温室气体的减排成本曲线

温室气体的减排成本曲线
温室气体的减排成本曲线

麦肯锡季刊

2007年3月

作者:Per-Anders Enkvist, Tomas Nauclér and Jerker Rosander

有关温室气体的争论正日益升温。在众说纷纭中,一些言论坚持认为,温室气体排放和气候没有关联,而另一些言论则敦促全球尽快采取一致行动,减少温室气体向大气层的排放。即使行动的倡议者之间也对行动的时间、目标和手段意见不一。尽管存在种种争议,但有一件事情是确定无疑的:任何形式的法规强化都将对企业产生深远影响。

我们对这一主题的贡献,并非是对气候变化科学进行评估,或者来回答全球各国是否应该以及怎样采取行动减少温室气体排放这一问题。相反,我们旨在通过本文,为决策者(如果他们选择采取行动的话)提供各种可能的减排方法的重要意义和成本,并提供对不同地区和行业的相对重要性的认识。为此,我们建立了一个综合数据库和相关成本曲线,以此显示全球及各地区和各行业各种可用方法的重要意义和成本。我们的另一个目的是,帮助企业领导人认识潜在法规变化对企业和行业的影响。实际上,许多高层管理者已经在考虑法规问题。近期的一项调查1显示,欧洲能源密集型行业企业中有一半将《欧盟排放交易方案》视为影响它们长期投资决策的主要因素之一。

作为本次研究的一个基准,我们采用了国际能源署(IEA)和美国环境保护署(EPA)排放量增长常规预测2 。然后,我们分析了减少,即“减缓”温室气体排放各种可用方法相对于这些常规预测的重要意义和成本。我们的研究3覆盖六个地区(北美、西欧、东欧(包括俄罗斯)、其他发达国家、中国和其他发展中国家)的发电、制造业(侧重钢铁和水泥)、交通运输、住宅和商业建筑、林业,以及农业和垃圾处理行业。这项研究横跨三个时间段,即2010、2020和2030年,重点研究到2030年我们估计可能花费每吨40欧元或以下的减排措施。其他人对具体行业和具体地域开展了更为详细的研究。但据我们了解,我们的研究是所有关于温室气体、行业和地区同类研究中首个涉及微观经济的调查。

解读成本曲线

我们建立的成本曲线显示了对预期年减排成本的估计4,以每吨避免排放的温室气体多少欧元为单位5,以及采取这些方法的潜在减排效果,单位为千兆吨(十亿吨)。例如,风力发电技术的减排成本应被理解为,采用这一零排放技术的额外成本,而非它所替代的用更廉价的化石燃料发电的额外成本。风力发电减排潜力即我们所估计的以每

吨40欧元或更少的成本可以减少的可行排放量。从另一角度看,这些成本可以被理解为通过决策采取具成本优势的或其他可行办法减少温室气体排放的(最终对于全球经济的)代价。有关可用减排措施的未来成本和可行部署率的假设多如牛毛,它们构成了其成本和重要意义的估计。例如,风力发电技术的重要意义假设到2008年全球各地区已着手采取减少温室气体排放的措施。而我们模型(以及本文) 中的数量应被视为潜在减排量,而非减排量预测。

我们的减排“供应”模型可以与政府确定的2010年、2020年和2030年温室气体任何减排目标(即“需求”) 作比较。但气候变化科学不属于我们的研究范围,我们专家的研究领域也不在这里。因此,出于示意目的,我们将调查发现与辩论中所讨论的三大排放量目标,即相应决定大气中550ppm、450ppm或400ppm温室气体长期集中度(ppm是一种对大气中温室气体分子比例的度量单位)进行了比较。根据指标的提出者,各项指标的目的是预防全球平均气温提高2个摄氏度以上。到2030年,这些排放指标中每一项都难以达到,因为,它都要求全球经济中温室气体与常规趋势之比的效率(相对GDP规模的排放量)至少提高50%。

全球成本曲线的简化版(图1)显示了我们对2030年(这一时间足够长到使我们得出有意义的结论,但要让我们做出合理的实际假设,这一时间又显得太短)前可行减排措施的重要意义和成本的估计。我们针对三个时间框架为各行业和各地区建立了相同的成本曲线。

成本曲线的低端多数是提高能源效率的措施。这些措施,诸如改善新建筑物的绝缘功能(参见“充分利用全球能源”),从而可以通过减少电力需求降低排放。在成本曲线的高端是在发电和制造业采取更多减排技术(诸如风力发电和碳的收集和封存6)以及向更清洁工业流程转变等措施。这条曲线还代表了通过保护、种植或再种植热带森林,以及通过采用更大程度减少温室气体排放的农业生产方式来减少温室气体排放的方法。

对于减排需求或全球采取一致行动达成某种具体目标的概率,我们不作评论。但我们将能源供应层面的研究运用到具体减排目标的做法,能有助于决策者和企业领导人了解减排措施对各地区和各行业的经济影响,以及对企业和全球经济的部分反射效应。我们的分析假设,研究的重点是统计全球所有最廉价的减排方法,但对最终的成本分摊应该如何不作评判。当然,发达国家和发展中国家以及各群体中每个国家的温室气体减排的支付能力悬殊很大。

减排方法供应

我们的分析提供了一些值得借鉴的认识。一方面,通过只采用减排成本每吨不超过40欧元的措施,实现减排267亿吨的减排目标在技术上是可行的。但由于这些低成本可能性在各行业和各地区各不相同(例如,40 欧元或更少成本的潜在减排量有一半以上位于发展中经济体),需要一个高效的全球减排体系。但这在政治上难度可能非常大。

此外,发电和制造业往往是气候变化争论的主要焦点,但这两个行业只占到了以相

对较低成本(成本最高每吨40欧元)减少温室气体排放潜力的不足一半。这意味着,如果决策者想要按照成本高低的顺序实施减排措施,他们还必须同时找到有效利用交通运输、建筑以及农林业机会的办法。由于涉及的是数十亿小型排放者(往往是消费者),而不是已经接受严格环保法规监管的数量有限的大型企业,因此,这一潜力更难捕捉。从具体措施看,以最高每吨40欧元的成本实施减排潜力中的接近四分之一涉及提高效益的措施(主要体现在建筑业和交通运输业)这些措施能减少能源需求且不存在净成本。我们在这里列出的此类措施无需改变生活方式,也无需降低生活舒适程度,但将迫使决策者通过统一企业和消费者的利益来解决现有的市场缺陷问题。

此外,我们发现,在经济增长和实施低成本减排措施之间存在很大关联度,因为,在新建电厂、住宅或新造汽车时,采用清洁能源或节能技术比在翻新老厂、老房子或老车型时成本更低。最后,以2030年为终点,减排潜力的几乎四分之三源于实施这样的措施。它们要么不依赖于技术,要么只依赖于成熟技术而不是新技术。

发展中经济体的作用

尽管发达经济体相对于人口总数所排放的温室气体远远高于发展中经济体,但我们发现后者占以每吨不足40欧元减排成本总体减排潜力的一半以上。发展中经济体之所以占的份额更大,原因有三个:人口众多、压缩新增温室气体排放较减少现有排放量(尤其在高成本发达市场的制造业和发电业) 的成本更低,以及热带地区国家有更大潜力以每吨40欧元或更低的成本避免林业中温室气体排放这一事实。

在以每吨40欧元或更低的成本减少总量为267亿吨潜在温室气体的设想中,采取林业减排措施(保护、种植和再种植森林)可减排其中的67亿吨7。我们估计,例如,以每吨不足40欧元的成本,非洲和拉丁美洲的热带森林采伐率如分别减少50%和75%。这一努力将在2030年前每年减排温室气体接近30亿吨。亚洲森林的重大减排成效成本可能更高一些,因为那里的土地稀少,商业采伐的机会成本比非洲的生存农业和拉丁美洲的规模化农业更高。

在产生甲烷和氮氧化物的农业和垃圾处理行业,发展中经济体也占到了以不足40

欧元的成本减少排放15亿吨温室气体一半以上的潜力。这一行业的减排措施将包括转而采用温室气体排放量少的肥料和耕作技术和收集垃圾填埋场所产生的甲烷气。

减少能源需求增长

通过采用零成本或负成本的生命周期措施,可以实现以每吨40欧元或更少的成本进

一步减少60亿吨温室气体排放(几乎是总减排潜力的四分之一)。这一潜力主要出现在交通运输业和建筑业。例如,提高新车和新建筑的防寒隔热性能,将降低用于取暖的能源需求,从而减少排放。降低能源支出的成效高于额外的绝缘材料成本。根据我们的模型,此类措施以及制造业的部分措施,有使全球电力需求未来增长几乎减少一半、从目前的每年2.5%减少到1.3%的巨大潜力。

至于哪些产生净成本的措施,我们发现净成本为每吨40欧元的所有潜在减排措施中大约有35%涉及林业,而制造业占28%、发电业占25%、农业和交通运输业则分别为6%。

电力角度

2002年,电力行业占全球温室气体排放量中的94亿吨,占24%,2002年是提供各行业全球连贯数据的最新年份。根据国际能源署的常规预测情景,由于全球电力需求翻番,到2030年,发电产生的温室气体排放量将增至每年168亿吨。成本为每吨40或更少的五类主要减排措施与电力行业相关:减少需求、碳的收集和储存、可再生能源、核电以及提高化石燃料电厂温室气体效率。这五大措施加起来,有到2030年使电力行业温室气体排放量减少到72亿吨的巨大潜力。

在发电技术中,核电(避免温室气体排放成本为每吨0-5欧元)是最廉价的减排手段,其成本竞争力接近化石燃料发电。我们估计,通过碳的收集和储存手段减少温室气体排放的成本到2030年将达到每吨20-30欧元。风力发电技术可能平均达到每吨20欧元,依据所在地点以及依赖天气发电的以往渗透率不同,成本差异悬殊。在我们的模型中,与常规预测情景相比,电力行业实现450ppm 温室气体浓度目标的额外总成本在2030年前约为每年1200亿欧元。对电力行业企业来说,这一数字代表着监管机构可能采取的进一步减少温室气体排放行动的巨大可能性。

应对上述减排潜力可能使企业从传统的燃煤和燃气发电向采用碳收集和封存技术的燃煤电厂、向可再生能源以及向核电的转变。在我们的模型中,采用碳收集和封存技术的电厂可以使其在全球发电行业的比重从2002年的零增长到2030年的17%的增长。可再生能源(包括占份额大但增长缓慢的大型水电项目)将从目前的18% 提高到32%,核电将从目前的17% 提高到21%。没有采用碳收集和封存技术的化石燃料发电将从目前的65%减少到30%。

低技术含量的减排措施

人们对技术在减少温室气体排放方面的作用争议颇多。我们发现,成本低于或等于每吨40欧元的可能减排措施中,大约70%将无需依赖任何重大技术进步。这些措施要么涉及很少的技术含量(例如,农林业领域) ,要么主要依靠核电、小型水电和节能照明等成熟技术。减排措施中剩余30%则依靠新技术或大幅降低现有技术的成本,诸如碳收集和封存、生物燃料、风力发电和太阳能电池板等。这里的关键并非在于技术研发对减排的意义不重大,而在于,从2030年的视角来看,低级术含量的减排措施非常重要。

影响何在?

我们的分析揭示了减排措施对各行业和各地区的数个重要影响,假如监管机构选择减少温室气体排放的话。兹将主要总体结论概述如下:

减少温室气体排放的成本

对于全球经济,本文中450ppm的情景将取决于实施成本在每吨40欧元的所有可用减排措施的能力。如果发生这种情形,我们的成本曲线显示,到2030年,全球年成本可能达到约5,000亿欧元,占该年预测GDP的0.6%。然而,如果需要代价更高的措施以达到减排目标,成本可能高达11,000亿欧元,占全球GDP的1.4%。

如果正如气候变化争论中的某些参与方坚持认为的那样,减少温室气体排放的成本可以是针对未来无所抑制的排放这一严峻的潜在后果的保险政策,那么将这一成本与全球保险业营业额(不含人寿保险,2005年保险业营业额占全球GDP的3.3%)作一比较可能更具相关性。

注重节省成本的法规

如果监管机构选择加快现行减少温室气体排放的计划,他们应牢记以下四类成本控制措施:

1. 确保实施严格的建筑物和交通工具能源效率技术标准和规则

2. 建立稳定的长期激励机制,鼓励发电企业和工业企业开发和采纳温室气体减排技术

3. 提供充分的激励和扶持,提高选择的关键技术的成本效率,包括碳收集和封存技术

4. 有效地强调农林业的减排潜力,尤其在发展中国家;此类系统需要与总体发展议程密切挂钩

改变营商环境

对于电力行业和能源密集型行业的企业而言,收紧温室气体法规将意味着全球营商环境将发生重大改变,其严重程度不亚于上个世纪七十年代发生石油危机时那样。它将对业务战略产生根本性影响,如生产经济效益、成本竞争力、投资决策以及不同类型资产的价值。因此,对这些行业中的企业来讲,明智之举是:仔细考虑不同类型的温室气体法规效果,努力影响法规的制定,并进行相应的定位与准备。

无论全球各国企业是否、如何、或者何时采取行动来减少温室气体排放,决策者和企业领导人都可以通过彻底了解各种可能的减排措施的相对经济效益,及其对企业和全球经济的影响而从中获益。

作者简介:

Per-Anders Enkvist 是麦肯锡斯德哥尔摩分公司副董事,Tomas Nauclér 和Jerker Rosander 是斯德哥尔摩分公司董事。

二氧化碳减排现状

辽宁省二氧化碳排放现状调查及减排措施研究朱悦, 周昊, 郝晓雯 ( 辽宁省环境科学研究院, 辽宁沈阳 110031) 摘要 根据辽宁省各城市 2004年空气污染源排放清单, 以各城市各类化石燃料消耗量为基础, 利用不同化石燃料二氧化碳排放系数, 核算出辽宁省各城市 2004年二氧化碳总排放量为 3. 47亿 ,t并以 辽宁统计年鉴 为基础数据对其进行校核, 证明其数据合理, 方法可行, 计算结果能在一定程度上反映出辽宁省二氧化碳的排放情况。通过数据分析, 掌握了辽宁省二氧化碳排放的现状, 分析了辽宁省二氧化碳主要排放行业(电力、水泥、钢铁行业)的特点和规律, 并确定了辽宁省减排二氧化碳的技术措施和控制战略。关键词 化石燃料; 二氧化碳; 排放量; 20世纪 90年代以来, 全球气候变化问题已经得到国际社会的广泛关注。政府间气候变化专业委员会( IPCC)指出, 最近 100年全球气温升高了 0. 3~ 0. 6 ! [ 1] 。在导致气候变化的各种温室气体中, 二氧化碳的贡献率占 50%以上, 而人类活动排放的二氧化碳中 70%来自化石燃料的燃烧 [ 2- 3] 。我国是能源消耗大国, 根据国际能源署 2009年最新公布数据, 2007年我国二氧化碳总排放量为 60. 71亿 ,t 已经超越美国, 成为第一大排放国 [ 4] 。辽宁省是我国东北的老工业基地, 能源消耗大, 二氧化碳的排放量大。由于能源消费导致的二氧化碳排放在人为温室气体排放总量中占有绝对优势, 因此, 对辽宁省能源消费导致的二氧化碳排放现状进行调查研究十分必要。因此, 笔者根据辽宁省各城市化石燃料消耗和主要行业的二氧化碳排放清单, 结合 辽宁统计年鉴 数据, 采用??自下而上#和?? 自上而下#相结合的方法, 计算辽宁省二氧化碳的排放现状, 掌握辽宁省二氧化碳排放的行业特点和基本规律, 探讨辽宁省二氧化碳减排的技术措施, 力求在不影响经济发展的前提下使辽宁省的二氧化碳排放量有所减少。 1 化石燃料消耗产生二氧化碳排放量的计算方法文中化石燃料消耗所产生的二氧化碳排放量主要是根据国际通用的 IPCC排放清单指南进行计算[ 5] 。该方法将工业生产中二氧化碳排放量区分为燃料燃烧和工艺过程排放两部分。由于将燃料数据和产品数据分开统计, 不易反映集中排放的特点, 故采用同时考虑燃料燃烧和工艺过程因素的综合排放系数计算排放量。计算方法如下: ( 1)化石燃料排放二氧化碳的计算: 二氧化碳排放量= 化石燃料消耗量 ??相应燃料二氧化碳排放系数各种化石燃料的二氧化碳排放系数为[单位 t( CO2 ) / t]:

温室气体排放管理规定

一、目的 为了有效地对本公司温室气体进行管理特制定本规定。 二、范围 本规定适用于本公司温室气体排放控制及管理。 三、职责 行政人事部负责本公司温室气体管理。 四、定义 温室气体(GHG Greenhouse Gas): 指任何会吸收和释放红外线辐射并存在大气中的气体。京都议定书中控制的6种温室气体为:二氧化碳(CO2)、甲烷(CH4)、氧化亚氮(N2O) 、氢氟碳化合物(HFCs) 、全氟碳化合物(PFCs) 、六氟化硫(SF6)。 五、实施流程 流程: 组织和运营边界设定----选择基准年----确认与计算温室气体排放量 1、组织和运营边界 为了有效地对温室气体进行管理,设定包括直接和间接排放的运营边界有助于公司更好地管理温室气体排放的全部风险,利用好价值链上的机会。针对温室气体核算与报告设定了三个“范围”。它们共同提供管理和减少直接和间接排放的全面温室气体核算框架。

范围1:直接温室气体排放,出现在公司持有或者控制的排放源,例如公司持有或者控制的钎焊、车辆等产生的燃烧排放。 范围2:电力间接温室气体排放,范围2核算公司消耗的采购电力产生的温室气体排放。采购电力的定义是通过采购或者其他方式进入公司组织边界的电力。这部分的排放实际上出现在电力生产设施。 范围3:其他间接温室气体排放,范围3是选择性的报告类别,允许对所有其他间接排放进行处理。范围3的排放是公司活动的结果,但出现在非公司持有或者控制的排放源。例如提炼和生产采购的原材料、运输采购的燃料,以及使用出售的产品和服务所产生的排放。 通常情况下,建议公司至少对直接排放(范围1)和使用电力造成的间接排放(范围2)进行核算,这也是大多数国际温室气体排放报告倡议的要求。 2、选择基准年 公司可以选择一个基准年报告其温室气体排放,目的也是为了今后进行比较。选择基准年的原则是公司有可靠数据的最早相关时间点。 公司制定一个重新计算基准年排放量的政策也同样重要,如果数据、报告边界、计算方法或有关因素发生重大变化,那么需要重新计算基准年排放量。 3、确认与计算温室气体排放量 公司在确定组织和运营边界以及基准年后,可以采取以下步骤计算温室气体排放量: ·确认温室气体排放源

中国主要行业温室气体减排的共生效益分析

中国主要行业温室气体减排的共生效益分析我国当前面临温室气体减排和空气污染物的双重挑战,多数实证研究证明针对两者的措施存在共生效益,研究共生效益有利于我国制定更科学全面的空气污染物和二氧化碳减排政策。同时,共生效益概念所包含政治属性使得我国有必要明确行业具有的共生效益大小,以在国际谈判上具有更多的话语权。为评估我国主要行业二氧化碳减排的共生效益,量化共生效益对减排政策制定的影响,本研究基于钢铁、电力和水泥三个行业共146项技术开发了自底向上优化模型,构建了行业二氧化碳共生效益分析框架,结合多目标分析、不确定情景分析等评价了行业二氧化碳减排政策共生效益存在性和大小,在此基础上对行业未来二氧化碳削减目标给出建议。研究结果表明:行业现有的针对2015年的二氧化碳和空气污染物总量控制目标在电力和钢铁中能够实现,而水泥行业的烟粉尘和二氧化硫目标设定过严。 对三个行业而言,无论是减碳还是减污目标都具有使对方削减的共生效益,但在减污目标驱动下产生的二氧化碳和空气污染物的共生效益总和更大。三个行业在2015年达到减碳减污目标基础上,2020年其二氧化碳排放强度还能够分别进一步削减4-20%,0-4%及2-15%。通过将碳排放强度在其可行范围内采样发现,并非任何水平的二氧化碳削减强度都具有空气污染物减排的共生效益,对某些污染物而言,只有碳约束达到较强程度时才具有协同削减的效益。三个行业在2020年所具有的最大空气污染物削减共生效益值占行业减排成本的比重分别为 0.7-1.3%,1.2-2.4%,1.5-3.1%,共生效益值同成本的比值十分微小。 在考虑减污共生效益大小,单位减排成本变化趋势和速率下,对三个行业2020年碳削减目标的建议为:电力行业2020年单位发电量碳排放强度比2015年削减10-14%,排放量为34.4-36.0亿吨;钢铁行业2020年吨钢二氧化碳排放强度比2015年削减1-2%,排放总量将达到12.6-12.8亿吨;水泥行业2020年吨水泥二氧化碳排放强度比2015年削减8-12%,排放总量为11.8-12.4亿吨。届时水泥行业有可能进入碳排放峰值的平台。

二氧化碳减排量计算

1、二氧化碳和碳有什么不同? 二氧化碳(CO2)包含1个碳原子和2个氧原子,分子量为44(C-12、O-16)。二氧化碳在常温常压下是一种无色无味气体,空气中含有约1%二氧化碳。液碳和固碳是生物体(动物植物的组成物质)和矿物燃料(天然气,石油和煤)的主要组成部分。一吨碳在氧气中燃烧后能产生大约3.67吨二氧化碳(C的分子量为12,CO2的分子量为44,44/12=3.67)。 2、节约1度电或1公斤煤到底减排了多少“二氧化碳”或“碳”? 因此,我们以燃烧煤炭的火力发电为参考,计算节电的减排效益。根据专家统计:每节约 1度(千瓦时)电,就相应节约了0.4千克标准煤,同时减少污染排放0.272千克碳粉尘、0.997千克二氧化碳(CO2)、0.03千克二氧化硫(SO2)、0.015千克氮氧化物(NOX)。 为此可以推算出以下公式计算: 节约1度电=减排0.997千克“二氧化碳”=减排0.272千克“碳” 节约1千克标准煤=减排2.493千克“二氧化碳”=减排0.68千克“碳” 节约1千克原煤=减排1.781千克“二氧化碳”=减排0.486千克“碳” (说明:以上电的折标煤按等价值,即系数为1度电=0.4千克标准煤,而1千克原煤=0.7143千克标准煤) 按折标煤系数1.229算: 节约1度电=节约0.1229千克标煤=减排0.3064千克“二氧化碳” 3、节约1升汽油或柴油减排了多少“二氧化碳”或“碳”? 根据BP中国碳排放计算器提供的资料: 节约1升汽油=减排2.3千克“二氧化碳”=减排0.627千克“碳” 节约1升柴油=减排2.63千克“二氧化碳”=减排0.717千克“碳”

温室气体减排的成本曲线

麦肯锡季刊 2007年3月 作者:Per-Anders Enkvist, Tomas Nauclér and Jerker Rosander 有关温室气体的争论正日益升温。在众说纷纭中,一些言论坚持认为,温室气体排放和气候没有关联,而另一些言论则敦促全球尽快采取一致行动,减少温室气体向大气层的排放。即使行动的倡议者之间也对行动的时间、目标和手段意见不一。尽管存在种种争议,但有一件事情是确定无疑的:任何形式的法规强化都将对企业产生深远影响。 我们对这一主题的贡献,并非是对气候变化科学进行评估,或者来回答全球各国是否应该以及怎样采取行动减少温室气体排放这一问题。相反,我们旨在通过本文,为决策者(如果他们选择采取行动的话)提供各种可能的减排方法的重要意义和成本,并提供对不同地区和行业的相对重要性的认识。为此,我们建立了一个综合数据库和相关成本曲线,以此显示全球及各地区和各行业各种可用方法的重要意义和成本。我们的另一个目的是,帮助企业领导人认识潜在法规变化对企业和行业的影响。实际上,许多高层管理者已经在考虑法规问题。近期的一项调查1显示,欧洲能源密集型行业企业中有一半将《欧盟排放交易方案》视为影响它们长期投资决策的主要因素之一。 作为本次研究的一个基准,我们采用了国际能源署(IEA)和美国环境保护署(EPA)排放量增长常规预测2 。然后,我们分析了减少,即“减缓”温室气体排放各种可用方法相对于这些常规预测的重要意义和成本。我们的研究3覆盖六个地区(北美、西欧、东欧(包括俄罗斯)、其他发达国家、中国和其他发展中国家)的发电、制造业(侧重钢铁和水泥)、交通运输、住宅和商业建筑、林业,以及农业和垃圾处理行业。这项研究横跨三个时间段,即2010、2020和2030年,重点研究到2030年我们估计可能花费每吨40欧元或以下的减排措施。其他人对具体行业和具体地域开展了更为详细的研究。但据我们了解,我们的研究是所有关于温室气体、行业和地区同类研究中首个涉及微观经济的调查。 解读成本曲线 我们建立的成本曲线显示了对预期年减排成本的估计4,以每吨避免排放的温室气体多少欧元为单位5,以及采取这些方法的潜在减排效果,单位为千兆吨(十亿吨)。例如,风力发电技术的减排成本应被理解为,采用这一零排放技术的额外成本,而非它所替代的用更廉价的化石燃料发电的额外成本。风力发电减排潜力即我们所估计的以每吨40欧元或更少的成本可以减少的可行排放量。从另一角度看,这些成本可以被理解为通过决策采取具成本优势的或其他可行办法减少温室气体排放的(最终对于全球经济的)代价。有关可用减排措施的未来成本和可行部署率的假设多如牛毛,它们构成了其成本和重要意义的估计。例如,风力发电技术的重要意义假设到2008年全球各地区已着手采取减少温室气体排放的措施。而我们模型(以及本文) 中的数量应被视为潜在减排量,而非减排量预测。 我们的减排“供应”模型可以与政府确定的2010年、2020年和2030年温室气体任何减排目标(即“需求”) 作比较。但气候变化科学不属于我们的研究范围,我们专家的研究领域也不在这里。因此,出于示意目的,我们将调查发现与辩论中所讨论的三大排放量目标,即相应决定大气中550ppm、450ppm或400ppm温室气体长期集中度(ppm是一种对大气中温室气体分子比例的度量单位)进行了比较。根据指标的提出者,各项指标的目的是预防全球平均气温提高2个摄氏度以上。到2030年,这些排放指标中每一项都难以达到,因为,它都要求全球经济中温室气体与常规趋势之比的效率(相对GDP规模的排放量)至少提高50%。

4-国际温室气体减排方案评估

国际温室气体减排方案评估及 中国长期排放权讨论
丁仲礼①,段晓男②,葛全胜③,张志强④
①中国科学院地质与地球物理研究所,北京,100029 ②中国科学院办公厅,北京,100864 ③中国科学院地理科学与资源研究所,北京,100101 ④中国科学院国家科学图书馆兰州分馆,兰州,730000

哥本哈根会议的结果与启示
1、确定了控制2oC增温之共识 2、美国回来同大家一起“玩”了 3、没有真正的联盟,只有国家利益 4、“气候债”讨债难,还债易 5、占据道德制高点为首要 6、长期排放问题成我国“软肋” 7、用“数据说话”需技巧
真正的游戏还没有开始

“后哥本哈根”中国面临三大问题
?
如何应对“三可”问题中的透明度? (碳收支)
?
如何获得更多的排放空间? (8000亿吨或更多CO2分配问题)
?
如何借减排压力,推动国内绿色发展? (相关政策与措施)

长期排放权之争是今后谈判的焦点
话语权

减排与排放权分配为同一事物之两面
国际上七个影响较大的减排方案
中期目标 (2020年) 附件1国家减排25 %~40%;非附件1 国家中拉美、中东、 东亚地区及亚洲中 央计划国家在基线 水平上大幅度减排 ─ 到达峰值
长期目标 (2050年)
基准年
控排主体分类
IPCC方案
附件1国家减排80 %~95%; 非附件1 国家在基线水平上 大幅减排
1990年
附件1国家 非附件1国家
G8国家方案 UNDP 方案
减排50% 减排50%
─ 1990年
发达国家 其他国家 发达国家 发展中国家 OECD国家 金砖四国 其它国家 澳大利亚 加拿大 美国 日本 欧盟25国 发展中国家 美国 美国以外的经合组织国 家 中国 中国以外的非经合组织 国家 美国、中国、西欧等13 类
OECD方案
减排3%(2030)
减排41%
2000年
澳大利亚 Garnaut方案
增加29%
减排50%
2001年
CCCPST方案
到达峰值 (9.03 GtC)
减排到8.18GtC (2030年)
2003年
丹麦 S?rensen方案

486.27 GtC (2000-2100年累 计排放)
2000年

《中国电网企业温室气体排放核算方法与报告指南(试行)》

附件2 中国电网企业 温室气体排放核算方法与报告指南 (试行)

编制说明 一、编制的目的和意义 根据“十二五”规划《纲要》提出的“建立完善温室气体统计核算制度,逐步建立碳排放交易市场”和《“十二五”控制温室气排放工作方案》(国发[2011] 41号)提出的“加快构建国家、地方、企业三级温室气体排放核算工作体系,实行重点企业直接报送温室气体排放和能源消费数据制度”的要求,为保证实现2020年单位国内生产总值二氧化碳排放比2005年下降40%-45%的目标,国家发展改革委组织编制了《中国电网企业温室气体排放核算方法与报告指南(试行)》,以帮助企业科学核算和规范报告自身的温室气体排放,制定企业温室气体排放控制计划,积极参与碳排放交易,强化企业社会责任。同时也为主管部门建立并实施重点企业温室气体报告制度奠定基础,为掌握重点企业温室气体排放情况,制定相关政策提供支撑。 二、编制过程 本指南由国家发展改革委委托北京中创碳投科技有限公司专家编制。编制组借鉴了国内外有关企业温室气体核算报告研究成果和实践经验,参考了国家发展改革委办公厅印发的《省级温室气体清单编制指南(试行)》,经过实地调研、深入研究和案例试算,编制完成了《中国电网企业温室气体排放核算方法和报告指南(试行)》。本指南在方法上力求科学性、完整性、规范性和可操作性。

编制过程中得到了中国电力企业联合会、国家电网公司等单位专家的大力支持。 三、主要内容 《中国电网企业温室气体排放核算方法与报告指南(试行)》包括正文的七个部分以及附录,分别明确了本指南的适用范围、相关引用文件和参考文献、所用术语、核算边界、核算方法、质量保证和文件存档要求以及报告内容和格式。核算的温室气体为二氧化碳和六氟化硫(不核算其他温室气体排放),排放源包括使用六氟化硫的设备的修理和退役过程以及输配电损失引起的排放。适用范围为从事电力输配的具有法人资格的企业或视同法人的独立核算单位。 四、需要说明的问题 电网企业的温室气体排放包括输配电损失引起的二氧化碳排放以及使用六氟化硫设备修理与退役过程产生的排放两部分。使用六氟化硫的设备运行过程中也会产生泄漏,但是气体的泄漏率低且监测难度大,因此暂不考虑这部分的排放。 鉴于企业温室气体核算和报告是一项全新的复杂工作,本指南在实际运用中可能存在不足之处,希望相关使用单位能及时予以反馈,以便今后做出进一步的修改。 本指南由国家发展和改革委员会提出并负责解释和修订。

温室气体排放计算方法

温室气体排放计算方法 1标准编制的目的及意义 全球变暖和气候变化是关系到全人类命运的议题,国际社会纷纷采取措施应对。哥本哈根气候会议前夕,中国政府宣布了到2020年控制温室气体(GHG)排放的行动目标:即到2020年,我国单位GDP(国内生产总值)二氧化碳排放将比2005年下降40%-45%,并将其作为约束性指标纳入国民经济和社会发展中长期规划。中国首个自愿碳减排标准——“熊猫标准”也在哥本哈根会议期间发布,这标志着国内碳交易市场即将启动。 目前,国际通行的碳排放计算标准主要包括:CDM(清洁发展机制)、GS(黄金标准)、VCS、VER+、VOS、CCX、CCBS、Plan Vivo System等,其中自愿碳减排市场较常用到的是VCS、VER+等少数几个标准。这些标准都是基于项目层面,不适用于全面核算组织层次的排放量。2006年3月,国际标准化组织发布了ISO14064标准,其中ISO14064—l:2006《温室气体——第1部分:组织层次上对温室气体排放和清除的量化和报告的规范及指南》用于指导政府和组织量化、报告和核查温室气体的排放。然而,ISO14064—l标准并未涉及具体的操作方法,也无法完全适应中国国情的需要。国内关于组织温室气体排放的标准尚未制定,与标准相配套的计算方法仍处于开发阶段。在这一历史时机编制《基于组织的温室气体排放计算方法》的标准具有重要的意义,预期的经济、社会效益在于: (1)有利于贯彻落实国家节能减排和应对气候变化的政策法规,服从并服务于我国政府提出的单位GDP碳排放量考查的要求; (2)针对湖南省行政区划内不同行业组织的特点,全面计算和审核组织的温室气体排放量,可操作性强; (3)为组织特别是企业建立单位产值碳排放强度记账提供依据,使企业心中有数,有的放矢的采取适当的减排措施; (4)随着国内相关政策法规的逐步制定与实施,碳交易将成为促进我国实现减排目标的重要手段,本标准将作为碳交易过程中的基础工具发挥重要的意义; (5)本标准的制定将为我国其他地区的碳交易体系和温室气体排放标准的建立提供理论基础和借鉴经验。 2标准编制过程 2.1 任务来源 温室气体计算是温室气体考核和交易的基础。为贯彻落实国家节能减排和应对气候变化的政策法规,服务于我国政府提出的碳排放量考查要求,审核湖南省不同行业组织的温室气体排放量,湖南省科技厅批准了《基于组织的温室气体排放和清除的量化方法学开发》的科技计划项目(项目编号:2010FJ3070),湖南省质量技术监督局下发了《关于下达2010年度湖南省地方标准制修订项目计划(第一批)的通知》(湘质监函[2010]238号)。本标准由湖南省长株潭两型社会建设改革实验区领导协调委员会办公室提出,由湖南省湘科清洁发展有

CO2减排研究进展

CO2减排研究进展 刘诚 摘要:在全球变暖越来越被广泛关注的同时,CO2的减排成为一个热点话题,因为它关系到人类生活环境的未来和命运。本文首先综述了全球CO2上升的事实,然后分列出当前主要国家CO2温室气体的排放现状、减排政策与措施。分析了当前CO2减排技术的研究进展与热点;最后结合我国的实情,提出了相关的减排对策。 关键词:全球变暖CO2 减排措施减排技术 1.引言 全球变暖是当今人类面临的严峻挑战,是国际社会公认的全球性环境问题.全球变暖的主要原因是大气中温室气体的急剧、持续增加。大量的观测和研究表明,全球大气CO2、CH4、Nx0浓度显著增加,目前已经远远超出工业化前几千年来的浓度值[1]。 工业革命以前的几千年时间里,大气中的CO2的浓度平均值约为280ppmv,变化幅度大约在10ppmv以内。工业革命以后,碳循环的平衡开始被破坏,人为排放的CO2量急剧上升,造成大气中CO2浓度的增加,2000年大气中的CO2浓度达到368ppmv。这主要是由于森林植被遭到大规模的破坏,CO2的生物转化清除在不断减少,加之煤炭、石油和天然气等矿物燃料的消费一直在增加,而海洋和陆地生物圈并不能及时地完全吸收人类活动排放到大气中的CO2,从而导致大气中的CO2浓度不断增加。 目前,全世界每年燃烧煤炭、石油和天然气等矿物燃料排放到大气中的CO2总量折合成碳大约为6Gt左右;每年由于土地利用的变化和森林植被的破坏可能释放大约1.5Gt碳。而每年大气中碳的净增加量大约为2.0Gt,陆地生物圈吸收约1.7Gt。可见,每年排放到大气中的CO2大约有50%滞留在大气层中。假如由于矿物燃料燃烧所排放到大气中的CO2以每年2%的速率增长,到2040年前后CO2浓度就将达到550ppmv;若以每年1%的速率增长,则到2085年前后CO2浓度将达到550ppmv[2]。 因此,引起温室效应和全球气候变化的CO2的减排技术成为各国关注的焦点。 2. CO2温室气体排放、减排现状及目标 《联合国气候变化框架公约》明确规定,全球温室气体的排放量主要源于发达国家。主要是以美国为首。但2001年,中国二氧化碳排放量约占全球温室气体排放的12%,仅次于美国,居世界第二位[3]。 发达国家的能源消费激增出现在20世纪5O年代以后,到20世纪70年代初,工业化国家GDP比1950年增长了2倍以上,但能源消费大多增长了3倍以上。到了2O世纪后期,发达国家依然保持着较高的能源消费增长速度,造成大量温室气体CO2的排放,发达国家在其发展过程中对全球气候变化负有不可推卸的主要责任。在1751—1860年的100多年里,人为CO2排放基本上是由发达国家产生的;1861~1950年的9O年间,发达国家的CO2排放占全球CO2累计排放的95% ;直到1950年以后,发展中国家CO2排放的比例才开始增长[4]。从1951—2000年的50年里,人口不到全球20%的发达国家的排放量仍占总排放量的77%,仍是全球温室气体最主要的排放者[4]。1997年12月在日本京都召开了《联合国气候变化框架公约》第3次缔约方会议,通过了《京都议定书》,规定发达国家在2008~2012年期间,将其温室气体排放量在1990年的排放水平上减少5%,欧盟减少8%。根据该公约公布的最新排放数据表明[1],发达国家1990年的温室气体排放总量为1.731 9×1010t(CO2当量),2000年和2005年的排放总量分别为1.6257×1010t和1.646 5×1010t(CO2当量),分别较1990年降低了6.1%和4.9%。从总量方面看,似乎达到了《京都议定书》所规定的减少5%的要求,但其中主要的减排贡献来源于原苏联和东欧经济转型国家,这些国家因经济滑

国务院印发“十二五”温室气体排放的通知

“十二五”控制温室气体排放工作方案 一、总体要求和主要目标 (一)总体要求。坚持以科学发展为主题,以加快转变经济发展方式为主线,牢固树立绿色、低碳发展理念,统筹国际国内两个大局,把积极应对气候变化作为经济社会发展的重大战略、作为加快转变经济发展方式、调整经济结构和推进新的产业革命的重大机遇,坚持走新型工业化道路,合理控制能源消费总量,综合运用优化产业结构和能源结构、节约能源和提高能效、增加碳汇等多种手段,开展低碳试验试点,完善体制机制和政策体系,健全激励和约束机制,更多地发挥市场机制作用,加强低碳技术研发和推广应用,加快建立以低碳为特征的工业、能源、建筑、交通等产业体系和消费模式,有效控制温室气体排放,提高应对气候变化能力,促进经济社会可持续发展,为应对全球气候变化作出积极贡献。 (二)主要目标。大幅度降低单位国内生产总值二氧化碳排放,到2015年全国单位国内生产总值二氧化碳排放比2010年下降17%。控制非能源活动二氧化碳排放和甲烷、氧化亚氮、氢氟碳化物、全氟化碳、六氟化硫等温室气体排放取得成效。应对气候变化政策体系、体制机制进一步完善,温室气体排放统计核算体系基本建立,碳排放交易市场逐步形成。通过低碳试验试点,形成一批各具特色的低碳省区和城市,建成一批具有典型示范意义的低碳园区和低碳社区,推广一批具有良好减排效果的低碳技术和产品,控制温室气体排放能力得到全面提升。 二、综合运用多种控制措施 (三)加快调整产业结构。抑制高耗能产业过快增长,进一步提高高耗能、高排放和产能过剩行业准入门槛,健全项目审批、核准和备案制度,严格控制新建项目。加快淘汰落后产能,完善落后产能退出机制,制定并落实重点行业“十二五”淘汰落后产能实施方案和年度计划,加大淘汰落后产能工作力度。严格落实《产业结构调整指导目录》,加快运用高新技术和先进实用技术改造提升传统产业,促进信息化和工业化深度融合。大力发展服务业和战略性新兴产业,到2015年服务业增加值和战略性新兴产业增加值占国内生产总值比例提高到47%和8%左右。 (四)大力推进节能降耗。完善节能法规和标准,强化节能目标责任考核,加强固定资产投

如何计算二氧化碳减排量

如何计算二氧化碳减排量? 近年来,全球变暖已成为全世界最关心的环保问题,造成全球变暖的主要原因是大量的温室气体产生,而温室气体的主要组成部分就是二氧化碳(CO2),而二氧化碳的大量排放是现代人类的生产生活造成的,归根到底是大量使用各种化石能源(煤炭、石油、天然气)造成的,根据《京都议定书》的规定,各国纷纷制定了减排二氧化碳的计划。 通过节约化石能源和使用可再生能源,是减少二氧化碳排放的两个关键。在节能工作中,经常需要统计分析二氧化碳减排量的问题,现将网络收集的相关统计方法做一个简单整理,仅供参考。 1、二氧化碳和碳有什么不同? 二氧化碳(CO2)包含1个碳原子和2个氧原子,分子量为44(C-12、O-16)。二氧化碳在常温常压下是一种无色无味气体,空气中含有约1%二氧化碳。液碳和固碳是生物体(动物植物的组成物质)和矿物燃料(天然气,石油和煤)的主要组成部分。一吨碳在氧气中燃烧后能产生大约3.67吨二氧化碳(C的分子量为12,CO2的分子量为44,44/12=3.67)。 我们在查看减排二氧化碳的相关计算资料时,有些提到的是“减排二氧化碳量”(即CO2),有些提到的是“碳排放减少量”(以碳计,即C),因此,减排CO2与减排C,其结果是相差很大的。因此要分清楚作者对减排量的具体含义,它们之间是可以转换的,即减排1吨碳(液碳或固碳)就相当于减排3.67吨二氧化碳。 2、节约1度电或1公斤煤到底减排了多少“二氧化碳”或“碳”? 发电厂按使用能源划分有几种类型:一是火力发电厂,利用燃烧燃料(煤、石油及其制

品、天然气等)所得到的热能发电;二是水力发电厂,是将高处的河水通过导流引到下游形成落差推动水轮机旋转带动发电机发电;三是核能发电厂,利用原子反应堆中核燃料慢慢裂变所放出的热能产生蒸汽(代替了火力发电厂中的锅炉)驱动汽轮机再带动发电机旋转发电;四是风力发电场,利用风力吹动建造在塔顶上的大型桨叶旋转带动发电机发电称为风力发电,由数座、十数座甚至数十座风力发电机组成的发电场地称为风力发电场。 以上几种方式的发电厂中,只有火力发电厂是燃烧化石能源的,才会产生二氧化碳,而我国是以火力发电为主的国家(据统计,2006年全国发电总量2.83万亿kWh,其中火电占83.2%,水电占14.7%),同时,火力发电厂所使用的燃料基本上都是煤炭(有小部分的天然气和石油),全国煤炭消费总量的49%用于发电。 因此,我们以燃烧煤炭的火力发电为参考,计算节电的减排效益。根据专家统计:每节约 1度(千瓦时)电,就相应节约了0.4千克标准煤,同时减少污染排放0.272千克碳粉尘、0.997千克二氧化碳(CO2)、0.03千克二氧化硫(SO2)、0.015千克氮氧化物(NOX)。 为此可以推算出以下公式计算: 节约1度电=减排0.997千克“二氧化碳”=减排0.272千克“碳” 节约1千克标准煤=减排2.493千克“二氧化碳”=减排0.68千克“碳” 节约1千克原煤=减排1.781千克“二氧化碳”=减排0.486千克“碳” (说明:以上电的折标煤按等价值,即系数为1度电=0.4千克标准煤,而1千克原煤=0.7143千克标准煤)

二氧化碳减排措施和技术

二氧化碳减排措施和技术 二氧化碳减排措施和技术 摘要:本文主要阐述了关于二氧化碳减排的基本技术手段和基本原理。文章从提高能源利用效率和转化效率以及二氧化碳的捕集、分离和利用等方面介绍了中国二氧化碳减排的各种技术现状,并对二氧化碳减排技术的在国外的具体发展方向作了初步探讨,。许多国外的化工公司通过提供减排产品促进汽车应用绿色化。汽车的绿色化包括用生物基材料替代石油基材料、降低轮胎滚动阻力、发展塑料

汽车、开发更多汽车用绿色产品。另一些化工公司正在开发用二氧化碳作为低成本化工原材料的新技术,包括将CO2转化为燃料、利用合成生物学开发生物燃料。这些新技术均为中国二氧化碳减排及利用前景提供了一定的参考方向。 关键词:二氧化碳减排;捕获与分离;绿色化工;二氧化碳燃料 全球每年有250多亿吨二氧化碳排放,中国已达60多亿吨,位居世界第一。大量CO2的排放所带来的全球性的极端气候问题已经引起科学界、各国政府及公众的强烈关注。为此,如何减少CO2的排放问题已经被列入各国政府、联合国会议的首要议题,放在优先考虑的地位,成为全球诸多重大问题亟待解决的战略课题。 2009年12月7-18日召开的哥本哈根会议提出,面对气候变化的严峻挑战,我们必须采取更加强有力的政策措施与行动,努力控制温室气体排放,建设资源节约型和环境友好型社会。中国政府做出承诺,到2020年我国单位国内生产总值二氧化碳排放比2005年下降40% ~45%,非化石能源占一次能源消费的比重达到15%左右。 当前,减排的主要路线首先是从源头上减排,即通过调整产业、经济、能源结构,鼓励低排放、低能耗企业的建设,对高能耗的企业实行技术改造;大力发展节能技术,提高能源利用率;寻找新能源;增强公民意识,改变生活方式等;其次,对迫不得已排放的CO2通过回收分离、捕获贮存、资源化利用等技术减少或消除其排放。 1. 二氧化碳减排的基本技术手段和原理 1.1捕获分离CO2技术 1.1.1吸收法 包括物理吸收和化学吸收。物理吸收是指利用那些对CO2具有较大溶解度的有机溶剂做 吸收剂,通过对CO2的加压让其溶解到该溶剂内,再通过减压让CO2释放出来,通过这样的交替方式完成CO2的捕获分离。当然溶剂的选择非常重要,一般要求其具有无腐蚀性、无毒性和良好的化学稳定性。常见吸收剂有丙烯酸酯、甲醇、乙醇、聚乙二醇等等。化学吸收是指利用碱性溶液如碳酸钾等对CO2进行溶解捕获,再通过脱析作用完成对CO2的分离和溶剂的再生。该方法适用于大流量低浓度CO2的分离回收。 1.1.2吸附法 通过吸附剂在一定条件下对CO2进行选择性吸附,再将CO2解析分离的方法。常用的吸附剂有活性炭、沸石、硅胶、分子筛等。按照改变的条件,吸附法又可分为:变电吸附(ESA)、变压吸附(PSA)、变温吸附(TSA)等。其中以变压吸附法发展较为迅速,目前在化肥、化工工业中获得了广泛应用。 1.1.3富氧燃料 该技术是利用空分系统获得富氧甚至纯氧,再与纯的CO2以一定比例混合后送入炉膛与燃料混合燃烧。这样由于除去了氮,就可以在排放气体中产生高浓度的CO2,通过烟气再循环装置去稀释纯氧,重新回注燃烧炉。采用这种富氧燃烧方法,由于助燃气体中氧气浓度较高,燃烧比较完全,不但大大降低了烟气黑度,还因为氮气量的减少,而减少了热损失,节约了能源,故而被发达国家称之为“资源创造性技术”,有着良好的应用前景。目前的oxy-fuel技术又得到了进

2020控制温室气体排放落实方案

2020控制温室气体排放落实方案 一、总体要求和主要目标 (一)总体要求。坚持以科学发展为主题,以加快转变经济发展方式为主线,牢固树立绿色、低碳发展理念,统筹国际国内两个大局,把积极应对气候变化作为经济社会发展的重大战略、作为加快转变经济发展方式、调整经济结构和推进新的产业革命的重大机遇,坚持走新型工业化道路,合理控制能源消费总量,综合运用优化产业结构和能源结构、节约能源和提高能效、增加碳汇等多种手段,开展低碳试验试点,完善体制机制和政策体系,健全激励和约束机制,更多地发挥市场机制作用,加强低碳技术研发和推广应用,加快建立以低碳为特征的工业、能源、建筑、交通等产业体系和消费模式,有效控制温室气体排放,提高应对气候变化能力,促进经济社会可持续发展,为应对全球气候变化作出积极贡献。 (二)主要目标。大幅度降低单位国内生产总值二氧化碳排放,到20xx年全国单位国内生产总值二氧化碳排放比年下降17%。控制非能源活动二氧化碳排放和甲烷、氧化亚氮、氢氟碳化物、全氟化碳、六氟化硫等温室气体排放取得成效。应对气候变化政策体系、体制机制进一步完善,温室气体排放统计核算体系基本建立,碳排放交易市场逐步形成。通过低碳试验试点,形成一批各具特色的低碳省区和城市,建成一批具有典型示范意义的低碳园区和低碳社区,推广一批具有良好减排效果的低碳技术和产品,控制温室气体排放能力得到全面提升。

二、综合运用多种控制措施 (三)加快调整产业结构。抑制高耗能产业过快增长,进一步提高高耗能、高排放和产能过剩行业准入门槛,健全项目审批、核准和备案制度,严格控制新建项目。加快淘汰落后产能,完善落后产能退出机制,制定并落实重点行业“十二五”淘汰落后产能实施方案和年度计划,加大淘汰落后产能工作力度。严格落实《产业结构调整指导目录》,加快运用高新技术和先进实用技术改造提升传统产业,促进信息化和工业化深度融合。大力发展服务业和战略性新兴产业,到20xx 年服务业增加值和战略性新兴产业增加值占国内生产总值比例提高到47%和8%左右。 (四)大力推进节能降耗。完善节能法规和标准,强化节能目标责任考核,加强固定资产投资项目节能评估和审查。实施节能重点工程,加强重点用能单位节能管理,突出抓好工业、建筑、交通、公共机构等领域节能,加快节能技术开发和推广应用。健全节能市场化机制,完善能效标识、节能产品认证和节能产品政府强制采购制度,加快节能服务业发展。大力发展循环经济,加强节能能力建设。到20xx 年,形成3亿吨标准煤的节能能力,单位国内生产总值能耗比年下降16%。 (五)积极发展低碳能源。调整和优化能源结构,推进煤炭清洁利用,鼓励开发利用煤层气和天然气,在确保安全的基础上发展核电,在做好生态保护和移民安置的前提下积极发展水电,因地制宜大力发展风电、太阳能、生物质能、地热能等非化石能源。促进分布式能源系统的推广应用。到20xx年,非化石能源占一次能源消费比例达到11.4%。

温室气体减排方案

版本A0 温室气体减排方案生效日期2015-12-11页码1 制作审批 第一章总则 第一条为了进一步加强和规范集团公司温室气体减排项目管理工作,确保温室气体减排项目(包括清洁发展机制、温室气体自愿减排机制或其它促进温室气体减排的交 易机制下开展的项目)的顺利实施,依据《联合国气候变化框架公约》、《京都议定书》、中国《清洁发展机制项目运行管理办法》和中国《温室气体自愿减排交易管理暂行办法》的相关规定,制定本管理办法。 第二条集团公司开展温室气体减排项目的重点领域是提高能源效率、开发利用新能源和可再生能源以及甲烷和煤层气回收利用等,所有能减少二氧化碳(CO2)、甲烷 (CH4)、氧化亚氮( N2O)、氢氟碳化物( HFCs)、全氟化碳( PFCs)和六氟化硫(SF6) 等六种温室气体排放的项目。 第三条集团公司本部,各子、分公司范围内的温室气体减排项目活动,均适用本 办法。 第二章机构与职责 第四条资源环境管理局是集团公司温室气体减排项目的开发、管理和实施部门, 其职责如下: 1、制定和修订集团公司温室气体减排项目的管理办法、管理制度和工作程序。 2、负责集团公司温室气体减排项目的开发、日常管理实施。 3、负责集团公司温室气体减排项目的政策宣传、知识普及和业务培训。 4、负责就集团公司温室气体减排项目的开发实施与国内外主管机构及相关单位 协调和沟通。 5、负责研究清洁发展机制,自愿减排交易机制及其它温室气体减排交易机制的 政策、规则及实施方法。 6、负责对集团公司温室气体减排项目产生的减排量进行统一管理,根据国家政策和国际规则进行交易或处置。 7、负责对集团公司温室气体减排项目工作进行检查考核。 第五条项目主体单位是指建设项目的业主单位,项目主体单位应配合资源环境管 理局开展温室气体减排项目活动。其职责是: 1、建设项目立项时,及时通报资源环境管理局,协助资源环境管理局,进行项 目的温室气体减排项目潜力评估。 2、协助资源环境管理局,进行温室气体减排项目开发。

农业温室气体

农业温室气体

主要参考文献 《中国农业温室气体排放的现状与减排路径》 《农业生产的问世气体排放研究进展》 《农业生产中氧化亚氮排放源的影响因素分析》 《动物温室气体排放机制及减排技术与策略研究进展》 《中国农业温室气体排放:现状及挑战》 《中国农业源温室气体排放与减排技术对策》 《秸秆还田对中国农田土壤温室气体排放的影响》 《中国农田主要温室气体排放特征与控制技术》 《免耕施肥对甲烷和氧化亚氮排放及其温室效应的影响》 《保护性耕作和稻田免耕栽培技术发展现状与趋势》 《稻田秸秆还田的土壤增碳及其温室气体排放效应和机理研究进展》《稻田温室气体排放与减排研究综述》 《稻田CH4和N2O排放消长关系及其减排措施》 《免耕施肥对稻田CH4和N2O排放及其温室效应的影响》 《农田N2O排放影响因素及其减排措施》 《中国农业领域温室气体主要减排措施研究分析》 《农田土壤N2O排放和减排措施的研究进展》 农业温室气体CH4和N2O的产生机制、影响因素以及减排措施

1、水稻田 1、种植业 2、秸秆还田 农业源CH 4 1、家畜胃肠道发酵 2、畜牧业 2、 粪便管理系统 一、 水稻田: 1、产生机制:产甲烷菌在厌氧条件下将土壤有机质分解成甲烷。 2、影响因素:土壤特性、灌溉、施肥、水稻品种等。 3、减排的措施:○1合理灌溉;(是最简单效果最明显的措施,间歇灌溉和烤田可以有 效的降低甲烷的排放,但增加了N 2O 的排放,减排效应应从两者综 合增温效应考虑。) ○2科学施肥;(推广用沼渣代替有机肥。有机肥与化肥混施。) ○3选育新品种。(选育土壤氧化层根系发达、厌氧层根系分布小、通气组 织不发达的品种,有利于根际形成有氧环境,抑制产甲烷菌的活性, 如杂交水稻。选育根系较大,氧化获利较强,经济系数高,CH4排 放量低的水稻品种,如超级稻。) ○4土壤耕作方式(稻麦两熟制农田采用周年旋耕措施能有效减少甲烷的 释放。) 二、秸秆还田 1、产生机制:焚烧后的秸秆灰含有一定量的有机质,为产甲烷菌提供了产甲烷基质。 (其增 温潜能 是CO2 的 20-30 倍)

煤化工工艺中二氧化碳减排技术研究 刘红玉

煤化工工艺中二氧化碳减排技术研究刘红玉 摘要:随着社会的发展,我国的煤炭工程的发展也突飞猛进。众所周知,煤炭 资源在我国经济中起着举足轻重的角色,尤其是在我国经济发展初期,煤炭在国 民生活和基础设施中起了重要的作用。由煤炭衍生的大量的化工用品也在人民生 活中扮演了重要的角色。但随着煤炭的大量使用,环境污染问题也接踵而来。大 量的焚烧不但使得煤炭的使用率较低,而且污染也相当严重。这也使得我国的煤 化工产业的发展遇到瓶颈。在全球气候逐渐变暖的大前提下,我国作为碳排量大国,应当大力发展二氧化碳减排技术。 关键词:煤化工工艺;二氧化碳;减排技术研究 引言 在我国社会经济不断发展的过程中,煤化工业对于我国工业化进程的推进起 到了非常重要的作用。近年来,随着工业不断的发展,对于煤化产品的需求与日 俱增,对其工艺也提出了更高的要求。我国是当前世界第二大经济体,在市场经 济深入发展的形势下,对煤炭等能源及相关产品的需求不断提高。伴随现代科学 技术的发展,我国煤化工工艺取得了很大进步,在产量、质量上均得到大幅提升,这也大大促进了煤化工行业的发展。但生产中 CO 2 排放在较大程度上制约了煤化工行业的可持续发展,所以,有必要探讨煤化工工艺中 CO 2 减排技术。在煤化工产品生产的过程中,除了要保证其质量之外,还要重视对于环境的保护,特别是 在生产过程中二氧化碳的排放,要给与更多的重视。针对煤化工工艺中二氧化碳 的减排技术进行分析,希望为相关企业提供一些参考。 1煤化工技术简述 在煤炭工业中,煤炭焦化是一项重要的技术手段,能够生产出高附加值的化 工产品,并且这项技术的发展对于其它一些附属行业的发展起到了非常重要的作用。这一技术的发展逐渐朝向低成本、高环保性能的方向发展,煤炭液化技术也 是一项非常重要的技术,虽然目前我国这一技术还不够完善,但这项技术有着非 常巨大的发展前景,是当前煤化工技术中一个重点的发展方向。 2煤化工过程中二氧化碳的来源分析 综合起来,煤化工过程中产生的二氧化碳主要来自这四个方面: 2.1煤制甲醇工艺流程中二氧化碳的排放 煤制甲醇要经过煤气化、合成气的净化和合成甲醇等过程,其中,煤气化过 程中产生的二氧化碳最多。煤在O2和H2O共同存在且燃烧的条件下,会发生下 面两个反应:A.C+O2=CO2;B.CO+H2O=CO2+H2。而甲醇的合成离不开H2,这样 的话部分CO与H2O反应又会生成H2和二氧化碳,从而再次产生二氧化碳。这 两次反应产生的二氧化碳只有一小部分会生成甲醇,绝大部分都被排放。有数据 表明,生产1t的甲醇,需要排放2t的二氧化碳。 2.2间接液化法过程中二氧化碳的排放 这个工艺主要包括煤气化、煤化气合成和精炼这三个过程,气化和合成是产 生二氧化碳主要来源气化和合成这两个过程。由直接液化可知,氧气和水蒸汽在 煤的液化中作为气化剂,所以间接液化产生二氧化碳主要通过以下四个反应:A. 水煤气变换反应:CO+H2O=CO2+H2;B.铁基催化剂参与的F-T反应: 2CO+H2=CO2+CH2;C.甲烷化反应:2CO+2H2=CH4+CO2;D.歧化反应: 2CO=C+CO2。数据显示生产相同的液化产品这一过程比直接液化产生的二氧化碳 要多1t左右。

某发电企业CO2排放量和减排分析

某发电企业CO2排放量和减排分析 发布时间:2013-10-10 10:04:26 摘要:分析了电力企业CO2排放量的计算模式,提出IPCC排放因子计算模式、实测方法、物料衡算方法和宏观模型方法,并就影响排放因子的因素进行校核,提出电力生产低碳发展静脉循环经济模式下的捕获和资源化应用CCU减排思路. 关键词:火力发电;CO2排放量;计算模式;排放因子;静脉低碳模式Analysis on Carbon Dioxide Emission and Reductionof Therm al Power Plant Abstract:The quantifying mode of the carbon dioxide emissio ns for thermal power plant includes IPCCCO2emission factor mode, practical measurement mode, mass conservation mo de and quantifying mod-el, IPCC CO2emission factor need t o be checked, the best mode of low-carbon electricity produ ction isCCU(CO2Capture and Use). Key words:thermal power plant;amount of CO2emission;calc ulating mode;emission factor;intra-venous low-carbon model 低碳经济(Low Carbon Economy)[1]作为一种新的能源发展观成为世界能源生产和发展的制约因素.国际能源署报告表明,世界CO2排放量在2010年后将会以更快的速度增长,尤以美国和中国最为明显.中国火力发

相关文档
最新文档