光电效应光子光的波粒二象性(附答案)

光电效应光子光的波粒二象性(附答案)
光电效应光子光的波粒二象性(附答案)

光电效应光子光的波粒二象性

河北省鸡泽县第一中学(057350)吴社英

说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷

可在各题后直接作答.共100分,考试时间90分钟.

第Ⅰ卷(选择题共40分)

一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有一

个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不

答的得0分.

1.下列关于光电效应的说法正确的是 ( )

A.若某材料的逸出功是W ,则它的极限频率h

W v 0 B.光电子的初速度和照射光的频率成正比

C.光电子的最大初动能和照射光的频率成正比

D.光电子的最大初动能随照射光频率的增大而增大

解析由光电效应方程k E =hv -W 知,B 、C 错误,D 正确.若k E =0,得极限频率0v =h

W ,故A 正确.

答案AD

2.在下列各组所说的两个现象中,都表现出光具有粒子性的是 ( )

A.光的折射现象、偏振现象

B.光的反射现象、干涉现象

C.光的衍射现象、色散现象

D.光电效应现象、康普顿效应

解析本题考查光的性质.

干涉、衍射、偏振都是光的波动性的表现,只有光电效应现象和康普顿效应都是光的

粒子性的表现,D 正确.

答案D

3.关于光的波粒二象性的理解正确的是 ( )

A.大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性

B.光在传播时是波,而与物质相互作用时就转变成粒子

C.高频光是粒子,低频光是波

D.波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著

解析根据光的波粒二象性知,A 、D 正确,B 、C 错误.

答案AD

4.当具有

5.0 eV 能量的光子照射到某金属表面后,从金属表面逸出的电子具有最大的初动

能是 1.5 eV.为了使这种金属产生光电效应,入射光的最低能量为 ( )

A.1.5 eV

B.3.5 eV

C.5.0 eV

D.6.5 eV

解析本题考查光电效应方程及逸出功.

由W hv E k -=

得W =hv -k E =5.0 eV-1.5 eV=3.5 eV

则入射光的最低能量为h m in v =W =3.5 eV

故正确选项为B.

答案B

5.紫外线光子的动量为c

hv .一个静止的3O 吸收了一个紫外线光子后 ( )

A.仍然静止

B.沿着光子原来运动的方向运动

C.沿光子运动相反方向运动

D.可能向任何方向运动

解析由动量守恒定律知,吸收了紫外线光子的3O 分子与光子原来运动方向相同.故正确选项

为B.

答案B

6.关于光电效应,以下说法正确的

( )

A.光电子的最大初动能与入射光的频率成正比

B.光电子的最大初动能越大,形成的光电流越强

C.能否产生光电效应现象,决定于入射光光子的能量是否大于或等于金属的逸出功

D.用频率是1v 的绿光照射某金属发生了光电效应,改用频率是2v 的黄光照射该金属一定不

发生光电效应

解析本题考查光电效应.

由光电效应方程知,光电子的最大初动能随入射光频率的增大而增大,但不是正比关

系,A 错.光电流的强度与入射光的强度成正比,与光电子的最大初动能无关,B 错.用频率

是1v 的绿光照射某金属发生了光电效应,改用频率是2v 的黄光照射该金属不一定不发生光

电效应,D 错、C 对.

答案C

7.在验证光的波粒二象性的实验中,下列说法正确的是 ( )

A.使光子一个一个地通过单缝,如果时间足够长,底片上会出现衍射图样

B.单个光子通过单缝后,底片上会出现完整的衍射图样

C.光子通过单缝的运动路线像水波一样起伏

D.单个光子通过单缝后打在底片的情况呈现出随机性,大量光子通过单缝后打在底片上的

情况呈现出规律性

解析根据光的波粒二象性知,A 、D 正确,B 、C 错误.

答案AD

8.用波长为1λ和2λ的单色光A 和B 分别照射两种金属C 和D 的表面.单色光A 照射两种金

属时都能产生光电效应现象;单色光B 照射时,只能使金属C 产生光电效应现象,不能使

金属D 产生光电效应现象.设两种金属的逸出功分别为C W 和D W ,则下列选项正确的是

( )

A. 1λ>2λ,C W >D W

B. 1λ>2λ,C W <D W

C. 1λ<2λ,C W >D W

D. 1λ<2λ,C W <D W

解析由题意知,A 光光子的能量大于B 光光子,根据E =hv =h λ

c ,得1λ<2λ;又因为单色光B 只能使金属C 产生光电效应现象,不能使金属D 产生光电效应现象,所以C W <D W ,故

正确选项是D.

答案D

9.光子有能量,也有动量p =

λ

h ,它也遵守有关动量的规律.如图所示,真空中有一“∞”字形装置可绕通过横杆中点的竖直轴O O 在水平面内灵活地转动,其中左边是圆形黑纸片,右边是和左边大小、质量均相同的圆形白纸片.当用平行白光垂直照射这两个圆面时,关于

此装置开始时转动情况(俯视)的下列说法中正确的是 ( )

A.顺时针方向转动

B.逆时针方向转动

C.都有可能

D.不会转动

解析本题考查光子的动量.光照射到黑纸片上被吸收,照射到白纸片上被反射,因此白纸片

受到的冲量大,装置逆时针转动.故正确选项为B.

答案B

10.如图所示为一光电管的工作原理图,当用波长为λ的光照射阴极K 时,电路中有光电

流,则 ( )

A.换用波长为1λ(1λ>λ)的光照射阴极K 时,电路中一定没有光电流

B.换用波长为2λ (2λ<λ)的光照射阴极K 时,电路中一定有光电流

C.增加电路中电源的路端电压,电路中的光电流一定增大

D.将电路中电源的极性反接,电路中可能还有光电流

解析用波长为λ的光照射阴极K ,电路中有光电流,表明λ小于该金属的极限波长0λ,换用波长为1λ照射,虽然1λ>λ,但是1λ不一定大于0λ,所以用波长为1λ的光照射时,可能仍有光电流,故A 错误.用波长为2λ (2λ<λ)的光照射阴极K 时,因2λ<λ<0λ,故电路中一定有光电流,B 对.如果电源的端电压已经足够大,阴极K 逸出的光电子都能全部被吸引到阳极形成光电流,此时再增大路端电压,电路中的光电流也不再增大,C 错.将电路中电源的极性反接,具有最大初动能的光电子有可能能够克服电场阻力到达阳极A ,从而形成光电流,所以D 正确.

答案BD

第Ⅱ卷(非选择题共60分)

二、本题共5小题,每小题4分,共20分.把答案填在题中的横线上.

11.如右图所示,一验电器与锌板相连,在A 处用一紫外线灯照射锌板,关灯后,指针保持一定偏角.

(1)现用一带负电的金属小球与锌板接触,则验电器指针偏角将(填“增大”“减小”或“不变”).

(2)使验电器指针回到零,再用相同强度的钠灯发出的黄光照射锌板,验电器指针无偏转.那么,若改用强度更大的红外线灯照射锌板,可观察到验电器指针(填“有”或“无”)偏转.

解析当用紫外光照射锌板时,锌板发生光电效应,放出光电子而带上了正电,此时与锌板连在一起的验电器也带上了正电,从而指针发生了偏转.当带负电的小球与锌板接触后,中和了一部分正电荷,从而使验电器的指针偏转减小.

使验电器指针回到零,用钠灯黄光照射,验电器指针无偏转,说明钠灯黄光的频率小于极限频率,红外光比钠灯黄光的频率还要低,更不可能发生光电效应.能否发生光电效应与入射光的强度无关.

答案(1)减小(2)无

12.在某种介质中,某单色光的波长为λ,已知该色光光子能量为E ,光在真空中的速度为c ,则该介质对这种色光的折射率为.

解析由E =hv 得色光频率:v =h

E

单色光在介质中传播的速度:v =

h

E v λλT λ== 介质对这种色光的折射率:n =E

hc v c λ=. 答案E hc λ 13.在绿色植物的光合作用中,每放出一个氧分子要吸收8个波长为6.68×10-7 m 的光子,同时每放出1 mol 氧气,植物储存469 kJ 的能量.则绿色植物能量转化效率为 (普朗克常量h =6.63×10-34 J ·s ).

解析吸收的能量为

E =8N A h λ

c =8×6.0×1023×6.63×10-34×78

10

68.6100.3-??J =1.43×106 J

则能量转化效率为

η=E E '×100%=6510

43.11069.4??×100%=33%. 答案33%

14.康普顿效应证实了光子不仅具有能量,也有动量,下图给出了光子与静止电子碰撞后,电子的运动方向,则碰后光子可能沿方向运动,并且波长(填“不变”“变小”或“变长”).

解析因光子与电子碰撞过程动量守恒,所以碰撞之后光子和电子的总动量的方向与光子碰前的方向一致,可见碰后光子的方向可能沿1方向,不可能沿2或3方向;通过碰撞,光子将一部分能量转移给电子,能量减少,由E =hv 知,频率变小,再根据c =λv 知,波长变长.

答案1变长

15.实验室用功率P =1 500 W 的紫外灯演示光电效应.紫外线波长λ=2 537?A ,阴极离光源距离d =0.5 m,原子半径取r =0.5×10-10 m,则阴极表面每个原子每秒钟接收到的光子数为. 解析以紫外灯为圆心,作半径为d 的球面,则每个原子每秒钟接收到的光能量为 E =?24ππ

P πr 2=3.75×10-20J 因此每个原子每秒钟接收到的光子数为 n =

hc E hv E λ==5个.

答案5个

三、本题共4小题,共40分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.

16.(8分)为引起人眼的视觉,进入人眼的绿光的能量至少为每秒E =10-16 J.假设在漆黑的夜晚,在距人s =100 m 远处点亮一只绿光小灯泡,为使人看到它的光线,小灯泡的功率至少为多大?(人用一只眼看,瞳孔直径为4 mm )

解析由题意知E =

22

)2π(4π1·d s P ? 解得 P =W 10W )

104(1001016166-232

1622=???=--d Es . 答案W 10-6

17.(9分)分别用λ和4

3λ的单色光照射同一金属,发出的光电子的最大初动能之比为1∶2.以h 表示普朗克常量,c 表示真空中的光速,则此金属板的逸出功是多大? 解析设此金属的逸出功为W ,根据光电效应方程得如下两式:

当用波长为λ的光照射时:W hc E k -=

λ

1① 当用波长为34λ的光照射时:W hc E k -=3λ42 ② 又2

121=K k E E ③ 解①②③组成的方程组得:λ32hc W =

.④ 答案λ

32hc 18.(11分)纳米技术现在已经广泛应用到社会生产、生活的各个方面.将激光束的宽度聚光到纳米级范围内,可以精确地修复人体损坏的器官.糖尿病引起视网膜病变是导致成年人失明的一个重要原因,利用聚光到纳米级的激光束进行治疗,90%的患者都可以避免失明的严重后果.一台功率为10 W 氩激光器,能发出波长λ=500 nm 的激光,用它“点焊”视网膜,每次“点焊”需要2×10-3 J 的能量,则每次“点焊”视网膜的时间是多少?在这段时间内发出的激光光子的数量是多少?

解析(1)根据E =Pt ,所以t =101023

-?=P E

s=2×10-4 s.

(2)由E =n 0E =nh λ

c 得: n =8

349

3100.31063.610500102λ??????=---hc E 个=5×1015个. 答案2×10-4 s5×1015个

19.(12分)如图所示,伦琴射线管两极加上一高压电源,即可在阳极A 上产生X 射线.(h =6.63×10-34 J ·s,电子电荷量e =1.6×10-19 C)

(1)如高压电源的电压为20 kV ,求X 射线的最短波长;

(2)如此时电流表读数为5 mA ,1 s 内产生5×1013个平均波长为1.0×10-10 m 的光子,求伦琴射线管的工作效率.

解析(1)X 射线管阴极上产生的热电子在20 kV 高压加速下获得的动能全部变成X 光子的能量,X 光子的波长最短.

由W =Ue =hv =hc /λ

得λ=Ue

hc =19

48

34106.11021031063.6--??????m =6.2×10-11 m.

(2)高压电源的电功率

P 1=UI=100 W

每秒产生X 光子的能量

P 2=nhc /λ=0.1 W

效率为η=1

2P P =0.1%. 答案(1)6.2×10-11 m(2)0.1%

光电效应 光子

光电效应光子 1.关于光子讲的差不多内容有以下几方面,不正确的是 A.在空间传播的光是不连续的,而是一份一份的,每一份叫一个光子B.光是具有质量、能量和体积的物质微粒 C.光子的能量跟它的频率有关 D.紫光光子的能量比红光光子的能量大 2.某金属在绿光的照耀下发生了光电效应 A.若增加绿光的照耀强度,则单位时刻内逸出的光电子数目不变 B.若增加绿光的照耀强度,则逸出的光电子最大初动能增加 C.若改用紫光照耀,则逸出的光电子最大初动能增加 D.若改用紫光照耀,则单位时刻内逸出的光电子数目一定增加 3.关于光电效应规律,下面哪些讲法不正确 A.当某种色光照耀金属表面时能产生光电效应,则入射光的频率越高,产生的光电子的最大初动能越大 B.当某种色光照耀金属表面时,能产生光电效应,则入射光的强度越大,产生的光电子数越多 C.对某金属,入射光波长必须小于一极限波长,才能产生光电效应D.同一频率的光照耀不同的金属,如果都能产生光电效应,则逸出功大的金属产生的光电子的最大初动能也越大 4.用下面哪种射线照耀同一种金属最有可能产生光电效应,且逸出的光电子速率最大 A.紫外线B.可见光C.红外线D.伦琴射线 5.关于光电效应的下列事实,波动讲无法讲明的是 A.有时刻不管多强都无法使金属发生光电效应 B.光电子从金属表面逸出,需要给与能量 C.入射光频率大于极限频率时,光电流的大小与入射光强度成正比D.光电子的最大初动能与入射光的频率有关 6.在演示光电效应实验中,原先一带电的一块锌板与灵敏验电器相连,用弧光灯照耀锌板时,验电器的指针就张开一角度,如图所示,这时

A.锌板带正电,指针带负电B.锌板带正电,指针带正电C.锌板带负电,指针带正电D.锌板带负电,指针带负电

(完整版)光的波粒二象性教案

光的波粒二象性 教案示例 一、教学目标 1.知识目标 (1)了解微粒说的基本观点及对光学现象的解释和所遇到的问题. (2)了解波动说的基本观点及对光学现象的解释和所遇到的问题. (3)了解事物的连续性与分立性是相对的,了解光既有波动性,又有粒子性. (4)了解光是一种概率波. 2.能力目标 培养学生对问题的分析和解决能力,初步建立光与实物粒子的波粒二象性以及用概率描述粒子运动的观念. 3.情感目标 理解人类对光的本性的认识和研究经历了一个十分漫长的过程,这一过程也是辩证发展的过程.根据事实建立学说,发展学说,或是决定学说的取舍,发现新的事实,再建立新的学说.人类就是这样通过光的行为,经过分析和研究,逐渐认识光的本性的. 二、重点、难点分析 1、这一章的内容,贯穿一条主线——人类对光的本性的认识的发展过程.结合各节内容,适当穿插物理学史材料是必要的.这种做法不但可使课堂教学主动活泼,内容丰富,还可以对学生进行唯物辩证思想教育.本节就课本内容,十分简单,学生学起来十分枯燥.课本所提到的内容,都是结论性的,加入一些史料不仅可能而且必要. 2、本节中学生初步接触量子化、二象性、概率波等概念,由于没有直接的生活经验,所以在教学中要重点让学生体会这些概念. 三、主要教学过程 光学现象是与人类的生产和日常生活密切相关的.人类在对光学现象、规律的研究的同时,也开始了对光本性的探究. 到了17世纪,人类对光的本性的认识逐渐形成了两种学说.

(一)光的微粒说 一般,人们都认为牛顿是微粒说的代表,牛顿于1675年曾提出:“光是一群难以想象的细微而迅速运动的大小不同的粒子”,这些粒子被发光体“一个接一个地发射出来”.用这样的观点,解释光的直进性、影的形成等现象是十分方便的. 在解释光的反射和折射现象时,同样十分简便.当光射到两种介质的界面时,要发生反射和折射.在解释反射现象时,只要假设光的微粒在与介质作用时,其相互作用,使微粒的速度的竖直分量方向变化,但大小不变;水平分量的大小和方向均不发生变化(因为在这一方向上没有相互作用),就可以准确地得出光在反射时,反射角等于入射角这一与实验事实吻合的结论. 说到折射,笛卡儿曾用类似的假设,成功地得出了入射角正弦与折射角正弦之比为一常数的结论.但当光从光疏介质射向光密介质时,发生的是近法线折射,即入射角大,折射角小.这时,必须假设光在光密介质的传播速度较光在光疏介质中的传播速度大才行. 一束光入射到两种介质界面时,既有反射,又有折射.何种情况发生反射,何种情况下又发生折射呢?微粒说在解释这一点时遇到了很大的困难.为此,牛顿提出了著名的“猝发理论”.他提出:“每一条光线在通过任何折射面时,便处于某种为时短暂的过渡性结构和状态之中.在光线的前进过程中,这种状态每隔相等的间隔(等时或等距)内就复发一次,并使光线在它每一次复发时,容易透过下一个折射面,而在它(相继)两次复发之间容易被这个面所反射”,“我将把任何一条光线返回到倾向于反射(的状态)称它为‘容易反射的猝发’,而把它返回到倾向于透射(的状态)称它为‘容易透射的猝发’,并且把每一次返回和下一次返回之间所经过的距离称它为‘猝发的间隔’”.如果说“猝发理论”还能解释反射和折射的话,那么,以微粒说解释两束光相遇后,为何仍能沿原方向传播这一常见的现象,微粒说则完全无能为力了. (二)光的波动说 关于光的本性,当时还存在另一种观点,即光的波动说.认为光是某种振动,以波的形式向四周围传播.其代表人物是荷兰物理学家惠更斯.他认为,光是由发光体的微小粒子的振动在弥漫于一切地方的“以太”介质中传播过程,而不是像微粒说所设想的像子弹和箭那样的运动.他指出:“假如注意到光线向各个方向以极高的速度传播,以及光线从不同的地点甚至是完全相反的地方发出时,光射线在传播中一条光线穿过另一条光线而相互毫不影响,就能完全明白这一点:当我们看到发光的物体时,决不可能是由于从它所发生的物质,像穿过空气的子弹和箭一样,通过物质迁移所引起的”.他把光比作在水面上投入石块时产生的同心圆状波纹.发光体中的每一个微粒把振动,通过“以太”这种介质向周围传播,发出一组组同心的球面波.波面上的每一点,又可以此点为中心,再向外传播子波.当然,这样的观点解释同时发生反射和折射,比微粒说的“猝发理论”方便得多,以水波为例,水波在传播时,反射与折射可以同时发生.一列水波在与另一列水波相遇时,可以毫无影响的相互通过.

对光的波粒二象性的理解与认识(毕业论文)

2013届本科毕业论文 对波粒二象性的理解与认识 学院:物理与电子工程学院 专业班级:物理 08-8班 学生姓名:努尔麦麦提·阿不都克热木指导老师:巴哈迪尔老师 答辩日期:2013年5月11日 新疆师范大学教务处

对波粒二象性的理解与认识 摘要:波粒二象性是指某物质同时具备波的特质及粒子的特质。波粒二象性是量子力学中的一个重要概念。现代观察认为微观粒子,无论是光子,电子以及其它所有基本粒子,在极微小的空间内作高速运动时有时显示出波动性(这时粒子性不显著),有时显示出粒子性(这时波动性不显著).这种在不同条件下分别表现为波动和粒子的性质,或者说既具有波动性又具有粒子性,就称为波粒二象性(简称象性)。 波粒二象性理论的提出在物理学的发展史上具有重要意义,本文从人们对光本性的认识出发,到把波粒二象性推广到一切物质,比较系统地阐述了波粒二象性理论的产生和发展过程。在这个过程中探索物理学与哲学的联系,并对其中所体现的哲学观点做了尝试性总结 关键词:波粒二象性,波动性,粒子性,电子衍射,德布罗意波

目录 1.引言 (4) 2.光的波粒二象性 (5) 2.1光的波动性. (5) 2.2光的粒子性. (6) 2.3光的波粒二象性. (8) 3电子衍射实验 (10) 3.1.电子衍射实验 (10) 3.2实验数据与处理. (14) 4.波粒二象性的意义和后期成果 (15) 5.结论 (16) 参考文献 (17) 致谢 (18)

引言 1801年,杨氏进行了著名的杨氏双缝干涉实验。实验所使用的白屏上明暗相间的黑白条纹证明了光的干涉现象,从而证明了光是一种波。 1882年德国物理学家施维尔德根据新的光波学说,对光通过光栅后的衍射现象进行了成功的解释。 1887年,德国科学家赫兹发现光电效应,光的粒子性再一次被证明! 二十世纪初,普朗克和爱因斯坦提出了光的量子学说 1905年,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖 在新的事实与理论面前,光的波动说与微粒说之争以“光具有波粒二象性”而落下了帷幕。即:光既是一种波又是一种粒子!光的波动说与微粒说之争从十七世纪初笛卡儿提出的两点假说开始,至二十世纪初以光的波粒二象性告终,前后共经历了三百多年的时间。牛顿、惠更斯、托马斯.杨、菲涅耳等多位著名的科学家成为这一论战双方的主辩手。 二十世纪来临之时,这个观点面临了一些挑战。1905年由阿尔伯特·爱因斯坦研究的光电效应展示了光粒子性的一面。随后,电子衍射被预言和证实了。这又展现了原来被认为是粒子的电子波动性的一面。这个波与粒子的困扰终于在二十世纪初由量子力学的建立所解决,即所谓波粒二象性。它提供了一个理论框架,使得任何物质在一定的环境下都能够表现出这两种性质。量子力学认为自然界所有的粒子,如光子、电子或是原子,都能用一个微分方程,如薛定谔方程来描述。这个方程的解即为波函数,它描述了粒子的状态。波函数具有叠加性,即,它们能够像波一样互相干涉和衍射。同时,波函数也被解释为描述粒子出现在特定位置的几率幅。这样,粒子性和波动性就统一在同一个解释中。

高考物理一轮复习 专题60 光电效应 波粒二象性(练)(含解析)1

专题60 光电效应波粒二象性(练) 1.用同一光电管研究a、b两种单色光产生的光电效应,得到光电流I与光电管两极间所加 电压U的关系如图.下列说法中正确 ..的是:() U I a b A.a光光子的频率大于b光光子的频率,a光的强度小于b光的强度; B.a光光子的频率小于b光光子的频率,a光的强度小于b光的强度; C.如果使b光的强度减半,则在任何电压下,b光产生的光电流强度一定比a光产生的光电流强度小; D.另一个光电管加一定的正向电压,如果a光能使该光电管产生光电流,则b光一定能使该光电管产生光电流。 【答案】D 【名师点睛】要熟练掌握所学公式,明确各个物理量之间的联系.如本题中折射率、临界角、光子能量、最大初动能等都有光的频率有关;对于本题解题的关键是通过图象判定a、b两种单色光谁的频率大,反向截止电压大的则初动能大,初动能大的则频率高,故b光频率高于a 光的.逸出功由金属本身决定。 2.(多选)已知钙和钾的截止频率分别为14 7.7310Hz ?和14 5.4410H ?z,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钾逸出的光电子具有较大的:() A.波长 B.频率 C.能量 D.动量 【答案】BCD 【解析】根据爱因斯坦光电效应方程得:E k=hγ-W0,又 W0=hγc;联立得:E k=hγ-hγc,据题钙的截止频率比钾的截止频率大,由上式可知:从钾表面逸出的光电子最大初动能较大,

由2 k P mE =,可知钾光电子的动量较大,根据 h P λ= 可知,波长较小,则频率较大.故A 错误,BCD正确.故选BCD. 【名师点睛】解决本题的关键要掌握光电效应方程E k=hγ-W0,明确光电子的动量与动能的关 系、物质波的波长与动量的关系 h P λ= . 3.用同一光电管研究a、b两种单色光产生的光电效应,得到光电流I与光电管两极间所加电压U的关系如图所示.则这两种光:() A.照射该光电管时a光使其逸出的光电子最大初动能大 B.从同种玻璃射入空气发生全反射时,b光的临界角大 C.通过同一装置发生双缝干涉,a光的相邻条纹间距大 D.通过同一玻璃三棱镜时,a光的偏折程度大 【答案】C 【名师点睛】要熟练掌握所学公式,明确各个物理量之间的联系.如本题中折射率、临界角、光子能量、最大初动能等都有光的频率有关。 4.某光电管的阴极是用金属钾制成的,它的逸出功为2.21 eV,用波长为2.5×10- 7 m的紫外线照射阴极,已知真空中的光速为3.0×108 m/s,元电荷为1.6×10-19 C,普朗克常量为6.63×10-34 J·s。则钾的极限频率是Hz,该光电管发射的光电子的最大初动能是J。(保留二位有效数字) 【答案】5.3×1014 ,4.4×10-19 【解析】(1)根据据逸出功W0=hγ0,得: 19 14 034 2.21 1.610 5.310 6.6310 W Hz h γ - - ?? ===? ? ; (2)根据光电效应方程:E k=hγ-W0…①

光电效应

光电效应 光的干涉、衍射现象表明光具有波动性,光电效应表明光具有粒子性。关于光的波动性和粒子性并存的性质,称之为波粒二象性。一切涉及到普朗克常数的物理现象皆为量子现象。因此,普朗克常数是一个十分重要的物理常数。 实验目的 1.通过实验了解光的量子性。 2.利用爱因斯坦方程,测定普朗克常数。 实验原理及方法 金属表面在光照射下释放电子的现象称为光电效应。光的波动性无法解释光电效应。1905年爱因斯坦提出了光量子假说,成功地解释了光电效应。他认为光束是由能量E =hv 的光量子聚集而成,h 是普朗克常数,ν是光频率。在光与金属相互作用时,光子带着能量hv 穿过金属表面,金属中电子吸收光子能量后,一部分用于克服逸出金属表面所需的能量E 0(逸出功W ),剩余的能量(hv —W ?)成为光电子的初动能 212 m hv W υ=- (1) 式中m 是电子的质量,υ是光电子逸出金属表面时的初速度。这就是著名的爱因斯坦光电效应方程。 由于金属中电子的能量具有一定的分布,不同能量的电子吸收光子的概率也不相同,以及电子在向金属表面运动过程中能量损失也不尽相一致等原因,故逸出光电子的动能具有一定的分布。从金属中逸出时不因碰撞而损失能量时的光电子的动能,就是光电子的最大初动能。 式(1)表明只有ν≥0W v h =时,才能使光电子逸出金属表面。0v 称为截止频率,它取决于金属材料的逸出功。不同材料有不同的截止频率。一般碱金属的逸出功较低,故常用于光效应实验。 实验线路如图1所示,单色光从光电管的窗口入射到阴极K 上,从K 发射光电子向阳极A 运动,在外电路形成光电流。若在阳极上加一相对于阴极为正的电压,在光电管内形成加速电场,光电流随正向电压的增大而迅速增加,直至所产生的光电子全部到达阳极。此时光电流达到饱和。如果在阳极上加一相对于阴极为负的反向电压U ,则在光电管中形成一个阻止光电子运动到阳极的电场。因而,使从阴极逸出的光电子中只有那些动能221mv 大于eU 的光电子才能运动到阳极而被收集。逐渐增大反向电压U ,就会阻止更多的光电子到达阳极,使光电流逐渐减小。当反向电压达到使具有最大初动能的光电子也被阻止,即

光电效应光子

§ 21.1 光电效应光子 1 ?关于光子说的基本内容有以下几方面,不正确的是 A ?在空间传播的光是不连续的,而是一份一份的,每一份叫一个光子 B ?光是具有质量、能量和体积的物质微粒 C ?光子的能量跟它的频率有关 D ?紫光光子的能量比红光光子的能量大 2 ?某金属在绿光的照射下发生了光电效应 A ?若增加绿光的照射强度,则单位时间内逸出的光电子数目不变 B ?若增加绿光的照射强度,则逸出的光电子最大初动能增加 C ?若改用紫光照射,则逸出的光电子最大初动能增加 D ?若改用紫光照射,则单位时间内逸出的光电子数目一定增加 3.关于光电效应规律,下面哪些说法不正确 A .当某种色光照射金属表面时能产生光电效应,则入射光的频率越高,产生的光电子的最大初动能越大 B .当某种色光照射金属表面时,能产生光电效应,则入射光的强度越大,产生的光电子数越多 C ?对某金属,入射光波长必须小于一极限波长,才能产生光电效应 D ?同一频率的光照射不同的金属,如果都能产生光电效应,则逸出功大的金属产生的光电子的最大初动能也越大 4?用下面哪种射线照射同一种金属最有可能产生光电效应,且逸出的光电子速率最大 A .紫外线 B .可见光 C .红外线 D .伦琴射线 5?关于光电效应的下列事实,波动说无法解释的是 A ?有时光无论多强都无法使金属发生光电效应 B ?光电子从金属表面逸出,需要给与能量 C .入射光频率大于极限频率时,光电流的大小与入射光强度成正比 D .光电子的最大初动能与入射光的频率有关 6.在演示光电效应实验中,原来一带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针就张开一角度,如图所示,这时 A ?锌板带正电,指针带负电 B .锌板带正电,指针带正电 C ?锌板带负电,指针带正电 D ?锌板带负电,指针带负电

18届高考物理一轮复习专题光电效应波粒二象性导学案2

光电效应波粒二象性 知识梳理 知识点一、光电效应 1.定义 照射到金属表面的光,能使金属中的电子从表面逸出的现象。 2.光电子 光电效应中发射出来的电子。 3.研究光电效应的电路图(如图1): 图1 其中A是阳极。K是阴极。 4.光电效应规律 (1)每种金属都有一个极限频率,入射光的频率必须大于这个极限频率才能产生光电效应。低于这个频率的光不能产生光电效应。 (2)光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。 (3)光电效应的发生几乎是瞬时的,一般不超过10-9s。 (4)当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比。 知识点二、爱因斯坦光电效应方程 1.光子说 在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量ε=hν。其中h=6.63×10-34J·s。(称为普朗克常量) 2.逸出功W0 使电子脱离某种金属所做功的最小值。 3.最大初动能 发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值。

4.遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压U c 。 (2)截止频率:能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(又叫极限频率)。不同的金属对应着不同的极限频率。 5.爱因斯坦光电效应方程 (1)表达式:E k =h ν-W 0。 (2)物理意义:金属表面的电子吸收一个光子获得的能量是h ν,这些能量的一部分用 来克服金属的逸出功W 0,剩下的表现为逸出后光电子的最大初动能E k =12m e v 2。 知识点三、光的波粒二象性与物质波 1.光的波粒二象性 (1)光的干涉、衍射、偏振现象证明光具有波动性。 (2)光电效应说明光具有粒子性。 (3)光既具有波动性,又具有粒子性,称为光的波粒二象性。 2.物质波 (1)概率波 光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波。 (2)物质波 任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=h p ,p 为运动物体的动量,h 为普朗克常量。 考点精练 考点一 光电效应现象和光电效应方程的应用 1.对光电效应的四点提醒 (1)能否发生光电效应,不取决于光的强度而取决于光的频率。 (2)光电效应中的“光”不是特指可见光,也包括不可见光。 (3)逸出功的大小由金属本身决定,与入射光无关。 (4)光电子不是光子,而是电子。 2.两条对应关系 (1)光强大→光子数目多→发射光电子多→光电流大;

高中物理第四章波粒二象性光电效应与光量子假说导学案教科选修

2 光电效应与光量子假说 [目标定位] 1.知道光电效应现象,能说出光电效应的实验规律.2.能用爱因斯坦光电效应方程对光电效应作出解释,会用光电效应方程解决一些简单的问题. 一、光电效应 1.光电效应:照射到金属表面的光,能使金属中的电子从表面逸出的现象. 2.光电子:光电效应中发射出来的电子. 3.光电效应的实验规律 (1)对于给定的光电阴极材料,都存在一个截止频率ν0,只有超过截止频率ν0的光,才能引起光电效应. (2)光电流的大小由光强决定,光强愈大,光电流愈大. (3)光电子的最大初动能与入射光的频率成线性关系. (4)光电效应具有瞬时性:光电效应中产生电流的时间不超过10-9 s. 想一想 紫外线灯照射锌板,为什么与锌板相连的验电器指针张开一个角度? 答案 紫外线灯照射锌板,发生光电效应现象,锌板上的电子飞出锌板,使锌板带正电,与锌板相连的验电器也会因而带正电,使得验电器指针张开一个角度. 二、爱因斯坦的光电效应方程 1.光子说:光本身就是由一个个不可分割的能量子组成的,这些能量子被称为光子,频率为ν的光的能量子为hν. 2.爱因斯坦光电效应方程的表达式:hν=12mv 2 +A.其中A 为电子从金属内逸出表面时所需做的功. 想一想 怎样从能量守恒角度理解爱因斯坦光电效应方程? 答案 爱因斯坦光电效应方程中的hν是入射光子的能量,逸出功A 是光子飞出金属表面消耗的能量,12mv 2 是光子的最大初动能,因此爱因斯坦光电效应方程符合能量的转化与守恒定律. 预习完成后,请把你疑惑的问题记录在下面的表格中 问题1 问题2 问题3 一、光电效应现象 1.光电效应的实质:光现象――→转化为 电现象. 2.光电效应中的光包括不可见光和可见光. 3.光电子:光电效应中发射出来的光电子,其本质还是电子.

光电效应与光的波粒二象性.pdf

光电效应与光的波粒二象性 说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ 卷可在各题后直接作答.共100分,考试时间90分钟. 第Ⅰ卷(选择题共40分) 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有 一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不 答的得0分. 1.下列关于光电效应的说法正确的是 ( ) A.若某材料的逸出功是W ,则它的极限频率h W v =0 B.光电子的初速度和照射光的频率成正比 C.光电子的最大初动能和照射光的频率成正比 D.光电子的最大初动能随照射光频率的增大而增大 解析:由光电效应方程k E =hv -W 知,B 、C 错误,D 正确.若k E =0,得极限频率0v =h W ,故A 正确. 答案AD 2.在下列各组所说的两个现象中,都表现出光具有粒子性的是 ( ) A.光的折射现象、偏振现象 B.光的反射现象、干涉现象 C.光的衍射现象、色散现象 D.光电效应现象、康普顿效应 解析:本题考查光的性质. 干涉、衍射、偏振都是光的波动性的表现,只有光电效应现象和康普顿效应都是光的粒 子性的表现,D 正确. 答案D 3.关于光的波粒二象性的理解正确的是 ( ) A.大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性 B.光在传播时是波,而与物质相互作用时就转变成粒子 C.高频光是粒子,低频光是波 D.波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著 解析:根据光的波粒二象性知,A 、D 正确,B 、C 错误. 答案AD 4.当具有 5.0 eV 能量的光子照射到某金属表面后,从金属表面逸出的电子具有最大的初 动能是1.5 eV.为了使这种金属产生光电效应,入射光的最低能量为 ( ) A.1.5 eV B.3.5 eV C.5.0 eV D.6.5 eV 解析:本题考查光电效应方程及逸出功. 由W hv E k ?= 得W =hv -k E =5.0 eV-1.5 eV=3.5 eV 则入射光的最低能量为h min v =W =3.5 eV

第十三章第三节 光电效应 波粒二象性

第三节光电效应波粒二象性 [学生用书P243]) 一、黑体和黑体辐射 任何物体都具有不断辐射、吸收、发射电磁波的本领.辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布.这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射.为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体,以此作为热辐射研究的标准物体. 二、光电效应 1.定义:在光的照射下从物体发射出电子的现象(发射出的电子称为光电子). 2.产生条件:入射光的频率大于极限频率. 3.光电效应规律 (1)存在着饱和电流:对于一定颜色的光,入射光越强,单位时间内发射的光电子数越多. (2)存在着遏止电压和截止频率:光电子的能量只与入射光的频率有关,而与入射光的强弱无关.当入射光的频率低于截止频率时不发生光电效应. (3)光电效应具有瞬时性:当频率超过截止频率时,无论入射光怎样微弱,几乎在照到金属时立即产生光电流,时间不超过10-9 s. 1.判断正误 (1)我们周围的一切物体都在辐射电磁波.() (2)光子和光电子都是实物粒子.() (3)能否发生光电效应取决于光的强度.() (4)光电效应说明了光具有粒子性,证明光的波动说是错误的.() (5)光电子的最大初动能与入射光的频率有关.() (6)逸出功的大小与入射光无关.() 答案:(1)√(2)×(3)×(4)×(5)√(6)√ 三、光电效应方程 1.基本物理量 (1)光子的能量ε=hν,其中h=6.626×10-34 J·s(称为普朗克常量). (2)逸出功:使电子脱离某种金属所做功的最小值. (3)最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸

光电效应

一.对光电效应实验规律,方程以及图像的考查 1.光电效应现象 光电效应:在光的照射下金属中的电子从金属表面逸出的现象,叫做光电效应,发射出来的电子叫做. 2.光电效应规律 (1)每种金属都有一个. (2)光子的最大初动能与入射光的强度无关,只随入射光的频率增大而增大. (3)光照射到金属表面时,光电子的发射几乎是的. (4)光电流的强度与入射光的成正比. (1)光子说:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光子的能量为ε=hν,其中h是普朗克常量,其值为6.63×10-34 J·s. (2)光电效应方程:. 其中hν为入射光的能量,E k为光电子的最大初动能,W0是金属的逸出功. 4.遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压U c. (2)截止频率:能使某种金属发生光电效应的频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率. (3)逸出功:电子从金属中逸出所需做功的,叫做该金属的逸出功. 1.1905年是爱因斯坦的“奇迹”之年,这一年他先后发表了三篇具有划时代意义的论文,其中关于光量子的理论成功的解释了光电效应现象.关于光电效应,下列说法正确的是(AD ) A.当入射光的频率低于极限频率时,不能发生光电效应 B.光电子的最大初动能与入射光的频率成正比 C.光电子的最大初动能与入射光的强度成正比 D.某单色光照射一金属时不发生光电效应,改用波长较短的光照射该金属可能发生光电效 应 2.用光照射某种金属,有光电子从金属表面逸出,如果光的频率不变,而减弱光的强度则 A.逸出的光电子数减少,光电子的最大初动能不变 B.逸出的光电子数减少,光电子的最大初动能减小 C.逸出的光电子数不变,光电子的最大初动能减小 D.光的强度减弱到某一数值,就没有光电子逸出了 3.关于光电效应的规律,下列说法中正确的是(D) A.只有入射光的波长大于该金属的极限波长,光电效应才能产生 B.光电子的最大初动能跟入射光强度成正比

光的波粒二象性

光的波粒二象性 作为被列入世界上十大经典物理实验之一的双缝实验,让很多物理学家和科学家们伤透脑筋。双缝实验是一种光学实验,大家一起往下看吧。 在量子力学里,双缝实验是一种演示光子或电子等等微观物体的波动性与粒子性的实验。双缝实验是一种“双路径实验”。在这种更广义的实验里,微观物体可以同时通过两条路径或通过其中任意一条路径,从初始点抵达最终点。 这两条路径的程差促使描述微观物体物理行为的量子态发生相移,因此产生干涉现象。另一种常见的双路径实验是马赫-曾德尔干涉仪实验。双缝实验还被列入了世界十大经典物理实验之中,但是有人却认为双缝实验十分的难以理解。如果电子是互不干涉地运动,穿过双缝落到黑板上是两道痕迹。如果电子是以波的形式运动,由于波之间存在干涉,穿过双缝落到黑板上是一道道痕迹。一开始实验表明电子以波的形式运动。即使一个个电子发射,黑板上还是一道道痕迹。于是科学家想知道为什么一个个电子发射也会有波的现象,于是将高速摄像机对准双缝以便观察。重点来了:当想进一步观察时,粒子却是是互不干涉地运动,穿过双缝落到黑板上是两道痕迹!!!双缝实验,著名光学实验,在1807年,托马斯·杨总结出版了他的《自然哲学讲义》,里面综合整理了他在光学方面的工作,并在里面第一次描述了双缝实验:把一支蜡烛放在一张开了一个小孔的纸前面,这样就形成了一个点光源(从一个点发出的光源)。现在在纸后面再放一张纸,不同的是第二张纸上开了两道平行的狭缝。从小孔中射出的光穿过两道狭缝投到屏幕上,就会形成一系列明、暗交替的条纹,这就是现在众人皆知的双缝干涉条纹。 试验本身没什么问题,证明了光有波粒二象性,但是科学家们想观察清楚如何会这样,于是他们在微观层面上来观察,架设高速摄像机,观察光子是如何一个一个通过缝隙形成波干涉的,这时候神奇的事情出现了,光子波的特性消失了!又变成人类最容易理解的粒子,只出现了两条条纹。这才引出了超级可怕和诡异的电子双缝干涉实验和后来石破天惊的的“延迟选择实验”,给整个人类带来了前所未有的思想冲击。单光子双缝干涉实验现在有一种仪器,每次只发射出一个光子,这时如果遮板上仍然有两个缝隙A和B(遮板与上述传统实验一样)。依照传统理论,该光子每次有且仅有以下三种情况中的一种:被遮板挡住、通过A缝、通过B缝。 因为要观察投射面的光斑分布,所以不必考虑第一种情况。也就是说,只要光子通过了遮板,要么从A缝通过,要么从B缝通过。按照这种传统理论推导,在投射面会形

第1节 量子概念的诞生 第2节 光电效应与光量子假说

第1节量子概念的诞生 第2节光电效应与光量子假说 学习目标核心提炼 1.了解黑体辐射及能量子概念,知道黑体辐射的实 验规律。 3个概念——黑体黑体辐 射能量子 4个光电效应规律——截止 频率光强与光电流的关系 最大初动能与入射光频率的 关系瞬时性 1个光电效应方程——hν= 1 2 m v2+A 2.知道普朗克提出的能量子假说。 3.了解光电效应及其实验规律,感受以实验为基础 的科学研究方法。 4.知道光电效应方程及其意义,感受科学家在面对 科学疑难时的创新精神。 一、热辐射、黑体与黑体辐射 1.热辐射:我们周围的一切物体都在以电磁波的形式向外辐射能量,辐射强度随波长的分布与物体的温度有关。 2.黑体:能够全部吸收外来电磁波而不发生反射的物体。 3.一般材料物体的辐射规律:辐射电磁波的情况除与温度有关外,还与材料的种类及表面状况有关。 4.黑体辐射:加热腔体,黑体表面就向外辐射电磁波的现象。 思考判断 (1)只有高温物体才能辐射电磁波。() (2)能吸收各种电磁波而不反射电磁波的物体叫黑体。() (3)温度越高,黑体辐射电磁波的强度越大。()

答案(1)×(2)√(3)√ 二、能量子 1.定义:普朗克认为,振动着的带电微粒的能量只能是某一最小能量值ε的整数倍,这个不可再分的最小能量值ε叫作能量子。 2.能量子大小:ε=hν,其中ν是电磁波的频率,h称为普朗克常数。h=6.626×10-34 J·s(一般取h=6.63×10-34 J·s)。 3.能量子提出的意义:打破了一切自然过程都是连续变化的经典看法,第一次向人们展示了自然界的非连续特性。 思考判断 (1)微观粒子的能量只能是能量子的整数倍。() (2)能量子的能量不是任意的,其大小与电磁波的频率成正比。() 答案(1)√(2)√ 三、光电效应 1.光电效应:当光照射在金属表面上时,金属中的电子吸收光的能量而逸出金属表面的现象。 2.光电子:光电效应中发射出来的电子。 3.光电效应的四个特征 (1)发生条件:对于给定的光电阴极材料,都存在一个截止频率ν0,只有超过截止频率ν0的光,才能引起光电效应。 (2)光电流的大小:由光强决定,光强愈大,光电流愈大。 (3)光电子的最大初动能:与入射光的频率成线性关系。 (4)光电效应具有瞬时性:光电效应中产生电流的时间不超过10-9s。 思考判断 (1)任何频率的光照射到金属表面都可以发生光电效应。() (2)金属表面是否发生光电效应与入射光的强弱有关。() (3)入射光照射到金属表面上时,光电子几乎是瞬时发射的。() 答案(1)×(2)×(3)√ 四、爱因斯坦的光子说与光电效应方程

2020届高三高考物理复习知识点复习卷:光电效应波粒二象性

光电效应 波粒二象性 1.(多选)(2019·西安检测)关于物质的波粒二象性,下列说法中正确的是( ) A .不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性 B .运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道 C .波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的 D .实物的运动有特定的轨道,所以实物不具有波粒二象性 2.在光电效应实验中,用同一种单色光,先后照射锌和银的表面,都能发生光电效应。对于这两个过程,下列四个物理过程中,一定相同的是( ) A .遏止电压 B .饱和光电流 C .光电子的最大初动能 D .逸出功 3.(多选)物理学家做了一个有趣的实验:在双缝干涉实验中,在光屏处放上照相底片,若减小入射光的强度,使光子只能一个一个地通过狭缝。实验结果表明,如果曝光时间不太长,底片上只能出现一些如图甲所示不规则的点子;如果曝光时间够长,底片上就会出现如图丙所示规则的干涉条纹。对于这个实验结果的认识正确的是( ) 甲 乙 丙 A .单个光子的运动没有确定的轨道 B .曝光时间不长时,光的能量太小,底片上的条纹看不清楚,故出现不规则的点子 C .干涉条纹中明亮的部分是光子到达机会较多的地方 D .大量光子的行为表现为波动性 4.(多选)下列说法正确的是( ) A .光子不仅具有能量,也具有动量 B .光有时表现为波动性,有时表现为粒子性 C .运动的实物粒子也有波动性,波长与粒子动量的关系为λ=p h D .光波和物质波,本质上都是概率波 5.(多选)已知某金属发生光电效应的截止频率为νc ,则( ) A .当用频率为2νc 的单色光照射该金属时,一定能产生光电子 B .当用频率为2νc 的单色光照射该金属时,所产生的光电子的最大初动能为hνc C .当照射光的频率ν大于νc 时,若ν增大,则逸出功增大 D .当照射光的频率ν大于νc 时,若ν增大一倍,则光电子的最大初动能也增大一倍

光电效应 光子.

光电效应光子 2008-01-21 教学目标 知识目标 (1)知道光电效应现象 (2)知道光子说的内容,会计算光子频率与能量间的关系 (3)会简单地用光子说解释光电效应现象 (4)知道光电效应现象的一些简单应用 能力目标 培养学生分析问题的能力 教学建议 教材分析 分析一:课本中先介绍光电效应现象,再学习光子说,最后用光子说解释光电效应现象产生的原因。本节内容说明光具有粒子性,从而引出量子论的基本知识。 分析二:光电效应有如下特点:①光电效应在极短的时间内完成;②入射光的频率大于金属的极限频率才会发生光电效应现象;③在已经发生光电效应的条件下,逸出的光电子的数量跟入射光的强度成正比;④在已经发生光电效应的条件下,光电子的最大初动能随入射光频率的增大而增大。 教法建议 建议一:对于光电效应现象先要求学生记住光电效应的实验现象,然后运用光子说去解释它,这样可以加深学生的理解。 建议二:学生应该会根据逸出功求发生光电效应的极限频率,但可以不要求运用爱因斯坦光电效应方程进行计算。

教学设计示例 光电效应、光子 教学重点:光电效应现象 教学难点:运用光子说解释光电效应现象 示例: 一、光电效应 1、演示光电效应实验,观察实验现象 2、在光的照射下物体发射光子的现象叫光电效应 3、现象: (1)光电效应在极短的时间内完成; (2)入射光的频率大于金属的极限频率才会发生光电效应现象; (3)在已经发生光电效应的.条件下,逸出光电子的数量跟入射光的强度成正比; (4)在已经发生光电效应的条件下,光电子最大初动能随入射光频率的增大而增大。 4、学生看书上表格常见金属发生光电效应的极限频率 5、提出问题:为什么会发生3中的现象 二、光子说 1、普朗克的量子说 2、爱因斯坦的光子说 在空间传播的光不是连续的,而是一份份的,每一份叫做光量子,简称光子。 三、用光子说解释光电效应现象 先由学生阅读课本上的解释过程,然后教师提出问题,由学生解释。 四、光电效应方程 1、逸出功

量子物理学-光电效应与光量子假说20150920

一、光电效应的实验规律 1、光电效应 光照射在金属及其化合物的表面上发射电子的现象称为光电效应(photoelectric effect )。实验装置为光电管,在阴极金属表面逸出的电子称为光电子(photoelectron ),电路中出现的电流形成光电流(photocurrent )。 2、实验规律: (1)饱和光电流:电流强度随光电管两端电压的增加而增加,在入射光强一定时光电流会随U 的增大而达到一饱和值i m ,且饱和电流与入射光强I 成正比。 (2)遏止电压:将光电管上的电压反向,电子的运动受到抑制,实验发现当反向电压不太大时仍有光电流存在,这说明从阴极发射的光电子具有一定的初速度,当反向电压大到一定数值U a 时光电流完全变为零,称U a 为遏止电压。显然电子有初动能与U a 之间有关系 a eU m =2v 2 1 (3)红限(截止)频率:当入射光的频率改变时遏止电压随之改变,实验发现两者成线性关系 0U K U a -?=ν 只有当入射光频率ν大于一定的频率ν0时,才会产生光电效应,ν0称为截止频率或红限频率。 Ua

从不同材料的U a -ν曲线可看出:不同材料的图线的斜率相同,但在横轴上的截距不同。说明K 与金属材料种类无关,但U 0与金属材料种类有关。 (4)光电效应瞬时发生的:当入射光无论如何弱,光电子在光照射的瞬间可产生,驰豫时间不超过10-9秒。 二、爱因斯坦的光量子假设 1、经典物理学所遇到的困难 金属表面对电子具有束缚作用,电子脱离金属表面所需要的能量,所需的最少能量称为逸出功,用 A 表示,显然有 A eU A m E a photon +=+=2v 2 1 其中E photon 为吸收的电磁波能量。 按照光的经典电磁理论:光波的强度与频率无关,电子吸收的能量也与频率无关,不存在截止频率!若用极微弱的光照射,阴极电子积累能量达到逸出功A 需要一段时间,光电效应不可能瞬时发生! 2、爱因斯坦光量子假设(1905年) 为了解释光电效应,爱因斯坦假设: (1)光是由一颗一颗的光子(光量子)组成,每个光子的能量与其频率成正比,即 ν?=h E (2)一个光子只能整个地被电子吸收或放出,光量子具有“整体性”。 (3)根据能量守恒定律,电子在离开金属面时具有的初动能 A eU A m h a +=+=2v 2 1ν 上式即为光电效应方程。 利用爱因斯坦光电方程可以解释光电效应的瞬时性问题和红限频率问题。 3、光电效应的实验验证 Millikan 极力反对爱因斯坦的光子假说,花了十年测量光电效应,得到了遏止电压和光子频率的严格线性关系 ()? ??==?-==eK h eU A U K e eU m a m 002v 21ν 由直线斜率K 的测量可以确定(光电效应)普朗克常数。 爱因斯坦年由于他在光电效应方面的工作而获1921年诺贝尔物理学奖;R. A. Millikan (密立根),1923诺贝尔物理学奖得主,研究元电荷和光电效应,通过油滴实验证明电荷有

光的波粒二象性

第二节光的波粒二象性 教学目标: 一、知识目标 1.了解事物的连续性与分立性是相对的; 2.了解光既具有波动性,又具有粒子性; 3.了解光是一种概率波。 二、能力目标 1.能自己举出实例理解连续性与分立性是相对的; 2.能通过日常和实验事例理解概率的意义; 3.能领会课本的实验意义。 三、德育目标 通过这节课的学习,领会实验是检验真理的唯一标准;体会我们唯有敢于打破旧的传统的经验才能有所创新、有所发现。 教学重点:1.光具有波粒二象性;2.光是一种概率波。 教学难点:1.概率概念;2.光波是概率波。 教学方法:在学生阅读课文及《康普顿效应》材料的基础上对分立性和连续性、概率、光波是概率波等问题展开课堂讨论,由学生回答课本提出的问题,最后由教师归纳,统一认识。 教学过程: 一、引言:干涉和衍射现象说明了光具有波动性。而光电效应现象又无可辩驳地证明了光具有粒子性,这使人们感到困惑,光的面目究竟是什么样的?我们好象很难在脑子里描绘出光既是粒子又是波的图景。所以这一节课我们将继续学习关于光是什么的课题光的波粒二象性。 二、布置学生阅读课本,同时思考课本中的“思考与讨论”及练习二的(1)、(2)、(3)。 三、课堂讨论: (一)、光的波粒二象性

1.光的波动性和粒子性的实验基础。 2.分立与连续是相对的 老师问:谁能仿照课本的例子举例说明分立性与连续性是相对的? 例子: a.在地上撒一把米,这些米看起来是分立的,如果直接倒 几筐米组成米堆时,测一堆米的体积可以认为它是连续的。 b.下雨天,一开始是雨点,是分立的,下大了以后,就变 成连续的了。 c.课本中的实验,当曝光量很少时,在胶片上是一个一个 的点,这时光看起来是分立的;曝光量多的时候就变成亮带了, 这时又是连续的。 引导学生回答出:当通过狭缝的光很少时,这时它们就像撒在地上的一把米,表现出粒子性;当曝光量很大时表现出连续性。 说明:当曝光量很大时出现的干涉亮条纹的地方和利用机械波的干涉公式计算的结果刚好又是相符的,正是某种波通过双缝后发生 干涉时振幅加强的区域。故说明光是一种波,具有波动性。 教师归纳:少量光子的行为表现为粒子性,大量光子的行为表现为波动性。 3.概率概念 教师:我们现在来讨论概率的意义,概率表征某一事物出现的可能性。 让我们来看看课本的思考题,你们能否举例说明有些事件个别出现时看不出什么规律,而大量出现时则显示出一定的规律性? 例子: 在热学中研究分子热运动的速率。温度升高时,不一定每一个分子运动的速率都增大,每个分子速率的变化没规律,但多数分子的速率在某一个值附近。随着温度的升高这一值会向速率大的方向移动。也就是说,个别分子的运动是完全无规律的,但对大量分子所做的统计分析却表现出一种规律概率规律。 教师引导回到课本上来:当曝光量很大时,实验就得到了丁图,那

2019年高考人教版高三物理光电效应、光的波粒二象性练习题 (含答案)

2019年高考人教版高三物理光电效应、光的波粒二象性练习题 一、选择题 1.当用一束紫外线照射装在原不带电的验电器金属球上的锌板时,发生了光电效应,这时发生的现象是[ ] A.验电器内的金属箔带正电 B.有电子从锌板上飞出来 C.有正离子从锌板上飞出来 D.锌板吸收空气中的正离子 2.一束绿光照射某金属发生了光电效应,对此,以下说法中正确的是[ ] A.若增加绿光的照射强度,则单位时间内逸出的光电子数目不变 B.若增加绿光的照射强度,则逸出的光电子最大初动能增加 C.若改用紫光照射,则逸出光电子的最大初动能增加 D.若改用紫光照射,则单位时间内逸出的光电子数目一定增加 3.在光电效应实验中,如果需要增大光电子到达阳极时的速度,可采用哪种方法?[ ] A.增加光照时间 B.增大入射光的波长 C.增大入射光的强度 D.增大入射光频率 4.介质中某光子的能量是E,波长是λ,则此介质的折射率是[ ] A.λE/h B.λE/ch C.ch/λ E D.h/λ E

5.光在真空中的波长为λ,速度为c,普朗克常量h,现让光以入射角i由真空射入水中,折射角为r,则[ ] A.r>i D.每个光子在水中能量为hc/λ 6.光电效应的四条规律中,波动说仅能解释的一条规律是[ ] A.入射光的频率必须大于或等于被照金属的极限频率才能产生光电效应 B.发生光电效应时,光电流的强度与人射光的强度成正比 C.光电子的最大初动能随入射光频率的增大而增大 D.光电效应发生的时间极短,一般不超过10-9s 7.三种不同的入射光A、B、C分别射在三种不同的金属a、b、c表面,均恰能使金属中逸出光电子,若三种入射光的波长λA>λB>λC,则[ ] A.用入射光A照射金属b和c,金属b和c均可发出光电效应现象 B.用入射光A和B照射金属c,金属c可发生光电效应现象 C.用入射光C照射金属a与b,金属a、b均可发生光电效应现象 D.用入射光B和C照射金属a,均可使金属a发生光电效应现象 8.下列关于光子的说法中,正确的是[ ] A.在空间传播的光不是连续的,而是一份一份的,每一份叫做一个光子 B.光子的能量由光强决定,光强大,每份光子的能量一定大 C.光子的能量由光频率决定,其能量与它的频率成正比

相关文档
最新文档