高效液相色谱荧光检测法分析氨基酸

高效液相色谱荧光检测法分析氨基酸
高效液相色谱荧光检测法分析氨基酸

高效液相色谱法测定氨基酸

脑蛋白水解物溶液氨基酸含量分析方法研究方案 1、仪器与试药 1.1 仪器 1525型高效液相色谱仪(美国Waters公司);Waters1525型泵,Waters2487型检测器,Waters5CH 型柱温箱,WatersBREEZE数据处理软件,水浴恒温器(精度±0.1℃),旋涡器,微量移液器,衍生专用管;CP225D型分析天平(德国);4umNora-Pak TM C18(3.9mm×150mm,5μm)色谱柱(美国) 1.2 药品与试剂 16种氨基酸(门冬氨酸、丝氨酸、谷氨酸、甘氨酸、组氨酸、精氨酸、苏氨酸、丙氨酸、脯氨酸、缬氨酸、甲硫氨酸、赖氨酸、异亮氨酸、亮氨酸、苯丙氨酸、色氨酸)由中国药品生物制品检定所提供。 脑蛋白水解物注射液,云南盟生药业有限公司生产,规格10ml/支。批号:2013、2013、2013. 乙腈(HPLC级);EDTA(分析纯);磷酸(分析纯);二乙胺(分析纯);三水合乙酸钠(分析纯)。2、方法与结果 2.1色谱条件流动相A为AccQTag醋酸—磷酸盐缓冲液;由AccQTagEluent A浓缩制备AccQTag洗脱液,用前稀释10倍(或按以下方法配制:称19.04g三水合乙酸钠,加1000ml纯化水,搅拌,溶解,用50%H3PO4将pH调至5.2,加入1ml 1mg/ml的EDTA溶液,加入2.37ml二乙胺,用50%H3PO4滴定至pH4.95,用水溶性过滤器过滤,超声,脱气,备用。);流动相B为60% HPLC级乙腈,按梯度表梯度洗脱;流速1.0ml/min;检测波长为254nm;进样量5μl;柱温38℃。

时间 (min) 流速 (ml/min) % A % B 曲线 起始 1.0 100 0 * 0.5 1.0 98 2 6 15.0 1.0 93 7 6 19.0 1.0 90 10 6 32.0 1.0 65 35 6 33.0 1.0 65 35 6 34.0 1.0 0 100 6 37.0 1.0 0 100 6 38.0 1.0 100 0 6 42.0 1.0 100 0 6 2.2对照品溶液、供试品溶液的制备分别精密称取16种氨基酸标准品,用纯化水配制成浓度如下表 所示的混合溶液。 名称浓度(mg/ml)名称浓度(mg/ml)名称浓度(mg/ml)门冬氨酸 4.80 苏氨酸 1.20 异亮氨酸 1.10 丝氨酸 2.60 丙氨酸 2.50 亮氨酸 2.70 谷氨酸 6.20 脯氨酸 2.00 苯丙氨酸 1.20 甘氨酸 2.40 缬氨酸 1.60 色氨酸0.40 组氨酸0.90 甲硫氨酸 1.00 精氨酸 1.20 赖氨酸 3.45 取上述溶液0.1ml,加纯化水0.9ml,旋涡器混匀,作为对照品溶液;取脑蛋白水解物注射液,加水稀释成含总氮为1mg/ml的溶液,取0.1ml,加纯化水0.9ml,旋涡器混匀,作为供试品溶液。 衍生剂配制将水浴锅设置55℃,加热,待温度稳定, 取AccQFluor衍生剂2A,轻轻弹击,确保AccQFluor 衍生剂2A粉末全落在瓶底,吸取AccQFluor衍生稀释剂2B 1ml并放掉,清洗移液器管,再吸取AccQFluor 衍生稀释剂2B 1ml,加入AccQFluor衍生剂2A的瓶中,振荡10秒钟,在恒温水浴锅中溶解,保持10分钟。于干燥器中室温保存一周,于干燥器中4℃保存二周。 2.3测定方法分别取20ul对照品溶液和供试品溶液加入衍生专用管底部,加入60uLAccQFluor硼酸

氨基酸测定方法

4.1 光度分析法[5] [6] β-氨基丙酸和茚三酮溶液在弱酸的条件下可以生成蓝紫色物质[7],其颜色深浅主要与β-氨基丙酸的浓度有关。因此可利用此显色反应采用比色法定量测量β-氨基丙酸。我在实验中发现很多因素如浓度、pH 值、反应温度、以及反应时间等对此显色反应有很大的影响。如忽视这些因素会使实验产生很大的误差。就此显色反应的最佳条件我做了初步的探究。 4.1.1试剂的配制: 缓冲液的配制:配制pH= 6.00的NaAc -HAc 缓冲溶液 β-氨基丙酸标准溶液的配制: 用电子天平准确称取1.020 g β-氨基丙酸(生化纯),溶于250ml pH=6.00缓冲溶液中,得到C = 4.080 g/L 标准溶液。 茚三酮试剂的配制:称取0.5g 茚三酮溶于100ml 蒸馏水中,得到5g/L 的茚三酮水溶液。 4.1.2标准曲线的确定 分别准确移取0.30ml 、0.40ml 、0.50ml 、0.60ml 、0.70ml 、0.80ml 、0.90ml 、1.00ml 标准液于8个比色管中,用pH=6.00的缓冲溶液稀释到5.00ml 再加入1ml 茚三酮水溶液充分摇匀,将其放在沸水浴中加热10min 。冷却到室温,用7230型分光光度计在569nm 下测其吸光度。以吸光度和浓度作一个标准曲线。 4.1.3样品的测定 稀释待测液于0.24mg/ml —0.73mg/ml,调pH 值到6.00,以相同的反应条件,测其吸光值并与上面的标准曲线对照查出稀释液的浓度,再乘以稀释倍数即为β-氨基丙酸的浓度。 4.1.4 标准曲线的测定结果 β-氨基丙酸浓度在0.24mg/ml —0.73mg/ml 范围内与茚三酮水溶液反应,颜色表现出由浅蓝到深蓝的递增变化。用茚三酮比色法测得的一组数据得到的标准曲线如图1: 0.20.30.40.50.60.70.80.9 1.0 1.1 0.4 0.6 0.8 1.0 1.2 1.4 吸光度加入标液体积(ml) B 图 1 标准曲线的测定 Fig 1 Determination of the standard curve 注:在沸水中加热10min ,β-氨基丙酸标准溶液5ml 、茚三酮水溶液1ml 、缓冲溶液pH=6.00 4.1.5样品的测定分析 将待测的一批稀释50倍,母液稀释的程度可以根据以与标准溶液在相同的

通则0512高效液相色谱法

高效液相色谱法: 系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。 注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测, 由积分仪或数据处理系统记录和处理色谱信号。 1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。 色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。 超高液相色谱仪:是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、 高灵敏度检测的高效液相色谱仪。 (1)色谱柱 反相色谱柱: 以键和非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂优十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱: 用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶 和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反向色谱。 离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。

色谱柱的内径和长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相的pH值一般应在2~8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。 (2)检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器, 其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器, 其响应值不仅与被测物质的量有关,还与其结构有关; 蒸发光散射检测器和示差折光检测器为通用型检测器, 对所有物质均有响应,结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。 紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一 定范围内呈线性关系, 但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。 紫外-可见分光检测器所用流动相应符合紫外-可见分光光度法(通则0401)项下对溶剂的要求; 采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。 蒸发光散射检测器和质谱检测器不得使用含不挥发性盐的流动相。 (3)流动相

食物中氨基酸的测定方法

食物中氨基酸的测定方法 测定食物中的胱氨酸使用过甲酸氧化-氨基酸自动分析仪法,测定色氨酸使用荧光分光光度法,测定其它氨基酸使用氨基酸自动分析仪法。 一、氨基酸自动分析仪法 1.原理 食物蛋白质经盐酸水解成为游离氨基酸,经氨基酸分析仪的离子交换柱分离后,与茚三酮溶液产生颜色反应,再通过分光光度计比色测定氨基酸含量。一份水解液可同时测定天冬,苏,丝,谷,脯,甘,丙,缬,蛋,异亮,亮,酪,苯丙,组,赖和精氨酸等16种氨基酸,其最低检出限为10pmol。 2.适用范围 GB/T14965-1994食物中氨基酸的测定方法。 本法适用于食物中的16种氨基酸的测定。其最低检出限为10pmol。本方法不适用于蛋白质含量低的水果、蔬菜、饮料和淀粉类食物的测定 3.仪器和设备 3.1真空泵 3.2恒温干燥箱 3.3水解管:耐压螺盖玻璃管或硬质玻璃管,体积20~30ml。用去离子水冲洗干净并烘干。 3.4真空干燥器(温度可调节) 3.5氨基酸自动分析仪。 4.试剂 全部试剂除注明外均为分析纯,实验用水为去离子水。 4.1浓盐酸:优级纯 4.26mol/L盐酸:浓盐酸与水1:1混合而成。 4.3苯酚:需重蒸馏。 4.4混合氨基酸标准液(仪器制造公司出售):0.0025mol/L 4.5缓冲液: 4.5.1 pH2.2的柠檬酸钠缓冲液:称取19.6g柠檬酸钠(Na3C6H5O7.2H2O)和16.5ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至2.2

4.5.2 pH3.3的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和12ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节至pH至3.3。 4.5.3 pH4.0的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和9ml浓盐酸加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至4.0。 4.5.4 pH6.4的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和46.8g氯化钠(优级纯)加水稀释到1000ml,用浓盐酸或50%的氢氧化钠溶液调节pH至6.4。 4.6茚三酮溶液 4.6.1 pH 5.2的乙酸锂溶液:称取氢氧化锂(LiOH.H2O)168g,加入冰乙酸(优级纯)279ml,加水稀释到1000ml,用浓盐酸或50%的氢氧化钠调节pH至5.2。 4.6.2茚三酮溶液:取150ml二甲基亚砜(C2H6OS)和乙酸锂溶液(2.6.1)50ml加入4g 水合茚三酮(C9H4O3.H2O)和0.12g还原茚三酮(C18H10O6.2H2O)搅拌至完全溶解。 4.7高纯氮气:纯度99.99%。 4.8 冷冻剂:市售食盐与冰按1:3混合 5.操作步骤 5.1样品处理:样品采集后用匀浆机打成匀浆(或者将样品尽量粉碎)于低温冰箱中冷冻保存,分析用时将其解冻后使用。 5.2称样:准确称取一定量样品,精确到0.0001g。均匀性好的样品如奶粉等,使样品蛋白质含量在10~20mg范围内;均匀性差的样品如鲜肉等,为减少误差可适当增大称样量,测定前再稀释。将称好的样品防于水解管中。 5.3水解:在水解管内加6mol/L盐酸10~15ml(视样品蛋白质含量而定),含水量高的样品(如牛奶)可加入等体积的浓盐酸,加入新蒸馏的苯酚3~4滴,再将水解管放入冷冻剂中,冷冻3~5min,再接到真空泵的抽气管上,抽真空(接近0psi),然后充入高纯氮气;再抽真空充氮气,重复三次后,在充氮气状态下封口或拧紧螺丝盖将已封口的水解管放在110±1℃的恒温干燥箱内,水解22h后,取出冷却。 打开水解管,将水解液过滤后,用去离子水多次冲洗水解管,将水解液全部转移到50ml 容量瓶内,用去离子水定容。吸取滤液1ml于5ml容量瓶内,用真空干燥器在40~50℃干燥,残留物用1~2ml水溶解,再干燥,反复进行两次,最后蒸干,用1mlpH2.2的缓冲液溶解,供仪器测定用。 5.4测定:准确吸取0.200ml混合氨基酸标准,用pH2.2的缓冲液稀释到5ml,此标准稀释浓度为5.00nmol/50μL,作为上机测定用的氨基酸标准,用氨基酸自动分析仪以外标

高效液相色谱法测定食物中氨基酸含量 北京液相色谱仪分析案例

食物中氨基酸含量的高效液相色谱法测定 一、简介 测定食物中氨基酸含量一般采用氨基酸分析仪,柱后衍生测定,但氨基酸分析仪价格昂贵,分析时间长,且只能用于分析氨基酸,限制了氨基酸分析技术的广泛应用。七十年代以来,柱前衍生高效液相色谱法开始应用于氨基酸的测定。液相色谱通用性强,检测灵敏度高,可用于多种物质的分析。 南京科捷应用研究所采用柱前衍生紫外检测的方法对几种食物中的16种氨基酸进行了测定。 二、LC-10Tvp梯度高效液相色谱仪配置 LC-10Tvp高压恒流泵:2台 SPD-10Tvp紫外检测器:1台 SCL-10Tvp 系统控制器:1台 7725i手动进样阀: 1套 色谱工作站:1套(VI2010、N2000、N3000选用) 液相色谱柱:1支(C18 4.6*250mn,5um) 微量进样器:1支(50ul/100ul) 进样支架:1只(进样阀用) 三、LC-10Tvp梯度高效液相色谱仪特点 LC-10Tvp梯度高效液相色谱仪是南京科捷分析仪器有限公司为了快速地满足多样化的客户需求,在原有的STI501液相色谱仪的基础上经过优化,利用美国先进技术开发设计,国内加工生产的的一款新型的液相色谱仪。LC-10Tvp等度高效液相色谱仪实现了人机对话,可实时对仪器的运行状态进行监控,并可对潜在和已出现的故障做出判断,同时提供在线解决方案。该仪器也全面实现了远程的准无人操作,大大提高了仪器的使用效率,同时通过高精度的AS1000自动进样系统,实现自动化进样,最大程度抑制了样品的交叉污染,提供样品分析精度。LC-10Tvp等度高效液相色谱仪可广泛应用于研究开发、医药检验、食品检测、化工分析、环境监测等众多分析领域。 主要特点 丰富的功能——符合客户对分析的不同需求 硬件具有VP功能,记录维护信息和操作记录,符合GLP/GMP要求;系统控制器增具有时钟、温度计、湿度计等人性化设计的功能。

高效液相色谱仪常用检测器的种类及分析

高效液相色谱仪常用检测器的种类及分析检测器的作用是将柱流出物中样品组成和含量的变化转化为可供 检测的信号,常用检测器有紫外吸收、荧光、示差折光、化学发光等。 1.紫外可见吸收检测器(ultraviolet-visibledetector,UVD) 紫外可见吸收检测器(UVD)是HPLC中应用最广泛的检测器之一,几乎所有的液相色谱仪都配有这种检测器。其特点是灵敏度较高,线性范围宽,噪声低,适用于梯度洗脱,对强吸收物质检测限可达1ng,检测后不破坏样品,可用于制备,并能与任何检测器串联使用。紫外可见检测器的工作原理与结构同一般分光光度计相似,实际上就是装有流动地的紫外可见光度计。 (1)紫外吸收检测器 紫外吸收检测器常用氘灯作光源,氘灯则发射出紫外-可见区范围的连续波长,并安装一个光栅型单色器,其波长选择范围宽 (190nm~800nm)。它有两个流通池,一个作参比,一个作测量用,光源发出的紫外光照射到流通池上,若两流通池都通过纯的均匀溶剂,则它们在紫外波长下几乎无吸收,光电管上接受到的辐射强度相等,无信号输出。当组分进入测量池时,吸收一定的紫外光,使两光电管接受到的辐射强度不等,这时有信号输出,输出信号大小与组分浓度有关。

局限:流动相的选择受到一定限制,即具有一定紫外吸收的溶剂不能做流动相,每种溶剂都有截止波长,当小于该截止波长的紫外光通过溶剂时,溶剂的透光率降至10%以下,因此,紫外吸收检测器的工作波长不能小于溶剂的截止波长。 (2)光电二极管阵列检测器(photodiodearraydetector,PDAD) 也称快速扫描紫外可见分光检测器,是一种新型的光吸收式检测器。它采用光电二极管阵列作为检测元件,构成多通道并行工作,同时检测由光栅分光,再入射到阵列式接收器上的全部波长的光信号,然后对二极管阵列快速扫描采集数据,得到吸收值(A)是保留时间(tR)和波长(l)函数的三维色谱光谱图。由此可及时观察与每一组分的色谱图相应的光谱数据,从而迅速决定具有最佳选择性和灵敏度的波长。 单光束二极管阵列检测器,光源发出的光先通过检测池,透射光由全息光栅色散成多色光,射到阵列元件上,使所有波长的光在接收器上同时被检测。阵列式接收器上的光信号学的方法快速扫描提取出来,每幅图象仅需要10ms,远远超过色谱流出峰的速度,因此可随峰扫描。 2.荧光检测器(fluorescencedetector,FD) 荧光检测器是一种高灵敏度、有选择性的检测器,可检测能产生荧光的化合物。某些不发荧光的物质可通过化学衍生化生成荧光衍生物,再进行荧光检测。其最小检测浓度可达0.1ng/ml,适用于痕量分析;一般情况下荧光检测

氨基酸含量分析法

新增附录 附录XX 氨基酸分析法 氨基酸分析法是指用于测定蛋白质、肽及其他药物制剂的氨基酸组成或含量的方法。 根据氨基酸组成分析可以对蛋白质及肽进行鉴别,氨基酸分析法可用于确定蛋白质、肽及氨基酸的含量,及测定可能存在于蛋白质及肽中的非典型氨基酸。进行氨基酸分析前,必须将蛋白质及肽水解成单个氨基酸,具体水解方法由各品种项下规定。蛋白质及肽水解后,其氨基酸分析过程与用于其他药物制剂中游离氨基酸的分析过程相同。 本法包括四种柱前衍生法,分别为异硫氰酸苯酯(PITC)法、6-氨基喹啉-N-羟基琥珀酰亚氨基氨基甲酸酯(AQC)法、邻苯二醛(OPA)和9-芴甲基氯甲酸甲酯(FMOC)法、2,4-二硝基氟苯(DNFB)法,以及一种茚三酮柱后衍生法。不同的品种应针对自身所含的氨基酸种类及各氨基酸的含量选择适宜的氨基酸分析方法并做相应的方法学验证。 由于本法衍生过程中衍生溶液量较少,且容易挥发,外标法极易出现较大的误差,建议采用内标法进行测定,内标的确定由各品种项下规定。在本法中,由于半胱氨酸或胱氨酸的衍生产物不稳定,因此对于含半胱氨酸或胱氨酸的样品衍生后应尽快测定,或者在衍生前对半胱氨酸或胱氨酸进行适当的处理,使其转化为稳定地产物(如磺基丙氨酸或半胱氨酸-硫代丙酸)后再衍生测定,具体方法由各品种项下规定。在测定过程中,可根据所用的仪器、色谱柱品牌、色谱柱的长度及要分离的氨基酸种类,对流动相的有机溶剂和洗脱梯度作适当调整以获得较好的分离度。 第一法 PITC柱前衍生氨基酸分析法 本法系根据氨基酸与异硫氰酸苯酯(PITC)反应,生成有紫外响应的氨基酸衍生物苯氨基硫甲酰氨基酸(PTC-氨基酸),PTC-氨基酸经反相高效液相色谱分离后用紫外检测,在一定的范围内其吸光值与氨基酸浓度成正比。本方法的线性浓度范围为0.025~1.25μmol/ml。 试剂(1)流动相A 0.1mol/L醋酸钠溶液(取无水醋酸钠8.2g,加水900ml溶解,用冰醋酸调pH至6.5,然后加水至1000 ml)-乙腈(93:7)。(2)流动相B 乙腈-水(8:2)。 对照品溶液按各品种项下规定的方法制备。 供试品溶液按各品种项下规定的方法制备。 色谱条件与系统适用性试验用十八烷基硅烷键合硅胶为填充剂(4.6×250mm,5μm);流速为每分钟 1.0ml;柱温为40℃;检测波长为254nm。各氨基酸峰间的分离度均应大于1.0。洗脱梯度如下:

高效液相色谱法的主要类型及其分离原理

高效液相色谱法的主要类型及其分离原理 高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(最高输送压力可达4.9′107Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。 特点 1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。 2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于1h 。 3. 高效:近来研究出许多新型固定相,使分离效率大大提高。 4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。 5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,操作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于400 以上)的有机物(这些物质几乎占有机物总数的75% ~80% )原则上都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。 高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。 高效液相色谱法的主要类型及其分离原理 根据分离机制的不同,高效液相色谱法可分为下述几种主要类型: 1 .液—液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography) 流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。达到平衡时,服从于下式: 式中,cs—溶质在固定相中浓度;cm--溶质在流动相中的浓度;Vs—固定相的体积;Vm—流动相的体积。LLPC与GPC有相似之处,即分离的顺序取决于K,K大的组分保留值大;但也有不同之处,GPC中,流动相对K影响不大,LLPC流动相对K影响较大。 a. 正相液—液分配色谱法(Normal Phase liquid Chromatography): 流动相的极性小于固定液的极性。 b. 反相液—液分配色谱法(Reverse Phase liquid Chromatography): 流动相的极性大于固定液的极性。

测定氨基酸的方法以及试剂

一采用氨基酸自动分析仪测定氨基酸 1.氨基酸测定原理: 食物蛋白质经盐酸水解成为游离氨基酸,经氨基酸分析仪的离子交换柱分离后,与茚三酮溶液产生颜色反应,再通过分光光度计比色测定氨基酸含量。 2.测定氨基酸所用仪器: 真空泵;恒温干燥箱;水解管:耐压螺盖玻璃管或硬质玻璃管,体积20~30mL。用去离子水冲洗干净并烘干;真空干燥器(温度可调节);氨基酸自动分析仪。 3.测定氨基酸所用试剂及其配制方法: 3.1试剂:全部试剂除注明外均为分析纯,实验用水为去离子水。 浓盐酸(优级纯);苯酚(须重蒸馏); 混合氨基酸标准液(仪器制造公司出售):0.00250mol/L; 不同pH值柠檬酸钠缓冲液;氢氧化锂(LiOH·H2O);冰乙酸(优级纯);二甲基亚砜(C2H6OS);水合茚三酮(C9H4O3·H2O);还原茚三酮(C18H10O6·2H2O);NaOH;高纯氮气(纯度99.99%);冷冻剂:市售食盐与冰按1∶3混合。 3.2试剂配制方法: 3.2.1. 6mol/L盐酸∶浓盐酸(3.1)与水1∶1混合而成。 3.2.2. pH2.2的柠檬酸钠缓冲液:称取19.6g柠檬酸钠(Na3C6H5O7·2H2O)和16.5mL浓盐酸加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至2.2。 pH3.3的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和12mL浓盐酸加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至3.3。 pH4.0的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和9mL浓盐酸加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至4.0。 pH6.4的柠檬酸钠缓冲液:称取19.6g柠檬酸钠和46.8g氯化钠(优级纯)加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至6.4。 3.2.3. 茚三酮溶液 pH5.2的乙酸锂溶液:称取氢氧化锂(LiOH·H2O)168g,加入冰乙酸(优级纯)279mL,加水稀释到1000mL,用浓盐酸或50%的氢氧化钠溶液调节pH至5.2。 茚三酮溶液:取150mL二甲基亚砜(C2H6OS)和乙酸锂溶液(3.6.1)50mL加入4g水合茚三酮(C9H4O3·H2O)和0.12g还原茚三酮(C18H10O6·2H2O)搅拌至完全溶解。 二.液相法测定氨基酸 柱前衍生法:参见文献(高效液相色谱柱-前衍生化法测定饲料中的含硫氨基酸 柱前衍生化反相高效液相色谱法测定板蓝根中的氨基酸 高效液相色谱法测定酶促反应液中的L-半胱氨酸含量) 1.仪器:Waters2695 HPLC; Waters2998 PDA检测器;电热恒温鼓风干燥箱 色谱柱:Phenomenex Luna C18 (250mm×4.6mm,5μm) 试剂:流动相A:0.1mol/L醋酸钠缓冲液(以醋酸调pH6.5)-乙腈(93:7) 流动相B:乙腈-水(4:1) 梯度洗脱 检测波长:254nm 2.试剂:衍生试剂:PITC(异硫氰酸苯酯);浓盐酸;三乙胺;正己烷;苯酚;氨基酸标准品衍生化试剂的配制方法:1mol/L三乙胺-乙腈溶液:取三乙胺7mL加乙腈稀释至50Ml 0.01mol/L PITC-乙腈溶液:取PITC 60μL加乙腈稀释至50mL

氨基酸测定方法

光度分析法[5] [6] β-氨基丙酸和茚三酮溶液在弱酸的条件下可以生成蓝紫色物质[7],其颜色深浅主要与β-氨基丙酸的浓度有关。因此可利用此显色反应采用比色法定量测量β-氨基丙酸。我在实验中发现很多因素如浓度、pH 值、反应温度、以及反应时间等对此显色反应有很大的影响。如忽视这些因素会使实验产生很大的误差。就此显色反应的最佳条件我做了初步的探究。 试剂的配制: 缓冲液的配制:配制pH= 的NaAc -HAc 缓冲溶液 β-氨基丙酸标准溶液的配制: 用电子天平准确称取 g β-氨基丙酸(生化纯),溶于250ml pH=缓冲溶液中,得到C = g/L 标准溶液。 茚三酮试剂的配制:称取茚三酮溶于100ml 蒸馏水中,得到5g/L 的茚三酮水溶液。 标准曲线的确定 分别准确移取、、、、、、、标准液于8个比色管中,用pH=的缓冲溶液稀释到再加入1ml 茚三酮水溶液充分摇匀,将其放在沸水浴中加热10min 。冷却到室温,用7230型分光光度计在569nm 下测其吸光度。以吸光度和浓度作一个标准曲线。 样品的测定 稀释待测液于ml —ml,调pH 值到,以相同的反应条件,测其吸光值并与上面的标准曲线对照查出稀释液的浓度,再乘以稀释倍数即为β-氨基丙酸的浓度。 标准曲线的测定结果 β-氨基丙酸浓度在ml —ml 范围内与茚三酮水溶液反应,颜色表现出由浅蓝到深蓝的递增变化。用茚三酮比色法测得的一组数据得到的标准曲线如图1: 吸光度加入标液体积(ml) 图 1 标准曲线的测定 Fig 1 Determination of the standard curve 注:在沸水中加热10min ,β-氨基丙酸标准溶液5ml 、茚三酮水溶液1ml 、缓冲溶液pH= 样品的测定分析 将待测的一批稀释50倍,母液稀释的程度可以根据以与标准溶液在相同的反应条件下反应,再观察样品的显色程度而确定。取稀释后的产物液1ml,用pH=

高效液相色谱仪常用检测器的种类及分析

高效液相色谱仪常用检测器的种类及分析检测器的作用就是将柱流出物中样品组成与含量的变化转化为可 供检测的信号,常用检测器有紫外吸收、荧光、示差折光、化学发光等。 1、紫外可见吸收检测器(ultraviolet- visibledetector,UVD) 紫外可见吸收检测器(UVD)就是HPLC中应用最广泛的检测器之一,几乎所有的液相色谱仪都配有这种检测器。其特点就是灵敏度较高,线性范围宽,噪声低,适用于梯度洗脱,对强吸收物质检测限可达1ng,检测后不破坏样品,可用于制备,并能与任何检测器串联使用。紫外可见检测器的工作原理与结构同一般分光光度计相似,实际上就就是装有流动地的紫外可见光度计。 (1)紫外吸收检测器 紫外吸收检测器常用氘灯作光源,氘灯则发射出紫外-可见区 范围的连续波长,并安装一个光栅型单色器,其波长选择范围宽 (190nm~800nm)。它有两个流通池,一个作参比,一个作测量用,光源发出的紫外光照射到流通池上,若两流通池都通过纯的均匀溶剂,则它们 在紫外波长下几乎无吸收,光电管上接受到的辐射强度相等,无信号输出。当组分进入测量池时,吸收一定的紫外光,使两光电管接受到的辐射强度不等,这时有信号输出,输出信号大小与组分浓度有关。

局限:流动相的选择受到一定限制,即具有一定紫外吸收的溶 剂不能做流动相,每种溶剂都有截止波长,当小于该截止波长的紫外光 通过溶剂时,溶剂的透光率降至10%以下,因此,紫外吸收检测器的工作波长不能小于溶剂的截止波长。 (2)光电二极管阵列检测器(photodiodearraydetector,PDAD) 也称快速扫描紫外可见分光检测器,就是一种新型的光吸收式检测器。它采用光电二极管阵列作为检测元件,构成多通道并行工作,同时检测由光栅分光,再入射到阵列式接收器上的全部波长的光信号,然 后对二极管阵列快速扫描采集数据,得到吸收值(A)就是保留时间(tR) 与波长(l)函数的三维色谱光谱图。由此可及时观察与每一组分的色谱图相应的光谱数据,从而迅速决定具有最佳选择性与灵敏度的波长。 单光束二极管阵列检测器,光源发出的光先通过检测池,透射 光由全息光栅色散成多色光,射到阵列元件上,使所有波长的光在接收 器上同时被检测。阵列式接收器上的光信号学的方法快速扫描提取出来,每幅图象仅需要10ms,远远超过色谱流出峰的速度,因此可随峰扫描。 2.荧光检测器(fluorescencedetector,FD) 荧光检测器就是 一种高灵敏度、有选择性的检测器,可检测能产生荧光的化合物。某些不发荧光的物质可通过化学衍生化生成荧光衍生物,再进行荧光检测。其最小检测浓度可达0、1ng/ml,适用于痕量分析;一般情况下荧光检测器的灵敏度比紫外检测器约高2个数量级,但其线性范围不如紫外检测

氨基酸测定方法

光度分析法 [5] [6] β-氨基丙酸和茚三酮溶液在弱酸的条件下可以生成蓝紫色物质[7],其颜色深浅主要与β-氨基丙酸的浓度有关。因此可利用此显色反应采用比色法定量测量β-氨基丙酸。我在实验中发现很多因素如浓度、pH 值、反应温度、以及反应时间等对此显色反应有很大的影响。如忽视这些因素会使实验产生很大的误差。就此显色反应的最佳条件我做了初步的探究。 试剂的配制: 缓冲液的配制:配制pH= 的NaAc -HAc 缓冲溶液 β-氨基丙酸标准溶液的配制: 用电子天平准确称取 g β-氨基丙酸(生化纯),溶于250ml pH=缓冲溶液中,得到C = g/L 标准溶液。 茚三酮试剂的配制:称取茚三酮溶于100ml 蒸馏水中,得到5g/L 的茚三酮水溶液。 标准曲线的确定 分别准确移取、、、、、、、标准液于8个比色管中,用pH=的缓冲溶液稀释到再加入1ml 茚三酮水溶液充分摇匀,将其放在沸水浴中加热10min 。冷却到室温,用7230型分光光度计在569nm 下测其吸光度。以吸光度和浓度作一个标准曲线。 样品的测定 稀释待测液于ml —ml,调pH 值到,以相同的反应条件,测其吸光值并与上面的标准曲线对照查出稀释液的浓度,再乘以稀释倍数即为β-氨基丙酸的浓度。 标准曲线的测定结果 β-氨基丙酸浓度在ml —ml 范围内与茚三酮水溶液反应,颜色表现出由浅蓝到深蓝的递增变化。用茚三酮比色法测得的一组数据得到的标准曲线如图1: 吸光度 加入标液体积(ml) 图 1 标准曲线的测定 Fig 1 Determination of the standard curve 注:在沸水中加热10min ,β-氨基丙酸标准溶液5ml 、茚三酮水溶液1ml 、缓冲溶液pH= 样品的测定分析 将待测的一批稀释50倍,母液稀释的程度可以根据以与标准溶液在相同的反应条件下反应,再观察样品的显色程度而确定。取稀释后的产物液1ml,用pH=的缓冲液稀释到5ml 再加入1ml 茚三酮水溶液,在沸水中加热10min,测得如下数据如表3: 表3 样品的测定 待测液序号 待测液所对应的反应时间 吸光度A 1 10h 2 20h 3 22h

《饲料中氨基酸的测定高效液相色谱法》

《饲料中氨基酸的测定高效液相色谱法》河南省地方标准编制说明 一、编制的目的和意义 氨基酸是羧酸碳原子上的氢原子被氨基取代后的化合物,氨基酸分子中含有基和氨羧基两种官能团。与羟基酸类似,其可按照氨基连在碳链上的不同位置而分为α-,β-,γ-...w-氨基酸,但经蛋白质水解后得到的氨基酸都是α-氨基,它们是构成动物营养所需蛋白质的基本物质,是维持动物生长所必需的营养物质,其种类和含量是评价饲料蛋白质营养价值的根本指标,测定饲料中的氨基酸具有非常重要的意义。 随着畜牧养殖业的迅猛发展,对饲料营养成分分析也提出了更高的要求。饲料分析已从比较单一的高含量营养成分,如蛋白质、脂肪等的总量分析,深入到比较复杂的微量营养素,如多种氨基酸、维生素、微量元素及饲料中的有害物质等分析。目前,饲料产品国标中氨基酸的测定采用的是离子交换柱后茚三酮衍生色谱法。但众所周知,该方法使用的氨基酸自动分析仪价格昂贵(约70万左右),专属性强,只能分析氨基酸,且分析速度慢。而采用高效液相色谱法测定氨基酸,具有价格便宜,分析速度快、灵敏度高、操作简

便的特点,其次,目前很多实验室都配置了高效液相色谱仪,其价格易于接受(约10万左右),而且它的分析范围很广,可测定饲料中的氨基酸、维生素、碳水化合物、脂肪酸、有机酸、添加剂(风味剂、防腐剂等)和有害物质(如黄曲霉素、棉酚和农药残留等),因而实现了一机多用的可能。相比于目前国标方法GB/T 18246-2000《饲料中氨基酸的测定》规定的氨基酸分析方法,高效液相则具有较好的通用性,应用范围广且市场占有率高,利于推广。随着高效液相色谱技术的日趋成熟和普及,高效液相色谱法必将成为各检测机构测定氨基酸含量的主要方法。 二、任务来源及编制原则和依据 2.1 任务来源 根据河南省质量技术监督局文件《河南省质量技术监督局关于下达2017年第四批河南省地方标准制修订计划的通知》豫质监标发〔2017〕355号的要求,由河南海瑞正检测技术有限公司负责对项目编号为20174210667的河南省地方标准《饲料中氨基酸的测定高效液相色谱法》的起草、制定工作。 2.2 编制原则 本标准编制符合国家法律、法规和政策,本着严格遵循“规范性、实用性、统一性、协调性、完整性”的原则,开

氨基酸测定

茚三酮显色法测定氨基酸的含量 一.原理: 凡含有自由氨基的化合物,如蛋白质、多肽、氨基酸的溶液与水合茚三酮共热时,能产生紫色化合物,可用比色法进行测定。氨基酸与茚三酮的反应分两个步骤。第一步是氨基酸被氧化形成CO2、NH3和醛、茚三酮被还原成还原型茚三酮;第二步是所形成的还原型茚三酮与另一个茚三酮分子和NH3缩合生成有色物质。 二.仪器: 721型分光光度计台天平减压蒸馏器干燥容量瓶移液枪烧杯试管架试管水浴锅。 三.药品: (1)标准氨基酸溶液:配制成0.3 mmol/L 溶液 (2)pH5.4,2mol/L 醋酸缓冲液:量取86mL 2mol/L 醋酸钠溶液,加入14mL 2mol/L 乙酸混合而成。用pH 检查校正。 (3)茚三酮显色液:称取170mg 茚三酮和30mg 还原茚三酮,用20mL 乙二醇甲醚溶解(4)60%乙醇。 (5)样品液:每毫升含0.5~50μg 氨基酸。 茚三酮若变为微红色,则需按下法重结晶:称取5g 茚三酮溶于15~25mL 热蒸馏水中,加入0.25g 活性炭,轻轻搅拌。加热30min 后趁热过滤,滤液放入冰箱过夜。次日析出黄白色结晶,抽滤,用1mL 冷水洗涤结晶,置干燥器干燥后,装入棕色玻璃瓶保存。 还原型茚三酮按下法制备:称取0.5g 茚三酮,用12.5mL 沸蒸馏水溶解,得黄色溶液。将0.5g 维生素C 用25mL 温蒸馏水溶解,一边搅拌一边将维生素C 溶液滴加到茚三酮溶液中,不断出现沉淀。滴定后继续搅拌15min,然后在冰箱内冷却到4℃,过滤、沉淀用冷水洗涤3 次,置五氧化二磷真空干燥器中干燥保存,备用。 乙二醇甲醚若放置太久,需用下法除去过氧化物:在500mL 乙二醇甲醚中加入5g 硫酸亚铁,振荡1~2h,过滤除去硫酸亚铁,再经蒸馏,收集沸点为121~125℃的馏分,为无色透明的乙二醇甲醚。 四、操作步骤 1.标准曲线的制作分别取0.3mmol/L 的标准氨基酸溶液0,0.2,0.4,0.6,0.8,1.0mL 于试管中,用水补足至1mL。各加入1mL pH5.4,2mol/L 醋酸缓冲液;再加入1mL 茚三酮显色液,充分混匀后,盖住试管口,在100℃水浴中加热15min,用自来水冷却。放置5min 后,加入3mL60%乙醇稀释,充分摇匀,用分光光度计测定OD570nm。(脯氨酸和羟脯氨酸与茚三酮反应呈黄色,应测定OD440nm)。以OD570nm 为纵坐标,氨基酸含量为横坐标,绘制标准曲线。 1 2 3 4 5

文献的氨基酸检测方法有高效液相色谱法

文献的氨基酸检测方法有高效液相色谱法(HPLCV']、气相色谱法(GC)离子交换柱法液相色谱质谱法(LC-MS) 毛细管电泳法(CE)然而,每一种方法都有各自的优点和缺点。微流控技术(又称“芯片实验室”)从采用之初到现在己经得到突飞猛进的发展 对食品中的氨基酸进行分析具有以下困难:(1)氨基酸本身不发焚光,也没有电子活性基团,在自然状态下很难对氨基酸进行检测;(2)实际样品中的其它组分会对氨基酸的分离检测产生干扰,因此对样品的处理方法与过程要求严格["]。 基于激光诱导劳光自身具有选择性高、灵敏度高的优点,微流控芯片电泳与激光诱导劳光检测联用己成为最流行的组合方式。选择合适的焚光试剂来衍生氨基酸成为激光诱导焚光检测的必要步骤。衍生过程可以分为柱前衍生和柱后衍生。后衍生的优点在于不受衍生时间的限制,添加物不会对分离效率产生影响。目前对氨基酸的分析大多集中于基础研宄和感念验证,只有少数课题组把微流控装置用于实际样品中氨基酸的分析["]。 芯片毛细管电泳 3.1概述 芯片毛细管电泳(chip-based capillary electrophoresis )是以电场为驱动力,借助于离子或分子在电迁移或分配行为上的差异,对复杂试样中的多种组分进行高速分离的分析技术。电泳分析时,先在进样通道上施加电压,在电渗流的作用下,使试样从样品池经十字交叉口流向样品废液池;然后将电压切换到分离通道,储存在十字交叉口处的一段试样溶液在电渗流的推动下进入分离通道并进行分离,组分经过检测点时,记录电泳谱图。 3. 2进样方式 芯片毛细管电泳的进样方法对于芯片毛细管的发展至关重要_。 3. 2. 1简单进样 芯片毛细管电泳中最为常见的进样方式为十字通道进样。该进样系统由垂直交叉的样品通道和分离通道组成,通过电压在两通道间的切换实现简单进样操作。通过在样品池和样品废液池之间施加一定的电压,使样品从样品池流向样品废液池的过程中,将十字交叉口处的一小段通道中充满样品;接着将电压切换到缓冲液池和缓冲液废液池之间,储存在十字交叉口处的试样溶液在电渗流的推动下进入分离通道,进行分离。 3. 2. 2夹流进样 在十字形通道上采用夹流进样。在充样阶段,除样品废液池接地外,样品池、缓冲液池和缓冲液废液池均施加一定的正电压,电势的分配应使样品池、缓冲液池、缓冲液废液池处的电势V|、\、V,均大于十字交叉口处电势V」而样品废液池处的电势v,小于V|。由于缓冲液通道和分离通道中的缓冲液也在电渗流的作用下经十字交叉口“挤”入样品通道,使得来自样品池的样品液流在十字交叉口处被挤压变细,夹在两层缓冲液的液流之间流入样品通道。在分离阶段,四个液池处的电势同时切换,最终使的V3大于Vi,Vi、V2小于V|,v.,更小于v.,。 3. 2. 3门式进样 施加一定电压使缓冲液池的电势大于样品池的电势,样品废液池和缓冲废液池的电势均设零。这时,缓冲液以较大的流量从缓冲液池出发流经十字交叉口时一部分向下流入分离通道,另一部分流向样品废液池;而样品从样品池经十字交叉口流向样品废液池。进样时,缓冲液池

文献的氨基酸检测方法有高效液相色谱法

文献的氨基酸检测方法有高效液相色谱法(HPLCV'、气相色谱法(GC)离子交换柱法液相色谱 质谱法(LC-MS)毛细管电泳法(CE)然而,每一种方法都有各自的优点和缺点。微流控技术(又称“芯片实验室” )从采用之初到现在己经得到突飞猛进的发展对食品中的氨基酸进行分析具有以下困难:(1)氨基酸本身不发焚光,也没有电子活性基团,在自然状态下很难对氨基酸进行检测;(2)实际样品中的其它组分会对氨基酸的分离检测产生干 扰,因此对样品的处理方法与过程要求严格 ["]。 基于激光诱导劳光自身具有选择性高、灵敏度高的优点,微流控芯片电泳与激光诱导劳光检测联用己成为最流行的组合方式。选择合适的焚光试剂来衍生氨基酸成为激光诱导焚光检测的必要步骤。衍生过程可以分为柱前衍生和柱后衍生。后衍生的优点在于不受衍生时间的限 制,添加物不会对分离效率产生影响。目前对氨基酸的分析大多集中于基础研宄和感念验证 , 只有少数课题组把微流控装置用于实际样品中氨基酸的分析 ["]。 芯片毛细管电泳 3.1 概述 芯片毛细管电泳 (chip-based capillary electrophoresis )是以电场为驱动力,借助于离子或分子在电迁移或分配行为上的差异,对复杂试样中的多种组分进行高速分离的分析技术。电泳分 析时,先在进样通道上施加电压,在电渗流的作用下,使试样从样品池经十字交叉口流向样品废液池 ;然后将电压切换到分离通道,储存在十字交叉口处的一段试样溶液在电渗流的推动下进入分离通道并进行分离,组分经过检测点时,记录电泳谱图。 3. 2 进样方式芯片毛细管电泳的进样方法对于芯片毛细管的发展至关重要 _。 3. 2. 1 简单进样芯片毛细管电泳中最为常见的进样方式为十字通道进样。该进样系统由垂直交叉的样品通道和分离通道组成,通过电压在两通道间的切换实现简单进样操作。通过在样品池和样品废液池之间施加一定的电压,使样品从样品池流向样品废液池的过程中,将十字交叉口处的一小段通道中充满样品 ;接着将电压切换到缓冲液池和缓冲液废液池之间,储存在十字交叉口处的试样溶液在电渗流的推动下进入分离通道,进行分离。 3. 2. 2 夹流进样在十字形通道上采用夹流进样。在充样阶段,除样品废液池接地外,样品池、缓冲液池和缓冲液废液池均施加一定的正电压,电势的分配应使样品池、缓冲液池、缓冲液废液池处的电势 V|、、V,均大于十字交叉口处电势V」而样品废液池处的电势 V,小于V|。由于缓冲液通道 和分离通道中的缓冲液也在电渗流的作用下经十字交叉口“挤”入样品通道,使得来自样品池的样品液流在十字交叉口处被挤压变细 ,夹在两层缓冲液的液流之间流入样品通道。在分离阶段,四个液池处的电势同时切换,最终使的V3大于Vi,Vi、V2小于V|,v.,更小于v.,。 3. 2. 3 门式进样 施加一定电压使缓冲液池的电势大于样品池的电势,样品废液池和缓冲废液池的电势均设零。 这时,缓冲液以较大的流量从缓冲液池出发流经十字交叉口时一部分向下流入分离通道,另一部分流向样品废液池 ;而样品从样品池经十字交叉口流向样品废液池。进样时,缓冲液池和样品废液池悬空 ,样品溶液在样品池和缓冲废液池之间的电场作用下,经十字交叉口向下流入分

相关文档
最新文档