根据最小相位系统开环对数频率特性求对应开环传递函数

根据最小相位系统开环对数频率特性求对应开环传递函数
根据最小相位系统开环对数频率特性求对应开环传递函数

根据最小相位系统开环对数频率特性求对应的开环传递函数(类似作业第八题),是《自动控制原理》课程的常考题型。对于此类题目,首先需要理解以下几点: (1) 系统开环传递函数的一般表达式为:

其中∏

为连乘符号,

为积分环节,是积分环节个数。i τs 1+

代表第个微分环节,j Ts 1+代表第j 个惯性环节,22T s 2ζTs 1l l l ++代表第l 个震荡环节。作业或考试中,考查的开环传递函数比

(2)根据(1)可知,要确定()K G s ,求出

、m1、n1、j T 的值。

(3)当开环对数频率特性低频段的斜率分别为0、-20、-40时,对应的分别等于0、1、2。(教材

图5-32)

(4)对0型系统:当L(0)=20lgK ; 对I 型系统:低频渐近线或其延长线与零分贝线相交的频率;当=1时,L(1)=20lgK ; 对II 型系统:低频渐近线或其延长线与零分贝线相交的频率;当=1时,L(1)=20lgK 。

(5)当曲线经过微分环节时,

当曲线经过惯性环节时,斜率变化

(6

因此,根据最小相位系统开环对数频率特性求对应的开环传递函数的步骤如下: (1) 由低频段的斜率确定;

(2) 由及低频渐近线或其延长线与零分贝线相交的频率确定K ; (3) 根据曲线斜率变化确定微分环节、惯性环节的个数; (4) 由转折频率确定时间常数。

以下题为例,给出详细解答过程。

已知最小相位系统开环对数频率特性(渐近线)如下图所示, (1)写出开环传递函数;

(2)根据相角裕度判别系统的稳定性。 解:(1)A . 由低频段的斜率为,可知,II 系统; B . 曲线斜率由变到,斜率变化+20,可知经过一个微分环节。因为转折频率

为2.5,所以微分环节的时间常数;

C . 然后曲线斜率由

变到

,斜率变化

,可知经过一个惯性环节。因此时转折频率为16,所以惯性环节的时间常数

D .由A 、B 、C 可知,系统开环传递函数的形式为:122(1)(0.41)

()(1)(1)

16

K T s K s G s s T s s s ++=

=

++; E . 求K :设 2.5ω=时对应的()L ω为x

,根据“低频渐近线或其延长线与零分贝线交于

0ω=

”有以下式子:40020lg10lg 2.5

x =--?=-?-?, 解得K=25; 或:设 2.5ω=时对应的()L ω为x ,根据“1()20lg L K ωω==时”有以下式子:

20lg 40lg 2.5lg1020lg10lg 2.5x K

x -?=-?-?

?

-?=-?-?

,解得K=25; F. 因此,系统开环传递函数为225(0.41)

()1

(1)16

s G s s s +=

+。

(2)利用教材公式5-109:

是截止频率,本题中

本题中

,,所以系

统稳定。

用MATLAB分析闭环系统的频率特性(1)

用MATLAB 分析闭环系统的频率特性 1、等M 圆图与等N 圆图原理 1.1设有单位系统如图1示。其闭环频率特性G B (j )与开环频率特性G K (j )的关系为 )(j G 1)(j G )(j X )(j X )(j G K K i 0B ωωωωω+== (1) 图 1 可将其开环频率特性G K (j )写成 G K (j )=U ()+jV() (2) 则闭环频率特性为 )(j B )e M(jV U 1jV U )G (j 1)G (j )(j G ωαωωωω=+++=+= (3) 式中 M()——闭环的幅频特性 ()——闭环的相频特性 闭环的幅频特性为 2 12222V )U (1V U |jV U 1||jV U |M ??????++++++= (4) 所以 222 22 V U)(1V U M +++= (5) 则有 2 22 2222 1)-(M M V )1-M M (U =++ (6) 显然,式(6)是一个元的方程,他表明了开环的实频U 、虚频V 和闭环的幅频M 之间 G K (j ) X i (j ) X 0(j )

的的关系,该圆方程的圆心坐标为(1M M 22--,j0),半径为|1-M M |2。当M 取不同的值时,便可以得到一簇圆,如图1,该图称为等M 圆图(邮称为等幅值轨迹图)。 有闭环的相频特性为 )V U U V (tg )U 1V (tg )U V (tg )jV U 1jV U (221-1-1-++=+=+++∠=-α (7) 令22V U U V tg N ++==α,上式可改为 22224N 1N )2N 1(V )21(U +=+++ (8) 可见式(8)也是一个圆方程,他表明了U 、V 与N 之间的关系。该圆方程的圆心坐标为 |。-,半径为|-1N )2N 1j ,21(2当N 取不同的值时,可画出一簇圆,如图2所示。该 方法复杂,也不准确,我们用一个具体的力来说明一下用MATLAB 解决这类问题的方

线性系统的频率特性实验报告(精)

实验四 线性系统的频率特性 一、实验目的: 1. 测量线性系统的幅频特性 2. 复习巩固周期信号的频谱测量 二、实验原理: 我们讨论的确定性输入信号作用下的集总参数线性非时变系统,又简称线性系统。线性系统的基本特性是齐次性与叠加性、时不变性、微分性以及因果性。对线性系统的分析,系统的数学模型的求解,可分为时间域方法和变换域方法。这里主要讨论以频率特性为主要研究对象,通过傅里叶变换以频率为独立变量。 设输入信号)(t v in ,其频谱)(ωj V in ;系统的单位冲激响应)(t h ,系统的频率特性 )(ωj H ;输出信号)(t v out ,其频谱)(ωj V out ,则 时间域中输入与输出的关系 )()()(t h t v t v in out *= 频率域中输入与输出的关系 )()()(ωωωj H j V j V in out ?= 时间域方法和变换域方法并没有本质区别,两种方法都是将输入信号分解为某种基本单元,在这些基本单元的作用下求得系统的响应,然后再叠加。变换域方法可以将时域分析中的微分、积分运算转化为代数运算,将卷积积分变换为乘法;在信号处理时,将输入时间信号用一组变换系数(谱线)来表示,根据信号占有的频带与系统通带间的关系来分析信号传输,判别信号中带有特征性的分量,比时域法简便和直观。 三、实验方法: 1. 输入信号的选取 这里输入信号选取周期矩形信号,并且要求 τ T 不为整数。这是因为周期矩形信号具有丰富的谐波分量,通过观察系统的输入、输出波形的谐波的变化,分析系统滤波特性。周期矩形信号可以分解为直流分量和许多谐波分量;由于测量频率点的数目有限,因此需要排除谐波幅度为零的频率点,周期矩形信号谐波幅度为零的频率点是 Ω KT ,其中1=K 、2、3、… 。 图11.1 输入的周期矩形信号时域波形 t

开环系统频率特性曲线的绘制方法

开环系统频率特性曲线的绘制方法 (一) 已知系统开环传递函数G k (s ),绘制Nyquist 曲线(开环幅相曲线) 一、ω:0+→+∞ 1、由已知的G k (s )求()()k k s j G j G s ωω==,A (ω),φ(ω) ,P (ω),Q (ω); 11211222 1 1 2 2 1 2 1 1 2 2 1 2 1121 12221 1221 2 1 1 2 2 1 2 22222 2 2 2(1)[(1)2](1)[(1)2]()()(1)[(1)2](1)[(1)2] m m m m j k j k k k j k j k k k k v n n n n i l i l l l i l i l l l j T j j T j k G j j j T j j T j ωωωωωξωξωωωωωωωωωωωξωξωωω ω+-+---= +-+---∏∏∏∏∏∏∏∏ (1) 式中:分子多项式中最小相位环节的阶次和为111212m m m =+, 分子多项式中非最小相位环节的阶次和为212222m m m =+, 分母多项式中最小相位环节的阶次和为111212n n n v =++, 分母多项式中非最小相位环节的阶次和为212222n n n =+, 分子多项式阶次之和为12m m m =+,分母多项式阶次之和为12n n n =+。 注:式中仅包含教材p192所列5种非最小相位环节,不包含形如1Ts -、 11Ts -、2 2 121 n n s s ξωω+-、22 21n n s s ξωω+-等非最小相位环节。 2、求N 氏曲线的起点 当ω→0+时,(1)式可近似为: 0lim ()()k v k G j j ωωω+ →→ (2) 于是,N 氏曲线的起点取决于开环放大系数k 和系统的型v 。 ① 当0v =时,N 氏曲线起始于实轴上的一点(k ,0)或(-k ,0); ② 当0v >时,N 氏曲线起始于无穷远点: 0k >时,沿着角度()2 v π?ω=-?起始于无穷远点; 0k <时,沿着角度()2 v π?ωπ=--?起始于无穷远点。 ③ 当0v <时,N 氏曲线起始于原点: 0k >时,沿着角度()2 v π?ω=?起始于原点; 0k <时,沿着角度()2 v π?ωπ=-+?起始于原点。 3、求N 氏曲线的终点 当ω→+∞时,(1)式中各环节的相角分别为:

阶变系统的开环传递函数

阶变系统的开环传递函数 clear all; Ap=1.68e-2; In=0.03; ps=4e6; pL=2*ps/3; Ki=188.6; Vt=2.873e-3; Kf=1; bate=6900e5; m=35000; Wh=sqrt(4*bate*Ap^2/(m*Vt)) zuni1=0.3; sys1=tf(1/Ap,[1/Wh^2 2*zuni1/Wh 1 0]) Wsv=157; zuni2=0.7; Ksv=1.96e-3; sys2=tf(Ksv,[1/Wsv^2 2*zuni1/Wsv 1]) %系统的开环传递函数

sys_open=Ki*sys1*sys2 sysclose=feedback(sys_open,1); figure; %绘制nyquist曲线 subplot(121);pzmap(sys_open); grid on; xlabel('实轴');ylabel('虚轴');title('零极点图'); subplot(122); nyquist(sys_open); grid on; xlabel('实轴');ylabel('虚轴');title('Nyquist图'); figure; %时域分析 subplot(121);step(sysclose); grid on; xlabel('时间');ylabel('振幅');title('阶跃响应'); subplot(122);impulse(sysclose); grid on; xlabel('时间');ylabel('振幅');title('脉冲图响应'); figure; %绘制Bode图及其参数求解 w=logspace(-1,2); grid on; margin(sys_open); xlabel('频率');title('Bode图');

系统频率特性

第三章 系统频率特性 系统的时域分析是分析系统的直接方法,比较直观,但离开计算机仿真,分析高阶系统是困难的。系统频域分析是工程广为应用的系统分析和综合的间接方法。频率分析不仅可以了解系统频率特性,如截止频率、谐振频率等,而且可以间接了解系统时域特性,如快速性,稳定性等,为分析和设计系统提供更简便更可靠的方法。 本章首先阐明频率响应的特点,给出计算频率响应的方法,接着介绍Nyquist 图和Bode 图的绘制方法、系统的稳定裕度及系统时域性能指标计算。 3.1 频率响应和频率特性 3.1.1 一般概念 频率响应是指系统对正弦输入的稳态响应。考虑传递函数为G(s)的线性系统,若输入正弦信号 t X t x i i ωsin )(= (3.1-1) 根据微分方程解的理论,系统的稳态输出仍然为与输入信号同频率的正弦信号,只是其幅值和相位发生了变化。输出幅值正比于输入的幅值i X ,而且是输入正弦频率ω的函数。输出的相位与i X 无关,只与输入信号产生一个相位差?,且也是输入信号频率ω的函数。即线性系统的稳态输出为 )](sin[)()(00ω?ωω+=t X t x (3.1-2)

由此可知,输出信号与输入信号的幅值比是ω的函数,称为系统的幅频特性,记为)(ωA 。输出信号与输入信号相位差也是ω的函数,称为系统的相频特性,记为)(ω?。 幅频特性: )()()(0ωωωi X X A = (3.1-3) 相频特性: )()()(0ω?ω?ω?i -= (3.1-4) 频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性,可表示为: )()()(0ωωωj X j X j G i = (3.1-5) 频率特性)(ωj G 是传递函数)(s G 的一种特殊形式。任何线性连续时间系统的频率特性都可由系统传递函数中的s 以ωj 代替而求得。 )(ωj G 有三种表示方法: )()()(ω?ωωj e A j G = (3.1-6) )()()(ωωωjV U j G += (3.1-7) )(sin )()cos()()(ω?ωωωωjA A j G += (3.1-8) 式中,实频特性: )(cos )()(ω?ωωA U = 虚频特性:

自动控制原理开环传递函数

负反馈控制系统的开环传递函数为 (1)、)3)(1()()(++=s s s K s H s G (2)、)3)(1() 2()()(+++=s s s s K s H s G 做系统根轨迹图。 解(1):传递函数已为标准零极点令 0)3)(1(=++s s s 可得开环极点为 00=p 11-=p 32-=p 则3=n ,0=m ,有3=-m n 条根轨迹终止于无穷远处 极点将实轴分为四个区间,仅有区间)3,(--∞和)0,1(-有根轨迹因为)0,1(-两端均为极点,则存在分离点为: 0]) ()(1[=ds s H s G d 03832=++s s 解出 45.01-=s 22.22-=s 根据实轴上根轨迹确定方法可知2s 不在根轨迹上,1s 为该系统的分离点。 与实轴的交点为3 4 3310321-=--=-++= m n p p p a σ 与实轴正方向的夹角为: 0=h , 6031801801==-= m n ? 1=h , 180180)12(2=-+= m n ? 2=h , 300180)122(3=-+?= m n ? 根轨迹与虚轴的焦点w 和对应的临界增益c k 值,由开环传递函数可 知,系统的闭环特征方程为 034)3)(1(23=+++=+++k s s s k s s s 令jw s =,上式变为 0)(3)(4)(23=+++k jw jw jw

实部与虚部分别为零,即 042=+-k w 033=+-w w 解得 3±=w 12=k 根据以上结果。绘制出大概的根轨迹图形如下 Mutlab 绘根轨迹图 G=tf(1,[conv([1,1],[1,3]),0]); rlocus (G); grid

系统开环频率特性的绘制

5.3 系统开环频率特性的绘制 对自动控制系统进行频域分析时,通常是根据开环系统的频率特性来判断闭环系统的稳定性和估算闭环系统时域响应的各项性能指标,或者根据开环系统的频率特性绘制闭环系统的频率特性,然后再分析及估算时域性能指标。因此,掌握开环系统的频率特性曲线的绘制和特点是十分重要的。 5.3.1 开环幅相曲线的绘制 开环系统的幅相频率特性曲线简称为开环幅相曲线。准确的开环幅相曲线可以根据系统的开环幅频特性和相频特性的表达式,用解析计算法绘制。显然,这种方法比较麻烦。在一般情况下,只需要绘制概略开环幅相曲线,概略开环幅相曲线的绘制方法比较简单,但是概略曲线应保持准确曲线的重要特征,并且在要研究的点附近有足够的准确性。 下面首先介绍幅相频率特性曲线的一般规律与特点,然后举例说明概略绘制开环幅相曲线的方法。 设系统开环传递函数的一般形式为 ) 1()1()()(11 ++= ∏∏-==s T s s K s H s G j v n j v m i i τ )(m n ≥ (5-49) 式中,K 为开环增益;v 为系统中积分环节的个数。 则系统的开环频率特性为 ) 1() ()1()()(1 1∏∏-==++= v n j j v m i i T j j j K j H j G ωωωτωω (5-50) 1.开环幅相曲线的起点 在低频段当0→ω时,由式(5-50)可得 )90(0 lim ) (lim )()(lim ??-→→→==v j v v e K j K j H j G ω ωωωωωω (5-51) 由式(5-51)可知,当0→ω时,开环幅相曲线的起点取决于开环传递函数中积分环节的个数v 和开环增益K ,参见图5-23(a )。 0型(v =0)系统,开环幅相曲线起始于实轴上的)0,(j K 点。 Ⅰ型(v =1)系统,开环幅相曲线起始于相角为?-90的无穷远处。当+ →0ω时,曲线渐近于与虚轴的平行的直线,其横坐标

阶变系统的开环传递函数

阶变系统的开环传递函数阶变系统的开环传递函数 clear all; Ap=1.68e-2; In=0.03; ps=4e6; pL=2*ps/3; Ki=188.6; Vt=2.873e-3; Kf=1; bate=6900e5; m=35000; Wh=sqrt(4*bate*Ap /(m*Vt))

zuni1=0.3; sys1=tf(1/Ap,[1/Wh 2*zuni1/Wh 1 0]) Wsv=157; zuni2=0.7; Ksv=1.96e-3; sys2=tf(Ksv,[1/Wsv 2*zuni1/Wsv 1]) %系统的开环传递函数 sys_open=Ki*sys1*sys2 sysclose=feedback(sys_open,1); figure; %绘制nyquist曲线 subplot(121);pzmap(sys_open);

grid on; xlabel(‘实轴’);ylabel(‘虚轴’);title(‘零极点图’); subplot(122); nyquist(sys_open); grid on; xlabel(‘实轴’);ylabel(‘虚轴’);title(‘Nyquist图’); figure; %时域分析 subplot(121);step(sysclose); grid on; xlabel(‘时间’);ylabel(‘振幅’);title(‘阶跃响应’); subplot(122);impulse(sysclose); grid on; xlabel(‘时间’);ylabel(‘振幅’);title(‘脉冲图响应’); figure; %绘制Bode 图及其参数求解 w=logspace(-1,2); grid on;

开环传递函数

五、(共15分)已知某单位反馈系统的开环传递函数为 (1)()()(3) r K s GS HS s s += -,试: 1、绘制该系统以根轨迹增益K r 为变量的根轨迹(求出:分离点、与虚轴的交点等);(8分) 2、求系统稳定且为欠阻尼状态时开环增益K 的取值范围。(7分) 五、(共15分) (1)系统有有2个开环极点(起点):0、3,1个开环零点(终点)为:-1; (2分) (2)实轴上的轨迹:(-∞,-1)及(0,3); (2分) (3)求分离点坐标 111 13 d d d =+ +-,得 121, 3d d ==- ; (2分) 分别对应的根轨迹增益为 1, 9r r K K == (4)求与虚轴的交点 系统的闭环特征方程为(3)(1)0r s s K s ++=-,即2 (3)0r r s K s K +-+= 令 2(3)0r r s j s K s K ω =+-+=,得 3, 3r K ω=±= (2分) 根轨迹如图1所示。 图1 2、求系统稳定且为欠阻尼状态时开环增益K 的取值范围 系统稳定时根轨迹增益K r 的取值范围: 3r K ≥, (2分) 系统稳定且为欠阻尼状态时根轨迹增益K r 的取值范围: 3~9r K =, (3分) 开环增益K 与根轨迹增益K r 的关系: 3 r K K = (1

分) 系统稳定且为欠阻尼状态时开环增益K 的取值范围: 1~3K = (1分) 六、(共22分)已知反馈系统的开环传递函数为()()(1) K G s H s s s =+ ,试: 1、用奈奎斯特判据判断系统的稳定性;(10分) 2、若给定输入r(t) = 2t +2时,要求系统的稳态误差为0.25,问开环增益K 应取何值。 (7分) 3、求系统满足上面要求的相角裕度γ。(5分) 六、(共22分) 解:1、系统的开环频率特性为 ()()(1) K G j H j j j ωωωω= + (2分) 幅频特性:2 ()1K A ωωω = +, 相频特性:()90arctan ?ωω=--(2分) 起点: 00, (0),(0)90A ω?+++ ==∞=-;(1分) 终点: ,()0,()A ω?→∞∞=∞=-;(1分) 0~:()90~180 ω?ω=∞=--, 曲线位于第3象限与实轴无交点。(1分) 开环频率幅相特性图如图2所示。 判断稳定性: 开环传函无右半平面的极点,则0P =, 极坐标图不包围(-1,j0)点,则0N = 根据奈氏判据,Z =P -2N =0 系统稳定。(3分) 2、若给定输入r(t) = 2t +2时,要求系统的稳态误差为0.25,求开环增益K : 系统为1型,位置误差系数K P =∞,速度误差系数K V =K , (2分) 图2

2第二节对数频率特性

第二节对数频率特性

一、对数频率特性曲线(波德图,Bode 图) Bode 图由对数幅频特性和对数相频特性两条曲线组成。⒈波德图坐标(横坐标是频率,纵坐标是幅值和相角)的分度:横坐标(称为频率轴)分度:它是以频率w 的对数值log w 进行线性分度的。但为了便于观察仍标以w 的值,因此对w 而言是非线性刻度。w 每变化十倍,横坐标变化一个单位长度,称为十倍频程(或十倍频),用dec 表示。类似地,频率w 的数值变化一倍,横坐标就变化0.301单位长度,称为“倍频程”,用oct 表示。横坐标的单位是rad /s 。如下图所示: Dec Dec Dec Dec 1-2-012... ∞-w log 01.00 1 .01 10 100 w 由于w 以对数分度,所以零频率点在-∞处。

1 2 3456789102030 40506080100 一倍频程 一倍频程一倍频程一倍频程 一倍频程 一倍频程 十倍频程 十倍频程 十倍频程 十倍频程 1 2 w w lg 更详细的刻度如下图所示 ω12345678910 lg ω0.0000.3010.4770.6020.6990.7780.8450.9030.954 1.000

纵坐标分度:对数幅频特性曲线的纵坐标以L(w)=20logA(w) 表示。其单位为分贝(dB)。直接将20logA(w) 值标注在纵坐标上。 相频特性j (w)曲线的纵坐标以度或弧度为单位进行线性分度。 一般将幅频特性和相频特性画在一张图上,使用同一个横坐标(频率轴)。 当幅频特性值用分贝值表示时,通常将它称为增益。幅值和增益的关系为:增益=20log (幅值) 幅值A(w ) 1.00 1.26 1.56 2.00 2.51 3.16 5.6210.0100100010000 对数幅值 02468101520406080 20lgA(w ) 幅值A(w ) 1.000.790.630.500.390.320.180.100.010.0010.0001 对数幅值 0-2-4-6-8-10-15-20-40-60-80 20lgA(w )

自控复习题

一、单项选择题 1.设某系统开环传递函数为G(s)=) 1s )(10s s (102+++,则其频率特性奈氏图起点坐标为( C ) A .(-10,j0) B .(-1,j0) C .(1,j0) D .(10,j0) 2.在串联校正中,校正装置通常( B ) A .串联在前向通道的高能量段 B .串联在前向通道的低能量段 C .串联在反馈通道的高能量段 D .串联在反馈通道的低能量段 3.已知单位反馈控制系统在阶跃函数作用下,稳态误差e ss 为常数,则此系统为(A ) A .0型系统 B .I 型系统 C .Ⅱ型系统 D .Ⅲ型系统 4.设某环节的传递函数为G(s)=121 +s ,当ω=0.5rad /s 时, 其频率特性相位移θ(0.5)=( A ) A .-4π B .-6π C .6π D .4π 5.线性定常系统的传递函数,是在零初始条件下( D ) A .系统输出信号与输入信号之比 B .系统输入信号与输出信号之比 C .系统输入信号的拉氏变换与输出信号的拉氏变换之比 D .系统输出信号的拉氏变换与输入信号的拉氏变换之比 6.控制系统中,基本环节的划分,是根据( D ) A .元件或设备的形式 B .系统的物理结构 C .环节的连接方式 D .环节的数学模型 7.比例微分控制器中,微分时间常数越大,则系统的( A ) A .动态偏差越小 B .动态偏差越大 C .振荡越小 D .过渡过程缩短 8.同一系统,不同输入信号和输出信号之间传递函数的特征方程( A ) A .相同 B .不同 C .不存在 D .不定 9.2型系统对数幅频特性的低频段渐近线斜率为( B ) A .-60d B /dec B .-40dB /dec C .-20dB /dec D .0dB /dec 10.已知某单位负反馈系统的开环传递函数为G(s)=)1(1 +s s ,则相位裕量γ的值为( B ) A .30° B .45° C .60° D .90° 11.单位抛物线输入函数r(t)的数学表达式是( D ) A .at 2 B .21Rt 2 C .t 2 D .21 t 2

第四章控制系统的频率特性

第四章控制系统的频率特性 本章要点 本章主要介绍自动控制系统频域性能分析方法。内容包括频率特性的基本概念,典型环节及控制系统Bode图的绘制,用频域法对控制系统性能的分析。 用时域分析法分析系统的性能比较直观,便于人们理解和接受。但它必须直接或间接地求解控制系统的微分方程,这对高阶系统来说是相当复杂的。特别是当需要分析某个参数改变对系统性能的影响时,需反复重新计算,而且还无法确切了解参数变化量对系统性能影响的程度。而频率特性不但可以用图解的方法分析系统的各种性能, 而且还能分析有关参数对系统性能的影响,工程上具有很大的实用意义。 第一节频率特性的基本概念 一、频率特性的定义 频率特性是控制系统的又一种数学模型,它是系统(或元件)对不同频率正弦输入信号的响应特性。对线性系统,若输入信号为正弦量,则其稳态输出信号也将是同频率的正弦量,但是输出信号的幅值和相位一般不同于输入量,如图4-1。 若设输入量为r(t)=A「sin( 3 t+ u r) 其输出量为c(t)=A c sin@ t+ u c) 若保持输入信号的幅值A r不变,改变输入信号的角频率3,则输出信号的角频率 也变化,并且输出信号的幅值和相位也随之变化。 图4-1控制系统的频率响应

我们定义系统(或环节)输出量与输入量幅值之比为幅值频率 特性,简称幅频 M( 3 )表示。输出量与输入量的相位差为相位频率特 3变化,常用U (3 )表示。其数学定义为 M "A U ( 3 )= U c - U 幅频特性和相频特性统称为频率特性,用 G(j 3 )表示。由此,幅频特性 M( 3 )又可 表示为|G(j ;i ),相频特性u (3 )又可表示为Z G(j ■),三者可表示成下面的形式: G(j a )=|G(j m )|Z G(j s ) M (co ) = G(jco) 「()二/G( j ?) 二、频率特性与传递函数的关系 频率特性和传递函数之间存在密切关系:若系统(或元件)的传递函数为 G(s), 则其频率特性为 G(j 3 )。这就是说,只要将传递函数中的复变量 s 用纯虚数j 3代替, 就可以 得到频率特性。即 G(s) > G(j ■) 三、频率特性的表示方法 1 .数学式表示法 频率特性是一个复数,所以它和其他复数一 | 样,可以表示为极坐标式、直角坐标和指数坐标 三种形式。见图 4-2所示。 G(j ?)二 G(j J- G(j ) 二U (■) jVC ) -M ( )e j () 显然, M =|G( j ⑷)| 2 (co )+V 2?) w G(j "arcta 说 例4-1写出惯性环节的幅频特性、相频特性和频率特性。 特性,它随角频率 3变化,常用 性,简称相频特性,它也随角频率 其中 图4-2频率特性的表示方法

开环对数频率特性和时域指标.

5-6 开环对数频率特性和时域指标 根据系统开环对数频率特性对系统性能的不同影响,将系统开环对数频率特性分为三个频段。即低频段、中频段和高频段。 一、 低频段 低频段通常是指开环对数幅频特性的渐近曲线在第一个交接频率以前的频段,这一频段完全由开环传递函数中的积分环节和放大环节所决定。低频段的对数幅频为 ωωωωlg 20lg 20lg 20)()(lg 20?-==v K K j H j G v (5-32) 式中v 为开环传递函数中的积分环节数。根据式(5-32)及积分环节数,就可作出开环对数幅频特性曲线的低频段,如图5-39所示。 若已知低频段的开环对数幅频特性曲线,则很容易得到K 值和积分环节数v ,故低频段的频率特性决定了系统的稳态性能。 二、中频段 中频段是指开环对数幅频特性曲线截止频率c ω附近的频段。 这决定系统的稳定程度,即决定系统的动态性能。 设有二个系统,均为最小相位系统,它们的开环对数幅频特性曲线除中频段的斜率不同(即一个为20-dB/dec,另一个为40-dB/dec) 之外, 其余低频、 高频段均相同。并且中频段相当长,如图5-40 所示。

显然,系统(a)有将近90°的相裕量,而系统(b)则相裕量很小。 假定另有二个系统, 均为最小相位系统, 开环对数幅频特性曲线除中频段 (斜率为 -20 dB/dec ) 线段的长度不同外, 其余部分完全相同, 如图 5-41 所示。 显然, 中频段线段较长的系统 (a) 的相裕量将大于中频段线短的系统(b)。 可见,开环对数幅频特性中频段斜率最好为20-dB/dec ,而且希望其长度尽可能长些,以确保系统有足够的相角裕量。如果中频段的斜率为40-dB/dec 时,中频段占据的频率范围不宜过长,否则相裕量会很小;若中频段斜率更小(如60-dB/dec),系统就难以稳定。另外,截止频率c ω越高,系统复现信号能力越强,系统快速性也就越好。 三、 高频段 高频段是指开环对数幅频特性曲线在中频段以后的频段(一般c ωω10>的频段)。这部分特性是由系统中时间常数很小的部件所决定。由于它远离截止频率c ω,一般幅值分贝数较低,故对系统动态性能(相裕量)影响不大。另外,由于高频段的开环幅值较小,故对单位反馈系统有 ()() 1()G j j G j ωΦωω= + )(ωj G ≈ 该式表明,闭环幅值近似等于开环幅 值。因此,系统开环对数幅频特性在高频段 的幅值,直接反映了系统对输入端高频干扰 的抑制能力。所以,高频段的分贝数值愈低,系统的抗干扰能力愈强。 图5-42为典型的一型高阶系统开环对数幅频特性曲线的三个频段的划分。 应当指出,三个频段的划分并没有严格的确定准则,但是三个频段的概念为直接运用开

第三章 系统频率特性

第三章 系统频率特性 系统的时域分析是分析系统的直接方法,比较直观,但离开计算机仿真,分析高阶系统是困难的。系统频域分析是工程广为应用的系统分析和综合的间接方法。频率分析不仅可以了解系统频率特性,如截止频率、谐振频率等,而且可以间接了解系统时域特性,如快速性,稳定性等,为分析和设计系统提供更简便更可靠的方法。 本章首先阐明频率响应的特点,给出计算频率响应的方法,接着介绍Nyquist 图和Bode 图的绘制方法、系统的稳定裕度及系统时域性能指标计算。 3.1 频率响应和频率特性 3.1.1 一般概念 频率响应是指系统对正弦输入的稳态响应。考虑传递函数为G(s)的线性系统,若输入正弦信号 t X t x i i ωsin )(= (3.1-1) 根据微分方程解的理论,系统的稳态输出仍然为与输入信号同频率的正弦信号,只是其幅值和相位发生了变化。输出幅值正比于输入的幅值i X ,而且是输入正弦频率ω的函数。输出的相位与i X 无关,只与输入信号产生一个相位差?,且也是输入信号频率ω的函数。即线性系统的稳态输出为 )](sin[)()(00ω?ωω+=t X t x (3.1-2)

由此可知,输出信号与输入信号的幅值比是ω的函数,称为系统的幅频特性,记为)(ωA 。输出信号与输入信号相位差也是ω的函数,称为系统的相频特性,记为)(ω?。 幅频特性: )()()(0ωωωi X X A = (3.1-3) 相频特性: )()()(0ω?ω?ω?i -= (3.1-4) 频率特性是指系统在正弦信号作用下,稳态输出与输入之比对频率的关系特性,可表示为: )()()(0ωωωj X j X j G i = (3.1-5) 频率特性)(ωj G 是传递函数)(s G 的一种特殊形式。任何线性连续时间系统的频率特性都可由系统传递函数中的s 以ωj 代替而求得。 )(ωj G 有三种表示方法: )()()(ω?ωωj e A j G = (3.1-6) )()()(ωωωjV U j G += (3.1-7) )(sin )()cos()()(ω?ωωωωjA A j G += (3.1-8) 式中,实频特性: )(cos )()(ω?ωωA U = 虚频特性:

利用开环频率特性分析系统的性能.

5.6 利用开环频率特性分析系统的性能 在频域中对系统进行分析、设计时,通常是以频域指标作为依据的,但是不如时域指标来得直接、准确。因此,须进一步探讨频域指标与时域指标之间的关系。考虑到对数频率特性在控制工程中应用的广泛性,本节将以Bode 图为基点,首先讨论开环对数幅频特性)(ωL 的形状与性能指标的关系,然后根据频域指标与时域指标的关系估算出系统的时域响应性能。 实际系统的开环对数幅频特性)(ωL 一般都符合如图5-49所示的特征:左端(频率较低的部分)高;右端(频率较高的部分)低。将)(ωL 人为地分为三个频段:低频段、中频段和高频段。低频段主要指第一个转折点以前的频段;中频段是指截止频率c ω附近的频段;高频段指频率远大于c ω的频段。这三个频段包含了闭环系统性能不同方面的信息,需要分别进行讨论。 需要指出,开环对数频率特性三频段的划分是相对的,各频段之间没有严格的界限。一般控制系统的频段范围在Hz 100~01.0之间。这里所述的“高频段”与无线电学科里的“超高频”、“甚高频”不是一个概念。 5.6.1 )(ωL 低频渐近线与系统稳态误差的关系 系统开环传递函数中含积分环节的数目(系统型别)确定了开环对数幅频特性低频渐近线的斜率,而低频渐近线的高度则取决于开环增益的大小。因此, )(ωL 低频段渐近线集中反映了系统跟踪控制信号的稳态精度信息。根据)(ωL 低 频段可以确定系统型别υ和开环增益K ,利用第3章中介绍的静态误差系数法可以确定系统在给定输入下的稳态误差。 图5-49 对数频率特性三频段的划分

5.6.2 )(ωL 中频段特性与系统动态性能的关系 开环对数幅频特性的中频段是指截止频率c ω附近的频段。设开环部分纯粹由积分环节构成,图5-50(a )所示的对数幅频特性对应一个积分环节,斜率为 dec dB /20-,相角 90)(-=ω?,因而相角裕度 90=γ;图5-50(b )的对数幅频特性对应两个积分环节,斜率为dec dB /40-,相角 180)(-=ω?,因而相角裕度 0=γ。 图5-50 )(ωL 中频段对稳定性的影响 一般情况下,系统开环对数幅频特性的斜率在整个频率范围内是变化的,故截止频率c ω处的相角裕度γ应由整个对数幅频特性中各段的斜率所共同确定。在 c ω处,)(ωL 曲线的斜率对相角裕度γ的影响最大,远离c ω的对数幅频特性,其斜率对γ的影响就很小。为了保证系统有满意的动态性能,希望)(ωL 曲线以dec dB /20-的斜率穿过dB 0线, 并保持较宽的频段。截止频率c ω和相角裕度γ是系统开环频域指标,主要由中频段决定,它与系统动态性能指标之间存在着密切关系,因而频域指标是表征系统动态性能的间接指标。 1 二阶系统 典型二阶系统的结构图可用图5-51表示。其中开环传递函数为 2 ()(01)(2) n n G s s s ωξξω=<<+ 相应的闭环传递函数为 2 22 2)(n n n s s s ωξωω++=Φ (1)γ和%σ的关系: 系统开环频率特性为 图5-51 典型二阶系统结构图

自动控制19套试题及答案详解

第1页 一.填空题。(10分) 1.传递函数分母多项式的根,称为系统的 2. 微分环节的传递函数为 3.并联方框图的等效传递函数等于各并联传递函数之 4.单位冲击函数信号的拉氏变换式 5.系统开环传递函数中有一个积分环节则该系统为型系统。 6.比例环节的频率特性为。 7. 微分环节的相角为。 8.二阶系统的谐振峰值与有关。 9.高阶系统的超调量跟有关。 10.在零初始条件下输出量与输入量的拉氏变换之比,称该系统的传递函数。 二.试求下图的传第函数(7分) 三.设有一个由弹簧、物体和阻尼器组成的机械系统(如下图所示),设外作用力F(t)为输入量,位移为y(t)输出量,列写机械位移系统的微分方程(10分)

第2页 四.系统结构如图所示,其中K=8,T=0.25。(15分) (1)输入信号x i(t)=1(t),求系统的响应; (2)计算系统的性能指标t r、t p、t s(5%)、бp; (3)若要求将系统设计成二阶最佳ξ=0.707,应如何改变K值

第 3 页 )1001.0)(11.0()(++= s s s K s G 五.在系统的特征式为A (s )=6 s +25 s +84 s +123 s +202 s +16s+16=0,试判断系统的稳定性(8分) γ。(12分) 七.某控制系统的结构如图,其中 要求设计串联校正装置,使系统具有K ≥1000及υ≥45。 的性能指标。(13分)

s T s s s G 25.0,) 4(1 )(=+= . 八.设采样控制系统饿结构如图所示,其中 试判断系统的稳定性。 (10分) 九. 已知单位负反馈系统的开环传递函数为: 试绘制K 由0 ->+∞变化的闭环根轨迹图,系统稳定的K 值范围。(15分) ,)4()1()(22++=s s K s G

最新实验四二阶开环系统的频率特性曲线

实验四二阶开环系统的频率特性曲线

实验报告 课程名称控制工程基础 实验项目实验四二阶开环系统的频率特性曲线 专业电子科学与技术班级一 姓名学号 指导教师实验成绩 2014年5月29日

实验四 二阶开环系统的频率特性曲线 一、实验目的 1.研究表征系统稳定程度的相位裕度γ和幅值穿越频率c ω对系统的影响。 2. 了解和掌握二阶开环系统中对数幅频特性L(w )和相频特性)(ω?,实频特性Re (w )和虚频特性Im (w )的计算。 3.了解和掌握欠阻尼二阶开环系统中的相位裕度γ和幅值穿越频率c ω的计算。 4.观察和分析欠阻尼二阶开环系统波德图中的相位裕度γ和幅值穿越频率ωc ,与计算值作比对。 二、实验仪器 PC 机一台,实验箱 三、实验内容及操作步骤 本实验用于观察和分析二阶开环系统的频率特性曲线。 由于Ⅰ型系统含有一个积分环节,它在开环时响应曲线是发散的,因此欲获得其开环频率特性时,还是需构建成闭环系统,测试其闭环频率特性,然后通过公式换算,获得其开环频率特性。 自然频率:TiT K =n ω 阻尼比:KT Ti 2 1=ξ (3-2-1) 谐振频率:221ξωω-=n r 谐振峰值:2121 lg 20)(ξξω-=r L (3- 2-2) 计算欠阻尼二阶闭环系统中的幅值穿越频率ωc 、相位裕度γ: 幅值穿越频率: 24241ξξωω-+?=n c (3-2-3)

相位裕度: 4 24 1 2 2 arctan ) ( 180 ξ ξ ξ ω ? γ + + - = + = c (3-2-4)γ值越小,Mp%越大,振荡越厉害;γ值越大,Mp%小,调节时间ts越长,因此为使二阶闭环系统不致于振荡太厉害及调节时间太长,一般希望: 30°≤γ≤70°(3-2-5)本实验所构成的二阶系统符合式(3-2-5)要求。 被测系统模拟电路图的构成如图1所示。 图1 实验电路 本实验将数/模转换器(B2)单元作为信号发生器,自动产生的超低频正弦信号的频率从低到高变化(0.5Hz~16Hz),OUT2输出施加于被测系统的输入端r(t),然后分别测量被测系统的输出信号的开环对数幅值和相位,数据经相关运算后在虚拟示波器中显示。 实验步骤: (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。 (2)构造模拟电路:安置短路套及测孔联线表同笫3.2.2 节《二阶闭环系统的频率特性曲线测试》。 (3)运行、观察、记录: ①将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT 程序,在界面的自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择二阶系统,就会弹出虚拟示波器的界面,点击开始,实验开始后,实验机将自动产生0.5Hz~16H等多种频率信号,等待将近十分钟,测试结束后,观察闭环对数幅频、相频曲线和幅相曲线。

已知单位反馈系统的开环传递函数

5-1 已知单位反馈系统的开环传递函数 习题 5-1已知单位反馈系统的开环传递函数,试绘制其开环极坐标图和开环对数频率特性。(1) )11.0(10) (s s s G (2) ) 12)(12.0(1 ) (s s s G (3) ) 12)(1(1 ) (s s s s G (4) ) 11.0)(1(10 ) (2 s s s s G 5-2设单位反馈系统的开环传递函数 ) 2(10) (s s G 试求下列输入信号作用下,系统的稳态输出。 1. ) 30sin()(t t r 2. ) 452cos(2sin ) (t t t r 5-3已知单位反馈系统的开环传递函数 ) 10)(1(10 ) (s s s s G 试绘制系统的极坐标图Bode 图,并求系统的相角裕量和幅值裕量。 5-4已知图示RLC 网络,当ω=10rad/s 时,系统的幅值A=1相角 =-90°,试求其传 递函数。 5-5已知最小相位系统的开环对数幅频特性的渐近线如图所示,试求系统的开环传递函 数,并计算系统的相角裕量。 习题5-4图

5-2 5-6设系统开环传递函数为 (1)) 02.01)(2.01 () ()(s s K s H s G (2)) 11.0)(1() ()(1.0s s s Ke s H s G s 试绘制系统的 Bode 图,并确定使开环截止频率 ωc =5rad/s 时的K 值。 5-7设系统开环频率特性极坐标图如图所示,试判断闭环系统的稳定性。(其中υ表示 积分环节个数,P 为开环右极点个数 )。 习题5-5图

5-3 5-8图示系统的极坐标图,开环增益K=500,且开环无右极点,,试确定使闭环系统稳 定的K 值范围。 5-9设系统的开环传递函数为 ) 1() ()(s s Ke s H s G s 1.试确定使系统稳定时 K 的临界值与纯时延 τ的关系; 2.若τ=0.2,试确定使系统稳定的K 的最大值。 5-10已知单位反馈系统的开环传递函数 ) 10)(1() (s s s K s G 求:1.当K=10 2.要求系统相角裕量为30,K 值应为多少? 3.要求增益裕量为 20dB ,求K 值应为多少? 习题5-11图 习题5-7图 习题5-8图

几个开环与闭环自动控制系统的例子

2-1 试求出图P2-1中各电路的传递函数。 图P2-1 2-2 试求出图P2-2中各有源网络的传递函数。 图P2-2 2-3 求图P2-3所示各机械运动系统的传递函数。 (1)求图(a )的 ()()?=s X s X r c (2)求图(b )的() () ?=s X s X r c (3)求图(c )的 ()()?12=s X s X (4)求图(d )的 ()() ?1=s F s X 图P2-3 2-4 图P2-4所示为一齿轮传动机构。设此机构无间隙、无变形,求折算到传动轴上的等效转动惯量、等效粘性摩擦系数和()()() s M s s W 2θ= 。

图P2-4 图P2-5 2-5 图P2-5所示为一磁场控制的直流电动机。设工作时电枢电流不变,控制电压加在励磁绕组上,输出为电机角位移,求传递函数()()() s u s s W r θ=。 2-6 图P2-6所示为一用作放大器的直流发电机,原电机以恒定转速运行。试确定传递函数 () () ()s W s U s U r c =,设不计发电机的电枢电感和电阻。 图P2-6 2-7 已知一系统由如下方程组组成,试绘制系统方框图,并求出闭环传递函数。 ()()()()()()[]()s X s W s W s W s W s X s X c r 87111--= ()()()()()[]s X s W s X s W s X 36122-= ()()()()[]()s W s W s X s X s X c 3523-= ()()()s X s W s X c 34= 2-8 试分别化简图P2-7和图P2-8所示的结构图,并求出相应的传递函数。

相关文档
最新文档