用叠加法求挠度和转角

用叠加法求挠度和转角
用叠加法求挠度和转角

当材料在线弹性范围内工作时,梁的挠度、转角均与载荷成线性关系.而且弯曲变形是很小的.因此,当梁上同时作用几种载荷时,任一载荷引起的变形,不会受到其他载荷的影响,即每种载荷对弯曲变形的影响是各自独立的。所以,几种载荷同时作用下梁的挠度和转角,等于各种载荷单独作用下挠度和转角的代数和,这就是求解弯曲变形的叠加法.当只需确定某些指定截面的挠度和转角时,应用叠加法是比较方便的.下面举例说明.

例7-3 图7-8 所示简支梁,承受均布载荷q 和集中力偶M0作用,已知M0 =ql2。试求跨度中点的挠度f c 和 A 截面的转角θA。

解:利用叠加法求解时,首先将q , M0同时作用下的简支梁( 图7 -8a ) ,分解为q 作用下的简支梁( 图7-8b) 和M0作用下的简支梁( 图7 -8c ) ,然后,由表7.1 查取结果叠加。

从表的第9 栏查得均布载荷q 作用下的中点挠度和A 端面转角分别为

由表7.1 第5 栏查得集中力偶M0作用下的中点挠度和A 端面转角分别为

叠加以上结果,求得q , M0 同时作用下的中点挠度和A 截面转角为

f c为负值,表示挠度向下.θA为负值,表示A 截面顺时针转动.

例7-4 简支梁如图7 — 10a 所示,在2a 的长度上对称地作用有均布载荷q. 试求梁中点挠度和梁端面的转角.

解:利用叠加法求解。由于简支梁上的载荷对跨度中点C 对称,故C 截面的转角应为零.因而从 C 截面取出梁的一半,可将其简化为悬臂梁,如图7 — 10b 所示。梁上作用有均布载荷q 和支座B 的反力R B = qa.这样,悬臂梁上B 端面的挠度在数值上等于原梁中点C 的挠度,但符号相反,B 端面的转角即为原梁B 端面的转角.经这样处理后,应用叠加原理求解比较方便.

由表7 · 1 的第 2 栏查得,当集中力R B (=qa) 作用时( 图7 — 10c ) ,B 端面的转角和挠度分别为

由表7 · 1 的第 4 栏查得,当均布载荷q 作用时( 图7 — 10d) ,E 截面的转角和挠度分别为

由于EB 梁段上无载荷作用,所以q 引起 B 点的转角和挠度分别为

=

=

叠加上述结果,可得B 端面的转角和挠度分别为

于是,原梁( 图7 — 10a ) 中点C 的挠度f c为

例7-6 某一变截面外伸梁如图7 — 11a 所示.AB 、BC 段的抗弯刚度分别为EI1和EI2,在C 端面处受集中力P 作用,求 C 端面的挠度和转角.

解:由于外伸梁是变截面的,故不能直接应用表7 .1 中的结果.为此,必须将外伸梁分为AB 、BC 两段来研究.首先假设梁的外伸段BC 是刚性的,研究由于简支梁AB 的变形所引起的 C 截面的挠度和转角.然后,再考虑由于外伸段BC 的变形所引起的 C 截面的挠度和转角.最后将其两部分叠加,得 C 截面的实际变形.

由于假设BC 段为刚性,故可将P 力向简支梁AB 的 B 端简化,得P 和Pa .P 力可由B 支座的反力平衡,不会引起简支梁的弯曲变形。集中力偶Pa 引起 B 截面的转角( 图7 — 11 b) 由表6 . 1 查得

它引起C 截面的转角和挠度分别为

在考虑BC 段的变形时,可将其看作悬臂梁( 图7 — 11c ) ,由表6 · 1 查得,在P 力作用下C 截面的转角和挠角分别为

将图7 — 11b 、c 中的变形叠加后,求得C 端面实际的转角和挠度分别为

例7-7 在悬臂梁AB 上作用线性分布载荷,如图7-12 所示.试求自由端B 点的挠度.

解:本例同样可以应用叠加法求解.将图中dx 微段上载荷qdx 看作集中力,查表7 · 1 的第3 栏求得微段载荷qdx 作用下自由端B 截面的挠度为

(1)

根据题意,线性分布载荷的表达式为

(2)

按照叠加原理,自由端B 点的挠度应为df B的积分.将(2) 式代入(1) 式,积分得

f B为负号,表示方向向下.

简支梁在各种荷载作用下跨中最大挠度计算公式

简支梁在各种荷载作用下跨中最大挠度计算公式 一、均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q为均布线荷载标准值(kn/m). E为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I为钢的截面惯矩,可在型钢表中查得(mm^4). 二、跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 三、跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 四:跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4).

五、悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). 其中: q 为均布线荷载标准值(kn/m). p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件进行反算,看能满足的上部荷载要求!

梁挠度计算公式

简支梁在各种荷载作用下跨中最大挠度计算公式: 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn).

简支梁挠度计算公式

不同荷载作用下跨中简支梁的最大挠度计算公式为: 均布荷载作用下的最大挠度在梁跨中部,其计算公式为:ymax=5ql^4/(384ei)。 其中:ymax为梁跨中的最大挠度(mm)。 Q——平均配线载荷标准值(KN/M)。 E是钢的弹性模量。对于工程结构钢,E=2100000 n/mm^2。 I是型钢的惯性矩,可在型钢表中找到(mm^4)。 集中荷载作用下的最大挠度在梁的中部,其计算公式为:ymax=8pl^3/(384ei)=1pl^3/(48ei)。 其中:ymax为梁跨中的最大挠度(mm)。 P为各集中荷载标准值之和(KN)。 E是钢的弹性模量。对于工程结构钢,E=2100000 n/mm^2。 I是型钢的惯性矩,可在型钢表中找到(mm^4)。

在两个相等的集中荷载作用下,两跨间的最大挠度位于梁的中部。计算公式为:ymax=6.81pl^3/(384ei)。 其中:ymax为梁跨中的最大挠度(mm)。 P为各集中荷载标准值之和(KN)。 E是钢的弹性模量。对于工程结构钢,E=2100000 n/mm^2。 I是型钢的惯性矩,可在型钢表中找到(mm^4)。 三种集中荷载作用下的最大挠度计算公式为:ymax=6.33pl^3/(384ei)。 其中:ymax为梁跨中的最大挠度(mm)。 P为各集中荷载标准值之和(KN)。 E是钢的弹性模量。对于工程结构钢,E=2100000 n/mm^2。 I是型钢的惯性矩,可在型钢表中找到(mm^4)。 当悬臂梁在自由端承受均布荷载或集中荷载时,自由端的最大挠度为 Ymax=1ql^4/(8EI),Ymax=1pl^3/(3EI)。

用叠加法求挠度与转角

当材料在线弹性范围内工作时,梁的挠度、转角均与载荷成线性关系.而且弯曲变形是很小的.因此,当梁上同时作用几种载荷时,任一载荷引起的变形,不会受到其他载荷的影响,即每种载荷对弯曲变形的影响是各自独立的。所以,几种载荷同时作用下梁的挠度和转角,等于各种载荷单独作用下挠度和转角的代数和,这就是求解弯曲变形的叠加法.当只需确定某些指定截面的挠度和转角时,应用叠加法是比较方便的.下面举例说明. 例7-3 图7-8 所示简支梁,承受均布载荷q 和集中力偶M0作用,已知M0 =ql2。试求跨度中点的挠度f c 和 A 截面的转角θA。 解:利用叠加法求解时,首先将q , M0同时作用下的简支梁( 图7 -8a ) ,分解为q 作用下的简支梁( 图7-8b) 和M0作用下的简支梁( 图7 -8c ) ,然后,由表7.1 查取结果叠加。 从表的第9 栏查得均布载荷q 作用下的中点挠度和A 端面转角分别为 由表7.1 第5 栏查得集中力偶M0作用下的中点挠度和A 端面转角分别为

叠加以上结果,求得q , M0 同时作用下的中点挠度和A 截面转角为 f c为负值,表示挠度向下.θA为负值,表示A 截面顺时针转动. 例7-4 简支梁如图7 — 10a 所示,在2a 的长度上对称地作用有均布载荷q. 试求梁中点挠度和梁端面的转角.

解:利用叠加法求解。由于简支梁上的载荷对跨度中点C 对称,故C 截面的转角应为零.因而从C 截面取出梁的一半,可将其简化为悬臂梁,如图7 — 10b 所示。梁上作用有均布载荷q 和支座B 的反力R B = qa.这样,悬臂梁上B 端面的挠度在数值上等于原梁中点C 的挠度,但符号相反,B 端面的转角即为原梁B 端面的转角.经这样处理后,应用叠加原理求解比较方便. 由表7 · 1 的第 2 栏查得,当集中力R B (=qa) 作用时( 图7 — 10c ) ,B 端面的转角和挠度分别为 由表7 · 1 的第 4 栏查得,当均布载荷q 作用时( 图7 — 10d) ,E 截面的转角和挠度分别为 由于EB 梁段上无载荷作用,所以q 引起 B 点的转角和挠度分别为

结构力学简支梁跨中挠度计算公式

简支梁跨中最大挠度计算公式 均布荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 5ql^4/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). q 为均布线荷载标准值(kn/m). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨中一个集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 8pl^3/(384EI)=1pl^3/(48EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置两个相等的集中荷载下的最大挠度在梁的跨中,其计算公式: Ymax = 6.81pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2. I 为钢的截面惯矩,可在型钢表中查得(mm^4). 跨间等间距布置三个相等的集中荷载下的最大挠度,其计算公式: Ymax = 6.33pl^3/(384EI). 式中: Ymax 为梁跨中的最大挠度(mm). p 为各个集中荷载标准值之和(kn). E 为钢的弹性模量,对于工程用结构钢,E = 2100000 N/mm^2.

I 为钢的截面惯矩,可在型钢表中查得(mm^4). 悬臂梁受均布荷载或自由端受集中荷载作用时,自由端最大挠度分别为的,其计算公式: Ymax =1ql^4/(8EI). ;Ymax =1pl^3/(3EI). q 为均布线荷载标准值(kn/m). ;p 为各个集中荷载标准值之和(kn). 你可以根据最大挠度控制1/400,荷载条件25kn/m以及一些其他荷载条件 进行反算,看能满足的上部荷载要求!

(完整版)Abaqus分析实例(梁单元计算简支梁的挠度)精讲

Abaqus分析实例(梁单元计算简支梁的挠度)精讲 对于梁的分析可以使用梁单元、壳单元或是固体单元。Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。 注意: 因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。 简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,μ=0.28,ρ=7850kg/m3(在不计重力的静力学分析中可以不要)。F=10k N,不计重力。计算中点挠度,两端转角。理论解:I=2.239×10-5m4,w中=2.769×10-3m,θ边=2.077×10-3。 文件与路径: 顶部下拉菜单File, Save As ExpAbq00。 一部件 1 创建部件:Module,Part,Create Part, 命名为Prat-1;3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。 2 绘模型图:选用折线,从(0,0)→(2,0)→(4,0)绘出梁的轴线。 3 退出:Done。 二性质 1 创建截面几何形状:Module,Property,Create Profile, 命名为Profile-1,选I型截面,按图输入数据,l=0.1,h=0.2,b l=0.1,b2=0.1,t l=0.01,t2=0.01,t3=0.01,关闭。 2 定义梁方向:Module,Property,Assign Beam Orientation,

选中两段线段,输入主轴1方向单位矢量(0,0,1)或(0,0,-1),关闭。 3 定义截面力学性质:Module,Property,Create Section, 命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=210e9(程序默认单位为N/m2,GPa=109N/m2), G=82.03e9,ν=0.28,关闭。 4 将截面的几何、力学性质附加到部件上:Module,Property,Assign Section, 选中两段线段,将Section-1信息注入Part-1。 三组装 创建计算实体:Module,Assembly,顶部下拉菜单Instance,Create, Create Instance,以Prat-1为原形,用Independent方式生成实体。 四分析步 创建分析步:Module,Step, Create Step,命名为Step-1,静态Static,通用General。注释:无,时间:不变,非线性 开关:关。 五载荷 1 施加位移边界条件:Module,Load,Create Boundary Condition, 命名为BC-1,在分析步Step-1中,性质:力学,针对位移和转角,Continue。选中梁左端,Done,约束u1、u2、u3、u R1、u R2各自由度。 命名为BC-2,在分析步Step-1中,性质:力学,针对位移和转角,Continue。选中梁右端,Done,约束u2、u3、u R1、u R2各自由度。 2 创建载荷:Module,Load,Create Load, 命名为Load-1,在分析步Step-1中,性质:力学,选择集中力Concentrated Force,Continue。选中梁中点,Done,施加F y(CF2)=-10000(程序默认单位为N)。 六网格 对实体Instance进行。 1 撒种子:Module,Mesh,顶部下拉菜单Seed,Instance, Global Seeds,Approximate g lobal size 0.2全局种子大约间距0.2。 2 划网格:Module,Mesh,顶部下拉菜单Mesh,Instance,yes。 七建立项目 1 建立项目:Module,Job,Create Job,Instance,

简支梁挠度计算公式

简支梁挠度计算公式 简支梁就是承载两端竖向荷载,而不提供扭矩的支撑结构。体系温变、混凝土收缩徐变、张拉预应力、支座移动等都不会在梁中产生附加内力。简支梁受力简单,为力学简化模型。将简支梁体加长并越过支点就成为外伸梁,简支梁支座的铰接是固定铰支座、滑动铰支座的。只有两端支撑在柱子上的梁,主要承受正弯矩,一般为静定结构。 概述延伸 简支梁只是梁的简化模型的一种,还有悬臂梁。 悬臂梁为一端固定约束,另一端无约束。 基数级跨中弯距Mka: Mka= (Md+Mf) × VZ/VJ+ΔMs/VJ -Ms Mka= (Md+Mf)×1.017/1.0319+△Ms/1.0319-Ms =(17364.38+0)×1.017/1.0319+4468.475/1.0319-164.25 = 21279.736(kN·m)

计算各加载级下跨中弯距: Mk= (k(Mz+Md+Mh+Mf) -Mz) × VZ/VJ+ΔMs/VJ -Ms Mk=(k(Mz+Md+Mh+Mf) -Mz)×1.017/1.0319 +△Ms/1.0319―Ms =(k (31459.38+17364.38+24164.75+0)-31459.38)×1.017/1.0319+4468.475/1.0319-164.25 =71934.601×k-26839.0389(kN·m) 计算静活载级系数: Kb = [Mh/(1+μ) +Mz+Md+Mf]/(Mh+Mz+Md+Mf) Kb= [24164.75/1.127+31459.38+17364.38+0]/ (24164.75+31459.38+17364.38+0) =0.963 计算基数级荷载值:

相关文档
最新文档