验证工作,组织相关单位对无线电监测设施测试验证工作开展监督检查。 各无线电监测设施使用单位负责制定本地区(单位)无线电监测设施测试验证方案,选择测试验证机构,指导并监督测试验证工作的具体实施,维护无线电监测设施的正常运行。

第五条各无线电监测设施使用单位应对新建无线电监测设施在投入使用前进行测试验证,对在用无线电监测设施进行定期测试验证,确保无线电监测设施在使用过程中持续满足相关技术指标要求。 第六条根据设备状况,对固定无线电监测、测向系统及系统中的监测接收机每5~7年测试验证一次,对移动、可搬移和便携式无线电监测、测向系统及系统中的监测接收机每3~5年测试验证一次。 超过10年的无线电监测设施,可依据实际情况适当缩短测试验证周期。 第七条各无线电监测设施使用单位应综合考虑本地区(单位)无线电监测设施 况。 第十条无线电监测设施的测试验证方法应按照无线电管理有关规定和相关国家标准、行业标准、团体标准、国际电信联盟建议书进行(部分标准名称见附件)。 对尚无相关标准作为测试依据的,各无线电监测设施使用单位应会同相关技术部门和测试验证机构,参考相关标准,科学合理制定测试验证方法,经专家评审后实施。 第十一条在新购置无线电监测设施和对在用无线电监测设施进行一体化服务改造时,相关设备应满足《超短波监测管理服务接口规范》要求。鼓励相关单位在设备购置或系统改造升级时提出对《超短波监测管理服务接口规范》符合性的测评要求,并采用软件测试系统开展测试验证工作。

无线通信接收机原理图设计

零中频接收方案具有高集成和低功耗的特点,但是对于本系统来说,由于接收到的基带信号采用的是不同于一般通信系统的双相间隔编码,对该码制的解调,如果采用软件处理会大大增加MCU的负担,占用很多的资源,并且影响系统的实时处理能力。因此,本系统采用了将I、Q两路信号首先自身相乘,转换为单极性信号,然后通过电压比较器与基准电压比较的方法完成信号的A/D转换。优化后的接收部分原理图如图1所示。 图1 接收设备系统原理图 接收部分的工作过程如下。 (1)电子标签接收到读写器发来的信号,获得能量后被激活,开始执行读写器的命令,并将返回的响应信息以反向散射调制方式发送至读写器的天线。 (2)天线接收信号后,由环形器将电子标签返回的信号传给90°相移功率分配器,将信号分成正交两路。这两路信号同时送到两个完全相同的解调电路进行处理:两路信号分别与两路正交的本振信号混频,混频后的信号经过放大器放大、滤波器滤波后再次放大,分别送往乘法器进行处理。乘法器对送来的解调信号进行自禾,使相对于虚地为负极性的脉冲信号翻转为正极性。 (3)两路解调电路分别处理后的信号经相加后再次放大,经电容耦合(去除直流分量)至电压比较器。 (4)电压比较器将放大后完整的解调信号电压与设定的基准电压比较后,还原成标签返回信号的基带信号,经过整形后送到编解码电路进行处理。 (5)编解码电路将接收到的基带信号进行解码并进行CRC校验,形成电子标签的卡号等信息,传给MCU 微控制器。 (6)MCU微控制器对接收到的电子标签卡号等信息进行处理。 在本部分电路中为保证解调电路的精确,还用放大器产生了精确的2.5V虚地电压,作为放大、乘法器等电路的中间电位(虚地)使用,从而保证了接收电路的稳定性。

第七章 无线电监测在无线电管理中的地位和作用

第七章无线电监测在无线电管理中的地位和作用 一、无线电监测在无线电管理中的地位和作用 1、无线电监测是无线电管理不可分割的一部分 现代化的无线电频谱管理是将行政和科学技术管理手段相结合,对无线电频率和空间卫星轨道资源实施科学、有效地管理。随着无线电通信业务的快速发展,有效地使用频谱资源已成为人类关注的主要问题。为此,世界各国都成立了专门机构,对频谱资源进行计划、指配和管理,其主要目的是既要保障通信业务的安全,不受干扰侵害,又要合理使用和开发频谱资源,提高频率的使用效率。 无线电管理是国家通过专门机构对无线电波和卫星轨道资源研究、开发、使用所实施的,以实现合理有效利用无线电频谱和卫星轨道资源的行为。 无线电管理的概念,实际上表达了四层含义: *无线电管理是一种国家行为。它是由国家所授权和特许的机关来实施的活动。 *无线电管理的对象是研究、开发、使用无线电波的各种活动。由于开发、使用、研究电磁波的活动是由具体的人使用设备达到的,所以无线电管理必然要涉及到人和设备。 *对开发、使用、研究无线电波和卫星轨道的活动所实施的这种管理,是通过计划、规划、组织、控制、协调、监督、执行等手段和方法来实现的。它贯穿于无线电管理的全部过程中。这是无线电管理的职能,也是无线电管理工作的具体内容。表现为各级无线电管理机构对无线电台站的审批、频率指配、电波的监测、型号的核准、设备的管理、规章制度的制定和监督检查以及对用户的教育和服务等等。 *无线电管理的最终目的是保证合理、有效地利用无线电频谱和卫星轨道资源。要达到这一目标,就必须要用相应的管理机构和现代化的技术手段。 无线电管理的具体内容包括: *频率的划分、分配和指配、无线电台站的布局规划和设台电磁兼容分析及审批。 *无线电台站发射信号实施监测,对台站进行监督管理。 *无线电干扰的协调和处理。 *无线电管理法规和技术标准的制定。 *对无线电设备的测试和研制、生产、销售、进口的管理。 *代表国家参加无线电管理方面的双边和多边国际活动。 无线电监测在频率的规划、指配、电磁环境的测试、无线电台站的设置规划、无线电台站

无线电发射设备管理规定(征求意见稿)

附件1 无线电发射设备管理规定 (征求意见稿) 第一章总则 第一条为加强无线电发射设备管理,防止和减少无线电干扰,维护空中电波秩序和保障良好的电磁环境,促进无线电技术应用和产业发展,根据《中华人民共和国无线电管理条例》和相关法律、行政法规,制定本规定。 第二条无线电发射设备的研制、生产、进口等活动应当遵守本规定。 本规定所称无线电发射设备是指为开展各类无线电业务而发射无线电波的设备。辐射无线电波的非无线电设备不适用本规定,但其产生的电磁辐射水平应当符合国家标准和国家无线电管理的有关规定。 第三条研制无线电发射设备使用的无线电频率,应当符合国家无线电频率划分规定。 第四条国家无线电管理机构负责无线电发射设备型号核准和监督管理,按照国家有关规定发布和调整无线电发射设备型号核准目录,制定型号核准有关规定和技术要求。 省、自治区、直辖市无线电管理机构依照本规定负责本

行政区域内无线电发射设备的临时进关批准和监督管理。 第二章无线电发射设备型号核准 第五条除微功率短距离无线电发射设备外,生产、进口在国内销售、使用的其他无线电发射设备,应当向国家无线电管理机构申请型号核准。 第六条申请无线电发射设备型号核准,应当符合下列条件: (一)申请人有相应的生产能力、技术力量、质量保证体系; (二)无线电发射设备的工作频率、功率等技术指标符合国家标准和国家无线电管理的有关规定; (三)申请人及其法定代表人未被列入无线电发射设备型号核准失信名单。 第七条申请无线电发射设备型号核准,应当向国家无线电管理机构提交下列申请材料: (一)经法定代表人或者其委托人签署的书面申请和承诺书; (二)加盖申请人签章的营业执照副本或者事业单位法人证书复印件,境外申请人提供加盖申请人签章的组织机构说明材料;

GRS210无线电监测测向系统

GRS210 VHF/UHF无线电监测/测向系统 100kHz to 3GHz 1 系统简介 GRS210是一个基于多信道宽带射频前端、宽带数字中频处理单元及宽带阵列天线的高性能数字化无线电监测/测向系统。在复杂电磁环境下,能适应密集信号、捷变信号的快速捕获和实时接收分析,以满足现代无线电频谱监测和无线电测向定位要求。 GRS210适合于固定安装环境。 2 技术特点 ●频率范围为100kHz至3GHz ●全无源天线设计,大动态,高灵敏度接收 ●20MHz的瞬时信号分析带宽 ●3GHz/s多信道并行频谱扫描功能 ●5信道相关干涉仪的测向方法,窄带和宽带apFFT测向功能 ●最小信号持续时间<1ms ●能够实现同时监测和测向通道 ●ITU全参数测量模式 ●原始射频、中频和音频数据记录和重现 ●远程遥控 3 系统组成

4 技术参数 4.1 天线 (1)HF监测天线:100kHz to 30MHz,无源全向鞭天线

(2)VHF/UHF监测天线:20MHz to 3000MHz,无源全向盘锥天线(3)VHF/UHF测向天线,分为五层: A:20MHz to 200MHz 五单元垂直极化天线阵,孔径4m B:30MHz to 350MHz 五单元水平极化天线阵,孔径3m C:200MHz to 800MHz 五单元垂直极化天线阵,孔径1.4m D:350MHz to 1300MHz 五单元水平极化天线阵,孔径0.8m E:800MHz to 3000MHz 五单元垂直极化天线阵,孔径0.36m 4.2 射频前端 (1)VHF/UHF监测接收机 信道数目:5个 频率范围:20MHz to 3000MHz 频率分辨率:1Hz 频率稳定度:≤1×10-7 合成器建立时间:≤1ms 相位噪声:≤-100dBc/Hz@10kHz 输入二阶互调截点:≥45dBm 输入三阶互调截点:≥10dBm 中频频率:21.4MHz 中频带宽:20MHz/300kHz 镜像抑制:≥95dB 中频抑制:≥95dB 杂事抑制:≥110dBm(折合到输入端) 噪声系数:≤14dB (2)HF监测接收机 信道数目:1个 频率范围:0.1MHz to 30MHz 频率稳定度:≤1×10-7 相位噪声:≤-110dBc/Hz@10kHz

VHFUHF无线电监测设施建设规范和技术要求(试行)

VHF/UHF无线电监测设施建设规范和技术要求(试行) 1总则 1.1.1 为规范全国无线电监测设施的规划、建设和使用,加强无线电监测设施工程决策和项目建设的科学管理,建立统一的无线电监测体系,根据国际电联的《频谱监测手册》和ITU-R的有关建议书,结合我国的实际情况,特制定《VHF/ UHF无线电监测设施建设规范及技术要求》(以下简称“规范”)。 1.1.2 全国无线电监测设施包括VHF/UHF无线电监测网、短波无线电监测网、卫星无线电监测网,其中短波、卫星无线电监测网建设以及机载、船载监测站的规范另行制定。 1.1.3 本规范是VHF/UHF无线电监测设施建设的技术依据,适用于无线电监测设施总体规划、方案设计和工程实施。无线电监测设施的改建、扩建工程须参照本规范执行。 1.1.4 无线电监测设施的建设,除应符合本规范外,还应符合相关的国家标准、行业标准和国家的有关规定。 1.1.5 在特殊情况下执行本规范中条款有困难时,实施单位应充分论述理由,附上相应领域内专家的评审意见,并提供处理建议书报主管部门批准。 2术语 2.1.1无线电监测Radio Monitoring Station 对无线电信号进行搜索、测量、分析、识别,以及对无线电波发射源测向和定位,以获取其技术参数、功能、类别、位置和用途。 2.1.2无线电监测站Radio Monitoring 执行无线电监测任务的技术设备及附属设施,分为一、二、三级。 2.1.3固定监测站Fixed Monitoring Station 设置在固定地点实施监测的无线电监测站。 2.1.4移动监测站Mobile Monitoring Station 设置在运载工具中,可在移动状态下实施监测的无线电监测站。 2.1.5可搬移监测系统Movable Monitoring System 可在不同地点临时设置、实施监测的无线电监测系统 2.1.6便携式监测设备Portable Monitoring Equipment 可方便携带、手持的无线电监测设备 2.1.7无线电监测指挥控制中心Radio Monitoring Command Control Center 具有联合无线电测向交会、监听和指挥调度功能的控制中心。 2.1.8A级无线电监测网Radio Monitoring Network of Class A 由一个指挥控制中心、至少三个一级无线电监测站(其中必须包括一个固定监测站)、一个无线电检测实验室以及相关附属设施组成,承担相应的无线电监测和设备检测工作。根据区域内无线电台站数量、覆盖区域面积和特定任务的需要,可另设置二级无线电监测站和三级无线电监测站。 2.1.9B级无线电监测网Radio Monitoring Network of Class B 由一个指挥控制中心、至少三个二级无线电监测站(其中必须包括一个固定监测

无线电测向接收机

无线电测向接收机(测向机)的校检与检修测向机是运动员“猎狐”的武器。测向机的性能如何,对运动员技术发挥至关重要。无论是自制的还是产品测向机,在使用前都应当进行校验;即使是使用过的可靠测向机,在更换了使用者后,新的“主人”也应再次进行必要的校验,掌握它很多,有灵敏度、选择性、方向性、频率覆盖范围、运动性、重量、输出功率、防水性能、抗干扰性能等等。业余条件下的校验主要有方向性、灵敏度、衷减开关的适用距离和频率覆盖范围四项。 一、方向性 这是测向机最重要的指票之一。要求在不同的距离都只有较小的指向误差,即使在接近电台到相距3——5米时,也应保持清晰而正确的指向。 方向性的校验主要在近距离进行。为了防止电波反射造成影响和干忧,设置电台时应选择在无电力线、无高大建筑物的平坦而空旷的场地。天线要按规定架设。80米波段发射机天线尽可能坚直,确保发射垂直极化波。如果使用软天线,可以用木杆或树干固定天线,如果天线过长,富裕部分应紧绕成团,置于天线的顶部。2米波段发射机天线的振子应悬空并保持水平位置,离地面 1.5米左右。

校测时,运动员持测向机在不同距离测向,检查指向误差角度。 80米波段测向机双向误差较大时,主要检查磁性天线部分。常见故障如下: (1)磁棒断裂。由于天线线圈底筒具有夹持固定作用,磁棒在中部断裂不容易发现,需打开天线盒边遥拽磁棒边看有无断裂。发现断裂时,应以同样长度的中波磁棒换替,再微调天线配谐电容使对 5.55MH Z谐振。 (2)磁棒在天线屏蔽盒内固定不牢,受振后露出盒的部分一头长一头短,对称性被破坏。遇有这种种情况,应予复原并加固。 (3)天线线圈不在磁棒的中心位置。 (4)天线屏蔽盒严重变形成盒的“裂缝”中堵有电阻较小的异物。此时应予整形,并剔除异物。 80米波段测向机单向的较验只有在确认双向误差不大的条件下进行。校验时,应试验在不同距离的情况下获得良好单向时直立天线的不同长度。在近台区,直立天线长度大约20——30厘米就够了;在远距离时,允许将直立天线抽长一些,以提高灵敏度。对单向不良,应首先检查自己使用测向机方法是否正确,包括频率是否调准,音量是否适当,直立天线长度是否适度等。如经检查操作无误,则可能存在以下故障。

基于RTL-SDR的软件无线电接收机设计

第26卷第7期 电子设计工程 2018年4月Vol.26 No.7Electronic Design Engineering Apr.2018 l彳R T L-S D R的较件无残电辏收机锬针 石剑,蒋立平,王建新 (南京理工大学电子工程与光电技术学院,江苏南京210094)摘要:本文利用R T L-S D R软件无线电接收机,搭建了能够在windows桌面上运行的软件无线电接 收机框架,并利用该框架和实际使用的F M调频广播系统的结构,实现了F M调频广播的接收与解 调。该接收机能够动态调节接收频带范围,并实时显示功率谱结构,最后将解调后的FM信号以声 音的形式展示出来。 关键词:软件无线电;RTL-S D R; F M;解调 中图分类号:T N911.3 文献标识码:A文章编号:1674-6236(2018)07-0073-04 The design of software-defined radio receiver based on RTL-SDR SHI Jian, JIANG Li-ping,W A N G Jian-xin (School of E e lectronic and Optical Engineering y Nanjing University of S cience and Technology,Nanjing 210094, China) Abstract:This paper s et up a software framework of software- defined radio that i s able t o run on Windows desktop based on R T L-S D R,and used the framework and the structure of commercial F M system t o receive and demodulate F M signal.The receiver can dynamically adjust i t s frequency bandwidth, and displays the power spectrum structure of the signal that i s received, f i n a l l y displays the demodulated F M signal in the form of sound. K eyw ords:software-defined radio; R T L-S D R; F M; demodulation 随着无线通信技术的发展,传统的通信系统由 于对硬件的要求比较高,已不能满足现代通信系统 多标准多体制的要求m。这时,一种新型的无线电应 用思想软件无线电逐渐发展起来。根据定义[2]:软件 无线电是一种新型的无线电体系结构,它通过硬件 和软件的结合使无线网络和用户终端具有可重配置 能力。软件无线电提供了一种建立多模式、多频段、多功能无线设备的有效而且相当经济的解决方案,可以通过软件的更新实现系统功能的变化。 最早的软件无线电平台是由美军研发的“易通 话”系统[3]。其工作频带为2M H z~2G H z,能够兼容 美军15种以上的无线电平台。之后软件无线电得 到迅速发展,但由于其设备价格髙昂,一般的中小型 企业和个人难以使用[4]。本文采用的RTL-S D R作为 一款非常廉价的软件无线电接收机设备,非常适合 个人的学习和使用。1 RTL-SDR的硬件结构和功能 RT L-S D R是一个非常廉价的家用消费档次的 U S B接口的软件无线电接收机。它由Realtek公司 的R TL2832U芯片和一个R820T调谐器组成。它能 够接收周围空间中25 M H z到1.75 G H z之内的射频 信号,并将其下变频到基带,从U S B接口输出数字化 的8位采样信号。其结构示意图以及工作流程如图 1所示。 从图1可以看到,该接收机在内部共进行了两 个流程:从R F到IF的模拟信号处理和从IF到基带 的数字信号处理。 RT L-S D R的压控整荡器(V C0)的振荡频率可 以由RTL2832U的I2C接口控制。设其频率为厶,则 ■4=乂 _々,其中,4是中频频率,乂是待接收信号 的载波频率。例如,当需要接收一个载波频率在 400 M H z的信号时,需要将其下变频到基带。由于 收稿日期=2017-04-18 稿件编号=201704122 作者简介:石剑(1993—),男,安徽宿松人,硕士研究生。研究方向:通信与信息系统。

无线电监测测向天线天馈系统技术方案

无线电监测测向天线天馈系统技术方案 天馈系统主要由监测测向一体化天线阵、避雷装置、天线支架、线缆接头(天线阵与接收机连接)等组成。 天馈系统主要配置清单 3.2.1.1.监测测向一体化天线阵 监测测向一体化天线阵由测向天线阵、监测天线、射频开关矩阵、电子罗盘等组成。其中测向天线阵为无源天线阵,频率覆盖范围为100MHz~8GHz,分为三个频段实现,分别是100MHz~1300MHz测向天线阵,1300MHz~3000MHz测向天线阵,3000MHz~8GHz测向天线阵。三个天线阵的天线元的输出经射频开关矩

阵转换接至5路接收通道。监测测向一体化天线阵外形尺寸约为Φ1.5m×0.8m (高),如图*所示,重量约80Kg。 图* 监测测向一体化天线阵示意图 ●测向天线阵 测向天线阵为包含的三个天线阵均为垂直极化的无源天线阵,每个天线阵采用9元圆阵的方式。三个天线阵的指标如下: a) 100MHz~1300MHz 无源测向天线GRTD1300V; 天线阵指标 频率范围:100MHz~1300MHz 口径:约1.2m左右 天线阵形式:圆阵 阵元数:9 单元间幅度不一致性≤±1dB 单元间相位不一致性≤±4° 天线单元单元指标 频率范围:100MHz~1300MHz 输入阻抗:50Ω 驻波:典型值<3 方向图:水平全向 极化方式:垂直极化 增益(dBi):典型值≥-4 阻抗(Ω):50 接头:SMA-50K 尺寸:约φ300mm×300mm(高)

重量:0.3Kg b) 1300MHz~3000MHz无源测向天线 GRTD3000V;天线阵指标 监测天线频率范围:1300MHz~3000MHz 口径:约0.3m左右 天线阵形式:圆阵 阵元数:9 单元间幅度不一致性≤±1.5dB 单元间相位不一致性≤±5° 天线单元指标 频率范围:1300MHz~3000MHz 输入阻抗:50Ω 驻波:典型值<2 方向图:水平全向 极化方式:垂直极化 增益(dBi):≥0 阻抗(Ω):50 接头:SMA-50K 尺寸:约φ70mm×70mm(高) 重量:0.2Kg c) 3000MHz~8000MHz无源测向天线 GRTD8000V 天线阵指标 监测天线频率范围:3000MHz~8000MHz 口径:约0.15m左右 天线阵形式:圆阵 阵元数:9

简易无线电发射与接收电路

简易无线电发射与接收电路 OOK调制尽管性能较差,然而其电路简单容易实现,工作稳定,因此得到了广泛的应用,在汽车、摩托车报警器,仓库大门,以及家庭保安系统中,几乎无一例外地使用了这样的电路。 早期的发射机较多使用LC振荡器,频率漂移较为严重。声表器件的出现解决了这一问题,其频率稳定性与晶振大体相同,而其基频可达几百兆甚至上千兆赫兹。无需倍频,与晶振相比电路极其简单。以下两个电路为常见的发射机电路,由于使用了声表器件,电路工作非常稳定,即使手抓天线、声表或电路其他部位,发射频率均不会漂移。和图一相比,图二的发射功率更大一些。可达200米以上。 图一 图二 接收机可使用超再生电路或超外差电路,超再生电路成本低,功耗小可达100uA左右,调整良好的超再生电路灵敏度和一级高放、一级振荡、一级混频以及两级中放的超外差接收机差不多。然而,超再生电路的工作稳定性比较差,选择性差,从而降低了抗干扰能力。下图为典型的超再生接收电路。

超外差电路的灵敏度和选择性都可以做得很好,美国Micrel公司推出的单片集成电路可完成接收及解调,其MICRF002为MICRF001的改进型,与MICRF001相比,功耗更低,并具有电源关断控制端。MICRF002性能稳定,使用非常简单。与超再生产电路相比,缺点是成本偏高(RMB35元)。下面为其管脚排列及推荐电路。 ICRF002使用陶瓷谐振器,换用不同的谐振器,接收频率可覆盖300-440MHz。MICRF002具有两种工作模式:扫描模式和固定模式。扫描模式接受带宽可达几百KHz,此模式主要用来和LC振荡的发射机配套使用,因为,LC发射机的频率漂移较大,在扫描模式下,数据通讯速率为每秒 2.5KBytes。固定模式的带宽仅几十KHz,此模式用于和使用晶振稳频的发射机配套,数据速率可达每秒钟10KBytes。工作模式选择通过MICRF002的第16脚(SWEN)实现。另外,使用唤醒功能可以唤醒译码器或CPU,以最大限度地降低功耗。MICRF002为完整的单片超外差接收电路,基本实现了“天线输入”之后“数据直接输出”,接收距离一般为200米。

无线电监测站试题

沧州无线电监测站业务技术学习试题 第一期 一、基础知识 1.1 填空题 1.1864年,由着名的物理学家_ 从理论上预言了电磁波的存在,后来又 通过一系列的实验验证了这一理论的正确性,并进一步完善了这一理论 2.1887年首先验证了电磁波的存在 3.在空中以一定速度传播的交变电磁场叫 4.电磁场场强标准单位为,磁场场强的单位 为,功率通量密度的标准单位为。 5.在国际频率划分中,中国属于第区 6.通常情况下,无线电波的频率越高,损耗越,反射能力越,绕射能力 越。 7.无线电波甚高频(VHF)的频率范围是从到 8.IS-95标准的CDMA移动系统的信道带宽为 9.在1800~1805MHz有我国拥有自主知识产权的移动通信系统,这个系统是 10.2006年版《中华人民共和国无线电频率划分规定》中,频率规划到Hz。 二、监测测向技术 2.1 填空 1.无线电监测包括和特殊监测。 2.磁偏角是线和线之间的夹角。 3.邻道干扰主要取决于接收机中频滤波器的和发信机在相邻频道通带内 的边带噪声。 4.接收机信噪比从20dB下降到14dB的干扰叫干扰。 5.当两个不同频率的已调载波同时加到一个时产生一个三阶失真产物 叫交调。 6.接收机互调是指多个信号同时进入接收机时,在接收机前端电 路作用下产生互调产物,互调产物落入接收机中频带内造成的干扰 7.输入滤波器允许希望接收的信号进入而限制其他信号,目的是排除高频放大器中 的。它的另一个作用是衰减在频率上的接收信号。 8.从互调的角度,衡量接收机的性能要看值,该值越高越好 9.某采用高本振方式工作的接收机,工作时,接收频率为435.250MHz,中频为21.4MHz, 此时接收机本振工作在MHz频率。 10.测向天线基础(孔径)有基础之分,测向天线基础直接影 响。 三、检测技术 3.1 填空题 1.发射机的频率误差是和它的数值之间的差。 2.在频率测量时,通常测量设备的精度应优于发射机频率容限。频 率标准和测量方法产生的各类误差之和构成整个系统的最大误差。3. 4.功率的基本单位是瓦特,符号dBm表示以计量的分贝值,符号dB μV表示以计量的分贝值,3dBm相当于mW,12dBμV相当于

无线电广播接收机的基础知识

第9章 无线电广播 接收机的基础知识 本章重点 1.了解电磁波的性质和传输途径。 2.理解无线电广播发射与接收系统的组成。 3.理解调制、解调的概念,掌握调幅波和调频波的性质和特点。 4.了解超外差式调幅收音机各基本单元电路的作用和整机工作原理。 本章难点 1.接收机中变频器和检波器的工作原理。 学时分配 9.1 无线电波的发射与接收 无线电接收机是接收无线电信号的电子设备。 9.1.1 无线电波 一、无线电波 指在高频电流作用下,导线周围的电场和磁场交替变化向四周传播能量的电磁波。无线电波的参数包括:波长 λ、频率f 、自由空间中的传播速度c ,这三个参量之间的关系为 c = λf (9.1.1) [例9.1.1] 频率为1000 kHz 的无线电波,其波长为多少? 解 由式(9.1.1)可得 m 300m 1010001033 8 =??==f c λ 可见,无线电波的频率越高,波长越短;反之,波长越长。

二、无线电波的频段 无线电波的频率范围一般用频段(或波段)表示。其波段划分如表9.1.1所示。 三、无线电波的传播途径 1.沿地面传播——地面波; 2.在空间直线传播——空间波; 3.依靠折射和反射传播——天波。 表9.1.1 无线电波的波段划分 9.1.2 无线电广播的发射与接收 动画无线电调幅发射机工作原理 一、无线电广播的发射 调制和发射:在无线电波发射过程中,只有天线长度和电波波长可比拟时,才能有效地把电波发射出去。声音信号的波长范围在15 ? 103 ~ 15 ? 106 m,要想制作对应尺寸的天线显然不现实。为此,利用频率较高(即波长极短)的无线电波携带声音信号发射出去,使天线的制作变成了现实。 高频振荡器:在发射机中,用来产生高频振荡信号的部件。 载波:用来“装载”声音信号的高频振荡信号。 调制:把声音信号“装载”到高频振荡信号中的过程。 已调信号:调制后的高频振荡信号。 所谓发射是指利用传输线把已调波送到天线,变成电磁波向空间辐射的过程。 发射机的组成: 1.低频:声音变换和放大; 2.高频:高频振荡的产生、放大、调制和高频功放; 3.传输线与天线:传输和发射已调高频信号; 4.直流电源:各部分电路工作电源。

相关文档
最新文档