配电自动化系统馈线保护的配置

配电自动化系统馈线保护的配置
配电自动化系统馈线保护的配置

配电自动化系统馈线保护的配置

发表时间:2017-12-18T11:23:45.117Z 来源:《电力设备》2017年第24期作者:张建宋恩稼[导读] 摘要:随着国民经济的高速发展,人们的生活水平有了显著的提高,在能源方面的需求也越来越高,能源的紧缺问题开始渐渐地暴露出来。

(国网山东省电力公司乳山市供电公司山东乳山 264500)摘要:随着国民经济的高速发展,人们的生活水平有了显著的提高,在能源方面的需求也越来越高,能源的紧缺问题开始渐渐地暴露出来。目前为止,我国大部分地区电力事业的发展相对落后,为了确保对电力资源的有效控制,就需要采用自动化配电方式来确保用电的合理化,如何确保其安全性就显得越发重要。馈线系统保护充分吸取了高压线路纵联保护的特点,利用馈线保护装置之间的快速通信一次

性实现对馈线故障的隔离、重合闸、恢复供电功能,将馈线自动化的实现方式从集中监控模式发展为分布式保护模式,从而提高配电自动化的整体功能。

关键词:配电自动化;馈线保护;配置引言

配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。目前为止,配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已经得到了普遍认可。馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速的彼此通信,共同实现具有更高性能的馈线自动化功能。本文通过分析传统的馈线保护方式和馈线自动化的基本功能及原理,阐述了实施了配电自动化系统后,配电网馈线系统保护配置过程中应注意的问题。

1.配电网馈线保护的现状及方式

电力系统由发电、输电和配电三个部分组成。发电环节的保户集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降至最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,因为配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求快速。不同的配电网对负荷供电可靠性和供电质量要求不尽相同。许多的配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对用户的负面影响作为配电网保护的目的。配电网馈线保护的主要作用是提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复用电。具体有以下几种方式: 1.1重合器方式的馈线保护

实现馈线分段、增加电源点是提高供电可靠性的基础。重合器保护是将馈线故障自动限制在一个区段内的有效方式。目前在我国城乡电网改造中仍然有很多的重合器得到应用,这种简单而有效的方式能够提高供电可靠性。其相对于传统的电流保护而言有更大的优势。但是,这种方案的缺点就是故障隔离的时间较长,多次重合对相关的负荷有一定的影响。

1.2传统的电流保护

最基本的继电保护之一就是过电流保护,因为受到经济的限制,配电网馈线保护广泛采用电流保护。配电线路一般情况下很短,由于配电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。比较常见的方式有反时限电流保护和三段电流保护。电流保护实现配电网保护的前提是将整条馈线视为一个单元。如果发生馈线故障时,就要将整条线路切掉,并不用考虑对非故障区段的恢复供电,这些都不利于供电可靠性。另一方面,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。

1.3基于馈线自动化的馈线保护

配电自动化包括馈线自动化和配电管理系统,其中馈线自动化实现对馈线信息的采集和控制,同时也实现了馈线保护。这种基于通信的馈线自动化方案以集中控制为核心,综合了电流保护、RTU遥控及重合闸等多种方式,能够快速的切除故障,在几秒到几十秒的时间内实现故障隔离,在几十秒到几分钟内实现恢复用电。这种方案是目前为止配电网自动化的主流方案,能够将馈线保护集成于一体化的配电网监控系统中,从故障切除、故障隔离、恢复用电方面都有效的提高了供电可靠性。

2.馈线自动化基本功能及原理

馈线自动化的主要功能有:在正常的情况下,对馈电网进行监控和数据采集,包括相应馈线柱上开关的状态、馈线电流电压等;在发生故障时进行故障记录,遥控馈线柱上开关的合闸、分闸。在配电自动化系统综合分析故障信息后遥控执行自诊断、隔离、恢复功能。根据负荷均衡情况实现配电网的优化与重构。馈线自动化就是监视馈线的负荷及运行方式。馈线自动化的核心是通信,以通信为基础可以实现配电网全局性的数据采集和控制,从而实现配电SCADA、配电高级应用。同时以地理信息系统(GIS)为平台实现了配电网的设备管理、图资管理,而SCADA、GIS和配电高级应用的一体化则促使配电自动化成为提供配电网保护与监控、配电网管理的全方位自动化运行管理系统。

目前国内的主流通信方式是光纤通信,具体分为光纤环网和光纤以太网。建立在光纤通信基础上的馈线保护的实现由以下三部分组成:第一,电流保护切除故障;第二,集中式的配电主站或子站遥控FTU实现故障隔离;第三,集中式的配电主站或子站遥控FTU实现非故障区域的恢复用电。这种实现方式实质上是在自动装置无选择性动作后的恢复用电。如果能够解决馈线故障时保护动作的选择性,就能够大大的提高馈线保护性能,从而一次性的实现故障切除与故障隔离。这就需要馈线上的多个保护装置利用快速通信协作动作,共同实现有选择性的故障隔离,以上就是馈线保护的基本思想。

3.馈线保护的基本原理

馈线系统保护实现的前提条件是:快速通信;控制对象是断路器;终端是保护装置而非TTU。

在高压线路保护中,高频保护、电流差动保护都是依靠快速通信实现的主保护,馈线系统保护是在多于两个装置之间通信的基础上实现的区域性保护。

系统保护动作速度及其后备保护。为了确保馈线保护的可靠性,在馈线的首端UR1处设限时电流保护,建议整定时间内0.2s,即要求馈线系统保护在200ms内完成故障隔离。在保护动作时间上,系统保护能够在20ms内识别出故障区段信息,并启动通信。光纤通信速度很快,考虑到重发多帧信息,相邻保护单元之间的通信应在30ms内完成。断路器动作时间为40ms~100ms。这样,只要通信环节理想即可实现快速保护。

FSA-3311馈线保护装置

关于FSA-3300系列保护装置的所有技术和使用说明书的版权为滁州安瑞电力自动化有限公司所有。滁州安瑞电力自动化有限公司保留对所有资料的修改和解释权,若有改动,恕不另行通知。 一概述 1.装置特点及功能 FSA3300系列微机保护测控装置是功能先进、完善的微机保护测控装置,主要用于35KV及以下的各电压等级配电系统;既可直接安装于高压开关柜上,也可组屏安装。 装置主要特点如下: ●本装置为汉化微机保护测控装置,集成电路采用工业品,稳定性、可靠性高, 可以在高压开关柜等恶劣的工作环境中工作。 ●抗干扰性能强,保护硬件设计采用了多种隔离、屏蔽措施,软件设计采用数 字滤波技术和良好的保护算法及其他抗干扰措施,使得保护抗干扰性能大大得提高。 ●硬件、软件设计标准化、模块化,便于现场维护,在标准化硬件设计的基础 上,采用了各种标准化软件模块化组态,可构成不同的保护功能配置,如果用户需要更多的保护功能,设计单位可以简单、可靠地升级。 ●人机接口功能强大,全汉化液晶显示,菜单式操作,配有标准的RS485通 讯口。 ●装置采集并向远方传送状态量及遥测量,遥信变位优先发送。 ●装置能通过通信上传故障报告,进行对时、定值调用和修改、定值区切换, 合闸、跳闸等命令。 ●装置适用于直流供电系统,同样也适用于交流供电系统。 FSA3300系列保护功能见表

2 技术指标 2.1 额定交流数据 ●交流电流:5A或1A; ●交流电压:100V; ●零序电流:0.1A或0.02A ●额定频率:50HZ 2.2 额定直流数据:直流电压220V或110V 2.3 功率消耗 ●直流回路:正常不大于10W,动作时不大于15W; ●交流电流回路:每相不大于0.5VA(In=1A,)1VA(In=5A) ●交流电压回路:每相不大于0.5VA 2.4 环境条件 ●环境温度范围:-25~+55℃,24h内平均温度不超过35℃ ●相对湿度:最湿月的月平均最大湿度为90%,同时该月的月平均最低温 度为25℃且表面无凝霜,最高温度为+40℃,平均最大相对湿度不超过50%。 2.5各保护组件工作范围

中国南方电网有限责任公司配电自动化馈线终端技术规范书

中国南方电网有限责任公司配电自动化馈线终端技术规范书 (通用部分) 版本号:2016版V1.1 编号: 中国南方电网有限责任公司 2016年3月

本规范对应的专用技术规范目录

配电自动化馈线终端技术规范书使用说明 1. 本技术规范书分为通用部分、专用部分。 2. 项目单位根据需求选择所需设备的技术规范,技术规范通用部分条款及专用部分固化的参数原则上不能更改。 3. 本技术规范书适用于南方电网公司10kV/20kV电压等级配电自动化馈线终端。 4. 项目单位应按实际要求填写“项目需求部分”。如确实需要改动以下部分,项目单位应填写专用部分“表 2.7 项目单位技术差异表”并加盖本单位公章,提交物资招标组织部门。物资招标组织部门及时将“表 2.7 项目单位技术差异表”移交给技术标书审查会。技术标书审查会确认“表2.7 项目单位技术差异表”内容的可行性并书面答复:1)改动通用部分条款及专用部分固化的参数; 2)项目单位要求值超出标准技术参数值; 3)需要修正污秽、温度、海拔等条件。 当发生需求变化时,需由技术规范组织编写部门组织的标书审查会审核通过后,对修改形成的“项目单位技术差异表”,放入技术规范书中,随招标文件同时发出并视为有效,否则将视为无差异。 5. 技术规范的页面、标题、标准参数值等均为统一格式,不得随意更改。 6. 投标人逐项响应技术规范专用部分中“1 标准技术参数”、“2 项目需求部分”和“3 投标人响应部分”三部分相应内容。填写“2 项目需求部分”时,应严格按“项目单位要求值”一栏填写相应的招标文件投标人响应部分的表格。投标人填写技术参数和性能要求时,如有偏差除填写“表3.2投标人技术偏差表”外,必要时应提供相应试验报告。

高压漏电保护整定方案

井下10(6)kV供电系统漏电保护整定方案 (修订版) 为提高煤矿供电的安全运行水平,更好利用井下高压防爆开关综合保护装置,确保漏电保护选择性和可靠性,特制定井下10(6)kV 供电系统漏电保护整定方案。 方案一: 该方案适合于煤矿井下综合保护装置采用零序电流型、功率方向型的高压防爆开关、矿井电网中性点不接地系统。 (一)高压漏电保护整定原则 1、煤矿井下高压漏电保护装置主要用于10(6)kV供电系统中,对井下供电系统的漏电(或接地)实现有选择性保护。高压馈电线路上必须装设有选择性的单相接地保护装置;供移动变电站的高压馈线上,必须装设有选择性的动作于跳闸的单相接地保护装置。 2、高压漏电保护装置的动作参数有二次零序电压和一次零序电流,其取值范围如下。 最低起动二次零序电压:U0≥3V; 最高整定二次零序电压:U0≤25V; 最低起动一次零序电流:I0≥; 最高整定一次零序电流:I0≤6A。 3、高压漏电保护系统各级纵向之间的配合选择,按时间阶梯整定。原则上最上一级时间最长,最下一级时间最短,从最下一级向上级整

定时间逐渐延长。 4、移动变电站应动作于跳闸,高压电动机应动作于跳闸,一般生产线路的变压器应动作于跳闸,风机、水泵应动作于报警信号,向下级变电所馈出线路应动作于报警信号,变电所内总进线开关应动作于报警信号。 (二)漏电保护整定方案 1、电网对地电容及零序电流值的确定 (1)电缆线路的对地电容与单相接地电容电流 煤矿高压10(6)kV电网的单相接地电流I d与电网的对地电容∑C 有一一对应的关系,由公式(1-1)来计算。 I d=ωU∑C×10-3/(1-1) 式中I d——电网的单相接地(电容)电流,A; ω——三相交流电的角频率,ω=314; U——电网线电压有效值,kV; ∑C——电网三相对地总电容,μF。 电缆的型号、截面不同时,其分布电容值也有所不同,生产厂家根据理论设计和出厂测试的数据,将不同电压等级、型号、截面电缆的单位长度三相对地总电容值与相应的单相接地电容电流值见表1-1,供用户参考。 表1-1 10(6)kV电力电缆三相对地总电容∑C及单相接地电容电流I d

配电网馈线系统保护原理及分析(通用版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 配电网馈线系统保护原理及分 析(通用版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

配电网馈线系统保护原理及分析(通用版) 一引言 配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。目前,我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已得到普遍认可,光纤通信作为主干网的通信方式也得到共识。馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速地彼此通信,共同实现具有更高性能的馈线自动化功能。 二.配电网馈线保护的技术现状 电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的

是维护电网的稳定。配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的配电网对负荷供电可靠性和供电质量要求不同。许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。 随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。具体实现方式有以下几种: 2.1传统的电流保护 过电流保护是最基本的继电保护之一。考虑到经济原因,配电网馈线保护广泛采用电流保护。配电线路一般很短,由于配电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。常用的方式有反时限电流保护和三段电流保护,其中反时限电流保护的时间配合特性又分为标准反时限、非常反时限、极端反时限和超反时限,参见式(1)、(2)、(3)和(4)。

配电自动化馈线终端(FTU)技术规范

配电自动化馈线终端() 技术规范

目录 1 规范性引用文件..................................................... 错误!未指定书签。 2 技术要求........................................................... 错误!未指定书签。 3 标准技术参数....................................................... 错误!未指定书签。 4 环境条件表.......................................................... 错误!未指定书签。 5 试验................................................................ 错误!未指定书签。附录A馈线终端无线通信安装位置、航插尺寸定义(参考性附录)............ 错误!未指定书签。附录B 馈线终端接口定义(规范性附录) ................................. 错误!未指定书签。

配电自动化馈线终端()技术规范 1 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本适用于本文件。 17626.1 电磁兼容试验和测量技术抗扰度试验总论 17626.2 静电放电抗扰度试验 17626.3 射频电磁场辐射抗扰度试验 17626.4 浪涌(冲击)抗扰度试验 17626.5 电快速瞬变脉冲群抗扰度试验 17626.8 工频磁场的抗扰度试验 17626.10 阻尼振荡磁场的抗扰度试验 17626.11 电压暂降、短时中断和电压变化抗扰度试验 15153.1 远动设备及系统第2部分:工作条件第1篇:电源和电磁兼容兼容性 11022 高压开关设备和控制设备标准的共用技术要求 14285 继电保护和安全自动装置技术规程 4208 外壳防护等级() 13729 远动终端设备 5096 电子设备用机电件基本试验规程及测量方法 19520 电子设备机械结构 7251.5 低压成套开关设备和控制设备第五部分:对户外公共场所的成套设备—动力配电网用电缆分线箱()的特殊要求 637-1997 阀控式密封铅酸蓄电池订货技术条件 721 配电网自动化系统远方终端 634.5101 远动设备及系统第5-101部分:传输规约基本远动任务配套标准 634.5104 远动设备及系统第5-104部分:传输规约采用标准传输协议子集的60870-5-101网络访问 814 配电自动化系统功能规范 382 配电自动化技术导则 513 配电自动化主站系统功能规范 514 配电自动化终端/子站功能规范 625 配电自动化建设与改造标准化设计技术规定 2技术要求 2.1概述 馈线终端的结构形式可分为箱式馈线终端和罩式馈线终端。 2.1.1箱式馈线终端 安装在配电网馈线回路的柱上等处的配电终端,外箱为箱式,按照功能分为箱式“三遥”终端和箱

几种馈线自动化方式

1.集中控制式 集中控制式的故障处理方案是基于主站、通信系统、终端设备均已建成并运行完好的情况下的一种方案,它是由主站通过通信系统来收集所有终端设备的信息,并通过网络拓扑分析,确定故障位置,最后下发命令遥控各开关,实现故障区域的隔离和恢复非故障区域的供电。 优点:非故障区域的转供有着更大的优势,准确率高,负荷调配合理。 缺点:终端数量众多易拥堵,任一环节出错即失败。 案例: 假设F2处发生永久性故障,则 变电站1处断路器CB1因检测到故障电流而分闸,重合不成功然后分闸闭锁。定位:位于变电站内的子站或配电监控中间单元因检测到线路上各个FTU的状态及信息,发现只有FTU1流过故障电流而FTU2~FTU5没有。子站或配电监控中间单元判断出故障发生在FTU1~FTU2之间。 隔离:子站或配电监控中间单元发出命令让FTU1与FTU2跳闸,实现故障隔离。恢复:子站或配电监控中间单元发出命令让FTU3合闸,实现部分被甩掉的负荷的供电。子站或配电监控中间单元将故障信息上传配调中心,请求合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。配调中心启动故障处理软件,产生恢复供电方案,自动或由调度员确认。配调中心下发遥控命令,合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。等故障线路修复后,由人工操作,遥控恢复原来的供电方式。

2.就地自动控制 2.1负荷开关(分段器) 主要依靠自具一定功能的开关本身来完成简单的自动化,它与电源侧前级开关配合,在线路具备其本身特有的功能特性时,在失压或无流的情况下自动分闸,达到隔离故障恢复部分供电的目的。 这种开关一般或者有“电压-时间”特性,或者有“过流脉冲计数”特性。前者是凭借加压、失压的时间长短来控制其动作的,失压后分闸,加压后合闸或闭锁。后者是在一段时间内,记忆前级开关开断故障电流动作次数,当达到其预先设定的记录次数后,在前级开关跳开又重合的间隙分闸,从而达到隔离故障区域的目的。 在“电压-时间”方案中,开关动作次数多,隔离故障的时间长,变电站出口开关需重合两次,转供时容易有再次故障冲击,但它的优点是控制简单。 (1)基于重合器与电压-时间分段器方式的馈线自动化 基于电压延时方式,对于分段点位置的开关,在正常运行时开关为合闸状态,当线路因停电或故障失压时,所有的开关失压分闸。在第一次重合后,线路分段一级一级地投入,投到故障段后线路再次跳闸,故障区段两侧的开关因感受到故障电压而闭锁,当站内断路器再次合闸后,正常区间恢复供电,故障区间通过闭锁而隔离。 而对于联络点位置的开关,在正常时感受到两侧有电压时为常开状态,当一侧电源失压时,该联络开关开始延时进行故障确认,在延时时间完成后,联络开关投入,后备电源向故障线路的故障后端正常区间恢复供电。两侧同时失压时,开关为闭锁状态。 特点:造价低,动作可靠。该系统适合于辐射状、“手拉手”环状和多分段多连接的简单网格状配电网,一般不宜用于更复杂的网架结构。应用该系统的关键在于重合器和电压–时间型分段器参数的恰当整定,若整定不当,不仅会扩大故障隔离范围,也会延长健全区域恢复供电的时间。 (2)基于重合器与过流脉冲计数分段器方式的馈线自动化

配电网馈线系统保护原理及分析-最新范文

配电网馈线系统保护原理及分析 一引言 配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。目前,我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已得到普遍认可,光纤通信作为主干网的通信方式也得到共识。馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速地彼此通信,共同实现具有更高性能的馈线自动化功能。 二。配电网馈线保护的技术现状 电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的配电网对负荷供电可靠性和供电质量要求不同。许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。 随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切

除、故障隔离和恢复供电。具体实现方式有以下几种: 2.1传统的电流保护 过电流保护是最基本的继电保护之一。考虑到经济原因,配电网馈线保护广泛采用电流保护。配电线路一般很短,由于配电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。常用的方式有反时限电流保护和三段电流保护,其中反时限电流保护的时间配合特性又分为标准反时限、非常反时限、极端反时限和超反时限,参见式(1)、(2)、(3)和(4)。这类保护整定方便、配合灵活、价格便宜,同时可以包含低电压闭锁或方向闭锁,以提高可靠性;增加重合闸功能、低周减载功能和小电流接地选线功能。 电流保护实现配电网保护的前提是将整条馈线视为一个单元。当馈线故障时,将整条线路切掉,并不考虑对非故障区域的恢复供电,这些不利于提高供电可靠性。另一方面,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。 2.2重合器方式的馈线保护 实现馈线分段、增加电源点是提高供电可靠性的基础。重合器保护是将馈线故障自动限制在一个区段内的有效方式「参考文献」。参见图1,重合器R位于线路首端,该馈线由A、B、C三个分段器分为四段。当AB区段内发生故障F1,重合器R动作切除故障,此后,A、B、C 分段器失压后自动断开,重合器R经延时后重合,分段器A电压恢复后延时合闸。同样,分段器B电压恢复后延时合闸。当B合闸于故障后,重合器R再次跳开,当重合器第二次重合后,分段器A将再次合闸,此

配电网馈线系统保护原理及分析(正式)

编订:__________________ 审核:__________________ 单位:__________________ 配电网馈线系统保护原理及分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8696-71 配电网馈线系统保护原理及分析(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一引言 配电自动化技术是服务于城乡配电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。目前,我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已得到普遍认可,光纤通信作为主干网的通信方式也得到共识。馈线自动化的实现也完全能够建立在光纤通信的基础上,这使得馈线终端能够快速地彼此通信,共同实现具有更高性能的馈线自动化功能。 二.配电网馈线保护的技术现状 电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电

厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,配电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的配电网对负荷供电可靠性和供电质量要求不同。许多配电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将配电网故障对电力负荷(用户)的负面影响作为配电网保护的目的。 随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为配电网的工作重点,而配电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。具体实现方式有以下几种: 2.1 传统的电流保护 过电流保护是最基本的继电保护之一。考虑到经济原因,配电网馈线保护广泛采用电流保护。配电线路一般很短,由于配电网不存在稳定问题,为了确保

配电自动化馈线终端FTU技术规范

配电自动化馈线终端 F T U技术规范 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

配电自动化馈线终端(FTU) 技术规范

目录

配电自动化馈线终端(FTU)技术规范 1 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本适用于本文件。 GB/T 电磁兼容试验和测量技术抗扰度试验总论 GB/T 静电放电抗扰度试验 GB/T 射频电磁场辐射抗扰度试验 GB/T 浪涌(冲击)抗扰度试验 GB/T 电快速瞬变脉冲群抗扰度试验 GB/T 工频磁场的抗扰度试验 GB/T 阻尼振荡磁场的抗扰度试验 GB/T 电压暂降、短时中断和电压变化抗扰度试验 GB/T 远动设备及系统第2部分:工作条件第1篇:电源和电磁兼容兼容性 GB/T 11022 高压开关设备和控制设备标准的共用技术要求 GB/T 14285 继电保护和安全自动装置技术规程 GB/T 4208 外壳防护等级(IP) GB/T 13729 远动终端设备 GB/T 5096 电子设备用机电件基本试验规程及测量方法 GB/T 19520 电子设备机械结构 GB 低压成套开关设备和控制设备第五部分:对户外公共场所的成套设备—动力配电网用电缆分线箱(CDCs)的特殊要求 DL/T 637-1997 阀控式密封铅酸蓄电池订货技术条件 DL/T 721 配电网自动化系统远方终端 DL/T 远动设备及系统第5-101部分:传输规约基本远动任务配套标准 DL/T 远动设备及系统第5-104部分:传输规约采用标准传输协议子集的IEC60870-5-101网络访问 DL/T 814 配电自动化系统功能规范 Q/GDW 382 配电自动化技术导则 Q/GDW 513 配电自动化主站系统功能规范 Q/GDW 514 配电自动化终端/子站功能规范 Q/GDW 625 配电自动化建设与改造标准化设计技术规定 2 技术要求 概述 馈线终端的结构形式可分为箱式馈线终端和罩式馈线终端。 箱式馈线终端

馈线自动化两种实现模式的对比研究

龙源期刊网 https://www.360docs.net/doc/a46465188.html, 馈线自动化两种实现模式的对比研究 作者:吴慧 来源:《中国新技术新产品》2015年第02期 摘要:本文主要结合孝感城区配网馈线自动化建设探索实践经验,针对馈线自动化的两 种实现模式,分别从选点原则、动作原理、实践效果方面进行对比分析,提出建议。 关键词:配网自动化;馈线自动化;实例分析 中图分类号:TM76 文献标识码:A 馈线自动化实现故障处理的模式主要分为集中式和就地式两类。下文就孝感供电公司馈线自动化建设探索进程,对馈线自动化两种模式分别进行对比分析。 一、集中式模式实例分析 孝感城区配网自动化系统于2009年7月开始建设,11月底投入运行。系统采用双层体系结构,主要由主站层和终端设备层组成,二者之间通过光纤网络进行数据通信。 1选点原则:联络点优先、就近接入 对城区10KV配网128组开关进行了改造,加装电操机构和测控元件,并全部配备智能终端。系统监控设备总数约占当时配网设备总数的40%。 2动作原理:配网常采用手拉手环网常开运行方式:正常运行情况下,开关1、2、3、4 合闸位置,联络1开关分闸位置,如图1所示。 若开关3至开关4之间发生短路故障,则可能存在开关3、2、1三级跳闸的情况,此时必须这三级开关中至少有一组保护信号变位+开关动作触发DA计算启动,主站同时接收到多个开关保护信号变位后,按照电流方向和设备连接的拓扑关系,从馈线段的首端向末端查找,找到最后一个发送保护信号的开关3后,主站判定实际故障区域为开关3——开关4。 (1)开关3保护信号变位+开关3跳闸,隔离方案:开关4分闸;恢复方案:联络1合闸。 (2)开关3保护信号变位+开关2跳闸,隔离方案:开关3分闸、开关4分闸;恢复方案:开关2合闸、联络1合闸。 (3)开关3保护信号变位+开关1跳闸,隔离方案:开关3分闸、开关4分闸;恢复方案:开关1合闸、联络1合闸。

10kV继电保护技术方案及说明

10KV开关柜继电保护技术应答书 1 适用范围 本应答书为对明珠线二期工程10kV开关柜继电保护部分的响应,适用于降压变电所10kV 进线、10kV出线、10kV母联及配电变压器。 2 环境条件 2.1 环境温度:-10?C~+40?C 2.2 相对湿度:日平均值不大于95%;月平均值不大于90%(25?C)有凝露的情况发 生 2.3 饱和蒸气压:日平均值不大于2.2×10-3Mpa 月平均值不大于1.8×10-3Mpa 2.4 海拔高度: ≤1000 m 2.5 地震烈度:7度 3 采用标准 本继电保护装置的制造、试验和验收除了满足技术规格书的要求外,还符合如下标准: 3.1 《电力装置的继电保护和自动装置设计规范》(GB50062-92) 3.2《微机线路保护装置通用技术条件》(GB/T15145-94) 3.3 《继电器及继电保护装置基本试验方法》(GB7261) 3.4 《静态继电器及保护装置的电气干扰试验》(GB6162) 3.5 《线路继电保护产品动态模拟技术条件》(SD286) 3.6 《电气继电器》(IEC255) 3.7 《微机型防止电气误操作装置适用技术条件》(DL/T486-2000) 3.8 《地下铁道设计规范》(GB50157-92) ? 4主要继电保护产品REF543性能及参数

4.1应用 REF54?馈线终端设计用于中压网络的保护,控制,测量和监视,其可与不同的开关柜一道使用,包括单母线,双母线及双重配置系统,保护功能也支持不同的网络类型,如中性点不接地网络,谐振接地网络及部分接地网络。 RE54?馈线终端功能特性基于专用的保护,控制,测量,运行状况监视及通信功能库,每个库包括某些特定功能块的组合,如保护功能块。同使用传统的单个产品相比,组合库经济效益更好。专用库与继电器配置(IEC 1131 标准)一起使得REF54?馈线终端较易适用各种不同应用。借助于MMI 图形显示,馈线终端内的控制功能就地指示隔离刀闸或断路器的状态。而且,馈线终端可允许将来自断路器及隔离刀闸的状态信息转送到远方控制系统,可控对象如断路器可通过远方控制系统断开,合上。状态信息和控制信号通过串行总线传送,也可通过馈线终端面板上的按钮进行就地控制。馈线终端设计用于短路及接地故障的选择性保护REF54?馈线保护包含过电流及接地故障功能,可用于强接地,电阻接地或谐振接地网络馈线的短路,时限过流及接地故障保护,带有接地故障功能及方向接地故障功能的相同类型馈线终端可用于中性点不接地网络的过电流及接地故障保护,当需要时可使用自动重合闸功能进行自动重合闸,可进行多达五个连续的自动重合闸周期。 REF54?终端测量三相电流及三个相间电压,中性点电流,残余电压,频率及功率因素。从测量的电流,电压计算出有功,无功功率,可基于所测量的功率计算出电能,测量值可用与一次值成比例的值进行就地,远方显示。

牵引变电所的馈线保护

牵引变电所的馈线保护 华东交通大学电气与电子工程学院刘家李 随着时代的发展,利用微机构成的变电站自动化系统在电力系统得到了广泛 的应用,并取得了良好的效果,使得电力系统继电保护的可靠性和快速性都得到很大提高.由于牵引供电系统的负荷特性和电力系统的负荷特性不同,牵引网继电保护技术和操作水平相对落后,电力系统的变电站自动化技术在牵引供电系统中还 没有得到广泛应用.而牵引变电所变电站自动化的馈线保护主要去分析牵引供电 系统的构成,牵引变电所向电力机车的供电方式,以及电气化铁路的负荷特征.牵 引负荷具有冲击性、移动性、电流变化范围广、励磁涌流大、高次谐波含量高等不同于一般负荷的特征,因此其馈线保护的原理相对于一般变电所来说有所不同.通过分析其负荷特征,根据自适应原理,提出了利用高次谐波对距离保护、电流增量保护等主、后备保护进行抑制,自动改变其动作边界,并利用二次谐波进行保护闭锁,对防止由励磁涌流、再生负荷等因素引起的保护误动作有很好的功能.其中距离保护主要采用四边形保护特性. 自 2005 年5月馈线保护整定值调整以来,牵引变电所运行基本稳定,这避免了大负荷电流引起的变电所馈线断路器跳闸,保证了牵引变电所的可靠供电. 1 故障分析 由于阻抗 II 段是按正常供电进行整定(见式 1),阻抗III 段是按越区供电进行整定(见式 2),所以一般阻抗III 段的线路阻抗大于阻抗II 段的线路阻抗,当相邻变电所供电臂越时,相差就越大。由式(1)和式(2)的整定计算方法,结合四边形特性可以明显地看出阻抗III 段Z 值大于正常供电时阻抗II 段的Z 值.由于阻抗II 段与阻抗III 段选取了相同的最大负荷电流,这样它们的R值相同. Z II=K k (2×Z1)×n L/n y (1) Z III=K k (Z1+2×Z2)×n L/n y。(2) 式中.Z II 为1#变电所阻抗II 段线路阻抗整定值;Z III 为1#变电所阻抗III 段线路阻抗整定值;Z1 为1#变电所至分区亭的线路阻抗;Z2 为2#变电所至分区亭的线路阻抗;K k 为可靠系数;n L 为馈线电流互感器变比;n y 为馈线母线电压变比.而负荷电流阻抗角一般为30°~45°.这样造成正常负荷电流落到了阻抗III 段的动作区,造成阻抗III 段保护误动.这也是为什么阻抗II 段与阻抗III 段R 值和动作时间相同,但大多阻抗II 段不跳闸的原因.当列车提速后车流密度增大,再加上客车内用电从网上取流以及货车取流的增加等,构成了大负荷电流跳闸的条件,引起变电所馈线断路器跳闸. 2 参数的选取准则 (1)通过对多次跳闸分析,发现原来选取的最大负荷电流不能满足要求,所以造成了保护的误动.故标指示的短路电流可作为线路最大负荷电流的选取依据,故标显示OVER 测量越限,是因为线路没有发生短路,只是负荷阻抗而不是短路电抗,所以不能显示公里数. (2)最大负荷电流的选取不能引起主变压器的二次低压起动过电流保护动作,因此选取该电流后要校验低压起动过流的低电压以满足要求. (3)最大负荷电流的选取不能超过接触网接触悬挂载流的允许载流能力,防止因

智能分布式配电终端FTU-DTU..

智能分布式配电终端FTU/DTU及智能分布式FA 一、架空线路智能分布式馈线自动化终端(DAF-810馈线自动化终端) 1.现状和问题 传统的架空配电线路发生短路故障时,一般由变电站馈线出口断路器保护动作跳闸,并通过人工切除故障后,恢复供电。这种方式下,人员的维护量大,并且停电时间长,供电可靠性低。 现有的配电网自动化中一般是基于电压时间型的FTU,不依赖于通讯,当故障发生时,依然由变电站馈线出口断路器保护动作跳闸,通过FTU之间时间的配合,不断的通过重合,实现故障的自动恢复。这种方式下,如果发生的永久故障,并且故障发生在末端,会对配电网和用户设备造成多次短路冲击,而且恢复时间较长,供电可靠性依然低。 而智能分布式馈线自动化能够不依赖主站通过馈线自动化终端内部间的数据交换,实现故障点准确定位及跳闸。 图1 DAF-810馈线自动化终端FTU外观图 2.产品特点 广州市智昊电气技术有限公司DAF-810馈线自动化终端(分布式FTU)具有如下特点: 提高故障隔离与恢复的速度:为了保证系统的快速性,由智能FTU装置间就地动态决策,快速实现故障的自动恢复,有效减少馈线出口开关和分段开关的动作次数,极大的缩短停电时间。 加强系统运行的可靠性: 为了提高系统可靠性,主控FTU为动态的,当原主FTU故障时,其他FTU中编号最小的一台可自动取代原主控FTU,实现FTU协调功能。

系统基于无线通讯运行。在通讯正常的情况下,主控FTU能够准确定位故障点,并通过预置的控制策略来进行故障的快速隔离及恢复,避免了电压时间型FTU多次尝试性重合,减少了恢复过程中故障对系统的多次冲击;在通讯异常的情况下,本装置自动按传统的电压时间型FTU逻辑运行。 通过本系统的II段近后备保护,并结合馈线出口断路器的保护、母线保护、变压器保护,实现了电网、变电站和馈线各类保护的协同配合,同时本系统还具备重合闸、解列、重构等功能,完善了智能配电网的自愈体系,提高了配电网的供电质量。 提供强大的分析能力:后台监控系统主要包括系统运行监控功能、系统维护功能、分段开关四遥功能、以及后台辅助分析功能。监控功能指常态下的监控,系统维护功能主要包括馈线拓扑结构维护、控制策略的配置、定值的计算及在线下发等,而后台辅助分析功能包括故障场景再现,系统动作行为分析等。 运行过程中,本系统能将故障处理的过程信息,包括故障类型、故障点、电流、电压、DTU状态、通讯状态、分段开关状态,上传到后台监控系统或配电网自动化系统,实现故障处理的全过程监视及事后分析,便于检修人员的故障排除,缩短事故处理时间。 减少系统的维护量:后台监控系统,能提供配电网馈线拓扑结构的维护工具,能方便实现DTU装置的拓扑在线维护,并实现各类整定值的计算、校核和在线下发,系统维护量小。 本系统不需要配电自动化主站和变电站配网子站系统参与,就可自治实现配网的故障隔离及重合、故障恢复功能,安装实施简单,维护工作量小,便于推广使用。 强化投资的收益比:无线GPRS通讯是架空线型线路的标准配置,本系统要求的无线通讯并不增加投资。在资金充裕时,采用光纤通讯和断路器分段,可获得理想的保护选择性和故障智能处理特性;在资金紧张时,可使用GPRS专网、无线网桥建立通讯网络,使用负荷开关作为分段装置,也能建立就地智能FA,实现故障快速隔离及智能恢复。但是降低了故障隔离的选择性。 增强部署的灵活性:适用于市、县供电公司或大中型工矿企业中对供电可靠性有较高要求的架空线型配电线路。系统支持多种馈线拓扑结构,包括手拉手、单电源和多电源供电线路。 3.智昊电气DAF-810馈线自动化终端系统原理(中性点经小电阻接地系统的电缆网络) (1)电源甲侧首端线路故障检测

配电自动化馈线终端技术规范

配电自动化馈线终端(FTU) 技术规范

目录 1 规范性引用文件...................................................... 错误!未定义书签。 2 技术要求............................................................ 错误!未定义书签。 3 标准技术参数........................................................ 错误!未定义书签。 4 环境条件表........................................................... 错误!未定义书签。 5 试验................................................................. 错误!未定义书签。附录A馈线终端无线通信安装位置、航插尺寸定义(参考性附录)............. 错误!未定义书签。附录B 馈线终端接口定义(规范性附录) .................................. 错误!未定义书签。

配电自动化馈线终端(FTU)技术规范 1 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本适用于本文件。 GB/T 电磁兼容试验和测量技术抗扰度试验总论 GB/T 静电放电抗扰度试验 GB/T 射频电磁场辐射抗扰度试验 GB/T 浪涌(冲击)抗扰度试验 GB/T 电快速瞬变脉冲群抗扰度试验 GB/T 工频磁场的抗扰度试验 GB/T 阻尼振荡磁场的抗扰度试验 GB/T 电压暂降、短时中断和电压变化抗扰度试验 GB/T 远动设备及系统第2部分:工作条件第1篇:电源和电磁兼容兼容性 GB/T 11022 高压开关设备和控制设备标准的共用技术要求 GB/T 14285 继电保护和安全自动装置技术规程 GB/T 4208 外壳防护等级(IP) GB/T 13729 远动终端设备 GB/T 5096 电子设备用机电件基本试验规程及测量方法 GB/T 19520 电子设备机械结构 GB 低压成套开关设备和控制设备第五部分:对户外公共场所的成套设备—动力配电网用电缆分线箱(CDCs)的特殊要求 DL/T 637-1997 阀控式密封铅酸蓄电池订货技术条件 DL/T 721 配电网自动化系统远方终端 DL/T 远动设备及系统第5-101部分:传输规约基本远动任务配套标准 DL/T 远动设备及系统第5-104部分:传输规约采用标准传输协议子集的IEC60870-5-101网络访问 DL/T 814 配电自动化系统功能规范 Q/GDW 382 配电自动化技术导则 Q/GDW 513 配电自动化主站系统功能规范 Q/GDW 514 配电自动化终端/子站功能规范 Q/GDW 625 配电自动化建设与改造标准化设计技术规定 2 技术要求 概述 馈线终端的结构形式可分为箱式馈线终端和罩式馈线终端。 箱式馈线终端 安装在配电网馈线回路的柱上等处的配电终端,外箱为箱式,按照功能分为箱式“三遥”终端和箱

浅谈电网馈线系统保护

浅谈电网馈线系统保护 发表时间:2014-12-15T10:03:21.000Z 来源:《工程管理前沿》2014年第12期供稿作者:胡学明[导读] 我国配电自动化进行了较多试点,由配电主站、子站和馈线终端构成的三层结构已得到普遍认可,光纤通信作为主干网的通信方式也得到共识。胡学明黑龙江省虎林市电业局黑龙江虎林 158400 摘要:配电自动化技术是服务于城乡电网改造建设的重要技术,配电自动化包括馈线自动化和配电管理系统,通信技术是配电自动化的关键。本文首先阐述了电网馈线保护的技术现状,探讨分析了馈线系统保护基本原理,这种新原理能够进一步提高供电可靠性。同时统保护分布式的功能也将提高配电自动化的主站及子站的性能,是一种极具前途的馈线自动化新原理。 关键词:电网;馈线保护;基本原理;发展一、电网馈线保护的技术现状电力系统由发电、输电和配电三部分组成。发电环节的保护集中在元件保护,其主要目的是确保发电厂发生电气故障时将设备的损失降为最小。输电网的保护集中在输电线路的保护,其首要目的是维护电网的稳定。配电环节的保护集中在馈线保护上,电网不存在稳定问题,一般认为馈线故障的切除并不严格要求是快速的。不同的电网对负荷供电可靠性和供电质量要求不同。许多电网仅是考虑线路故障对售电量的影响及配电设备寿命的影响,尚未将电网故障对电力负荷(用户)的负面影响作为电网保护的目的。随着我国经济的发展,电力用户用电的依赖性越来越强,供电可靠性和供电电能质量成为电网的工作重点,而电网馈线保护的主要作用也成为提高供电可靠性和提高电能质量,具体包括馈线故障切除、故障隔离和恢复供电。具体实现方式有以下几种:1、基于馈线自动化的馈线保护。配电自动化包括馈线自动化和配电管理系统,其中馈线自动化实现对馈线信息的采集和控制,同时也实现了馈线保护。馈线自动化的核心是通信,以通信为基础可以实现电网全局性的数据采集与控制,从而实现配电SCADA、配电高级应用(PAS)。同时以地理信息系统(GIS)为平台实现了电网的设备管理、图资管理,而SCADA、GIS和PAS的一体化则促使配电自动化成为提供电网保护与监控、电网管理的全方位自动化运行管理系统。参见图2所示系统,这种馈线自动化的基本原理如下:当在开关S1和开关S2之间发生故障(非单相接地),线路出口保护使断路器B1动作,将故障线路切除,装设在S1处的FTU 检测到故障电流而装设在开关S2处的FTU没有故障电流流过,此时自动化系统将确认该故障发生在S1与S2之间,遥控跳开S1和S2实现故障隔离并遥控合上线路出口的断路器,最后合上联络开关S3完成向非故障区域的恢复供电。这种基于通信的馈线自动化方案以集中控制为核心,综合了电流保护、RTU遥控及重合闸的多种方式,能够快速切除故障,在几秒到几十秒的时间内实现故障隔离,在几十秒到几分钟内实现恢复供电。该方案是目前配网自动化的主流方案,能够将馈线保护集成于一体化的电网监控系统中,从故障切除、故障隔离、恢复供电方面都有效地提高了供电可靠性。同时,在整个配电自动化中,可以加装电能质量监测和补偿装置,从而在全局上实现改善电能质量的控制。 2、传统的电流保护。过电流保护是最基本的继电保护之一。考虑到经济原因,电网馈线保护广泛采用电流保护。配电线路一般很短,由于电网不存在稳定问题,为了确保电流保护动作的选择性,采用时间配合的方式实现全线路的保护。常用的方式有反时限电流保护和三段电流保护,其中反时限电流保护的时间配合特性又分为标准反时限、非常反时限、极端反时限和超反时限。这类保护整定方便、配合灵活、价格便宜,同时可以包含低电压闭锁或方向闭锁,以提高可靠性;增加重合闸功能、低周减载功能和小电流接地选线功能。电流保护实现电网保护的前提是将整条馈线视为一个单元。当馈线故障时,将整条线路切掉,并不考虑对非故障区域的恢复供电,这些不利于提高供电可靠性。另一方面,由于依赖时间延时实现保护的选择性,导致某些故障的切除时间偏长,影响设备寿命。 二、馈线系统保护基本原理 1、基本原理。馈线系统保护实现的前提条件如下:(1)快速通信;(2)控制对象是断路器;(3)终端是保护装置,而非TTU. 2、在高压线路保护中,高频保护、电流差动保护都是依靠快速通信实现的主保护。馈线系统保护是在多于两个装置之间通信的基础上实现的区域性保护。当故障发生后,系统保护各单元向相邻保护单元交换故障区段,对于一个保护单元,当本身的故障区段信息与收到的故障区段信息的异或为1时,出口跳闸。为了确保故障区段信息识别的正确性,在进行逻辑1的判断时,可以增加低压闭锁及功率方向闭锁。 3、系统保护动作速度及其后备保护。为了确保馈线保护的可靠性,在馈线的首端UR1处设限时电流保护,建议整定时间内0.2秒,即要求馈线系统保护在200ms内完成故障隔离。在保护动作时间上,系统保护能够在20ms内识别出故障区段信息,并起动通信。光纤通信速度很快,考虑到重发多帧信息,相邻保护单元之间的通信应在30ms内完成。断路器动作时间为40ms~100ms.这样,只要通信环节理想即可实现快速保护。 4、馈线系统保护的应用前景。馈线系统保护在很大程度上沿续了高压线路纵联保护的基本原则。由于电网的通信条件很可能十分理想。在此基础之上实现的馈线保护功能的性能大大提高。馈线系统保护利用通信实现了保护的选择性,将故障识别、故障隔离、重合闸、恢复故障一次性完成,具有以下优点:(1)快速处理故障,不需多次重合;(2)快速切除故障,提高了电动机类负荷的电能质量;(3)直接将故障隔离在故障区段,不影响非故障区段;(4)功能完成下放到馈线保护装置,无需配电主站、子站配合。 三、电网馈线保护的发展目前,配电自动化中的馈线自动化较好地实现了馈线保护功能。但是随着配电自动化技术的发展及实践,对电网保护的目的也要悄然发生变化。最初的电网保护是以低成本的电流保护切除馈线故障,随着对供电可靠性要求的提高,又出现以低成本的重合器方式实现故障隔离、恢复供电,随着配电自动化的实施,馈线保护体现为基于远方通信的集中控制式的馈线自动化方式。在配电自动化的基础上,电网通信得到充分重视,成本自动化的核心。目前国内的主流通信方式是光纤通信,具体分为光纤环网和光纤以太网。建立在光纤通信基础上的馈线保护的实现由以下三部分组成:(1)电流保护切除故障;(2)集中式的配电主站或子站遥控FTU实现故障隔离;(3)集中式的配电主站或子站遥控FTU实现向非故障区域的恢复供电。这种实现方式实质上是在自动装置无选择性动作后的恢复供电。如果能够解决馈线故障时保护动作的选择性,就可以大大提高馈线保护的性能,从而一次性地实现故障切除与故障隔离。这需要馈线上的多个保护装置利用快速通信协同动作,共同实现有选择性的故障隔离,这就是馈线系统保护的基本思想。结束语

相关文档
最新文档