采样控制系统中稳态误差与采样周期的关系

采样控制系统中稳态误差与采样周期的关系
采样控制系统中稳态误差与采样周期的关系

信号采样长度、时间间隔和频率的关系

采样频率、采样点数、分辨率、谱线数(line) (2011-02-23 20:38:35) 转载 标签: 分类:matlab 采样频率 谱线 分辨率 采样定理 数学计算 400line 杂谈 1.最高分析频率:Fm指需要分析的最高频率,也是经过抗混滤波后的信号最高频率。根据采样定理,Fm与采样频率Fs之间的关系一般为:Fs=2.56Fm;而最高分析频率的选取决定于设备转速和预期所要判定的故障性质。 2.采样点数N与谱线数M有如下的关系: N=2.56M 其中谱线数M与频率分辨率ΔF及最高分析频率Fm有如下的关系:ΔF=Fm/M即: M=Fm/ΔF所以:N=2.56Fm/ΔF ★采样点数的多少与要求多大的频率分辨率有关。例如:机器转速3000r/min=50Hz,如果要分析的故障频率估计在8倍频以下,要求谱图上频率分辨率ΔF=1 Hz ,则采样频率和采样点数设置为: 最高分析频率Fm=8·50Hz=400Hz; 采样频率Fs=2.56·Fm=2.56 ·400Hz=1024Hz; 采样点数N=2.56·(Fm/ΔF)=2.56·(400Hz/1Hz)=1024 谱线数M=N/2.56=1024/2.56=400条 按照FFT变换,实际上得到的也是1024点的谱线,但是我们知道数学计算上存在负频率,是对称的,因此,实际上我们关注的是正频率部分对应的谱线,也就是说正频率有512线,为什么我们通常又说

这种情况下是400线呢,就是因为通常情况下由于频率混叠和时域截断的影响,通常认为401线到512线的频谱精度不高而不予考虑。

另外,采样点数也不是随便设置的,即不是越大越好,反之亦然 对于旋转机械必须满足整周期采样,以消除频率畸形,单纯提高分辨率也不能消除频率畸形 过去,有人以为数据越长越好,或随便定时域信号长度,其实,这样做是在某些概念上不清楚,例如,不清楚整周期采样. 不产生频率混迭的最低采样频率Fs要求在2倍最大分析频率Fm,之所以采用2.56倍主要跟计算机二进制的表示方式有关。其主要目的是避免信号混淆保证高频信号不被歪曲成低频信号。 采样长度T的选择首先要保证能反映信号的全貌,对瞬态信号应包括整个瞬态过程;对周期信号,理论上采集一个周期信号就可以了。其次需考虑频率分辩率,采样长度T在最大分析频率Fm确定的情况下与频率分辩率△f是反比关系,也就是T越长△f越小即频率分辩率越高。 一般的分析软件都是设置谱线数M,采样点数N=2.56M。信号分析中常用的采样点数是512、1024、2048、4096等。等效于我们常说的200、400、800、1600线等频谱线数,频谱分析一般采样点数选取2的整数次方。△f=Fm/M,可见谱线数M越大频率分辩率△f越小即频率分辩率越高。 在电机的故障诊断中,为了发现边带间隔为极通频率(一般在1Hz以下)的峰值,常常需要极高的分辩率(1Hz以下),一般选择210HzFm,6400谱线。 至于整周期采样是很难实现的,必然会因为信号截断而产生泄露,为了避免这些误差,所以要采取加窗的办法。 【转】信号采样长度、时间间隔和频率的关系 2010-05-12 09:38 转载自icc_fuzhou 最终编辑Bennett1056 1.问题 动态信号中蕴含着设备的状态变化和故障特征的丰富信息,采集信号的准确和真实与否直接关系到进一步诊断设备故障原因和采取的措施。工程领域的各种信号随时间的变化表现为多种形式,如简谐的、周期的、瞬态的、随机的等等,这些被检测的信号由于系统传递路径、环境噪声的影响和各种机械元件的联合作用,构成信号的成分很复杂。同一个故障状态可能由于采样的时间和长度的不同,得出大相径庭的结论,会对设备的检修造成不同的结果。 2.原因 在采样过程中合理确定间隔和长度,是保证采样得到的数字信号能够真实反映原信号的基本条件。如果采样间隔Δt取得大,则采样频率f

计算机控制系统的稳态误差

计算机控制系统报告 --计算机控制系统的稳态误差 在计算机控制系统中存在稳态误差。怎样计算稳态误差呢? 在连续系统中,稳态误差的计算可以通过两种方法计算:一是建立在拉氏变换中值定理基础上的计算方法,可以求出系统的终值误差;另一种是从系统误差传递函数出发的动态误差系数法,可以求出系统动态误差的稳态分量。 在离散系统中,根据连续系统稳态误差的两种计算方法,在一定的条件下可以推广到离散系统。又由于离散系统没有唯一的典型结构形式,离散系统的稳态误差需要针对不同形式的离散系统来求取。 书上主要介绍了利用z 变换的终值定理方法,求取误差采样的离散系统在采样瞬时的终值误差。 设单位反馈误差采样系统如图4.12所示。 图4.12 单位反馈误差采样反馈系统 系统误差脉冲传递函数为 (4.1) 若离散系统是稳定的,则可用z 变换的终值定理求出采样瞬时的终值误差 (4.2) Φ==+e ()1()()1()E z z R z G z )](1[)()1(lim )()1(lim )(lim )(1111*z G z R z z E z t e e z z t +-=-==∞-→-→∞ →

(4.2)式表明,线性定常离散系统的稳态误差,不但与系统本身的结构和参数有关,而且与输入序列的形式及幅值有关。除此之外,离散系统的稳态误差与采样系统的周期的选取也有关。上式只是计算单位反馈误差采样离散系统的基本公式,当开环脉冲传递函数G(z)比较复杂时,计算e(∞)仍然有一定的计算量,因此希望把线性定常连续系统中系统型别及静态误差系数的概念推广到线性定常离散系统,以简化稳态误差的计算过程。 在离散系统中,把开环脉冲传递函数G(z)具有z=1的极点数v 作为划分离散系统型别的标准,与连续系统类似地把G(z)中 v=0,1,2,…的系统,称为0型,Ⅰ型和Ⅱ型离散系统等。下面讨论不同类别的离散系统在三种典型输入信号作用下的稳态误差,并建立离散系统静态误差系数的概念。 1.单位阶跃输入时的稳态误差 对于单位阶跃输入r(t)=1(t),其z 变换函数为 (4.3) 得单位阶跃输入响应的稳态误差 (4.4) 上式代表离散系统在采样瞬时的终值位置误差。式中 (4.5) 称为静态位置误差系数。若G(z)没有z=1的极点,则Kp ≠∞,从而e(∞)≠0;若G(z)有一个或一个以上z=1的极点,则Kp= ∞,从1 11)(--=z z R →∞==+1p 11()lim 1()z e G z K →=+p 1lim[1()]z K G z

PID 采样周期及参数整定方法

数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。 在选择数字PID参数之前,首先应该确定控制器结构。对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。一般来说,PI、PID和P控制器应用较多。对于有滞后的对象,往往都加入微分控制。 控制器结构确定后,即可开始选择参数。参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。这些要求,对控制系统自身性能来说,有些是矛盾的。我们必须满足主要的方面的要求,兼顾其他方面,适当地折衷处理。 PID控制器的参数整定,可以不依赖于受控对象的数学模型。工程上,PID控制器的参数常常是通过实验来确定,通过试凑,或者通过实验经验公式来确定。 采样周期的选择 采样周期: 采样一数据控制系统中,设采样周期为T S,采样速率为1/T S,采样角频率为 采样周期T S是设计者要精心选择的重要参数,系统的性能与采样周期的选择有密切关系。需要考虑的因素: 采样周期的选择受多方面因素的影响,主要考虑的因素分析如下。 (1)香农(Shannon)采样定理 (Wmax--被采样信号的上限角频率) 给出了采样周期的上限。满足这一定理,采样信号方可恢复或近似地恢复为原模拟信号,而不丢失主要信息。在这个限制范围内,采样周期越小,采样-数据控制系统的性能越接近于连续-时间控制系统。 (2)闭环系统对给定信号的跟踪,要求采样周期要小。 (3)从抑制扰动的要求来说,采样周期应该选择得小些。

实验四 线性定常系统的稳态误差

实验四 线性定常系统的稳态误差 一、实验目的 1.通过本实验,理解系统的跟踪误差与其结构、参数与输入信号的形式、幅值大小之间的关系; 2.研究系统的开环增益K 对稳态误差的影响。 二、实验原理 控制系统的方框图如图4-1所示。其中G(S)为系统前向通道的传递函数,H(S)为其反馈通道的传递函数。 图4-1 控制系统的方框图 由图4-1求得 )() ()(11 )(S R S H S G S E += (4-1) 由上式可知,系统的误差E(S)不仅与其结构和参数有关,而且也与输入信号R(S)的形式和大小有关。如果系统稳定,且误差的终值存在,则可用下列的终值定理求取系统的稳态误差: )(lim 0 S SE e s ss →= (4-2) 本实验就是研究系统的稳态误差与上述因素间的关系。下面叙述0型、I 型、II 型系统对三种不同输入信号所产生的稳态误差ss e 。 1.0型二阶系统 设0型二阶系统的方框图如图4-2所示。根据式(4-2),可以计算出该系统对阶跃和斜坡输入时的稳态误差: 图4-2 0型二阶系统的方框图 ● 单位阶跃输入(s S R 1 )(= ) 3 1 12)1.01)(2.01()1.01)(2.01(lim 0=?+++++? =→S S S S S S e S ss (4-3) 输入输出响应曲线如图4-1所示,仿真图如图4-2所示。

图4-3 0型系统阶跃响应稳态误差响应曲线 图4-4 Matlab 仿真曲线 由 Matlab 仿真结果来看,输入为单位阶跃信号时,输出稳态误差近似为,符合 4-3式计算的理论值。 ● 单位斜坡输入(2 1)(s S R = ) ∞=?+++++?=→201 2)1.01)(2.01()1.01)(2.01(lim S S S S S S e S ss (4-4) 输入输出响应曲线如图4-3所示,仿真图如图4-4所示。 图4-5 0型系统斜坡响应稳态误差响应曲线 图4-6 Matlab 仿真曲线 由 Matlab 仿真结果来看,输入为单位阶跃信号时,输出稳态误差趋于无穷大,符合4-5式理论计算值。 上述结果表明0型系统只能跟踪阶跃信号, 0型系统跟踪阶跃输入有稳态误差,计算公式为: P ss K R e += 10 (4-5) 其中)()(lim 0 S S H S G K p →?,R 0为阶跃信号的幅值。 2.I 型二阶系统 设图4-4为I 型二阶系统的方框图。

采样控制系统的分析讲解

东南大学自动控制实验室 实验报告 课程名称:热工过程自动控制原理 实验名称:采样控制系统的分析 院(系):能源与环境学院专业:热能动力姓名:范永学学号:03013409 实验室:实验组别: 同组人员:实验时间:2015.12.15 评定成绩:审阅教师:

实验八 采样控制系统的分析 一、实验目的 1. 熟悉并掌握Simulink 的使用; 2. 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理及其实现方法; 3. 研究开环增益K 和采样周期T 的变化对系统动态性能的影响; 二、实验原理 1. 采样定理 图2-1为信号的采样与恢复的方框图,图中X(t)是t 的连续信号,经采样开关采样后,变为离散信号)(*t x 。 图2-1 连续信号的采样与恢复 香农采样定理证明要使被采样后的离散信号X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为: max 2ωω≥S 式中S ω为采样的角频率,max ω为连续信号的最高角频率。由于T S πω2= ,因而式可为 m ax ωπ≤ T T 为采样周期。 2. 采样控制系统性能的研究 图2-2为二阶采样控制系统的方块图。 图2-2 采样控制系统稳定的充要条件是其特征方程的根均位于Z 平面上以坐标原点为圆心的单位圆内,且这种系统的动、静态性能均只与采样周期T 有关。 由图2-2所示系统的开环脉冲传递函数为: ]2 5.05.01[)1(25])2(2[)1(25])15.0()1(25[)(21212++--=+-=+-==---S S S Z Z S S Z Z S S e Z z G S T ]5.015.0)1([)1(25221T e Z Z Z Z Z TZ Z Z ---+----=

抽样调查误差分析

抽样误差 跟据开元捷问多年的市场调查经验总结抽样误差的来源具体如下: 1、由调查研究设计者(调查机构)的差错造成的误差主要有哪些 2、由调查员(访问员)的差错造成的误差主要有哪些 3、由被调查者(受访者)的差错造成的误差主要由哪些 具体分析 1、由调查研究设计者(调查机构)的差错造成的误差主要有哪些 (1)代用信息误差可以定义为是调研问题所需的信息与调研者所搜集的信息之间的变差。 (2)测量误差可以定义为是所搜寻的信息与由调研者所采用的测量过程所生成的信息之间的变差。 (3)总体定义误差可以定义为与手中要研究的问题相关的真正总体与调研者所定义的总体之间的变差。 (4)抽样框误差可以定义为是由调研者定义的总体与所使用的抽样框隐含的总体之间的变差。 (5)数据分析误差指的是由问卷中的原始数据转换成调查结果时产生的误差。 2、由调查员(访问员)的差错造成的误差主要有哪些 调查员提问的方式、顺序、态度,以及调查员本人的身份、特征都会影响被调查者回答的准确程度,此外,调查员的现场记录和登记也可能出现误差。由调查员引起的误差可归纳为以下几种: (1)指导语误差。如果调查员没有完全准确地按问卷中所给出的指导语去访问,那么即使是微小的偏离也会引起误差。如果有了许多次措词的微小变化,调查员记忆中的指导语和书面的指导语可能有很大的差异。 (2)问答误差。表示询问被调查者时产生的误差,或是在需要更多的信息时没有进一步询问而产生的误差。调查员需要向被调查者提问取得资料。如果调查员的措词不当,就会产生误差。例如,“请间您的年龄是多少?”和“你多大了?”这两种问法,前者得到的年龄数字比后者要准确。调查员的个人情感、态度也会影响被调查者产生误差,特别是诱导性的语言,例如,“您赞同(同意)……吗?”,或“大多数人认为……,您认为如何?”。这样,有些被调查者就会自然地顺着调查员的思路回答问题。 (3)记录误差。是由于在听、理解和记录被调查者的回答时造成的误差。

【自控原理实验】实验九 采样控制系统动态性能和稳定性

实验九采样控制系统动态性能和稳定性 分析的混合仿真研究 一.实验目的 1.学习用混合仿真方法研究采样控制系统。 2.深入理解和掌握采样控制的基本理论。 二.实验内容 1.利用实验设备设计并实现已知被控对象为典型二阶连续环节的采样控制混合仿真系统。 2.改变数字控制器的采样控制周期和放大系数,研究参数变化对采样控制系统的动态性能和稳定性的影响。 三.实验步骤 1.采样控制系统的混合仿真研究方法 (1)参阅本实验附录1(1)以及图9.1.1和图9.1.2,利用实验箱上的电模拟单元电路U9和U11,设计并连接已知传递函数的连续被控对象的模拟电路。 (2)将实验箱上的数据处理单元U3模拟量输出端“O1”与被控对象的模拟电路的输入端(对应图9.1.2的r(t)端)相连,同时将该数据处理单元U3的模拟量输入端口“I1”与被控对象的模拟电路的输出端(对应图9.1.2的c(t)端)相连。再将运放的锁零端“G”与电源单元U1的“-15V”相连。注意,实验中运放没有锁零,而模拟电路中包含“电容”,故每次实验启动前,必须对电容短接放电,以免影响实验结果。 (3)接线完成,经检查USB通讯线是否接好,再给实验箱上电后,启动上位机程序,进入主界面。界面上的操作步骤如下: ①通道接线设置”:将环节的输出端Uo接到U3单元的A/D输入端I1,U3单元的D/A信号发生端接到环节的输入端Ui。 ②硬件按上述接线完后,检查USB通讯连线是否接好和检查实验箱电源是否正常后,点击LabVIEW上位机界面程序中的“RUN”按钮运行实验界面,如果有问题则请求指导教师帮助。 ③进入实验界面后,先对实验类别进行设置(选择实验九或实验十),通过对界面下边开关来选择,点击开关向上(对应紫色信号灯亮)即选择采样控制混合仿真研究(即实验九);点击开关向下(对应绿色信号灯亮)即选择采样控制系统串联校正混合研究(即实验十)。选择“采样时间”为“200Hz/5ms”。 ④完成实验类别设置,然后设置“测试信号设置”框内的参数项,设置“信号幅值”为“1”(根据实验曲线调整大小),设置“采样时间”为“200Hz/5ms”,“采样开关T”为“1 ms”,然后选择“采样控制系统混合仿真研究”,此时数字控制器是一比例放大器,可先设置Kp=1。 注意允许的采样周期最小值为1ms。小于此值即不能保证系统运行正常。 ⑤以上设置完成后,按“启动/暂停”键启动实验或暂停实验,动态波形得到显示,如上述参数设置合理就可以在主界面中间得到系统的“阶跃响应”。

5.采样信号量化误差分析

实验五采样信号量化误差分析 一. 实验目的 1. 通过本实验熟悉a/d、d/a变换中的量化误差。 2. 了解a/d、d/a器件位数与量化误差的关系。 二. 实验原理 把连续时间信号转换为与其相对应的数字信号的过程称之为模-数(a/d)转换过程,反之则称为数-模(d/a)转换过程,它们是数字信号处理的必要程序.一般在进行a/d转换之前,需要将模拟信号经抗频混滤波器预处理,变成带限信号,再经a/d转换成为数字信号,最后送入数字信号分析仪或数字计算机完成信号处理.如果需要,再由d/a转换器将数字信号转换成模拟信号,去驱动计算机外围执行元件或模拟式显示、记录仪等。 a/d转换包括了采样、量化、编码等过程,其工作原理如图5.1所示。 图5.1 信号a/d转换过程 1)采样--或称为抽样,是利用采样脉冲序列p(t),从连续时间信号x(t)中抽取一系列离散样值,使之成为采样信号x(nts)的过程.n= 0,1….tst称为采样间隔,或采样周期,1/ts = fs 称为采样频率。 由于后续的量化过程需要一定的时间τ,对于随时间变化的模拟输入信号,要求瞬时采样值在时间τ内保持不变,这样才能保证转换的正确性和转换精度,这个过程就是采样保持。正是有了采样保持,实际上采样后的信号是阶梯形的连续函数。 2)量化--又称幅值量化,把采样信号x(nts)经过舍入或截尾的方法变为只有有限个有效数字的数,这一过程称为量化。若取信号x(t)可能出现的最大值a,令其分为d个间隔,则每个间隔长度为r=a/d,r称为量化增量或量化步长。当采样信号x(nts)落在某一小间隔内,经过舍入或截尾方法而变为有限值时,则产生量化误差,如图5.2所示。 一般又把量化误差看成是模拟信号作数字处理时的可加噪声,故而又称之为舍入噪声或截尾噪声。量化增量d愈大,则量化误差愈大,量化增量大小,一般取决于计算机a/d卡的位数.例如,8位二进制为28=256,即量化电平r为所测信号最大电压幅值的1/256。

采样控制系统分析

北京联合大学 实验报告 实验名称:采样控制系统分析 学院:自动化专业:物流工程姓名:学号: 同组人姓名:学号: 班级:成绩: 实验日期:2014年12月18日

完成报告日期:2014年12月21日 实验5 采样控制系统分析 一.实验目的 1. 掌握判断采样控制系统稳定性的充要条件。 2. 掌握采样周期T对系统的稳定性的影响及临界值的计算。 3. 观察和分析采样控制系统在不同采样周期T时的瞬态响应曲线。 二、实验内容及步骤 1.闭环采样系统构成电路如图5-1所示。掌握采样周期T对系统的稳定性的影响及临界值的计算,观察和分析采样控制系统在不同采样周期T 时的瞬态响应曲线,填入表中。 2. 改变采样控制系统的被控对象,计算和测量系统的临界稳定采样周期T,填入表中。 图5-1 闭环采样系统构成电路 [a].闭环采样系统实验构成电路如图5-1所示,其中被控对象的各环节 参数: 积分环节(A3单元)的积分时间常数Ti=R2*C2=0.2S, 惯性环节(A5单元)的惯性时间常数T=R1*C1=0.5S,增益K=R1/R3=5。 实验步骤:注:(B5)单元的‘S ST’不能用‘短路套’短接! (1)用函数发生器(B5)单元的方波输出作为系统振荡器的采样周期信号。 (D1)单元选择“方波”,(B5)“方波输出”孔输出方波。调节“设定电位器1”控制相应的输出频率。

(2 ) 用信号发生器(B1)的‘阶跃信号输出’和‘幅度控制电位器’构造输入信号R(t): B1单元中电位器的左边K3开关拨下(GND),右边K4开关拨下(0/+5V 阶跃)。阶跃信号输出(B1单元的Y测孔)调整为2.5V(调节方法:调节电位器,用万用表测量Y测孔)。 (3)构造模拟电路:按图5-1安置短路套及测孔联线,表如下。 (4)运行、观察、记录: 三、数据处理(现象分析) ①运行LABACT程序,选择自动自动控制菜单下的采样系统分析实验项目,就会弹出虚拟示波器的界面,点击开始后将自动加载相应源文件,即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。 ②调节“设定电位器1”,D1单元显示方波频率,将采样周期T(B5方波输出)依次调整为15ms(66.6Hz) 、30ms(33.3Hz)和90ms(11.1Hz),按下信号发生器(B1)阶跃信号按钮(0→+2.5V阶跃),使用虚拟示波器CH1观察A6单元输出点OUT(C)的波形。观察相应实验现象,记录波形,并判断其稳定性,填入表5-1。 T=66.6Hz

04采样信号量化误差分析

实验四采样信号量化误差分析 一. 实验目的 1.通过本实验熟悉A/D、D/A变换中的量化误差。 2.了解A/D、D/A器件位数与量化误差的关系。 二. 实验原理 把连续时间信号转换为与其相对应的数字信号的过程称之为模—数(A/D)转换过程,反之则称为数—模(D/A)转换过程,它们是数字信号处理的必要程序.一般在进行A/D转换之前,需要将模拟信号经抗频混滤波器预处理,变成带限信号,防止采样时出现频率混迭现象,然后再经A/D转换成为数字信号,最后送入数字信号分析仪或数字计算机完成信号处理.如果需要,再由D/A转换器将数字信号转换成模拟信号,去驱动计算机外围执行元件或模拟式显示、记录仪等。 图1 信号A/D转换过程 把采样信号x(nT s)经过舍入或截尾的方法变为只有有限个有效数字的数,这一过程称为量化。若取信号x(t)可能出现的最大值A,令其分为D个间隔,则每个间隔长度为R=A/D,R称为量化增量或量化步长。当采样信号x(nT s)落在某一小间隔内,经过舍入或截尾方法而变为有限值时,则产生量化误差,如图2所示。 图2 信号的6等分量化过程 一般又把量化误差看成是模拟信号作数字处理时的可加噪声,故而又称之为舍入噪声或截尾噪声。量化增量D愈大,则量化误差愈大,量化增量大小,一般取决于计算机A/D卡的位数.例如,8位二进制为28=256,即量化电平R为所测信号最大电压幅值的1/256。 三. 实验内容 采用软件模拟的方法对数字信号进行量化处理,观察量化后信号波形的变化,将原始数字信号和量化后的数字信号转化为音频数据流或音频文件(WAV格式),通过计算机声卡和喇叭播放,感受量化后带来的舍入噪声的影响。

时间抽样定理

时间抽样定理 This model paper was revised by the Standardization Office on December 10, 2020

实验4 时间抽样定理 1、实验内容 给定连续时间信号 1. 以足够小的时间间隔,在足够长的时间内画出信号时域图形。 2. 用公式计算信号的频谱 。以足够小的频率间隔,在足够大的频率范围内,画出其 频谱图,估计信号的带宽。 3. 以抽样频率3000Hz 对x(t)抽样,得到离散时间信号x(n),画出其图形,标明坐标轴。 1) 用DTFT 计算x(n)的频谱 ,画出频谱图形,标明坐标轴。 2) 由 1)得到原信号x(t)的频谱的估计 ,在模拟频域上考察对原信号频谱的逼近 程度,计算均方误差。 3) x(n)理想内插后得到原信号的估计,从连续时间域上考察信号的恢复程度,计算均方误差。 4. 抽样频率为800 samples/second ,重做3。 5. 对比和分析,验证时域抽样定理。 2、编程原理、思路和公式 对x (t )进行等间隔采样,得到x (n ),T=1/fs 。采样信号的频谱函数是原模拟信号频谱的周期延拓,延拓周期是2*pi*fs 。对频带限于fc 的模拟信号,只有当fs>2fc 时,采样后频谱才不会发生频谱混叠失真。 1000()t x t e -=()X j Ω()j X e ω?()X j Ω

Matlab中无法计算连续函数。但是可以让fs足够大,频谱混叠可以忽略不计,从而可以对采样序列进行傅里叶变换,这里使用之前编好的子程序dtft。 程序分别设定了3种采样频谱,10000Hz、3000Hz、800Hz分别对应题目1、3、4。采样时间区间均为。同时,画的是幅度归一化的频谱图,便于比较。 在网上查到一种内插函数的算法:理想内插运用内插公式xa(t)=x(n)g(t-nT)求和。其中g(t)=sinc(Fs*t),编程时,设定一个ti值求xa(ti),一个行向量x (n)和一个等长的由n’构成的列向量g(ti-n’T)相乘。构成一个行数与n同长而列数与t同长的矩阵,因此要把两项分别扩展成这样的序列。这只要把t右乘列向量ones (length(n),1),把n’T左乘行向量ones(1,length(t))即可。 设t向量长为M,n=1:N-1,就可生成t-n’T的矩阵,把它命名为TNM,则 TNM=ones(length(n),1)-n’T*ones(1,length(t))。 3、程序脚本,并注释 4、仿真结果、图形 运行后 (均方误差结果) 运行:

控制系统的稳态误差

3.5 控制系统的稳态误差 3.5 控制系统的稳态误差 描述控制系统的微分方程 (3.73 ) 式(3.73)是一个高阶微分方程,方程的解可以表示为 (3.74) 式中,前两项是方程的通解,而是方程的一个特解。随时间的增大,方程 的通解逐渐减小,方程的解y(t)越来越接近特解。当时,方程的通 解趋于零 这时系统进入了稳定状态。特解是由输入量确定的,反映了控制的目标和要 求。系统进入稳态后,能否达到预期的控制目的,能否满足必要的控制精度,要解决这个问题,就必须对系统的稳态特性进行分析。稳态特性的性能指标就是稳态误差。 3.5.1 稳态误差 控制系统的误差可以表示为 (3.75) 式中是被控制变量的期望值,y(t)是被控制变量的实际值,即控制系统的 输出。 稳定的控制系统,在输入变量的作用下,动态过程结束后,进入稳定状态的误差,称为稳态误差

图3.23 单位反馈和非单位反馈系统 (a)单位反馈系统;(b)非单位反馈系统 在控制工程中,常用控制系统的偏差信号来表示误差。对图 3.23(a)所示的单位反馈系统,误差与偏差的含义是相同的,即 (3.76) 式中r(t)为系统的给定值,也就是输出y(t)的期望值。单位反馈系统的稳态误差为: (3.77) 对图3.23(b)所示的非单位反馈系统,因为反馈变量f(t)并不与输出变量y(t)完全相同,所以给定值与反馈变量之差,即偏差并不是(3.75)式意义上的误差。但如果反馈环节H(s)不含有积分环节,在时,由于暂态项的消失,反馈 量与输出量之间就只差一个比例系数我们认为反馈量可以代表输出 量,于是,定义非单位反馈系统的误差为 (3.78) 式中r(t)是非单位反馈系统的给定值,f(t)是反馈信号。根据图3.23(b)非单位反馈系统各环节间信号的关系,可得 (3.79)

采样计算方法测量交流电压有效值误差分析.953.

采样计算方法测量交流电压有效值误差分析 李沂乘 (北京东方计量测试技术研究所,北京 100086) 摘要:分析了利用采样计算方法测量交流信号有效值的主要误差因素。对于计算方法、周期误差、A/D转换器量化误差和A/D转换器积分非线性误差这四种主 要的误差来源如何影响电压有效值测量结果进行了定量分析,在实际应用的过程中可以有针对性的采取措施来减小误差因素对测量结果的影响。关键词:采样计 算;有效值;误差分析 Error Analysis of Sampling Computation Method for RMS Measurement LI Yicheng (Beijing Orient Institute of Measurement & Test, Beijing 100086, China Abstract: The error genesis, measuring effective value of AC signal with sampling computation method, is analyzed in this paper. Four primary geneses, including computation algorithm, measurement errors in non-synchronous, quantization errors of analogue digital converter (ADC, integral nonlinearity errors of ADC, are discussed; meanwhile, expressions are given in this paper. The result may be taken as a reference for minimizing influence caused by such errors. Keywords: sampling computation; effective value; error analysis 交流电压有效值 的测量方法有很多种,对于低频以及超低频信号电压有效值的测量,目前比较常用的是基于采样计算的测量方法。这主要是因为用常规的测量方法和模拟技术不但要求测量仪表本身具有极高的稳定性,而且仪表极长的响应时间和不合理的电路元件参数使得测量在某些场合很难实现。采样计算的测量方法克服这些传统不利因素的同时也产生了新的问题,分析误差因素对测量结果的影响方式,就能够在实际测量

抽样误差

抽样误差 抽样误差(Sampling error) [编辑] 什么是抽样误差 在抽样检查中,由于用样本指标代替全及指标所产生的误差可分为两种:一种是由于主观因素破坏了随机原则而产生的误差,称为系统性误差;另一种是由于抽样的随机性引起的偶然的代表性误差。抽样误差仅仅是指后一种由于抽样的随机性而带来的偶然的代表性误差,而不是指前一种因不遵循随机性原则而造成的系统性误差。 总的说来,抽样误差是指样本指标与全及总体指标之间的绝对误差。在进行抽样检查时不可避免会产生抽样误差,因为从总体中随机抽取的样本,其结构不可能和总体完全一致。例如样本 平均数与总体平均数之差,样本成数与总体成数之差| p? P | 。虽然抽样误差不可避免,但可以运用大数定律的数学公式加以精确地计算,确定它具体的数量界限,并可通过抽样设计加以控制。 抽样误差也是衡量抽样检查准确程度的指标。抽样误差越大,表明抽样总体对全及总体的代表性越小,抽样检查的结果越不可靠。反之,抽样误差越小,说明抽样总体对全及总体的代表性越大,抽样检查的结果越准确可靠。在统计学中把抽样误差分为抽样平均误差和抽样极限误差,下面就这两种误差分别进行阐释。为使推理过程简化,这里不对属性总体进行分析,而仅对变量总体进行分析计算。 [编辑] 抽样误差的计算

1、表现形式:平均数指标抽样误差;成数(比重)抽样误差。 2、平均数指标的抽样误差 1)重复抽样的条件下: 2)不重复抽样的条件下: 3、成数指标的抽样误差 1)重复抽样的条件下: 2)不重复抽样的条件下: [编辑] 影响抽样误差的因素 1.总体各单位标志值的差异程度。差异程度愈大则抽样误差愈大,差异程度愈小则则抽样误差愈小。 2.样本单位数。在其他条件相同的情况下,样本的单位数愈多,则抽样误差愈小。 3.抽样方法。抽样方法不同,抽样误差也不同。一般情况下重复抽样误差比不重复抽样误差要大一些。 4.抽样调查的组织形式。不同的抽样组织形式就有不同的抽样误差。 [编辑]

控制系统的稳定性

3.8 控制系统的稳定性 3.8 控制系统的稳定性 稳定性是控制系统最重要的特性之一。它表示了控制系统承受各种扰动,保持其预定工作状态的能力。不稳定的系统是无用的系统,只有稳定的系统才有可能获得实际应用。我们前几节讨论的控制系统动态特性,稳态特性分析计算方法,都是以系统稳定为前提的。 3.8.1 稳定性的定义 图3.26(a)是一个单摆的例子。在静止状态下,小球处于A位置。若用外力使小球偏离A而到达A’,就产生了位置偏差。考察外力去除后小球的运动,我们会发现,小球从初始偏差位置A',经过若干次摆动后,最终回到A点,恢复到静止状态。图3.26(b)是处于山顶的一个足球。足球在静止状态下处于B位置。如果我们用外力使足球偏离B位置,根据常识我们都知道,足球不可能再自动回到B位置。对于单摆,我们说A位置是小球的稳定位置,而对于足球来说,B则是不稳定的位置。 图 3.26 稳定位置和不稳定位置 (a)稳定位置;(b)不稳定位置 处于某平衡工作点的控制系统在扰动作用下会偏离其平衡状态,产生初始偏差。稳定性是指扰动消失后,控制系统由初始偏差回复到原平衡状态的性能。若能恢复到原平衡状态,我们说系统是稳定的。若偏离平衡状态的偏差越来越大,系统就是不稳定的。 在控制理论中,普遍采用了李雅普诺夫(Liapunov)提出的稳定性定义,内容如下: 设描述系统的状态方程为 (3.131)

式中x(t)为n维状态向量,f(x(t),t)是n维向量,它是各状态变量和时间t的函数。如果系统的某一状态,对所有时间t,都满足 (3.132) 则称为系统的平衡状态。是n维向量。当扰动使系统的平衡状态受到破坏时,系统就会偏离平衡状态,在时,产生初始状态=x。在时,如果对于任一实数,都存在另一实数,使得下列不等式成立 (3.133) (3.134) 则称系统的平衡状态为稳定的。 式中称为欧几里德范数,定义为: (3.135) 矢量的范数是n维空间长度概念的一般表示方法。 这个定义说明,在系统状态偏离平衡状态,产生初始状态以后,即以后,系统的状态将会随时间变化。对于给定的无论多么小的的球域S(),总存在另一个的球域,只要初始状态不超出球域,则系统的状态 的运动轨迹在后始终在球域S()内,系统称为稳定系统。 当t无限增长,如果满足: (3.136) 即系统状态最终回到了原来的平衡状态,我们称这样的系统是渐近稳定的。对于任意给定的正数,如果不存在另一个正数,即在球域内的初始状态,在后,的轨迹最终超越了球域S(),我们称这种系统是不稳定的。 图3.27是二阶系统关于李雅普诺夫稳定性定义的几何说明。

大气采样器的检定校准误差来源的数据分析及不确定度评定

大气采样器的检定校准误差来源的数据分析及不确定度评定 摘要受到我国社会经济的快速化发展影响,生态环境问题日益突出,尤其是大气问题关乎着广大人民群众的切身利益,而要想加强环境保护效果就必须首先做好环境监控,而大气采样器便是进行大气污染监控所经常要用到的一种采样工具。本次研究重点针对导致大气采样器出现误差的主要因素展开了分析研究,希望能够为有关研究人员提供一些有益参考。 关键词大气采样器;误差;不确定度;环境保护 近年来一到秋冬季节我国华北大部分地区就会出现大量的雾霾天气,大气污染问题受到了全社会的广泛关注。基于这一现状情况下国家环保部门对于大气污染也愈发重视,进一步加强环境监测力度也变得十分迫切。在开展环境检测工作时经常要用到大气采样器,这一种工具有着十分广泛的应用性。因此,从计量部门的角度而言开展好对大气采样器的检定校准工作也变得异常重要。下文主要分析了大气采样器检定时示值误差不确定度的响应因素。 1 测量方法 在开展大气样本采集时首先需将被检测采样器入口直接和皂膜流量计出口直接连通,对采集到的样本流量做出调控直到所对应的检测点预备采样流量处于平衡状态,基于智能电子皂膜流量计内获取被测量点在标准工作状况下的流量水平,并与被检测大气采样器流量点展开对比分析,进而获取到所对应检测点的采样流量示值误差。在实际测量时可确定出数学模型: 在上述计算公式中,代表示值的误差量,单位采用%表示;代表检定点的流量值,单位采用mL/min表示;代表检定点基于标准水平下的流量平均值,单位采用mL/min表示。依据相关大气采样器国家标准,对采样器开展检定工作,需首先确定鉴定结果不确定受影响的主要因素,其中主要就包括了:真实流量测量所获得的不确定度,由于出现温度偏差而造成的不确定度,大气压强测量等多项内容。从本质上来说在具体的工作开展时,测量不确定受到影响的原因来自于多个方面,其所用到的测量方法也应当结合实际情况做出相应的调整,将影响因素的所带来的负面影响尽可能降到最低程度,减小大气采样器的标准示值误差,更加准确的获得被检测流量计的整体不确定性程度[1]。 2 标准不确定度来源及评定 2.1 不确定度来源分析 在开展大气环境样本采集研究时,其测量结果不确定度的来源途径包括了以下几点,即:①重复性的样本测量影响;②环境温度的影响;③大气压力的影响; ④标准器本身的不确定度影响;⑤被检测采样器为数显型最低分辨率。

采样控制系统的分析

热工过程自动控制原理实验报告 白思平 03015413 实验八 采样控制系统的分析 一、实验目的 1. 熟悉并掌握Simulink 的使用; 2. 通过本实验进一步理解香农定理和零阶保持器ZOH 的原理及其实现方法; 3. 研究开环增益K 和采样周期T 的变化对系统动态性能的影响; 二、实验原理 1. 采样定理 图2-1为信号的采样与恢复的方框图,图中X(t)是t 的连续信号,经采样开关采样后,变为离散信号)(* t x 。 图2-1 连续信号的采样与恢复 香农采样定理证明要使被采样后的离散信号X *(t)能不失真地恢复原有的连续信号X(t),其充分条件为: max 2ωω≥S 式中S ω为采样的角频率,m ax ω为连续信号的最高角频率。由于T S π ω2=,因而式可为 max ωπ ≤T T 为采样周期。 2. 采样控制系统性能的研究 图2-2为二阶采样控制系统的方块图。 图2-2 采样控制系统稳定的充要条件是其特征方程的根均位于Z 平面上以坐标原点为圆心的单位圆,且这种系统的动、静态性能均只与采样周期T 有关。 由图2-2所示系统的开环脉冲传递函数为: ]2 5 .05.01[)1(25])2(2[)1(25])15.0()1(25[)(21212++--=+-=+-==---S S S Z Z S S Z Z S S e Z z G S T ]5.015.0)1([ )1(25221 T e Z Z Z Z Z TZ Z Z ---+----=

) )(1()]21()12[(5.122222T T T T e Z Z Te e Z e T --------++-= 闭环脉冲传递函数为: )]21(]12[5.12)1()]21(12[5.12)()(222222 222T T T T T T T T Te e Z e T e Z e Z Te e Z e T z R z C ----------++-+++---++-=)( 5 .12)5.1125()5.115.1325()] 21(12[5.12222222++-+-+--++-=-----T e Z e T Z Te e Z e T T T T T T )( 根据上式,根据朱利判据可判别该采样控制系统否稳定,并可用迭代法求出该系统的阶跃输出响应。 三、实验设备: 装有Matlab 软件的PC 机一台 四、实验容 1. 使用Simulink 仿真采样控制系统 2. 分别改变系统的开环增益K 和采样周期T S ,研究它们对系统动态性能及稳态精度的影响。 五、实验步骤 5-1. 验证香农采样定理 利用Simulink 搭建如下对象,如图2-3。 图2-3 设定正弦波的输入角频率w = 5,选择采样时间T 分别为0.01s 、0.1s 和1s ,观察输入输出波形,并结合香农定理说明原因。 5-2.采样系统的动态特性 利用Simulink 搭建如下二阶系统对象,如图2-4。 当系统的增益K=10,采样周期T 分别取为0.003s ,0.03s ,0.3s 进行仿真实验。 更改增益K 的值,令K=20,重复实验一次。 系统对象simulink 仿真图:

基于Simulink控制系统的稳态误差分析

基于Simulink 控制系统的稳态误差分析 一、实验目的 1.掌握使用Simulink 仿真环境进行控制系统稳态误差分析的方法。 2.了解稳态误差分析的前提条件是系统处于稳定状态。 3.研究系统在不同典型输入信号作用下,稳态误差的变化。 4.分析系统在扰动输入作用下的稳态误差。 5.分析系统型次及开环增益对稳态误差的影响。 二、实验设备和仪器 1.计算机 2. MATLAB 软件 三、实验原理 1.误差的意义: a) 给定信号作用下的稳 态误差表征系统输出跟随输入信号的能力。 b) 系统经常处于各种扰动作用下。如:负载力矩的变化,电源电压和频率的波动,环境温度的变化等。因此系统在扰动作用下的稳态误差数值,反映了系统的抗干扰能力。 注意:系统只有在稳定的前提下,才能对稳态误差进行分析。 定义式法求稳态误差: [] lim ()lim ()lim ()()lim ()lim () ss r d t s s r d s s ssr ssd e e t sE s s E s E s sE s sE s e e →∞→→→→===+=+=+ 2. 给定信号作用下的误差E )()1R s = +扰动信号作用下的误差()d E s )()1(G D s G -= +R(s)是给定输入信号(简称给定信号) ;D(s)是扰动输入信号(简称扰动信号);()()G s H s 是开环传递函数。 3. 静态误差系数法(只能用于求给定信号作用下误差) 这种简便的求解给定信号稳态误差 ssr e 的方法叫做静态误差系数法,首先给出系统在不同输入信号下的误差系数的定义: 当()0R R s s =时,定义静态位置误差 系数为:0 lim ()() p s K G s H s →= R

调查报告抽样误差分析

调查报告抽样误差分析 篇一:某抽样调查报告的分析 中国人睡眠状况调查报告XX年09月10日 16:24 来源:凤凰网广州站 截至XX年,中国大约有2亿人打鼾,5000万人在睡眠中发生呼吸暂停,还有近3亿人失眠,以及存在尚不为大多数中国人知的发生性睡病、不宁腿综合征、儿童睡眠暂停等约90种睡眠疾病。 睡眠作为生命所必须的过程,是机体复原、整合和巩固记忆的重要环节,是健康不可缺少的组成部分。而在我国,大众的睡眠状况不容乐观,青少年缺乏睡觉时间,工薪一族睡眠障碍,老年人入睡困难……为了对我国大众的睡眠状况有一个详细的了解,某网站网进行了“中国人睡眠状况网上调查”,本次调查为期两个月,共获得了17536份有效样本,参与调查的网民以女性为主,占到参与总人数的62% 。在年龄层次方面,50% 的参与者处于26-38 岁年龄段,其次为20-25 岁年龄段,所占比例为27%,39-55岁的参与者也较多,占到17% 。在职业方面,65%的参与者为白领一族,17%的为在校学生,工人及农民的参与比例分别为11%和6% 。因此,从参与本次调查的网民个人基本信息的统计中可以看

出,本次调查参与者以城镇成年人为主,20岁以上占到96%,而且女性高于男性。 调查方式:网络调查调查对象:广大网民有效样本:17536份数据图表示80%的都市成年人睡眠不健康。在睡眠时间上,过长或过短的睡眠都对健康不利,具体的时间多少会因年龄而有所不同,年纪小的睡眠时间相对较长,一般青年人每天睡眠7-8个钟比较合适。这次调查来看,约%的人每天睡眠8小时,%的人每天睡6-7个钟,有%的人在9-10小时之间,值的注意的是,%的人每天睡眠不足5小时,这已属于睡眠不足,而参与调查的人群中有%的人每天会睡11小时以上,睡的时间过多或过少都属非正常情况,要多加注意,及时就医。 那么一天到底睡多少小时才算够?对于这个问题,有专家认为,虽然睡眠时间的多少与年龄有关,但相对来说还有个“黄金分割线”,那就是一天应该保证6-7小时的睡眠时间。规律的作息时间会使睡眠的质量更好,因此保持健康的作息规律是有百利而无一害的。在被调查的人群中,较多的人是晚睡早起,属于劳累型,占%;晚睡晚起的也不少,占%,是滞睡型;%早睡早起,属于健康型;还有%早睡晚起,为懒惰型。至于午休,%的人一般都会进行午休,但由于生活工作所限,有%的人想午休却没有机会,有%的人

相关文档
最新文档